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4Padua Quantum Technologies Research Center, Università degli Studi di Padova.
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The recent advances in machine learning algorithms have boosted the application of these techniques to the
field of condensed matter physics, in order e.g. to classify the phases of matter at equilibrium or to predict the
real-time dynamics of a large class of physical models. Typically in these works, a machine learning algorithm
is trained and tested on data coming from the same physical model. Here we demonstrate that unsupervised and
supervised machine learning techniques are able to predict phases of a non-exactly solvable model when trained
on data of a solvable model. In particular, we employ a training set made by single-particle correlation functions
of a non-interacting quantum wire and by using principal component analysis, k-means clustering, t-distributed
stochastic neighbor embedding and convolutional neural networks we reconstruct the phase diagram of an in-
teracting superconductor. We show that both the principal component analysis and the convolutional neural
networks trained on the data of the non-interacting model can identify the topological phases of the interacting
model. Our findings indicate that non-trivial phases of matter emerging from the presence of interactions can be
identified by means of unsupervised and supervised techniques applied to data of non-interacting systems.

I. INTRODUCTION

In the last few years research in physics has seen a new se-
ries of methods and practices inspired by and exploiting ma-
chine learning [1]. These new instruments have proved to be
useful in applications in many-body quantum physics [2], in
particular for finding a representation of a wavefunction [3]
and describing its dynamics [4], for reconstructing the wave-
function from experimental data [5], for speeding-up numer-
ical simulations [4], and for classifying quantum phases of
matter of both synthetic [6–11] and experimental data [12].
A particular type of the latter is given by symmetry pro-
tected and topologically ordered phases, whose classification
escapes from the standard Landau theory of spontaneous sym-
metry breaking [13]. Indeed the combination of symmetries
and topology can lead to new kinds of quantum phases that
are characterized by a set of unusual features, such as non-
local order parameters, the appearance of zero energy states at
the boundary of the system, topological invariants, and long-
range entanglement (for reviews see, for example: [14, 15]).
From an experimental point of view, topological materials
have attracted much attention also because they represent
a promising solution for physical implementation of qubits,
more resilient to decoherence processes that affect devices
based on superconducting or atomic physics technologies.

Due to their intrinsically non-local features and the lack of
local order parameters, the classification of topological phases
is considered a very challenging task to tackle [2]. However,
machine learning methods have been successfully applied to
both non-interacting models where the topological invariant
(winding number) representing each phase was known a pri-
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ori [16, 17], and to interacting models where the topological
invariant cannot be obtained easily [18].

Despite their success, in order to perform well, machine
learning models require data sets with a very large number of
training data, in the order of the thousands or millions. How-
ever, especially when handling interacting systems, it is not al-
ways easy to build such big data sets from both numerical sim-
ulations or experimental measurements. This led us to study
a machine learning model trained on a data set obtained from
a solvable system to be then applied to an interacting model
which is obtained as an interacting generalization of the for-
mer, as in Ref. [19]. In this way, insights about the features
of a simple dataset can be exploited to characterize the phases
of a more complicated one, saving simulation resources. Dif-
ferently from what has been done in previous works [16, 20],
our dataset will be constructed out of two-point single-particle
correlation functions. These encode the properties of the dif-
ferent phases of the model and can be obtained numerically
and measured experimentally [21–23], e.g. by using atom gas
microscope with quenches to non-interacting models [24] or
with randomized measurements [25].

In this work we show that supervised and unsupervised ma-
chine learning models can classify topological phases of an
interacting system by being trained on data computed from
simpler topological models. More specifically, our goal is to
use machine learning techniques to predict the topological and
non-topological quantum phases of two paradigmatic models:
the one dimensional Kitaev chain in its non-interacting [26]
and interacting scenario [27–32], with the idea that one can
exploit the knowledge of the easily solvable non-interacting
model in order to extract information also on the interacting
case.
We construct the correlator dataset from the analytical solu-
tion of the non-interacting model and by means of numeri-
cal simulations implemented with the Density Matrix Renor-
malization Group (DMRG) algorithm for the interacting sys-
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FIG. 1. Phase diagrams and correlation functions. (a) Phase diagram of the non-interacting Kitaev model obtained from the winding
number. The model presents three phases: A trivial phase with winding number ν = 0 (green), that we distinguish for convenience in TRI-
when µ <−2 and TRI+ when µ >+2, two superconducting topological phases with winding number ν =+1 (TOP+1, orange) and ν =−1
(TOP−1, red). The black lines represent phase transition lines. (b) Correlation functions of the non interacting model obtained from the
analytical solution of the model. Each panel corresponds to a different region of the phase diagram. (c) Phase diagram of the interacting
model. It presents four phases, of which three are trivial: Schrödinger-cat-like phase (CAT, dark green dashed line), charge-density wave
(CDW, blue), trivial superconducting phase (TRI, green), and topological superconducting phase (TOP, yellow). The phase transition points
(black squares) were obtained numerically by looking at the number of edge modes. (d) Correlation functions of the interacting Kitaev model
obtained through the DMRG algorithm. The four graphs correspond to different regions of the phase diagram.

tem [33]. Firstly, we probe the data with three unsupervised
methods: the principal components analysis (PCA), k-means
clustering and t-distributed stochastic neighbor embedding (t-
SNE) [34–36]. With PCA we investigate to what extent the
knowledge about principal component vectors of the data of
the non-interacting case can be used to learn also the underline
pattern that distinguishes the different phases in the interact-
ing case. We use k-means’ ability to find clusters and cen-
troids to correctly predict the number of phases as well the lo-
cation of the phase transition lines for both the non-interacting
and interacting case. Then, we check that also t-SNE is able
to form clusters of data.

Finally we devise an ensemble of convolutional neural net-
works (CNN) which is trained on the non-interacting data and
then tested to predict the phases of the interacting model.

The paper is organized as follows: in Sec. II, we introduce
the models and the datasets that will be used for the training
and testing of the machine learning methods. In Sec. III, we
apply unsupervised methods (PCA, k-means clustering and t-
SNE) to analyze the internal structure of the datasets. In Sec-
tion IV, we apply a supervised model trained on the data of
the non interacting model and test it on the interacting data.
Finally, we draw our conclusions in Sec. V.

II. MODELS

In this section we describe the two models, the non-
interacting and the interacting Kitaev chain, whose quantum
phases we want to classify, and we define the standard and

anomalous correlation functions that will be used as indicator
of the topological phases, thus providing the training and test
sets.

A. Non-interacting topological superconductor

We consider the one-dimensional Kitaev model [26] de-
fined on a lattice with L sites described by the following non-
interacting (NI) Hamiltonian

HNI = ∑
i
(Ja†

i ai+1 +∆ aiai+1 +h.c.)+µ ∑
i

a†
i ai. (1)

Here the operators ai (a†
i ) annihilate (create) a spinless

fermion on the lattice site i. The Hamiltonian HNI describes
a topological superconductor with nearest neighbour hopping
of strength J, p-wave superconducting pairing of strength ∆

and chemical potential µ . When considering periodic bound-
ary conditions, we can diagonalize HNI by going to momen-
tum space by means of standard Fourier transform, so that
it is reduced to a sum over the Brillouin zone (BZ), HNI =
∑k∈BZ H(k), of a two-band Hamiltonian H(k) = hz(k)σ z +
hy(k)σ y, where k is the lattice quasi momentum and

hz(k) = J cosk+µ/2 hy(k) = ∆sink (2)

and σ x,σ y are Pauli matrices. A Bogoliubov transformation
casts HNI in diagonal form HNI = ∑k E(k)η†

k ηk, where ηk are
Bogoliubov operators and the single-particle energy E(k) is
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given by

E(k) =
√

hz(k)2 +hy(k)2. (3)

This model describes a one-dimensional topological super-
conductor belonging to the BDI symmetry class [37–40]. Its
different phases are classified by the winding number ν of
the normalized Hamiltonian vector ĥ(k) =~h(k)/‖~h(k)‖ with
~h(k) = (hy(k),hz(k)), which is a continuous map from the 1D
BZ to the circle S1. The winding number ν is an integer
that counts how many times the Hamiltonian vector ĥ(k) turns
around the origin when the quasi-momentum k moves from 0
to 2π in the 1D BZ. Panel (a) of Fig. 1 shows the phase di-
agram of the model in Eq. (1) in the (µ,∆) plane, having set
the energy scale J = 1. Notice that the phase diagram is sym-
metric for µ ↔−µ . Three different phases appear: a trivial
phase with winding number ν = 0 (green) and two non trivial
phases with winding number ν =±1 (orange/red). The wind-
ing number corresponds to the number of zero energy states
that the model hosts at the boundaries of the chain, when con-
sidering open boundary conditions, a fact that is known in lit-
erature [14, 41] as bulk-edge correspondence. For ν = 0 no
edge states will be present, while for ν =±1 an edge state on
each boundary appears.

The information on the different phases can also be ex-
tracted from the Fourier transform of the single-particle stan-
dard (c(k)) and anomalous ( f (k)) correlation functions:

c(k) = ∑
i, j

eik(i− j) 〈a†
i a j〉 (4)

f (k) = ∑
i, j

eik(i− j) 〈aia j〉 (5)

where the expectation values are taken on the ground state.
We note that c(k) is real, while f (k) is purely imaginary, due
to the antisymmetry of the expectation value 〈aia j〉 for the
exchange i↔ j. So we will redefine the latter by taking its
imaginary part. For the Kitaev model of Eq. (1), c(k) and
f (k) can be computed analytically and they take the form

c(k) =
1
2
+

µ/2+ J cosk
2E(k)

, (6)

f (k) =
∆sink
2E(k)

. (7)

Notice that they have a similar form to the components of the
Hamiltonian vector ĥ(k) from which the winding number is
calculated. Their behaviour in the different phases is shown
in panel (b) of Fig. 1.

The correlation functions c(k) and f (k) will be used for
building a non-interacting training set S where each data point
is labelled with the winding number of its corresponding
phase.

B. Interacting topological superconductor

We now add a nearest neighbor interaction term to the
Hamiltonian (1) to obtain:

HI = ∑
i
(Ja†

i ai+1 +∆ aiai+1 +h.c.)+µ ∑
i

ni +V ∑
i

nini+1

(8)
where ni = a†

i ai is the occupation number at site i. This model
cannot be solved exactly due to the interacting potential. By
means of the DMRG algorithm [42], we have reproduced the
phase diagram, after setting J = ∆ = 1, which is shown in
panel (c) of Fig. 1, for µ > 0 only since the model is sym-
metric for µ ↔ −µ . The model in Eq. (8) is characterized
by only one topological superconducting phase (TOP, yel-
low) and three trivial phases: Topological trivial (TRI, green),
Charge Density Wave (CDW, light-blue) and a Schrödinger-
cat-like phase (CAT, light green dashed line) which shows
up at the symmetric point µ = 0 as a superposition of two
trivial superconducting states with different occupation num-
bers [28–31]. At V = 0 we recover the non-interacting case
with a critical point at µ = 2. The different phases in Fig. 1(c)
are detected from the number of edge states that appear in the
chain: in the TRI, CDW and CAT phases the number of edge
states is zero, while it is one in the TOP phase.

In the interacting case, it is not possible to evaluate exactly
the correlation functions c(k) (Eq. (4)) and f (k) (Eq. (5)) on
the ground state of the Hamiltonian of Eq. (8). Therefore we
calculate them by means of the DMRG algorithm for a lattice
of size L = 100. Some examples of the correlation functions
for the different regions of the phase diagram are shown in
panel (d) of Fig. 1.

III. UNSUPERVISED TRAINING

Having obtained the datasets of the correlation functions
for both the non-interacting and and interacting model, we use
three unsupervised methods, namely PCA, k-means clustering
and t-SNE, to extract the relevant information in both datasets
and predict the phases of both models.

A. Principal Components Analysis

Principal components analysis is a standard technique used
in statistics and machine learning for dimensionality reduc-
tion.

In order to apply PCA we start by creating a design matrix

X =

c1(k0) . . . c1(kL−1) f1(k0) . . . f1(kL−1)
...

cN(k0) . . . cN(kL−1) fN(k0) . . . fN(kL−1)

 (9)

where each of its N rows is given by the correlation functions
c(k) and f (k) from Eqs. (4) and (5) for one point (µα ,∆α ),
α = 1, . . . ,N, of the phase diagram. Each column repre-
sents the Fourier components of the correlation functions with



4

1

0

1

2 (a) - w1 (b) - w2

8 4 0 4 8
1

0

1

2 (c) - w3

8 4 0 4 8

(d) - w4

0

5

10

pi

FIG. 2. PCA of the non-interacting Hamiltonian. The quantified
leading components (QLC) pi measure the projections of the data
onto the space of each of the first four principal components, cor-
responding to the eigenvalues with largest explained variance εi. (a)
The first QLC with ε1 = 0.451 reveals the points of the phase diagram
with trivial winding number. (b) The second QLC, with ε2 = 0.421,
highlights the points of the phase diagram with non-trivial winding
number, (c) The third QLC, with ε3 = 0.052 shows the phase transi-
tion lines, (d) The fourth QLC with ε4 = 0.042 has a high projection
on the phase with ν = −1. The insets show the first (red circles)
and the second (orange triangles) 100 elements of the corresponding
principal components wi (i = 1,2,3,4).

quasi-momentum kn = 2πn/L (n = 0, . . . ,L−1) that are inter-
preted as the features of the data from which the PCA ex-
tracts the principal components. We rescale the columns of
X such that they have zero mean and unit standard devia-
tion and we compute the eigenvalues {λi}, the explained vari-
ances εi = λi/∑ j λ j, and the eigenvectors {wi} of the corre-
lation matrix S = XT X . The principal components of the
data X , which are the eigenvectors of S corresponding to
the largest eigenvalues, are the directions in a 2L dimensional
space along which the original data show the largest variance.
A common measure of the projection along the principal com-
ponents is the quantified leading component (QLC) [6, 9]. For
both the non-interacting and the interacting case, we compute
the QLC by dividing the set of the two parameters in 40 sec-
tions, creating a grid of 40×40 subsets, each made of M data-
points, as better specified below. Then, for each of the subsets
we calculate the quantity

pi = ∑
s

|Xs ·wi|
M

(10)

where s runs on the elements of each subset, Xs is the s-th row
of the matrix X corresponding to the s-th point of the subset,
and wi is the i-th eigenvector of S . The value of the QLC for
a datapoint shows how much that point is represented by that
specific principal component.

Non-interacting Hamiltonian – For the Hamiltonian of
Eq. (1), we create the desing matrix X (NI) from data points
generated in the range µ ∈ [−8,8[ and ∆ ∈ [−2,2[ with a
step of 0.1 for µ and 0.05 for ∆, for a system with L = 100
sites. This subdivision of the ranges of ∆ and µ corresponds
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FIG. 3. PCA of the interacting Hamiltonian Projection of the in-
teracting correlation functions along the principal components ob-
tained applying PCA to the non interacting dataset. Darker colors
correspond to areas of the phase diagram which are more similar to
the principal component wi (i = 1,2,3,4) used for the projection.
QLCs drawn in (a) and (d) highlight the trivial (superconduting and
charge density wave) and topological phases respectively. In both
cases, the CAT phase is highlighted by higher values of pi compared
to the other phases. Component (c) pins down a phase transition
line whereas component (b) does not seem to be informative on the
interacting dataset. The projections of all four plots are rescaled in-
dependently. The dots are the same as panel (c) of Fig. 1, added to
help recognize the phase transition points.

to have a total of N = 12800 data points. The sum ∑
4
i=1 εi

of the explained variances of the first four eigenvalues results
in 96.6% meaning that most of the information of the data X
is contained in the first four eigenvectors. For this reason, in
Fig. 2, we show the first four QLCs. These are calculated as
in Eq. (10) by grouping the N = 12800 datapoints in 40×40
subsets corresponding to M = 8 datapoints per subset. The
explained variances εi of each eigenvector are reported for
each of the first four components. In panel (a) we see that
p1 is large for the points with |µ| > 2, this means that the
first principal component allows us to find the points of the
phase diagram with winding number ν = 0 (that belong to
the trivial phases TRI− and TRI+). This is due to the shape
of the first principal component w1 (depicted in the inset of
Fig. 2(a)) that resembles the shape of the correlation functions
c(k) and f (k) shown in Fig. 1(b) (TOP+1 phase). In Fig. 2(b),
we see that, instead, p2 allows us to extract the points of the
phase diagram with winding number ν = ±1 as the shape of
the second principal component w2 (depicted in the inset of
Fig. 2(b)) is similar to the correlation functions c(k) and f (k)
shown in Fig. 1(b) (TOP±1 phases). This analysis shows that
the first two principal components are sensitive to the trivial
and non-trivial phases. All the other 198 QLCs have a total
explained variance of the order of 13%, in particular the third
QLC (Fig. 2(c)) has explained variance ε3 = 5.2% and rec-
ognizes the phase transition lines, while the fourth (Fig. 2(d))
has explained variance ε4 = 4.2% and has a larger projection
on the phase with winding ν =−1.

Interacting Hamiltonian – We are interested in understand-
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FIG. 4. Non-interacting Hamiltonian: k-means clustering. (a) Values of the silhouette score S̃ as a function of the number of clusters K.
The maximum value is reached at K = 4 and suggests the best number of centroids for the dataset points. (b) Reconstructed phase diagram
of the non-interacting model (with K = 4 centroids) through the average silhouette S of every data point. The critical lines are clearly visible
because the correlation functions of critical points have similar distances between two centroids. (c) Centroids obtained by applying k-means
algorithm with K = 4. Every centroid resembles the correlation functions of the four different regions: topological with ν = −1, the two
trivial phases with ν = 0 and topological with ν = +1, from left to right. (d) Distances dk of the correlation functions for each point of the
phase diagram from the corresponding k-th centroid (plotted in the corresponding panel above). The points belonging to the same phase show
minimal distance to the same centroid.

ing if the principal components of the non-interacting model
computed before can be used to distinguish among the phases
of the interacting Hamiltonian. To this end, we construct
a design matrix X (I) with data obtained from the interact-
ing Hamiltonian in the range µ ∈ [0,5[, V ∈ [−4,4[ with a
step of 0.1. Then, we calculate the QLC by projecting these
data along the principal components wi of the non-interacting
Hamiltonian. The first four QLC are shown in Fig. 3. The first
(panel (a)) and the fourth (panel (d)) principal components w1
and w4 of the non-interacting data show higher projections
on the interacting data and are thus able to discriminate be-
tween the trivial and topological phases, respectively. We will
comment in Sec. IV about the appearance of a ligther colored
region in the CDW phase, just on the right of the phase tran-
sition line for large values of µ . The third principal compo-
nents w3 (panel (c)) recovers only the transition line between
the trivial and the non-trivial superconducting phases while
the second one seems to highlight only the region for low µ

and V ∈ [−1,0]. We note that, even though the CAT phase is
present only on the single line µ = 0, three out of four princi-
pal components are able to recognize it (Fig. 3(a), (c), (d)).

We can say with fairness that the PCA is able to learn the
underlying pattern which distinguishes a trivial phase from a
topological one. This is a good indication that even a super-
vised method can exploit the representation it learns of the
non-interacting data to classify the interacting ones.

B. K-means clustering

K-means clustering is a machine learning method for find-
ing clusters and cluster centers in a set of unlabelled data [35].
The algorithm starts by choosing a number of cluster centers
called centroids and then it iteratively moves the centers to
minimize the total variance within cluster. The centroids are

the central point of every cluster that are calculated by the al-
gorithm autonomously, so we interpret them as the most rep-
resentative point of the cluster.

In order to settle on a value of K without any a priori
knowledge of our data we choose to calculate the silhouette
score S̃ which is a value representing the average quality of
the clusterization for each K. Calling a the distance of a sam-
ple point to its centroid and b its distance to the second clos-
est centroid we can calculate the silhouette of a data point
as S = (b− a)/max(a,b). The values for S lie in the range
[−1,1] where negative numbers correspond to a wrongly as-
signed point. Positive values indicate the right classification
and the quality increases reaching 1.

We run k-means algorithm with different K values and se-
lect the K with the largest silhouette score. Due to the sensi-
tivity of the algorithm to initial conditions we run k-means 10
times for each K and then collect the average silhouette value
S̃ of every point over the 10 runs, whereas the centroids and
projections correspond to the largest silhouette only.

Non-interacting Hamiltonian – The analysis of the silhou-
ette for the non-interacting data turns out to be very informa-
tive. Firstly, after multiple iterations as explained above, we
find the maximum value of the silhouette score at K = 4 as
shown in Fig. 4(a). This suggests that the most reasonable
way to divide the data points is in 4 classes, which might cor-
respond to 4 different phases. Secondly, we see that the sil-
houette of a point can be used for identifying the phase tran-
sition lines. In fact, the points lying near a phase transition
might be reasonably associable to the two different phases
of the transition, that is they might show properties of both
phases. So we expect their silhouette value to be close to 0,
indicating that their classification might be non ideal. This is
indeed the case, as it is seen from Fig. 4(b) which shows the
average silhouette of every point calculated over 10 iterations
of k-means algorithm applied with K = 4, as suggested by the
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FIG. 5. Interacting Hamiltonian: k-means clustering (a) Values of the silhouette score S̃ as a function of the number of clusters K. The
peak is at K = 4 in accordance to the 4 phases of the original phase diagram. (b) Reconstructed phase diagram of the interacting model (with
K = 4 centroids) through the average silhouette value of every data point. Critical lines separating the phases are clearly visible, CAT phase is
also highlighted. (c) Centroids obtained by applying k-means algorithm with K = 4. Every centroid resembles the correlation functions of the
four different phases, as indicated by the label in the bottom right corner. (d) Distances of the correlation functions for each point of the phase
diagram from the corresponding centroid (plotted in the panel above). The points belonging to the same phase show minimal distance to the
same centroid.

previous analysis. We can see that points that are inside the
phases have a larger silhouette than points lying at the phase
transition.

Let us now move to the analysis of the centroids obtained by
applying k-means algorithm with K = 4. In Fig. 4(c) and (d)
we plot the 4 centroids and the distance of the points to each
centroid, respectively. Each centroid seems to exactly repre-
sent the features of the datapoints, i.e. the correlation func-
tions, of the four different regions of the phase diagram. Also,
all the points of a phase have a distance very close to zero to
their centroid, showing that we can separate the phases of the
diagram with ease.

Interacting Hamiltonian – The same analysis can be re-
peated on the interacting dataset, obtaining similar results
which are collected in Fig. 5. In particular the silhouette
reaches its peak at K = 4 corresponding to the four phases
of the interacting model shown in Fig. 1(c).

In Fig. 6, for completeness, we show the scatter plots
of the labels assigned by k-means ran with k = 4 for both
datasets. The reconstruction of the phase diagrams is neat and
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FIG. 6. Phase diagrams with k-means. Reconstruction of the phase
diagrams of the non-interacting (a) and the interacting (b) models
obtained with the labels assigned by k-means. For each data point
we plot its label predicted by k-means running with k = 4, the value
chosen according to the best silhouette as explained in the text.

in accordance with the results of Figs. 4 and 5.

We can summarize the results of this section saying that,
in both the non-interacting and the interacting models, the k-
means clustering algorithm, by trying to separate points, is
able to learn the characteristic shape of the correlation func-
tions of each phase and to identify the boundaries where the
phase transitions occur.

C. t-distributed stochastic neighbor embedding

t-SNE [36] is a popular dimensionality reduction technique
that creates a low-dimensional distribution of data which is
faithful to the original one and thus helps visualizing clusters
of data in 2 or 3 space. It starts by creating a probability dis-
tribution from the Euclidean distances between data points in
their original space. In particular given two points xi,x j ∈ D
where D is the dataset, we interpret the conditional proba-
bility pi| j as a measure of similarity between the two points
under a Gaussian centered at xi:

p j|i =
exp(||xi− x j||2/2σ2)

∑k 6=i exp(||xi− xk||2/2σ2)
(11)

where σ is a parameter that we will discuss later. t-SNE
creates a symmetric joint probability P from 11 by taking
pi j = (pi| j + p j|i)/2. Then, it gives to each point xi a new
set of coordinates in a lower-dimensional space yi ∈ Rd for
d = 2 or 3, where the similarity between points is given by a
t-Student distribution Q in the form:

qi j =
||yi− y j||2

∑k 6=l ||yk− yl ||2
(12)
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FIG. 7. Clustering with t-SNE. The plot shows the visualization of the data projected in 2D applying t-SNE (components y1,y2). In both
panels we assign a color to each point corresponding to its phase in the model while the brightness of each point corresponds to its silhouette
(see Section III.B). (a) Projection of the non-interacting model data points. Four clusters appear evidently and they correspond to the 3 phases
of the non-interacting model with the two trivial phases (TRI+, TRI-) separated. The silhouette of the points (brightness of the color) highlights
the points close to a phase transition, which happen to be at the borders of each cluster. (b) Projection of the interacting model data points. The
separation of the clusters is less neat compared to (a) but thanks to the silhouette we can see the borders of each cluster.

In order to make qi j a faithful low-dimensional represen-
tation of the distribution pi j, t-SNE minimizes the Kullback-
Leibler divergence

C = KL(P||Q) = ∑
i

∑
j

pi j log
pi j

qi j
(13)

Typically this is done updating the position of points yi by
gradient descent:

yi = yi−η
∂C
∂yi

(14)

with η the learning rate. The parameter σ appearing in 11
is related to another hyperparameter called perplexity which
is the one that needs to be set when running the t-SNE. Per-
plexity can be seen as the average number of neighbors we
expect the points to have in the original space and typical val-
ues range from 5 to 50 [36].

We ran t-SNE on our datasets varying both perplexity and
learning rate η without seeing major changes to the final re-
sult. Also, no relevant distinction was found in either reducing
the dimensions to 3 or 2, so we stick to 2D.

In Figure 7 we plot the results of t-SNE on the non-
interacting/interacting dataset. For both models we plot the
dimensional reduction to 2 dimensions. In the non-interacting
case we see four well-separated clusters and each one corre-
sponds to one of the phases of the model. In particular t-SNE
separates the two trivial phases (TRI+, TRI-) of the non inter-
acting model in the same way as K-means does. For the inter-
acting case the clusters are not as well-separated except for the

CAT phase. Although the shape of the of the low-dimensional
representation is not meaningful in t-SNE cluster, we are in-
terested in finding the position of the points close to the phase
transition lines. For this reason we adjust the brightness of
each data point according to its silhouette value that was cal-
culated in section III.B (compare with Figs. 4 and 5). In this
way we are able to see that the points closer to a phase transi-
tion are close to the margin of the cluster.

IV. SUPERVISED TRAINING

In this section we exploit the information gained from the
unsupervised analysis of the data to use a supervised model
for predicting the different (trivial or topological) phases via
the analysis of correlation functions. Our aim is to train the
network on the data of the non-interacting Hamiltonian and
test it on the interacting data. This is an approach that has been
recently exploited in the context of machine learning applied
to systems without analytical solution, e.g. [43].

For this reasons we decided to employ an ensemble method
which is favourable even when tackling difficult classification
problems [2]. The base element of the ensemble we use is a
convolutional neural network (CNN), a type of machine learn-
ing model that has found many successful applications in im-
age recognition problems [44] and vastly employed in appli-
cations to quantum many body problems [16, 45–47]. This
network uses small matrices of weights, called features, which
perform a series of discrete convolutions and are able to ex-
tract local properties of the data, for details see [34].

CNN ensemble – The ensemble of classifiers is made of
C = 180 CNNs, as schematically shown in Fig. 8. Each CNN
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FIG. 8. Structure of the CNNs forming the ensemble. The in-
put for the CNNs is a 2× L dataset with the correlation functions
c(k), f (k). First, the input is filtered by a layer of m1 2D convolu-
tional weights (in yellow) trained independently on each network.
Each weight produces one array of length N1 = L− 1 (the first set
of green columns denoted by `1) for a total of m1 arrays. Then each
network has a different number of additional hidden layers (columns
in red): `2, `3, `4 from the top. Each of these layers performs a 1D
convolution using the weights in yellow. The last convolution al-
ways has one single weight in order to produce a single array. The
last layer is a feed-forward layer (FF`) with one final output neuron
that gives a real number which is the predicted topological indicator
ω by the network. All the resulting topological indicators from the
different CNNs that constitute the ensemble are then averaged to give
the predicted topological indicator ω̃ (Eq. (15)).

has an initial hidden layer `1 (in green) of m1 = 100 filters
(weights) of size 2× 2 (yellow in the picture) and stride 1,
which produce m1 = 100 arrays of size N1 = L−1 = 99. Each
network can have three different internal structures whose
schemes are reported in Fig. 8. The number of additional hid-
den layers `α (in red) can vary from 1 to 3 while each of the
hidden layers in a network has the same number of weights
per layer which can be m = 25,50,100. Finally, the networks
have been trained with different batch sizes (512, 1024) and
different random initial training configuration of the weights
centered at zero (10 different starting seeds for each network).
Each network accepts as input the 2×L matrix made by stack-
ing c(k) and f (k) from Eqs. (6)-(7) and produces a single real
number ωα in output which is the estimate for the topological
indicator of the input. All layers neurons have ReLU activa-
tion ( f (x) = max{0,x}) except for the last one which is linear
( f (x) = x). The loss function is given by the mean squared er-
ror. The output of each network is then averaged to produce:

ω̃ =
1
C

C

∑
α=1

ωα . (15)

In the following we will show that this quantity can be used
as a topological indicator in order to reconstruct the phase di-

4 3 2 1 0 1 2 3 4
V
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3

4

5 (a)
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1.0

4 3 2 1 0 1 2 3 4
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1
(b)

0.5
4.0

FIG. 9. Convolutional neural networks. (a) Predictions ω̃ of the
phase diagram of the interacting Hamiltonian carried out by means
of the CNN ensemble. The topological phase is correctly predicted
(dark red region). (b) Two cuts of the phase diagram showing the
predictions ω̃ and their relative standard errors as a function of V
for different µ . For the points with µ & 1 in the CDW phase it is
possible to see the appearance of discontinuities (indicated by dashed
vertical lines) for the values ω̃ that correspond to the onset of the
incommensurate CDW phase.

agram of the interacting model.
Training – The networks are trained separately. The dataset

of the non-interacting model is made of 2×105 points cover-
ing the whole phase diagram of the non interacting Hamilto-
nian of Fig. 1(a). Each network is trained with Adam gradi-
ent descent method by using an early stopping technique until
convergence is achieved. This typically requires around 100
steps.

Testing – For the test dataset we considered 4×103 evenly
spaced samples in the grid [−4,4]× [0,5] for V and µ in order
to fully reconstruct the interacting phase diagram of Fig. 1(c).
The ensemble, trained on the non-interacting data, efficiently
evaluates the topological classification of the test set resulting
in the predicted phase diagram shown in Fig. 9(a). We note
that the predictions ωα of the 180 CNNs are very consistent:
they are constrained in the range [0,1] and their standard de-
viation is ∼ 9%.

All the points of the SC and CAT phases are correctly clas-
sified as non topological and the predicted values of ω̃ show
a sharp transition between the TRI and TOP phases, meaning
that the ensemble was able to learn how to identify the two dif-
ferent phases of the superconductor. On the other hand, there
is a less marked transition between the TOP and CDW phases.
In Fig. 9(b) we show two horizontal cuts of the phase diagram
taken for µ = 0.5 and µ = 4. Interestingly, in the CDW phase
for µ & 1, the values of ω̃ present discontinuities as a func-
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tion of the potential V (indicated by the dashed vertical lines
for µ = 4 in Fig. 9(b)) that correspond to the boundaries of an
incommensurate CDW that has been found e.g. in [29]. The
appearence of this additional phases is also caught by the PCA
(Fig. 3(a, d)) and k-means (Fig. 5(b)) results.

V. CONCLUSIONS

In this work we have shown how one can use machine learn-
ing techniques to predict the topological and non-topological
quantum phases of a paradigmatic model, namely the inter-
acting Kitaev chain, by exploiting the knowledge of the easily
solvable non-interacting model. More specifically, we have
constructed the non-interacting dataset from the analytical so-
lutions of the standard and anomalous correlation functions of
the model, while we have used the DMRG algorithm to cal-
culate the correlation functions in the interacting case.

At first, we have probed our data with PCA, k-means clus-
tering and t-SNE. With the former, we have confirmed that the
non-interacting data contain enough information to predict the
main features of the interacting dataset as well. With k-means,
we were able to identify the right number of phases as well as
correctly locate the phase transition lines. Also, we have seen
that the correlation functions of the four centroids reproduce
the pattern of the correlation functions of the different phases.
With t-SNE, we were able to see clusters of data correspond-
ing to the phases of the models and, thanks to the silhouette
values obtained from k-means, the localization of the phase
transition points at the borders of the various clusters.

Then we have used an ensemble of CNN, which was trained
on the non-interacting dataset and then tested to calculate and
predict the phases of the interacting model. The ensemble
does efficiently evaluate the topological class of this model,

with only the data points of the topological superconducting
phase producing a topological indicator equal to one on aver-
age. This means that the ensemble network is able to recon-
struct the phase diagram indifferently of the shapes and phases
of the input data.

These findings clearly indicate that non-trivial phases of
matter that emerge in presence of interactions can be iden-
tified by means of unsupervised and supervised techniques
applied to data of non-interacting systems. These results of-
fer a number of advantages since the data of non-interacting
or solvable quantum many-body systems can be easily gen-
erated by means of analytical computation, numerical simu-
lations, or directly measured in state-of-the-art experiments.
Furthermore, all the protocols developed in this work could
be easily generalized to higher-dimensional systems or finite-
temperature regimes.
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