
Second Rényi entropy and annulus partition function for

one-dimensional quantum critical systems with boundaries

Benoit Estienne, Yacine Ikhlef, Andrei Rotaru
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Abstract

We consider the entanglement entropy in critical one-dimensional quantum systems with
open boundary conditions. We show that the second Rényi entropy of an interval away from
the boundary can be computed exactly, provided the same conformal boundary condition is
applied on both sides. The result involves the annulus partition function. We compare our
exact result with numerical computations for the critical quantum Ising chain with open
boundary conditions. We find excellent agreement, and we analyse in detail the finite-size
corrections, which are known to be much larger than for a periodic system.

1 Introduction

The study of quantum entanglement has become a central research field in theoretical high-
energy and condensed-matter physics. While the initial motivations stemmed from black hole
physics and the holographic principle [1–4], entanglement now finds important applications in
low-energy physics, such as the development of tensor network algorithms to simulate strongly-
correlated quantum systems [5–7]. More generally, entanglement is a very powerful probe of
quantum many-body physics. It can detect phase transitions, extract the central charge and
critical exponents of critical points in one-dimensional systems [8–11]. In two dimensions, the
entanglement entropy can detect and count critical Dirac fermions [12–15] as well as intrinsic
topological order, and extract the various anyonic quantum dimensions [16, 17]. It can also
uncover and identify gapless interface modes in both two [18–22] and higher dimensions [23,24].

Given a quantum system in a pure state |Ψ⟩, the entanglement between two complementary
subregions A and B is encoded in the reduced density matrix ρA = TrB|Ψ⟩⟨Ψ|. The amount of
entanglement can be quantified by entanglement entropies, such as the von Neumann entropy

S(A) = −TrA (ρA log ρA) , (1.1)

or the Rényi entropies [25–29]

Sn(A) =
1

1− n
log Tr (ρnA) , (1.2)
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where n can be any complex number. In particular, the full spectrum of ρA, called the entan-
glement spectrum, can be recovered from the knowledge of all Rényi entropies [30]. While most
of the focus on entanglement entropies has been theoretical, in the past few years there have
been many experimental proposals as well as actual experiments to measure them [31–36].

Computing entanglement entropies for strongly-correlated quantum systems is typically a
difficult problem. However, if the system is one-dimensional and critical, the full power of two-
dimensional Conformal Field Theory (CFT) can be brought to bear. Perhaps the most famous
result in this context is the universal asymptotic behaviour [3, 8, 9, 37–39]

Sn(ℓ) ∼
c

6

n+ 1

n
log ℓ , (ℓ→ ∞) , (1.3)

for the entanglement entropy of an interval of length ℓ in an infinite system (in the above, c is the
central charge of the critical system). CFT computations of entanglement entropies rest on two
important insights. First, for integer values of n, and if A is the union of some disjoint intervals,
the quantity TrA (ρnA) can be expressed as a partition function on an n-sheeted Riemann surface
with conical singularities corresponding to the endpoints of the intervals [3, 9]. Such partition
functions are difficult to evaluate in general, although important results have been obtained
for free theories and other particular cases [10, 11, 40–48]. This is where the second insight
becomes crucial. Borrowing a trick from the high-energy physics toolbox of the 1980’s, one
trades the replication of the spacetime of the theory to a replication of the field space of the
CFT [49–51]. Such a construction, known in the literature as the cyclic orbifold CFT [50],
consists of n copies of the original CFT (referred to as the mother CFT ), which are modded by
the discrete group Zn of cyclic permutations. The conical singularities of the mother CFT are
accounted for by insertions of twist operators [49] in orbifold correlators. Thus, the evaluation of
TrA (ρnA) becomes a matter of computing correlators of twist operators. This orbifold approach
is very general and flexible, as twist operators can be easily adapted to encode modified initial
conditions around the branch points [52], which is relevant for instance in the case of non-unitary
systems [53,52] or for symmetry-resolved entanglement entropy [54–58].

In this article, we consider the entanglement entropy in an open system, when the subregion
A is a single interval away from the boundary. In the scaling limit, such an open critical
system is described by a Boundary Conformal Field Theory (BCFT), with a well-established
[59–61] correspondence between the chiral Virasoro representations and the conformal boundary
conditions (BC) allowed by the theory. The case of an interval touching the boundary has
been extensively studied (see [62] for a review) using either conformal field theory methods
[9,39,63–65] or exact free fermion methods [66–68], including symmetry-resolved entropies [69].
It has also been checked numerically using density-matrix renormalization group techniques
[70–73]. When the subregion A is an interval at the end of a semi-infinite line, or at the end
of a finite system with the same boundary condition on both sides, the computation of the
Rényi entanglement entropy boils down to the evaluation of a twist one-point function on the
upper half-plane. Such a correlation function is simply fixed by conformal invariance, and as a
consequence the entanglement entropy exhibits again a simple space dependence, similarly to
(1.3). For instance, in the case of an interval of length ℓ at the end of a semi-infinite line one
finds 1 [9]

Sn(ℓ) ∼
c

12

n+ 1

n
log 2ℓ+ log gα , (ℓ→ ∞) , (1.4)

where gα is the universal boundary entropy [74] associated to the boundary condition α.

In contrast, there are very few results for an interval away from the boundary, mainly because
the CFT computation is much more involved. Indeed, after a proper conformal mapping, one has

1up to an additive non-universal constant coming from the normalization of the lattice twist operator

2



1 INTRODUCTION

to compute a two-twist correlation function in the upper half-plane, which is no longer a simple
power law fixed by conformal symmetry. As a consequence, the corresponding entanglement
entropy is generally not known, despite some partial recent results for free scalar fields [75,76],
or in the large central charge limit [77]. In this article, we report an exact computation of the
second Rényi entropy S2 of a single interval in the ground state of a 1D critical system with
open boundaries, assuming the same boundary conditions on both sides: see Fig. 1.

u v
`

α α

L

Figure 1: A generic bipartition of a 1D system with boundary condition α on both ends.

As mentioned above, the calculation rests on the evaluation of a two-point function of twist
operators on the infinite strip. With the restriction that the same conformal boundary condition
α is chosen on both sides of the system, this boils down to the computation of the two-twist
correlation function on the unit disk D (with no boundary operator inserted). The main result
of this paper is the computation of this two-twist correlation function in terms of the annulus
partition function of the mother CFT:

⟨σ(0)σ(x, x̄)⟩(α,α)D = g−2
α 2−

c
3
[
|x|2(1− |x|2)

]− c
24 Zα|α(τ) , (1.5)

where σ denotes the twist operator in the Z2 orbifold CFT, c is the central charge and Zα|α(τ)
is the partition function on the annulus of unit circumference, width Im τ/2, and boundary
condition α on both edges. The parameter τ (which is pure imaginary) is related to x via:[

θ2(τ)

θ3(τ)

]2
= |x| , or equivalently τ(x, x̄) = i

2F1

(
1
2 ,

1
2 , 1; 1− |x|2

)
2F1

(
1
2 ,

1
2 , 1; |x|2

) , (1.6)

where the θj(τ)’s are the Jacobi elliptic functions (see appendix A.1). Moreover, the universal
boundary entropy gα, appearing in (1.4–1.5), can be simply defined in terms of BCFT states –
see (2.26). These results are completely general, and apply to any mother CFT with a known
annulus partition function. This includes, of course, CFTs built from minimal models and
Wess-Zumino-Witten models [78, 79], free and compactified bosonic CFTs [80] to name a few.
This result is reminiscent of the well-known relation between the twist four-point function on
the sphere and the torus partition function Z(τ, τ̄) [49,81,82]

⟨σ(0)σ(η, η̄)σ(1)σ(∞)⟩C = 4−
c
3 |η(1− η)|− c

12 Z(τ, τ̄) , η =

[
θ2(τ)

θ3(τ)

]4
. (1.7)

The final result for the S2 entropy of an interval A = [u, v] in a system of length L is, up to an
additive non-universal constant coming from the normalization of the lattice twist operator :

Sα2 ([u, v]) =
c

24
log
[
sL(2u)sL(2v)s

2
L(v + u)s2L(v − u)

]
+ 2 log gα − logZα|α(τ) , (1.8)

where we have introduced the shorthand notation

sL(w) =
2L

π
sin

πw

2L
. (1.9)
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The parameter τ is related to the position of the interval [u, v] (where 0 < u < v < L) via

sin π(v−u)
2L

sin π(v+u)
2L

=

[
θ2(τ)

θ3(τ)

]2
. (1.10)

We give here the organization of the paper. Section 2 provides a detailed derivation of the
main result (1.8) and a non-trivial check that our calculation does recover the result of [63,9,67]
for the S2 Rényi entropy of an interval A touching the boundary. We also recover the known
results for the Dirac fermion [66, 83, 84] and more generally the compact scalar field of [75].
Lastly, we extend our results to exact expressions for the mutual information and the entropy
distance in specific situations. In Section 3, we present some numerical checks of (1.8) for the
particular case of the Ising spin chain, using an efficient numerical method known as Peschel’s
trick, which allows the numerical determination of the entanglement spectrum for fermionic
chains of system sizes up to N ∼ 103 sites. We also carry a careful analysis of the finite-size
effects. In Section 4, we conclude with a recapitulation of our results and comment on future
directions for exploration. The Appendices A, B and C contain respectively our notations and
conventions for elliptic functions, an alternate derivation of the main result based on boundary
CFT techniques applied to the Z2 orbifold, and the computation of the bosonic annulus partition
function.

2 Exact calculation of the second Rényi entropy

We consider a one-dimensional quantum critical system of finite length L, with open boundary
conditions, and at zero temperature. We are interested in the second Rényi entropy of an
interval [u, v]. The critical point is assumed to be described by a CFT. For a large enough
system, the boundary flows to a renormalisation-group fixed point. We will therefore assume
that the boundary condition is scale invariant. For a given bulk universality class, there is a
set of possible such conformal boundary conditions {Bα} [59], [61], [60], [85]. We restrict to the
case where the same boundary conditions are applied at the two ends of the system, and we
assume that there is a non-degenerate ground state |ψ0⟩.

Evaluating the second Rényi entropy Sα
2 ([u, v]) boils down to the computation of the fol-

lowing correlator in the Z2 orbifold of the original CFT [39], [9], [77], [71]:

⟨σ(u, ū)σ(v, v̄)⟩(α,α)SL = exp[−Sα
2 ([u, v])] , (2.1)

where σ denotes the twist operator2. This correlator is evaluated on the infinite strip (with
imaginary time running along the imaginary axis) SL = {w ∈ C, 0 < Re(w) < L} of width L
with boundary condition (α, α) on both sides of the strip. Alternatively this two-point function
is equal to the following ratio of partition functions [3, 9]:

⟨σ(u, ū)σ(v, v̄)⟩(α,α)SL = Z2(u, v)/Z
2
1 , (2.2)

where Z1 stands for the strip partition function, and Z2(u, v) stands for the partition function on
a two-sheeted covering of the infinite strip with branch points at u and v, being understood that
all edges have the same conformal boundary condition α. The main result of this paper rests on

2Here, even though u and v are real, and hence u = ū and v = v̄, we use the standard notations σ(u, ū) and
σ(v, v̄) for bulk operators, which emphasizes the fact that the correlation function is not a holomorphic function
of u and v.
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the fact that this Riemann surface (once compactified) is conformally equivalent to an annulus,
as was observed in [77]. It is therefore not surprising that the two-twist correlation function
is equal, up to some universal prefactors, to the annulus partition function. We present two
different ways to derive this result. The first method, which we now detail, is more geometric in
nature : we unfold the two-sheeted Riemann surface into an annulus via an explicit conformal
mapping. The second method, which is more algebraic, is based on Cardy’s mirror trick [59,85]
applied to the Z2 orbifold. This second approach, which employs a larger set of BCFT and
orbifold concepts, has been relegated to Appendix B to avoid congesting the logical flow of the
article.

2.1 Conformal equivalence to the annulus

In order to construct an explicit conformal map between the two-sheeted strip and the annulus,
it is convenient to first map the strip to the unit disk via

w 7→ z =
sL(w − u)

sL(w + u)
, sL(w) =

2L

π
sin

πw

2L
. (2.3)

The above conformal map also sends the two-sheeted strip (with branch points at w = u and
w = v) to the two-sheeted unit disk D2,x with branch points at z = 0 and z = x, with

x =
sL(v − u)

sL(v + u)
=

sin π
2L(v − u)

sin π
2L(v + u)

. (2.4)

Note that x is real, and 0 < x < 1. Let us now describe the conformal mapping sending D2,x to
an annulus. First, for any complex number τ with Im τ > 0, the function

t 7→ z = g(t) =

(
θ4(t|τ)
θ1(t|τ)

)2

(2.5)

is a biholomorphic map from the torus of modular parameter τ to the double-sheeted cover of
the Riemann sphere with four branch points at positions

g(0) = ∞ , g

(
1 + τ

2

)
= x , g

(τ
2

)
= 0 , g

(
1

2

)
=

1

x
, (2.6)

with

x =

(
θ2(τ)

θ3(τ)

)2

, τ = i
2F1

(
1
2 ,

1
2 , 1; 1− |x|2

)
2F1

(
1
2 ,

1
2 , 1; |x|2

) , (2.7)

and where the θj(t, q)’s are Jacobi theta functions (see Appendix A.1 for definitions and conven-
tions). Using the properties (A.3) of these functions, we readily see that the function g satisfies
the identity:

g(t+ τ/2) = g(t)−1 , (2.8)

for any t on the torus. In the present situation, since 0 < x < 1, the modular parameter τ is
pure imaginary, with Im τ > 0. Then, from the above relation we get

g
(τ
2
+ t̄
)
= g(t)−1 . (2.9)

Now notice that identifying t and τ/2 + t̄ amounts to folding the torus into an annulus of unit
width, and height Im τ/2

Aτ =

{
t ∈ C/Z,

Im τ

4
≤ Im t ≤ 3 Im τ

4

}
, (2.10)
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2 EXACT CALCULATION OF THE SECOND RÉNYI ENTROPY

while identifying z and 1/z̄ on the two-sheeted Riemann sphere yields the two-sheeted unit
disk D2,x. In essence, these foldings are the reverse of Cardy’s mirror trick [59]. The relation
(2.9) ensures that the map g descends to the quotient, yielding a biholomorphic map from the
annulus Aτ to the two-sheeted unit disk D2,x, as shown in Figure 2.

α

α

1

Im τ
2 0 x

α α•
τ
2 •

1+τ
2

g(t)

Figure 2: The annulus Aτ – fundamental domain pictured here – is mapped through g to the
two-sheeted disk D2,x. The black edges are identified.

2.2 Rényi entropy of an interval in the bulk

Recall that the twist σ is a primary operator of conformal dimensions hσ = h̄σ = c/16 in
the Z2 orbifold CFT. Using conformal covariance under the map (2.3), we can relate the twist
correlation functions on the strip and on the unit disk:

⟨σ(u, ū)σ(v, v̄)⟩(α,α)SL = (sL(u+ v))−c/4 ⟨σ(0, 0)σ(x, x̄)⟩(α,α)D , (2.11)

where

x = x̄ =
sL(v − u)

sL(u+ v)
≥ 0 . (2.12)

The strategy (adapted from [49]) to compute ⟨σ(0, 0)σ(x, x̄)⟩(α,α)D in terms of an annulus parti-
tion function is the following. We insert the stress-energy tensor Torb into the twist correlation

function on the unit disk, and study the behaviour of the function ⟨Torb(z)σ(0, 0)σ(x, x̄)⟩(α,α)D
as z → x. Since σ is a primary operator, we have the OPE

Torb(z)σ(x, x̄) =
hσσ(x, x̄)

(z − x)2
+
∂xσ(x, x̄)

z − x
+ regular terms, (2.13)

and thus

∂x log⟨σ(0, 0)σ(x, x̄)⟩(α,α)D =
1

2πi

∮
Cx

⟨Torb(z)σ(0, 0)σ(x, x̄)⟩(α,α)D

⟨σ(0, 0)σ(x, x̄)⟩(α,α)D

dz , (2.14)

where the integration contour Cx encloses the point x and goes anti-clockwise. However, in
(2.13) and (2.14) the parameter x stands for a complex variable (independent of x̄). Setting
x = x̄ thus yields

∂x

(
log⟨σ(0, 0)σ(x, x̄)⟩(α,α)D

∣∣∣
x=x̄

)
= 2× 1

2πi

∮
Cx

⟨Torb(z)σ(0, 0)σ(x, x̄)⟩(α,α)D

⟨σ(0, 0)σ(x, x̄)⟩(α,α)D

dz . (2.15)

We will drop the |x=x̄, but from now on x is assumed – without loss of generality – to be real
positive, with 0 < x < 1.
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In terms of the mother theory, ⟨Torb(z)σ(0, 0)σ(x, x̄)⟩(α,α)D is the one-point function of the
stress-energy tensor on the two-sheeted surface D2,x. Since Torb(z) = T (z) ⊗ I + I ⊗ T (z), we
can write

⟨Torb(z)σ(0, 0)σ(x, x̄)⟩(α,α)D

⟨σ(0, 0)σ(x, x̄)⟩(α,α)D

= 2⟨T (z)⟩αD2,x
, (2.16)

where the last equality comes from the symmetry under the exchange of the two copies of
the unit disk. The last step is to compute ⟨T (z)⟩αD2,x

by exploiting the conformal equivalence

between the two-sheeted cover of the disk D2,x and the annulus Aτ via the map z = g(t)
described in (2.5):

⟨T (z)⟩αD2,x
=

(
dt

dz

)2

⟨T (t)⟩αAτ
+

c

12
{t, z} , (2.17)

where {t, z} denotes the Schwarzian derivative of the map g. First, the one-point function of
T (z) on the annulus is

⟨T (t)⟩αAτ
= 2iπ∂τ logZα|α(τ) , (2.18)

where Zα|α(τ) denotes the partition function on the annulus Aτ (with boundary condition α on
both edges). Let |α⟩ be the boundary state associated to the boundary condition α. Since Aτ

has unit width, and height β/2 = −iτ/2, we have

Zα|α(τ) = ⟨α|eiπτ(L0+L̄0−c/12)|α⟩ . (2.19)

We can exploit the differential equation (A.17) obeyed by the map z = g(t), namely(
dt

dz

)2

= − 1

4π2θ43(τ)z(z − x)(1− xz)
, (2.20)

to derive

⟨T (z)⟩αD2,x
=

x(1− x2)

4z(z − x)(1− zx)
∂x logZα|α(τ) +

c

12
{t, z} , (2.21)

where we have also used the relation (A.11). The Schwarzian derivative can be easily evaluated
using (2.20), yielding

{t, z} =
3x2(1 + z4)− 4

(
x+ x3

)
(z + z3) + 2

(
2x4 + x2 + 2

)
z2

8z2(z − x)2(1− xz)2
, (2.22)

and in particular the residue at z → x is

1

2πi

∮
Cx

{t, z} dz = − 1− 2x2

4x (1− x2)
= −1

8
∂x log x

2(1− x2) . (2.23)

Finally plugging the above in (2.15) we get

∂x log⟨σ(0, 0)σ(x, x̄)⟩(α,α)D = ∂x logZα|α(τ)−
c

24
∂x log x

2(1− x2) . (2.24)

Upon integration, we obtain

⟨σ(0, 0)σ(x, x̄)⟩(α,α)D = const×
[
x2(1− x2)

]− c
24 Zα|α(τ) . (2.25)

In order to fix the multiplicative constant in the above relation, we consider the leading be-
haviour as x tends to zero. In this limit, we have Im τ → +∞ and q → 0, with the relation
q = e2iπτ ∼ (x/4)4. Thus

Zα|α(τ) = ⟨α|eiπτ(L0+L̄0−c/12)|α⟩ ∼
Im τ→∞

q−c/24 g2α , gα = |⟨α|0⟩| , (2.26)
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where |0⟩ is the normalized ground state wavefunction of the Hamiltonian with periodic bound-
ary conditions. The twist operator σ is normalized so that

⟨σ(0, 0)σ(x, x̄)⟩(α,α)D ∼
x→0

x−c/4 , (2.27)

and hence the fully explicit relation (2.25) is

⟨σ(0, 0)σ(x, x̄)⟩(α,α)D = g−2
α 2−

c
3
[
x2(1− x2)

]− c
24 Zα|α(τ) . (2.28)

Note that in the above equation we have assumed x = x̄, with 0 < x < 1. For a generic complex
x on the unit disk, the result still holds up to replacing x by |x| in the r.h.s. as well as in (2.7).
Back to the original problem on the strip, we obtain

⟨σ(u, ū)σ(v, v̄)⟩(α,α)SL = g−2
α 2−

c
3
[
sL(v + u)2sL(v − u)2sL(2u)sL(2v)

]− c
24 Zα|α(τ) , (2.29)

and we get the announced result (1.8) for the second Rényi entropy.

2.3 Rényi Entropy of an interval touching the boundary

As a check for the formula (2.29), we want to recover the expression for the Rényi entropy S2
of an interval A = [0, ℓ] touching the boundary of the chain [9, 70,86,71,63]:

Sα
2 ([0, ℓ]) =

c

8
log

[
2L

π
sin

(
πℓ

L

)]
+ log gα . (2.30)

Let us consider the two-point function ⟨σ(u, ū)σ(v, v̄)⟩(α,α)SL in the limit u→ 0. On the left-hand
side of (2.29), we can use the bulk-boundary OPE:

σ(u, ū) ∼
u→0

Aα
σ (u+ ū)−c/8 I , (2.31)

where Aα
σ = (gα)

−1 is the OPE coefficient for the bulk operator σ approaching a boundary with
boundary condition α, and giving rise to the boundary identity operator I. Hence, for u real:

⟨σ(u, ū)σ(ℓ)⟩(α,α)SL ∼
u→0

(gα)
−1 (2u)−c/8 ⟨σ(ℓ)⟩(α,α)SL . (2.32)

On the right-hand side of (2.29), the limit u→ 0 corresponds to x→ 1 and τ → 0, with

q̃ = e−2iπ/τ ∼
(
1− x2

16

)2

→ 0 . (2.33)

In a rational CFT, the annulus partition function decomposes on the characters of primary
representations Vk as

Zα|α(τ) =
∑
k

nkαα χk(−1/τ) , χk(τ) = TrVk

(
qL0−c/24

)
. (2.34)

In the limit q̃ → 0, we get Zα|α(τ) ∼ n0ααq̃
−c/24, where k = 0 stands for the identity operator,

and n0αα = 1, since we assumed a non-degenerate ground state |ψ0⟩. Thus

Zα|α(τ) ∼
(
1− x2

16

)−c/12

∼ 2
c
4

(
s2L(v)

u sL(2v)

) c
12

, (2.35)
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where we have used (2.4) to obtain the second relation. After some simple algebra, one gets for
the right-hand side of (2.29):

⟨σ(u)σ(v)⟩(α,α)SL ∼
u→0

g−2
α

(
1

2L
π sin πℓ

L

)c/8

(2u)−c/8 . (2.36)

Hence, comparing (2.32) and (2.36), we recover the well known one-point function

⟨σ(ℓ)⟩(α,α)SL = g−1
α

(
1

2L
π sin πℓ

L

)c/8

, (2.37)

which indeed yields (2.30).

2.4 Compact boson

We can further apply our main formula (1.8) by recovering the known results for the Dirac
fermion [66, 83, 84] and more generally the compact boson [75]. We consider a compact scalar
field ϕ ≡ ϕ+ 2πR with action

S[ϕ] =
1

8π

∫
d2r ∂µϕ∂

µϕ , (2.38)

and Dirichlet boundary conditions. The relevant annulus partition function is (see Appendix C)

Z(τ) =
θ3(−R2/τ)

η(−1/τ)
. (2.39)

Before plugging this partition function into our main formula (1.8), let us write it as

Z(τ) =
θ3(−1/τ)

η(−1/τ)
× θ3(−R2/τ)

θ3(−1/τ)
=
θ3(τ)

η(τ)
× θ3(−R2/τ)

θ3(−1/τ)
. (2.40)

Now using

θ3(τ)

η(τ)
= 21/3

[
x2(1− x2)

]− 1
12 = 2

1
3

(
s2L(v − u)sL(2u)sL(2v)

s4L(v + u)

)− 1
12

. (2.41)

we find (up to an additive constant)

Sα2 ([u, v]) =
1

8
log

sL(2u)sL(2v)s
2
L(v − u)

s2L(v + u)
− logF2(τ) , (2.42)

where the function F2(τ) is given by

F2(τ) =
θ3(−R2/τ)

θ3(−1/τ)
=

∑
m∈Z

exp
(
−iπm2R2/τ

)
∑
m∈Z

exp
(
−iπm2/τ

) . (2.43)

This is equivalent to the formulae (13) and (18) of [75] provided M̄ = iπ/4τ in (18) [although
we note a typo in the first term of (13)], and the result for the Dirac fermion [namely F2(τ) = 1
for R = 1] follows.
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2 EXACT CALCULATION OF THE SECOND RÉNYI ENTROPY

2.5 Other entanglement measures

In this section, we present two other entanglement measures related to the second Rényi en-
tropy: mutual information and entropy distance. Here they are defined in the same context as
considered above, namely in a critical 1d quantum system of finite size L, with open boundaries,
and the same conformal boundary condition on both sides.

When considering two disjoint subsystems A and B, a standard measure of the information
“shared” by A and B is given by the mutual information IA:B, defined as (see [11] and references
therein)

IA:B = SA + SB − SA∪B , (2.44)

where S stands for a given measure of entanglement for a single subsystem. Using our result
(1.8), we can express the mutual information (associated to the second Rényi entropy) of two
intervals each touching a different boundary of the system, namely A = [0, u] and B = [v, L].
After some straightforward algebra on (1.8) and (2.30), we get

I[0,u]:[v,L] =
c

12
log

[
s(2u)s(2v)

s(v + u)s(v − u)

]
+ logZα|α(τ) . (2.45)

Back to the situation of a subsystem A consisting of a single interval [u, v] inside the bulk of
the system, we turn to the question of quantifying how much the whole spectrum of the density
matrix ρA depends on the choice of external parameters (see [87] and references therein) – in the
present case, the external parameter is the boundary condition. Here, we shall use the n-norm
of an operator Λ, defined as

∥Λ∥n =
{
Tr
[
(Λ†Λ)n/2

]}1/n
, (2.46)

and the associated Schatten distance3

Dn(ρ, ρ
′) = ∥ρ− ρ′∥n . (2.47)

To be specific, we denote by ρA,α the reduced density matrix associated to the ground state of
our finite critical systems with boundary conditions α on both sides of the system. Then we
consider the Schatten distance Dn(ρA,α, ρA,β), where α and β are two distinct conformal BCs.
We restrict to the value n = 2, and we have

D2(ρA,α, ρA,β) =

[
1

2
Tr ρ2A,α +

1

2
Tr ρ2A,β − Tr(ρA,αρA,β)

]1/2
. (2.48)

The first two terms in (2.48) are given by (1.8), whereas the third term is obtained by a slight
generalization of the previous discussion. Indeed, we can write this term as the two-twist
correlation function

Tr(ρA,αρA,β) = ⟨σ(u, ū)σ(v, v̄)⟩(α,β)SL (2.49)

on the infinite strip with BC α (resp. β) on both sides, for the first (resp. second) copy of the
mother CFT in the Z2 orbifold. Through the same line of argument as in Section 2.2, we obtain

⟨σ(u, ū)σ(v, v̄)⟩(α,β)SL = (gαgβ)
−12−

c
3
[
sL(v + u)2sL(v − u)2sL(2u)sL(2v)

]− c
24 Zα|β(τ) . (2.50)

3While the most interesting distance is D1, it can be extremely difficult to evaluate directly. One can instead
exploit a replica trick developed in [88, 89]: one first computes the distance Dn for all even n, followed by an
analytic continuation to n = 1.
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2 EXACT CALCULATION OF THE SECOND RÉNYI ENTROPY

As a result, we get

D2(ρA,α, ρA,β) = 2−
c
6
[
sL(v + u)2sL(v − u)2sL(2u)sL(2v)

]− c
48 Kαβ(τ) , (2.51)

where

Kαβ(τ) =

[
Zα|α(τ)

2g2α
+
Zβ|β(τ)

2g2β
−
Zα|β(τ)

gαgβ

]1/2
. (2.52)

Plugging in the expression of the annulus partition function in terms of Ishibashi states (B.9)

Zα|β(τ) = ⟨α|eiπτ(L0+L̄0−c/12)|β⟩ =
∑
j

(Ψα
j )

∗Ψβ
j χj(τ) (2.53)

yields

Kαβ(τ) =

1
2

∑
j

∣∣∣Aα
j −Aβ

j

∣∣∣2 χj(τ)

1/2

. (2.54)

Interestingly the term j = 0 cancels out, as follows from Aα
0 = Aβ

0 = 1. This means that the
vacuum sector does not contribute to the Schatten distance. Furthermore this last expression
is rather suggestive : it is the distance associated to the following L2 norm (weighted by the
positive coefficients χj(τ)/2) on the Aj space

∥A∥=

1
2

∑
j

|Aj |2 χj(τ)

1/2

. (2.55)

We shall now consider some limiting cases of the Schatten distance (2.51).

2.5.1 Small interval in the bulk

The limit of a very small interval in the bulk is recovered for u → v, which corresponds to
q = e2iπτ → 0. In this regime we have

χj(τ) ∼ qhj−c/24 (2.56)

As mentioned above the term j = 0 does not contribute, so the L2 norm (2.55) is dominated
by the term j0 corresponding to the most relevant state such that

Aα
j0 ̸= Aβ

j0
. (2.57)

Then

Kαβ(τ) ∼
1√
2

∣∣∣Aα
j0 −Aβ

j0

∣∣∣ qhj0
/2−c/48 . (2.58)

and in the limit of a small interval in the bulk (ℓ → 0) the Schatten distance behaves, up to a
constant prefactor, as

D2(ρA,α, ρA,β) ∼
ℓ→0

ℓ2hj0
−c/8

∣∣∣Aα
j0
−Aβ

j0

∣∣∣
sL(2v)

2hj0
. (2.59)
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3 COMPARISON WITH NUMERICS AND FINITE-SIZE SCALING

2.5.2 Interval touching the boundary

In the limit u → 0 (v fixed), the parameter q goes to 1 so it is more convenient to work with
q̃ = e−2iπ/τ . Thus we use expression (2.52) together with

Zα|β(τ) =
∑
k

nkαβ χk(−1/τ) , χk(−1/τ) = TrVk

(
q̃L0−c/24

)
∼

q̃→0
q̃hk−c/24 , (2.60)

For the vacuum sector to propagate, the left and right conformal boundary conditions must be
the same [90] :

n0αβ = δαβ (2.61)

This implies that the identity character χ0 does not appear in the expansion of Zα|β(τ) for
α ̸= β. Thus, the leading order behaviour of the annulus partition function is:

Zα|β(τ) ∼ q̃−c/24+hk0 (2.62)

where k0 corresponds to the most relevant state that can propagate with boundary conditions
α on one side and β on the other. Equivalently, hk0 is the lowest allowed conformal dimension
in the spectrum of boundary changing operators between α and β. This implies that for an
interval strictly touching the boundary the states ρA,α and ρA,β simply become orthogonal

D2(ρA,α, ρA,β) →
u→0

√
∥ρA,α∥2+∥ρA,β∥2 . (2.63)

Furthermore the vanishing of the scalar product between ρA,α and ρA,β as u → 0 is controlled
by hk0 :

Tr(ρA,αρA,β)

∥ρA,α∥∥ρA,β∥
=

Zα|β(τ)√
Zα|α(τ)Zβ|β(τ)

∼
u→0

u2hk0

(
sL(2v)

8s2L(v)

)2hk0

. (2.64)

3 Comparison with numerics and finite-size scaling

3.1 Rényi entropy in a quantum Ising chain

In order to compare the theoretical prediction obtained in Section 2 with numerical determina-
tions of the Rényi entropy in a critical lattice model, we have focused on the model that was
the most numerically accessible, i.e. the Ising spin chain with free boundary conditions, with
Hamiltonian:

Hfree = −
N−1∑
j=1

sxj s
x
j+1 − h

N∑
j=1

szj , (3.1)

where the saj have their usual definition – they act as Pauli matrices σa at site j and trivially on
the other sites of the system. The chain is taken to have length L = Na, where a is the lattice
spacing, and N is the number of spins. The scaling limit of this system corresponds to taking
N → ∞ and a → 0 while keeping the chain length L fixed. Finally, to achieve criticality, the
external field h should be set to h = 1. We stress that both the bulk and the boundary of the
chain are critical at this point in the parameter space of the model.

A convenient feature of this model is that it can be mapped to a fermionic chain through a
Jordan-Wigner (JW) transformation

c†k =

k−1∏
j=0

szjs
+
k , s±k ≡ 1

2
(sxk ± i syk) . (3.2)
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3 COMPARISON WITH NUMERICS AND FINITE-SIZE SCALING

Once the Hamiltonian of the fermionic chain has been obtained, one proceeds to find a basis of
fermionic operators ηi, η

†
i that diagonalizes it – and still satisfies the standard anti-commutation

relations {ηi, η†j} = δij , etc. For free or periodic boundary conditions, the procedure is standard,
and we refer the reader to the excellent review [91]. Having found the diagonal fermionic basis

ηi, η
†
i one proceeds to build the correlation matrixM ≡

〈
η · η†〉 with η ≡ (η1, ··· , ηN , η

†
1, ··· , η

†
N )T .

The eigenvalues of M are simply related to the values of the entanglement spectrum, and thus
one can calculate Rényi entropies for large sizes with an advantageous computational cost that
scales as O(N) with the number N of spins in the system. This method, known in the literature
as Peschel’s trick [92,93], has been employed in several works [94,67] for both free and periodic
boundary conditions, and we refer to them for detailed explanations of the implementation.

Due to the JW “strings” of sz operators in (3.2), the relation between the fermionic and
spin reduced density matrices of a given subsystem may be non-trivial [94, 95]. For free and
periodic BC though, the ground-state wavefunction has a well-defined parity of the fermion
number, and, as a consequence, the fermionic and spin reduced density matrices of a single
interval can be shown to coincide. The Peschel trick fails, however, for the case of fixed BC,
where the above feature of the wavefunction no longer holds, as pointed out in [66]. There has
been progress, however, in adapting the trick to fixed BC, for the case of an interval touching
the boundary [66–68]. Extending the technique to efficiently find the entanglement spectrum
for an interval A that does not touch the boundary is still an open problem.

To give concrete expressions to compare with the numerical data, we will quickly review some
basic aspects of the CFT description of the critical Ising chain. It is well known that in the
critical regime, the scaling limit of the infinite and periodic Ising chains is the Ising CFT, namely
the CFT with central charge c = 1/2 and an operator spectrum consisting of three primary
operators – the identity I, energy ε and spin operators σ – and their descendants [80]. The case
of open boundaries is also well understood from the CFT perspective. There are three conformal
boundary conditions for the Ising BCFT, which, in the framework of radial quantization on the
annulus, allow the construction of the following physical boundary states [59,80]:

|f⟩ = |I⟩⟩ − |ϵ⟩⟩ (free BC) , (3.3)

|±⟩ = 1√
2
|I⟩⟩+ 1√

2
|ϵ⟩⟩ ± 1

21/4
|σ⟩⟩ (fixed BC) , (3.4)

where |i⟩⟩ denotes the Ishibashi state [59, 96] corresponding to the primary operator i. The
physical boundary states |α⟩ are in one-to-one correspondence with the primary fields of the
bulk CFT4: |f⟩ ↔ σ and |±⟩ ↔ I/ε. The annulus partition function for the Ising BCFT is
compactly written in terms of Jacobi theta functions for all diagonal choices of BCs (α|α) and,
in consequence, in terms of the parameter x defined in Section 2

Zf |f (τ) =

√
θ3(τ)

η(τ)
= 21/6

(
x
√

1− x2
)− 1

12
. (3.5)

and

Z+|+(τ) = Z−|−(τ) =

√
θ3(τ) +

√
θ3(τ)

2
√
η(τ)

= 21/6
1 + x

1
4

2

(
x
√
1− x2

)− 1
12
. (3.6)

These relations allow us to express the orbifold two-point correlator on the disk in an elementary
way:

⟨σ(0, 0)σ(x, x̄)⟩(f,f)D =
[
|x|2(1− |x|2)

]− 1
8 , (3.7)

⟨σ(0, 0)σ(x, x̄)⟩(+,+)
D =

1 + |x| 14
2

[
|x|2(1− |x|2)

]− 1
8 , (3.8)

4This statement is strictly true if the bulk CFT is diagonal, see [97] for a detailed discussion.
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which is, of course, very convenient for numerical checks. Note that the Z2 orbifold of the Ising
model is equivalent to a special case of the critical Ashkin-Teller model [98]. Therefore, the
CFT we are considering here is nothing but the Z2 orbifold of a free boson. This might explain
why the above two-point functions end up being so simple.

Recall that the lattice operator σ̂m,n labelled by discrete indices is described in the scaling

limit by σ̂m,n ∼ Aahσ+h̄σ σ(w, w̄), where w = am + ian, and A is a non-universal amplitude.
Hence, to obtain collapsed data for various chain lengths, it will be convenient to introduce

Gα
2 ([j, k]) ≡ Ŝα

2 ([j, k])−
1

8
log

(
2N

π

)
= − log⟨σ̂j,0σ̂k,0⟩(α,α)SL − 1

8
log

(
2N

π

)
, (3.9)

so that, in the scaling limit, one expects from (2.11)

Gα
2 ([j, k]) ∼ − log⟨σ(u, ū)σ(v, v̄⟩(α,α)SL − 1

8
log

(
2L

π

)
(3.10)

∼ − log⟨σ(u, ū)σ(v, v̄⟩(α,α)D +
1

8
log

[
sin

π(u+ v)

2L

]
, (3.11)

where u = aj and v = ak. We remind that the length of the interval is given by ℓ = v−u = am
with m = k− j, and emphasize that the entanglement is considered for the ground state of the
free BC Ising chain.
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Figure 3: Plot of shifted Rényi entropy Gf
2 ([N/2, N/2 + m]) for the Ising chain with free

BC, against the scaled interval size m/N . The deviations from the theoretical predictions
are stronger as the interval grows closer to the boundary.

To graphically emphasize the agreement between the fermionic chain data and the theoretical
prediction, we have looked at two ways of “growing” the interval length ℓ. In Figure 3, we have
considered an interval that starts in the middle of the chain and grows towards one end. This
corresponds on the lattice to applying the first twist operator to the middle of the chain, and
the second one progressively closer to the right boundary. Since twist operators are placed
between lattice sites, one should consider even system sizes. The curves of Figure 4, follow the
dependence of the S2 entropy as the interval length ℓ is grown equidistantly from the middle
of the chain towards the boundaries. We see, in both cases, that the agreement with the CFT
prediction is very good, although, as we will detail below, one needs to consider unusually large
system sizes to reach it.
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Figure 4: Plot of shifted Rényi entropy Gf
2 ([N −m)/2, (N +m)/2]) for the Ising chain with free

BC, against the scaled interval size m/N . The deviations from the theoretical predictions are
stronger as the interval is grown towards the boundaries.
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Figure 5: Plot of shifted Rényi entropy Gf
2 ([(N −m)/2, (N +m)/2]) for a wide range of system

sizes. The sizes typically accessible to exact diagonalization (N ∼ 10) or DMRG methods
(N ∼ 103) suffer from large finite-size effects.

3.2 Finite-size effects

There is a plethora of sources of finite-size corrections to the orbifold CFT result calculated in
Section 2. One should be aware of corrections from irrelevant bulk and boundary deformations of
the Hamiltonian [99], as well as unusual corrections to scaling as analysed in [100,101]. Finally,
one should generically worry about parity effects [102] but, in agreement with [103], we have
found no such corrections in the numerical results.

The strongest corrections, however, come from the subleading scaling of the lattice twist
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operators [52]. We remind that the lattice twist operator σ̂ can be expressed, in the continuum
limit a→ 0 as a local combination of scaling operators [104]:

σ̂m,n = Aa2hσσ(w, w̄) +B a2hσεσε(w, w̄) + . . . (3.12)

where the integers (m,n) give the lattice position of the operator as w = a(m+in), and the dots
in (3.12) denote the contribution from descendant operators. The amplitudes A and B of the
scaling fields are non-universal, and thus cannot be inferred from CFT methods. However, since
the expansion (3.12) does not depend on the global properties of the system, it is independent
of the choice of BC. Using the exact results for the correlation matrix M of the fermionic system
associated with an infinite Ising chain [8], and the well-known result for the Rényi entropies of
an interval of length ℓ in an infinite system [3,9], one can find a fit for the values of A and B.

Moving on, the excited twist operator σε can be defined through point-splitting as [52], [105]:

σε(w, w̄) := lim
η→w

[
(2|η − w|)2hε σ(w, w̄)(ε(η, η̄)⊗ I)

]
. (3.13)

This operator has conformal dimensions hσε = h̄σε = hσ + hε/2. The expansion (3.12) implies
that in our case, the correlator of twist operators on the Ising spin chain with free boundary
conditions can be expressed in terms of CFT correlators as:

⟨σ̂j,0 σ̂k,0⟩(f,f)N = A2 a4hσ ⟨σ(u, ū)σ(v, v̄)⟩(f,f)SL

+AB a4hσ+hε

[
⟨σε(u, ū)σ(v, v̄)⟩(f,f)SL + ⟨σ(u, ū)σε(v, v̄)⟩(f,f)SL

]
+ . . . (3.14)

Using the map (2.3), and recalling that L = Na, we get

⟨σ̂j,0 σ̂k,0⟩(f,f)N = A2
( π

2N

)c/4 ⟨σ(0, 0)σ(x, x̄)⟩(f,f)D[
sin π(u+v)

2L

]c/4 +AB
( π

2N

)c/4+hε

GL(u, v) + . . . (3.15)

where u = aj and v = ak are the physical positions of the twist operators, and x is given by
(2.4). The first term in the right-hand side of (3.15) corresponds to the two-point function
(2.29), whereas the function GL(u, v) in the second term is defined as

GL(u, v) =
y−hε ⟨σε(0, 0)σ(x, x̄)⟩(f,f)D + yhε ⟨σ(0, 0)σε(x, x̄)⟩(f,f)D[

sin π(u+v)
2L

]c/4+hε
, (3.16)

with y = sin πu
L / sin

π(u+v)
2L . The exact determination of the function GL(u, v) is beyond the

scope of the present work – for instance, through a conformal mapping, it would imply the
calculation of the one-point function of the energy operator on the annulus. Since, in the Ising
CFT, we have hε = 1/2, this second term gives a correction of order 1/

√
N to the Rényi entropy

predicted by (1.8), which is in agreement with the results of [71,100,66]. This is a very significant
correction, and it shows why the system sizes accessible through exact diagonalization (limited
toN < 30) are not sufficient to separate the leading contribution from its subleading corrections.

To show the dramatic effect of this term, Figure 5 contains a comparison of the collapse for
diverse system sizes. As noticed in other works [63], where DMRG methods were used, system
sizes of N ∼ 100 are not enough to satisfyingly collapse the data.

Furthermore, the module organization of the fields in the orbifold CFT implies that the
scaling exponents of finite-size corrections are half-integer spaced: there will be contributions
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both at relative order O(N−1), and O(N−3/2), and so on. This increases the difficulty of a finite-
size analysis, since there are more terms with significant contributions for the system sizes that
are numerically accessible. To illustrate this, we give in Figure 6 a plot of the subleading
contributions to the lattice twist correlator

Fsubleading(j, k) = ⟨σ̂j,0 σ̂k,0⟩(f,f)N −A2
( π

2N

)c/4 ⟨σ(0, 0)σ(x, x̄)⟩(f,f)D[
sin π(u+v)

2L

]c/4 . (3.17)

The plot shows that even at N ∼ 103 the collapse is not perfect.
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Figure 6: The rescaled subleading contribution (2N/π)c/4+hεFsubleading to the lattice two-point
function of twist fields, for an interval starting in the middle of the chain and growing towards
one boundary. The plot shows that even at large system sizes, the finite-size corrections are
significant.
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4 Conclusion

In this article, we have reported exact results for the Rényi entropy S2 of a single interval in
the ground state of a 1D critical system with open boundaries, assuming the same boundary
conditions on both sides. This amounts to computing the two-point function of twist operators
in the unit disk with diagonal BCs (α, α) in the Z2 orbifold framework.

By constructing a biholomorphic mapping from the annulus to the two-sheeted disk, we
have managed to express the orbifold two-point correlator of twist fields in terms of the annulus
partition function of the mother CFT. We have also detailed in the Appendix an alternative
derivation of the result for minimal CFTs in the A-series.

We have numerically checked the CFT result, and found good agreement with Ising spin
chain data, for free BC. It was, however, necessary to achieve large system sizes for this purpose,
as the finite-size corrections decayed slowly (∼ N−hε relatively to the dominant term) with the
number of sites, as opposed to the case of an interval in a periodic chain, where this decay is
of order N−2hε (see [52] for instance). Checking the result for other models and BCs could be
achievable through more sophisticated numerical techniques, like (adaptations of) the DMRG
approach (see [63,106]).

A natural extension would be to consider the second Rényi entropy for a system with different
conformal BCs on each side of the strip. However, this situation adds the extra complication
of insertions of boundary condition changing operators (BCCOs) into the correlator of twist
operators [85], thus requiring a calculation of the four-point function of boundary operators on
the two-sheeted disk.
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A Conventions and identities for elliptic functions

In this Appendix, we fix our notations and conventions for elliptic functions.

A.1 Jacobi theta functions

We use the following conventions for the Jacobi theta functions θi(t|τ) :

θ1(t|τ) = −i
∑

r∈Z+1/2

(−1)r−1/2yrqr
2/2 , θ2(t|τ) =

∑
r∈Z+1/2

yrqr
2/2 ,

θ3(t|τ) =
∑
n∈Z

ynqn
2/2 , θ4(t|τ) =

∑
n∈Z

(−1)nynqn
2/2 ,

(A.1)
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where q = e2iπτ and y = e2iπt. Here, t is a complex variable and τ a complex parameter living
in the upper half-plane. Theta functions have a single zero, located at z = 0, 1/2, (1+ τ)/2 and
τ/2, respectively. They have no pole. Using Jacobi’s triple product identity one can rewrite
them as

θ1(t|τ) = −iy1/2q1/8
∞∏
n=1

(1− qn)

∞∏
n=0

(1− yqn+1)(1− y−1qn) ,

θ2(t|τ) = y1/2q1/8
∞∏
n=1

(1− qn)
∞∏
n=0

(1 + yqn+1)(1 + y−1qn) ,

θ3(t|τ) =
∞∏
n=1

(1− qn)

∞∏
r∈N+1/2

(1 + yqr)(1 + y−1qr) ,

θ4(t|τ) =
∞∏
n=1

(1− qn)
∞∏

r∈N+1/2

(1− yqr)(1− y−1qr) .

(A.2)

They satisfy the following half-period relations

θ1(t|τ) = −i eiπ(t+τ/4) θ4(t+ τ/2|τ) ,
θ2(t|τ) = eiπ(t+τ/4) θ3(t+ τ/2|τ) ,
θ3(t|τ) = eiπ(t+τ/4) θ2(t+ τ/2|τ) ,
θ4(t|τ) = −i eiπ(t+τ/4) θ1(t+ τ/2|τ) .

(A.3)

The functions θi(0|τ) ≡ θi(τ) are

θ2(τ) =
∑
n∈Z

q(n+1/2)2/2 = 2q1/8
∞∏
n=1

(1− qn) (1 + qn)2 ,

θ3(τ) =
∑
n∈Z

qn
2/2 =

∞∏
n=1

(1− qn)
(
1 + qn−1/2

)2
,

θ4(τ) =
∑
n∈Z

(−1)nqn
2/2 =

∞∏
n=1

(1− qn)
(
1− qn−1/2

)2
.

(A.4)

Finally, we note the following relations

θ43(τ) = θ42(τ) + θ44(τ) , 2η3(τ) = θ2(τ)θ3(τ)θ4(τ) , (A.5)

where η(τ) is the Dedekind eta function :

η(τ) = q
1
24

∞∏
n=1

(1− qn) . (A.6)

A.2 Elliptic integral of the first kind

The elliptic integral of the first kind K(x) is given by:

K (x) =

∫ π
2

0

dθ√
1− x2 sin2 θ

= 2F1

(
1

2
,
1

2
, 1;x2

)
=
π

2
θ23(τ) . (A.7)

This means

x =
θ22(τ)

θ23(τ)
. (A.8)
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The parameter x is called the elliptic modulus. The inverse relation is

q = e2iπτ = exp

(
−2π

K(x′)

K(x)

)
, x′ =

√
1− x2 (A.9)

or equivalently

τ = i
K(

√
1− x2)

K(x2)
. (A.10)

In particular one can check that

x(1− x2)
dτ

dx
=

2

iπθ43(τ)
. (A.11)

A.3 Weierstrass elliptic function

One possible way to derive the differential equation (2.20) is to express the function g(t) defined
in (2.5) in terms of the Weierstrass elliptic function ℘(t). The function ℘ : Tτ → Ĉ is defined
on the complex torus Tτ = C/ (Z+ τZ) and takes values in the Riemann sphere Ĉ = C∪{∞} :

℘(t) =
1

t2
+

∑
(m,n)∈Z2\(0,0)

1

(t−m− nτ)2
− 1

(m+ nτ)2
. (A.12)

This is a covering map of the two-sphere Ĉ with 4 ramification points :

e1 = ℘(1/2) , e2 = ℘

(
1 + τ

2

)
, e3 = ℘

(τ
2

)
, ∞ = ℘(0) . (A.13)

The lattice roots ei can be expressed in terms of the theta functions as :

e1 =
π2

3

(
θ42(τ) + 2θ44(τ)

)
, e2 =

π2

3

(
θ42(τ)− θ44(τ)

)
, e3 = −π

2

3

(
2θ42(τ) + θ44(τ)

)
. (A.14)

The function g(t) as defined in (2.5) is simply the composition of ℘(t) with a particular
Möbius transformation that sends the ramification points to 0, 1/x, x and ∞ :

g(t) =
1

x

℘(t)− e3
e1 − e3

, x =

√
e2 − e3
e1 − e3

=

(
θ2(τ)

θ3(τ)

)2

, (A.15)

as follows from the fact that (℘(t)− e3)/g(t) is constant by virtue of being doubly periodic and
holomorphic (i.e. with no pole). Now from the differential equation obeyed by ℘(t), namely

℘′2(t) = 4 (℘(t)− e1) (℘(t)− e2) (℘(t)− e3) , (A.16)

we get (
dg

dt

)2

= −4π2θ43(τ)g(g − x)(1− xg) , (A.17)

from which (2.20) follows.
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B ALTERNATIVE DERIVATION OF THE SECOND RÉNYI ENTROPY FOR AN

MINIMAL MODELS

B Alternative derivation of the second Rényi entropy for An

minimal models

In this Appendix we present an alternative computation of the two-twist correlation function
(2.28) based on the mirror trick [59] and BCFT bootstrap methods [85]. The conformal blocks
are obtained in terms of the modular characters (see also [52,82]). The other key ingredients are
the bulk and bulk-boundary structure constants appearing in the conformal block expansion. We
note that the correspondence between conformal blocks and characters has also been employed in
the recent work of [107] for the evaluation of twist correlators on manifolds without boundaries.

In order to avoid some technicalities, we restrict our attention to Virasoro minimal models
in the An series, for which the torus partition function is a diagonal modular invariant. On the
unit disk, the mirror trick amounts to replacing the disk by its Schottky double [108], namely
a sphere, and bulk fields ϕ(z, z̄) by a pair of chiral fields, one at position z and the other at its
mirror image 1/z̄ :

ϕ(z, z̄) → ϕ(z) z̄−2hϕ(1/z̄) . (B.1)

Thus we can decompose ⟨σ(0, 0)σ(x, x̄)⟩(α,α)D as a linear combination of conformal blocks on the
sphere

⟨σ(0, 0)σ(x, x̄)⟩(α,α)D =
∑
j

Xα
j fj(x, x̄) , (B.2)

fj(x, x̄) = x̄−2hσ

σ(0)

σ(x)

φj ⊗ φj
σ(∞)

σ(1/x̄)

. (B.3)

Indeed, for the Z2 orbifold of a minimal model in the An series, the fusion σ × σ is of the
form [52]

σ × σ =
∑

ϕj primary

ϕj ⊗ ϕj , (B.4)

where the sum runs over the primary operators of the mother CFT. We shall denote by hj the
conformal dimension of ϕj (recall that for An minimal models, all primary operators are scalar,
so h̄j = hj). The expansion coefficients Xα

j in (B.2) are obtained in terms of OPE structure
constants as

Xα
j = C

ϕj⊗ϕj
σσ A

(α,α)
ϕj⊗ϕj

, (B.5)

which in turn can be expressed as [82]

A
(α,α)
ϕj⊗ϕj

= ⟨(ϕj ⊗ ϕj)(0)⟩(α,α)D = (⟨ϕj(0)⟩αD)2 =
(
Aα

j

)2
, (B.6)

C
ϕj⊗ϕj
σσ = ⟨σ(∞)(ϕj ⊗ ϕj)(1)σ(0)⟩C = 2−4hj ⟨ϕj(−1)ϕj(1)⟩C = 2−8hj , (B.7)

so that
Xα

j = 2−8hj (Aα
j )

2 . (B.8)

The OPE coefficient Aα
j is very much related to coefficients Ψα

j appearing in the decomposition
of the boundary state |α⟩ in terms of the Ishibashi states |j⟩⟩ :

Aα
j =

Ψα
j

Ψα
0

, |α⟩ =
∑
j

Ψα
j |j⟩⟩ . (B.9)
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For minimal models in the An series, these coefficients are given in terms of the modular S-
matrix elements [109]:

Ψα
j =

Sjα√
S0j

, Aα
j =

Sjα
S0α

√
S00
Sj0

, (B.10)

where the index 0 corresponds to the identity operator.

Let us turn to the expression of the conformal blocks fj in terms of the characters of the
mother CFT. By a simple rescaling we have

fj(x, x̄) = Fj(η), η = |x|2 , (B.11)

where Fj(η) is the standard conformal block

Fj(η) =

σ(η)

σ(0)
φj ⊗ φj

σ(∞)

σ(1)

. (B.12)

These conformal blocks are known [82] to be related to the characters χj(τ) of the mother
theory via

Fj(η) = 28hj−c/3 [η (1− η)]−c/24 χj(τ) , η = [θ2(τ)/θ3(τ)]
4 . (B.13)

Assembling the above results, we obtain the expression

⟨σ(0, 0)σ(x, x̄)⟩(α,α)D = 2−
c
3
[
|x|2(1− |x|2)

]− c
24
∑
j

(Aα
j )

2 χj(τ) . (B.14)

The last step is to relate the above linear combination of characters to the annulus partition
function:

Zα|α(τ) = ⟨α|eiπτ(L0+L̄0−c/12)|α⟩ =
∑
j

(Ψα
j )

2 ⟨⟨j|eiπτ(L0+L̄0−c/12)|j⟩⟩ =
∑
j

(Ψα
j )

2 χj(τ) , (B.15)

using (B.9), and gα = Ψα
0 .

C Annulus partition function for the compact boson

For the following discussion, it is useful to have in mind a lattice model whose scaling limit is
given by the free compact boson – we take for example the six-vertex (6V) model on the square
lattice. It is well established (see [110] for instance) that the 6V model with homogeneous
Boltzmann weights

a a b b c c

is critical in the regime

|∆| < 1 , ∆ =
a2 + b2 − c2

2ab
, (C.1)
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and is described in the scaling limit by a free compact boson with action

S[ϕ] =
1

8π

∫
d2r ∂µϕ∂

µϕ , ϕ ≡ ϕ+ 2πR , (C.2)

where the compactification radius is given by R =
√
(2/π) cos−1∆. We consider the 6V model

on a rectangle of M × N sites, with periodic boundary conditions in the horizontal direction,
and reflecting boundary conditions at the top and bottom edges, for even M,N . Any 6V
configuration defines (up to a global shift) a height function on the dual lattice, with steps ±πR
between neighbouring heights. Since the local arrow flux into each of the boundaries is zero, the
height function is constant along each boundary, and it is periodic in the horizontal direction.
However, there can be a flux of 2m arrows (with m ∈ Z) going between the two boundaries, and
hence the height difference between the boundaries is of the form 2πmR. In the scaling limit
N,M → ∞ with N/M = Im τ/2, the height function renormalizes to the free boson ϕ, and we
get

Z6V(M/N) →
∑
m∈Z

Zα|α+m(τ) , (C.3)

where α is an arbitrary integer, and Zα|β(τ) denotes the partition function of (C.2) on the
annulus of Figure 2 with Dirichlet boundary conditions ϕ(x, 0) = 2πRα and ϕ(x, Im τ/2) =
2πRβ. A path integral computation gives

Zα|β(τ) =
e−iπR2(α−β)2/τ

η(−1/τ)
. (C.4)

Hence, the scaling limit of the 6V partition function is

Z6V(M/N) → Z(τ) =

∑
m∈Z e

−iπR2m2/τ

η(−1/τ)
=
θ3(−R2/τ)

η(−1/τ)
. (C.5)

In the geometry of the infinite strip of width N sites, the 6V transfer matrix generates the XXZ
spin-chain Hamiltonian

HXXZ = −
N−1∑
j=1

(
sxj s

x
j+1 + sxj s

x
j+1 +∆szjs

z
j+1

)
, (C.6)

where sx,y,zj are Pauli matrices acting on site j. Reflecting boundary conditions for the 6V model
(and thus Dirichlet boundary conditions for the boson) correspond to free boundary conditions
on the spins.
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