
Dear Editor,

please find enclosed the new version of the manuscript “Active particles driven by com-
peting spatially dependent self-propulsion and external force” authored by L. Caprini, U.
Marini Bettolo Marconi, R. Wittmann and H. Löwen.

We are glad that two of the three reviewers raised very positive judgments on our paper
considered suitable for publication in SciPost. Although another referee was more critical,
we believe that after our careful revision, accounting for all the suggestions and criticism
of the three referees, the new version of the manuscript has improved and sheds more
light on the physical relevance of our results to the active matter community.

The text has been amended according to the recommendations of the referees and the
relevant changes have been highlighted in red for a faster check. In addition, we made
several minor modifications to improve the general readability. In particular, we noticed
that the section numbering was missing since on our system, an outdated version of the
latex package titlesec.sty, which is required by SciPost.cls, was installed. We think that
pointing out this issue is helpful for authors of future manuscripts.

Below, you can find a point-by-point reply to the reviewers.

Our best regards.

Lorenzo Caprini,
Umberto Marini Bettolo Marconi,
René Wittmann,
Hartmut Löwen.

Reply to Reviewer #1

The authors study an AOUP in a confining harmonic potential with a velocity profile vary-
ing periodically in space. It is already known that active particles accumulate where they
move slower, this study shows that the competition with an additional confining potential
creates unfavourable regions of space - where the restoring force overcomes the propul-
sion force - such that the density profile transitions from a normal distribution at low
persistence length to a multimodal distribution at large persistence. Numerical results are
carefully confronted to theoretical expectations

The paper provides, for this simple model, a detailed account of the physics at play in
the different regimes of persistence, and should thus serve as a solid basis for follow-up
studies on the control of active matter. As such, I recommend publication to SciPost
Physics.

We thank the reviewer for the careful reading and for the positive comments on our
work.

Below, we report a detailed answer to the reviewer’s minor points:

1) Comment: The limits of validity for the unified coloured noise approximation (UCNA)
are not detailed in the main text. To which quantities should the persistence time be
compared in order to characterise the small/large-persistence regimes? When should
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we expect this approximation to fail?
Reply: We thank the referee for pointing out these important issues. First, the
UCNA is valid in general if the matrix Λ is positive definite so that its inverse exists.
In the new version of the paper, we elaborate on this point in detail in the third
paragraph of Sec. 3.1. We remark that a necessary condition to obtain predictions
(9) and (10) (and, consequently, (11)) is that the matrix Λ is positive definite, so
that its inverse exists. [...] As a consequence, our approach is supposed to work
(at least qualitatively) [...] if (i) U(x) is a convex function, (ii) U(x) depends on a
single Cartesian coordinate or has a positive slope in a radial geometry and (iii) the
gradients of U(x) and u(x) enclose a sufficiently large angle α ≥ π/2 [...]. We also
mention explicitly the limit of validity in the captions of Figs. 3 and 4.

The persistence time, τ , should be compared in general to the typical time of the
dynamics, say the time associated with the presence of the spatial profile of the
swim velocity S/v0 (S = spatial period, v0 = average swim velocity) and the time
induced by the potential, l/v0 where l is the typical length of the potential that
reads l = k/γv0 in the case of a harmonic potential. We expect that the UCNA
approximation cannot be more than an approximation working qualitatively when
τ > S/v0 (large persistence regime). In the previous version of the paper, this
aspect was described only in the numerical section on the harmonic confinement
(above Eq. (18)). In the new version, we discuss the above points in a more general
context at an earlier point, in order to clarify the notion of a “small” and “large”
persistence time from the beginning. In detail, we write at the end of the first
paragraph in Sec. 3.1: [...] in the small-persistence regime, i.e., when the persistence
time is smaller than the other typical times characterizing the dynamics, [...]. In
particular, in the present case, τ needs to be compared to both the relaxation time
due to the potential and to the typical time induced by the spatial modulation of the
swim velocity profile (see Sec. 4.1 for an explicit discussion in the specific case of a
harmonic oscillator).

2) Comment: How strong is the approximation of vanishing probability current? What
are the consequences of such an approximation?
Reply: We thank again the referee for this interesting question. By assuming the
vanishing of the probability current, we are requiring that the system is locally in
equilibrium. This requirement leads to an equilibrium approximation (say, in terms
of effective potentials) able to reproduce the non-equilibrium probability distribution.
In the small persistence regime (when the persistence time is smaller than the typical
time induced by the potential), this approximation works quantitatively, while in the
large persistence regime, works qualitatively. We comment on this point in the new
version of the paper in the first paragraph in Sec. 3.1: Our theoretical method employs
the vanishing-currents approximation and, as a consequence, allows us to derive an
effective equilibrium theory whose validity will be investigated numerically.

Minor comments:

3) Comment: Above equation (21), is the second derivative of the density profile taken
at x = 0?
Reply: The referee is right. We fix this issue by adding at x = 0 in the new version
of the manuscript.

4) Comment: On top of page 12, (3) is not a prediction, should it rather be (9)?
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Reply: We are grateful to the referee for his/her careful reading and corrected this
typo.

5) Comment: In Fig. 4, could you add density profiles so that comparisons can be
made similarly to all other figures?
Reply: Following the suggestion of the referee, the density profiles have been in-
cluded in Fig. 4 in the new version of the paper.

Reply to Reviewer #2

This paper studies an active particle (AOUP) with spatially-dependent activity in a confin-
ing potential and more especially in a harmonic well. The authors have a written english
of good quality which makes the reading pleasant. In the first half of the paper, they tackle
their model analytically by using two approaches: the UCNA approximation and an exact
perturbative scheme. While I did not try to reproduce their computations in details, their
study seems rigorous and well-grounded in the literature: the uncontrolled assumptions are
stated and the terms neglected are mentioned. In the second half of the paper, the authors
perform numerical work to support their study. They distinguish three regimes for the
density depending on the parameter v0τ/S: monomodality, bimodality and multimodality.
For each of these three regimes, they also supply the distribution of the velocity as well as
its variance when the spatial position is varied. Despite all these results, I had troubles to
understand the novelty or the take-home message of the paper. In particular, I have four
major concerns which I develop below

We thank the reviewer for his/her careful reading of the paper and for all the inter-
esting questions and doubts, which helped us a lot to spot and improve and strengthen
the message of our paper. However, despite the referee’s global judgment on our paper,
we believe that studying the interplay between a space-dependent swim velocity and an
external potential represents an interesting step for active matter systems which could be
helpful for applications. In particular, we coined the following take-home message, stated
in the last two sentences of the conclusions: We demonstrated that by combining these two
physically distinct effects, it is possible to generate complex density patterns through two
relatively simple fields, which is surely easier to realize in practice than generating a single
external field with a complex shape. This possibility to fine-tune the stationary properties
of active particles in experimental systems opens up a new avenue for future applications
and developments. Moreover, we added the following statement to the abstract: We thus
demonstrate that the interplay of two relatively simple physical fields can be utilized to
generate complex emerging behavior.

Here, we reply to the main issues raised by the referee:

1) Comment: To which extent is taking a spatially-dependent self-propulsion u(x, t)
different than just having a single AOUP in a complicated potential? From the au-
thors results, it does not seem that there is unexpected physics due to the spatially-
dependent u(x, t). In particular, all the features highlighted by the authors for an
AOUP with spatially-dependent self- propulsion (accumulation near walls for exam-
ple) are already present for an AOUP with constant self-propulsion. I have remarked
that, when u(x) is a bijection, one can map the dynamics (3) of the authors to the dy-
namics of an AOUP with spatially-independent self-propulsion by making the change
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of variable ũ = ln(u(x)). Indeed, dividing both sides of (3) by u(x) leads to

ẋ

u
= −∇U

u
+ η , → ˙̃u = g(ũ) + η (1)

where g(ũ) = ∇U(u−1(eũ))/eũ and η is an Orstein-Uhlenbeck process as described in
(2b) of the paper.
Reply: We thank the referee for raising such a point, which indicates that the
different steps in our approximation scheme, which necessarily lead to a nontrivial
coupling between self propulsion and potential, have not been properly motivated.
In particular, rewriting the dynamics in a form that involves ẋ/u, as suggested in
the referee’s equation (1), is a crucial step to deal with the multiplicative nature
of the noise which results in our model from the spatial modulation of the swim
velocity. However, the suggested transformation (1) is not correct, as we outline in
the following.

Indeed, if we define a new variable

ũ = lnu(x) ⇔ u(x) = eũ

As suggested by the referee, we get:

dũ

dt
=
dũ

du

du

dx

dx

dt
=
u′(x)

u(x)
ẋ =

u′(x)

u(x)

(
−∇U(x) + u(x)η

)
= u′(x)(−g(ũ) + η)

This expression contains an extra factor u′(x) with respect to Eq. (1) written by
the referee (and also a minus sign in front of g(ũ) that is clearly a typo). This
factor is, however, particularly relevant because the new system (the one described
by ũ) still has a multiplicative noise and thus requires further theoretical treatment.
Moreover, the coupling between the gradients of both fields is already evident. As
a consequence, the original active system with a spatial dependent swim velocity
cannot be easily mapped onto a system with spatially-independent self-propulsion.

What the referee may have meant to show is practically exactly the idea behind
UCNA: one must both eliminate the multiplicative nature of the noise and replace
the colored noise by a white noise through a change of variables. Due to the latter
substitution, the necessary coupling between gradients of u(x) and U(x) and thus
the invalidity of a simple mapping becomes apparent. We added two comments in
the manuscript, further elaborating on which theoretical steps are necessary, which
might help to avoid such misconceptions. At the beginning of Sec. 2.2 we write
Our equation of motion (2a) of an AOUP with a spatially dependent swim velocity
contains a multiplicative colored noise, which does not readily allow us to gain further
analytic insight. As a first step [...]. Then, in the first paragraph of Sec. 3.1, we
sum up the crucial steps of our approximation scheme as follows: having derived the
auxiliary dynamics (6), where the colored noise η is replaced by a white noise χ, we
formally identify a new variable ż := ẋ/u(x) to eliminate the multiplicative nature
of the noise and then neglect the generalized inertial term ∝ z̈ in Eq. (6b).

Now, we provide an answer to the central concern of the referee:

From (1), I intuitively do not expect much differences between an AOUP with a
spatially-dependent self-propulsion and one with a constant self-propulsion in a more
complicated potential. Have the authors studied the question?’
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We thank the referee for raising such a point that we think is particularly interest-
ing. Of course, it is possible to obtain a certain “target” density profile in different
ways, but the underlying physics are crucially different. Therefore, a system with a
spatially-dependent self-propulsion cannot be mapped onto a system with a compli-
cated potential. This can be understood in two ways.

The first argument is a mathematical one. As laid out above, it is not possible to
map the coupled gradients of the two fields onto a single effective field. To emphasize
this point, we stress in our revised manuscript on several occasions that the interplay
of both fields results in new physics, for example in the last sentence of Sec. 2.2 or
by stating in the conclusion that the deviations of the velocity distributions from a
Gaussian shape exclusively arise from the interplay of these two fields.

The second argument comes from a consideration of the underlying physics, which
we lay out in the final paragraph of Sec. 2.2: Indeed, u(x) provides an additional
contribution to the effective friction in the dynamics of v but does not give any
contributions to the confining force, at variance with the potential U(x) that affects
both the force acting on the particle and the effective friction matrix. Moreover,
we discuss an explicit counter-example in footnote [76], which reads: To shed light
on the essential physical difference between a confined particle with uniform swim
velocity and a free particle subject to a swim-velocity profile, let us consider, as a basic
example, an AOUP with constant swim velocity u(x) = v0 trapped in a harmonic
potential, system (i), whose exact stationary density profile ρ(x) has a Gaussian
shape. In principle, this distribution can also be realized in the absence of external
forces by a swim-velocity profile of the form u(x) ∝ 1/ρ(x), system (ii), but the
physics are crucially distinct. In case (i), the particle is confined and can explore the
region far from the minimum of the potential only because of fluctuations induced by
the active force. The Gaussian density profile in system (ii) is obtained because the
particle spends more time in the central region where it moves slowly. However, due
to the absence of external forces (or other confining mechanisms), the diverging swim
velocity allows the particle to escape to infinity. This means that such an effective
confinement can only formally be achieved through periodic boundary conditions: the
particle moves slowly in the minimum of u(x), escapes rightwards (or leftwards) with
an increasing swim velocity and approaches again the slow region by coming back
from the other side of the box.

2) Comment: The authors results can be obtained by applying two main results of
active matter that are already well-established. The first one is that active parti-
cle with spatially-dependent self-propulsion u(x) accumulate where they are slow as
ρ(x) ∼ 1/u(x) (Refs [28] and [29] in the introduction). The second one is that con-
fining an active particle with a potential U leads to an accumulation at the position
where the force ∇U(x) is equal to the self- propulsion amplitude u (Ref [71] and
[86] from the authors). This last result, which has been documented, could also be
seen as a consequence of the former one: the confining force effectively reduces the
self-propulsion of the active particle which in turn triggers an accumulation due to
slowness. Figure 1 and figure 2 are intuitively explained in light of these two estab-
lished results. For example, in figure 1d, spikes of the density correspond to positions
where ∇U(x) = u(x). In figure 2d, the two spikes close to the center correspond
to local minima of u(x) while the two highest peaks correspond to both local minima
of u(x) and positions where ∇U(x) = u(x). Thus, it is not surprising that these
spikes are the highest ones: the effective self-propulsion at these positions is lowered
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by the potential compared to the self-propulsion at the center. Finally, I believe that
the bimodality of the velocity distribution displayed in figure 3h is not surprising; it
is due to particles coming from the cluster on the right and going leftway as well
as to particles coming from the cluster on the left and going rightway. Because the
confining force increases away from the center, the position of the spike with negative
velocity diminushes from yellow to brown while the trend is opposite for the spike
with positive velocity.
Reply: (Refs. [71] and [86] are now Refs. [75] and [91].) We thank the referee for
his/her interesting remarks. We agree on the explanations of Figs. 1 and 2, given
by the referee that is contained also in our manuscript. However, we think that the
results in the simultaneous presence of a confining force and a swim velocity profile
is less intuitive than the case u(x) = v0 and needs to be carefully explained and
demonstrated. In addition, despite the qualitative picture explained by the referee
(and by us in the paper) gives an explanation, is still remarkable that our theoret-
ical approach is able to reproduce (quantitatively in the small persistence regime)
and qualitatively (in the large persistence regime), the results of the simulations. In
particular, we thank the referee for his/her remark about the velocity distribution,
which provides a nice intuitive picture to interpret and reinforce the results that
we have obtained. Therefore, we included a few remarks accounting for the above
comment of the referee in the new version of the manuscript to increase the physical
understanding of Fig. 3. The discussion is appended at the end of Sec. 4.3.

In short, we do not believe that our predicted behavior is generally obvious, in
particular to the less experienced reader, who will surely appreciate the effort of
providing both a detailed numerical and theoretical study on the interplay of different
driving forces and an intuitive explanation in terms of force balance arguments.
This is particularly the case in the light of the different physics underlying external
confinement and spatially varying self propulsion, which we already elaborated on
after the previous comment.

3) Comment: I do not see what is the new physics brought forward in this work which
has not already been discussed in Ref [70] by the authors. For example, in the present
paper, the authors affirm that the interplay between the external force and the modu-
lation of the swim velocity can be used to manipulate the behavior of a confined active
particle, for instance by locally increasing the kinetic temperature or by forcing the
particles to accumulate in distinct spatial regions with different probability. However,
in their previous work [70], the authors have already demonstrated that the density of
their model follows the law ρ(x) ∼ 1/u(x) in the absence of potential. Thus there is
no need of a confining potential if one wants to sort and accumulate active particles
in distinct regions: a spatially- dependent self-propulsion is enough.
Reply: (Ref. [70] is now Ref. [74].) A system of active particles with a spatially mod-
ulated swim velocity (as the sinusoidal-like one used in the experiments in Ref. [19]
C. Lozano et al., Nat. Comm. 7, 12828 (2016)) can be used to favor some regions of
space, because of the law ρ(x) ∼ 1/u(x). Moreover, the system shows a diffusive-like
behavior, as shown in Ref. [74]: after a typical time, the active particle leaves the
region with small u(x) (say a minimum of the sinusoidal function) to escape away
(approaching another minimum of u(x) in the case of the sinusoidal profile). Thus, a
simple profile u(x) cannot be employed to confine active particles (recall the physical
argument, laid out in response to the first comment and presented at the end of Sec.
2.2 in the new version of the manuscript).
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What is the motivation and the new physics when studying the interplay between a
potential and a spatially-dependent self-propulsion?
Reply: As laid out before, there is not a simple mapping to an effective external
potential, so new physics naturally arise. We have shown that the interplay between
an external force and a spatially modulating swim velocity can be used to manipulate
the behavior of a confined active particle, for instance by locally increasing the kinetic
temperature or by forcing the particles to accumulate in particular spatial regions
with different probability. One example for new physics becomes apparent when
regarding the velocity profile. In both cases of considering only a harmonic trap
or only a spatially dependent velocity profile, the velocity distribution is Gaussian.
However, we observed emerging non-Gaussian behavior when combining these two
fields. To emphasize this we speak in Sec. 4.3 of a non-Gaussianity induced by the
interplay of confinement and spatially modulating swim velocity.

One central motivation of our study comes from the experimental realizability of
complex density patterns. Given the discussion above, to favor some regions of space
but still confining the system, we studied the interplay between a spatial-dependent
swim velocity (which can be easily obtained with active colloids or active bacteria)
and an external harmonic potential (harmonic traps have been obtained both in
case of bacteria and colloids while realizing more complex potentials could be less
easy from an experimental perspective). This complex interplay of two simple fields
is surely easier to impose than a single external field with high fluctuations. As
mentioned above, this is now concluded in the final paragraph of the conclusions and
also in the final sentence of the abstract.

4) Comment: As the authors point out in their work [70], there is already a literature
studying spatially- dependent self-propulsion amplitude and memory time for AOUP
(ref [61] for example). In [70], the authors detailed, from a mathematical point
of view, why their model (2) is actually different from the model studied in [61].
However, from a physical point of view, the difference remains unclear: what are the
physical features present in (2) that are not in [61]? In particular, when it comes to
experiments [25-27], what is the correct model one should use? It would be interesting
if the authors show that their model is indeed the one relevant for the experiments.
Reply: (Refs. [61] and [70] are now Refs. [63] and [74].) We thank the referee for
this interesting question which requires a discussion. The main difference between
our model and the model of Ref. [63] [i.e., the former Ref. [61] D. Martin et al.,
Phys. Rev. E 103(3), 032607 (2021)] concerns the validity of the law:

ρ(x) ∼ 1/u(x) . (2)

In the model of Ref. [63] without external forces, Eq. (2) can be obtained only pertur-
batively when u(x) changes “slowly” (with respect to the persistence length), while
this law is violated if u(x) changes “rapidly”. In our model, in the absence of external
force, Eq. (2) holds independently of the parameter choice. As a consequence, our
model seems to be more suitable to describe the experimental active systems such
that Eq. (2) holds: for instance, the active colloids studied by the group of Bechinger
[see for instance Ref. [19] Lozano et al., Nat. Comm. 7, 12828 (2016)] and the bac-
teria studied by the group of Di Leonardo [see for instance Ref. [27] G. Frangipane
et al., Elife 7, e36608 (2018)] or by the group of Poon [see for instance Ref. [25] J.
Arlt et al., Nat. Comm. 9, 768 (2018).]
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In the new version of the manuscript, we discuss in the final paragraph of Sec. 2.1 that
the spatial dependence of the self propulsion velocity can be conveniently accounted
for through a multiplicative factor u(x, t), which does not affect the dynamics of
the noise vector and that our AOUP model is more suitable to describe the class
of experimental systems for which the relation ρ(x) ∼ 1/u(x) is observed [...]. We
expect that this consistency is also an advantage for describing interacting systems.

Below, we answer the minor points raised by the reviewer:

1) Comment: I did not see an indication about the dimension considered in simula-
tions: are there performed in d = 1 or d = 2?
Reply: Simulations are realized in one dimension. The referee is right that this
might have been easy to overlook since our intention was to demonstrate an approx-
imation holding for more general systems, before specifying that we focus on the
one-dimensional case in the numerical section 4. To this end, we added a subsection
heading 4.1 Swim-velocity profile and external potential in one dimension. To fur-
ther emphasize this point, we added an additional remark on the dimensions of the
system after Eq. (17), which reads This choice and the features of the AOUP allow
us to consider directly a one- dimensional system, essentially focusing only on the x
component and neglecting the dynamics of the other spatial coordinates. Moreover,
we now state in the caption of all figures that Simulations are realized in one spatial
dimension.

2) Comment: the change of variable presented right after (3) might benefit from a
clearer presentation. I was first confused about whether v included the confining
force.
Reply: We thank the referee for this suggestion. Yes, the velocity v does include
the confining force. In the new version of the manuscript, we added the following
explanation: To derive the dynamics in the variables x and v, we adopt a simple
strategy whose leading steps are reported in details in Appendix A. We perform the
time-derivative of Eq. (3), substitute η̇ with Eq. (2b) and then replace η with v and
U(x), using again Eq. (3), and finally obtain an equivalent equation of motion for
the velocity v.

3) Comment: In the appendix eq (27), one side has u(x) while the other has u(x, t)
Reply: We thank the referee for the careful reading. We have fixed this typo in the
new version of the paper.

4) Comment: Right before the part on density distribution: when v0τ/S grows, the
spatial period of u(x) increases should be when v0τ/S grows, the spatial period of
u(x) decreases if I understood correctly the authors (S being the spatial period).
Reply: We thank the referee for the careful reading. We correct this mistake in the
new version of the paper.

5) Comment: Right in the beginning of the part Velocity distribution, display an al-
most Gaussian shape in agreement with Eq (3) should probably be display an almost
Gaussian shape in agreement with Eq (10). The same reference lapsus is also found
later in the same part Gaussian distribution with space-dependent variance given by
Eq (3).
Reply: We thank again the referee: these typos have been fixed.
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6) Comment: On figure 3; is the x-axis rescaled? Is it x or x̃?
Reply: we are grateful that the referee noticed this inconsistency and added the
label x/(v0τ) to the horizontal axes. Moreover, to avoid further confusion in the
bottom plots, we also specify x = x̄v0τ in the caption.

7) Comment: In the end of the part called profile of the kinetic temperature, I could
not understand well the phrase the variance of the particle velocity becomes steeper
and decreases to zero in the regions which are not explored by the particle. This is
consistent with the scenario observed in Fig. 1 (c): the particles accumulate in the
regions where they move slowly and the velocity variance is small. How can particles
accumulate in regions that they do not explore?
Reply: We thank the referee for his/her careful reading and, in particular, to evi-
dence such an unclear sentence which has been rephrased as follows: When v0τ/S
increases, e.g., due to a shorter periodicity S of the swim-velocity u(x), 〈v2(x)〉 de-
creases upon moving away from the potential minimum. For further clarity of the
comparison, we added the corresponding density profiles to Fig. 4 and then continue
with This is consistent with the scenario observed in Fig. 4 (a).

Reply to Reviewer #3

We thank the reviewer for his/her careful reading and positive judgment on our work,
summarized in the following sentence:
I found the subject of the lecture note interesting and the problem they focused on looks
timely.

Here, we reply to the main issue raised by the referee:

1) Comment: It is not completely clear to me how the velocity of the particle is con-
trolled in this model. In the sense that η fluctuates with a variance that is proportional
to 1/τ and then the velocity is basically u(x, t)η. For u(x, t) = v0, it looks to me that
velocity is not really controlled unless you change the variance of the OU process. I
might be wrong, however, I think that a general reader might be getting wrong like
me and thus I would suggest the authors clarify this point.
Reply: We thank the referee for raising this point. The process η evolves as

η̇ = −η

τ
+

√
2√
τ
χ (3)

which corresponds to Eq. (2b) except from a global τ factor multiplied at both sides.
As a consequence, the process η has unit variance in one spatial dimension and the
corresponding reduced probability distribution

p(η) ∼ e−
η2

2 (4)

does not depend on τ . For this reason, the swim velocity (the variance for instance)
does not change if we increase τ .

To remove this possible source of confusion, we stress on several occasions in the new
version of the manuscript that η has unit variance, most notably directly after Eq. (1)
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and clarify in the completely revised final paragraph of Sec. 2.1 that the Ornstein-
Uhlenbeck process in Eq. (2b) has unit equal-time variance (except for a dimensional
factor which we ignore here for convenience [73]), such that the reduced stationary
probability distribution of η does not depend on the time scale τ . This means that
u(x) provides a unique velocity scale. Moreover, this unit-variance version of the
AOUP model allows us to establish a direct link to the ABP model...

2) Comment: I did not find clear the presentation in the section Velocity description of
AOUP. It seems to me that they just perform the time derivative of Eq. (3) and then
they consider the usual UCN approximation (τx = 0). I do not think an appendix of
just two lines is required (see eq. (22) and (23)) since this derivation might be very
useful for the general reader. Moreover, they introduce the Jacobian but a) they do
not write its expression, and b) Does occur any problem if J = 0? I am asking that
because after (1) they require u ≥ 0, however, |J | = u and the approximated solution
seems to require u > 0. Is this a problem of the approximation or, more in general,
the model is not defined for u = 0?
Reply: In the Section “velocity description of AOUP”, we perform a change of
variable, by switching from (x, fa) → (x,v). This theoretical step is fundamental
to deriving the UCNA distribution both in position and velocity domains. This
operation can be achieved by deriving the equation of motion for x with respect to
time and by replacing ḟa and successively fa with functions of x and v provided by
the equation of motion itself. These algebraic passages have been detailed in the
appendix to help a reader to perform calculations. The referee is right that this is
an important section and we have carefully revised it, for example by explaining in
more detail before Eq. (6) how it is derived. Regarding the two points of the referee,
in particular, we made the following modifications:
a) In the main text, we report the expression for the Jacobian of the transformation
(i.e., the determinant det[J ] of the Jacobian matrix J ), which is reported in Eq. (4).
For clarity, we added the full expression of J , namely,

J =
∂b

∂a
=

[
∂x′

∂x
∂x′

∂η
∂v
∂x

∂v
∂η

]
=

[
1 0
0 u(x)

]
and further explanations to Appendix A.
b) We thank the referee for raising such a point. The referee is completely right. The
transformation cannot be achieved for u = 0 which is rather non-physical because we
can neglect the thermal noise due to the solvent only if Da = u2τ � Dt, a condition
which cannot be satisfied if u = 0. In practice, when u = 0 the system evolves
deterministically (without noise) and this is also a source of technical problems. We
thus clarify after Eq. (5) that the condition u(x, t) > 0 implies det[J ] > 0 and, thus
guarantees the possibility of performing the transformation.

3) Comment: I think Eq. (7) requires some warnings because, in the region where the
potential develops negative curvatures, one ends with negative friction. I understand
the authors choose a safe potential with always positive curvature (basically this is
also the reason why for large τ one can obtain a good approximation of stationary
configurations). For instance, it looks to me that even in a small τ limit negative
and large curvatures might cause problems. (a) Could the authors comment on that
and also include relevant references? (b) I think a similar discussion is required once
they introduce Λ(x)
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Reply: We thank the referee for this question. In the small-τ regime, the matrices
Γ(x) and Λ(x) are always positive, because they are of the form I+τ f(x), where I is
the identity matrix and f(x) is a vectorial function of x which contains all the terms in
Eq. (7) and Eq. (8). As a consequence, there exists always a value of τ (small enough
compared to the other relevant time scales) below which the matrices remain positive.
We also stress that the dynamics (6) is also defined for negative Λ(x) (or Γ(x)), while
the restrictions provided above come into play to derive the approximations given
by Eq. (9) and Eq. (10). For this reason, we state at the beginning of Sec. 2 that So
far, all steps in Sec. 2.2 were exact and the drawn conclusions general. A detailed
discussion of the aforementioned shortcomings of the approximations has been added
as the third paragraph of Sec. 3.1.

4) Comment: In section Theoretical Predictions should contain all the relevant in-
formation about the approximations made to arrive at Eqs. (9) and (10) are valid.
Moreover, in Eq. (10), obtained within UCN, there is a det Λ(x) that does not appear
in Fox: this is because Fox is a small τ approximation (the authors write The same
ρ(x) can be obtained the path-integral method proposed by Fox). I understand the
small τ of UCN brings to Fox, however, in UCN one just asks for large friction. (a)
Could the authors clarify this point? Also, (10) has clearly a problem with negative
values of Λ but also with u = 0, (b) could the authors provide a list of conditions un-
der which the approximated solution is valid? (c) Again, I think there are conditions
for writing Eq. (9). In appendix (B) they show how to obtain ρ(x) but I did not find
information in Eq. (9).
Reply: The referee is right that no assumption about the large-τ behavior enters
the derivation of the Fox approximation. As such, UCNA and Fox are two different
approximation schemes that also predict different dynamics. However, both lead to
the same steady-state probability distribution in the absence of translational diffu-
sion coefficient, say Dt = 0. Different steady-state results in the two cases occur
only if Dt > 0 (see for instance Ref. [72] R. Wittmann et al., Journal of Statistical
Mechanics: Theory and Experiment, 2017). To clarify this, we extend the men-
tioned statement to In the absence of thermal noise, the same (stationary) ρ(x) can
be obtained using the path-integral method proposed by Fox and also added further
theoretical details to the first paragraph of Sec. 3.1.

As stated above and elaborated in the new version of the manuscript (third para-
graph of Sec. 3.1), Eq. (9) and Eq. (10) hold globally if Λ(x) is positive, which can be
achieved for every τ only under certain conditions. More details regarding the deriva-
tion of Eq. (9) have been included. We also specified that (26) is an approximate
condition, where we also cite [82] for further reference.

5) Comment: The theory has been checked against numerical simulations in one spa-
tial dimension. Does the approximated solution presented in (10) hold also in two
dimensions? I think the authors should clarify the reasons why they focus their at-
tention on one-dimensional problems.
Reply: The theory (i.e., Eqs. (9) and (10)) hold for general dimensions. In the
numerical study, we focused on a one-dimensional system because we have chosen a
one-dimensional profile for u(x) taking inspiration from experiments (see Ref. [19]
C. Lozano et al., Nat. Comm. 7, 12828 (2016)). Indeed, the new physics is only con-
tained along the spatial direction where the swim velocity profile presents changes.

The aspect of dimensionality is also taken into account in our new discussion on
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the validity of the theoretical approximations in the third paragraph of Sec. 3.1,
see above. Moreover, we added the following remark to the third paragraph of
the conclusion: Despite our particular attention to one spatial dimension, we recall
that we practically obtain the same results for a planar geometry in higher spatial
dimensions and that we expect that our theory is also suitable for sufficiently well-
behaved potentials and velocity fields in other geometries (compare the discussion in
Sec. 3.1).

6) Comment: In the section The harmonic oscillator they write we have shown that our
analytical predictions from Eqs. (9), (10) and (11) are exact in the small persistence
regime through analytical arguments. I do not see where a small tau approximation
enters (10).
Reply:

The assumption of small τ does not enter directly in the derivation of Eqs. (9), (10)
and (11). However, one of the key passages of the derivation is fully justified only if
τ is small, in particular, when we get the overdamped dynamics Eq. (30) (Appendix
B) by neglecting the acceleration term (Eq. (29)). To emphasize this point, we now
state Assuming that the velocity relaxes faster than the position (as for example in
the small-persistence regime) allows us to neglect both these terms.

In addition, we have reported the exact expression for the probability distribution
p(x, v) perturbartively as a function of τ (In Eq. (14)). The first order in τ of p(x, v)
coincides with the UCNA solution. Thus, for small τ our approximation is exact
Starting from the order τ 2 additional terms arise in the perturbative expression for
p(x, v). As a consequence, our Eqs. (9), (10) and (11) are not exact but only provide
a useful approximation. To be clearer, we replaced the reference to Sec. 3 by Sec. 3.2
in the statement quoted by the referee.

7) Comment: I think it might be very useful to the reader if the authors could add
more details about the comparison between numerical results with Eq. (10).

(a) Could the authors write the expression they use in 1 dim?

(b) Could the authors say how the comparison has been performed, i.e., they integrate
numerically eq. (9)?
Reply: We thank the referee for these questions, which help to put more clarity in
our presentation. In our revised manuscript, we refer to the following points explicitly
in Sec. 4 and in the captions of the corresponding figures:

a) The theoretical expressions used in 1d are provided by Eq. (16) [which is the
one-dimensional expression for the steady-state spatial density profile, Eq. (10)] and
the one-dimensional version of Eq. (9) [i.e., the predictions for p(x, v) containing the
explicit dependence on v, which is nothing but a Gaussian in v], where Λ(x) is given
by Eq. (19).

b) The integral occurring in the analytical expression for ρs(x) in Eq. (9) has been
performed numerically (using Mathematica) because the explicit expression for the
integral is unknown for our choice of U(x) and u(x).

8) Comment: In Conclusions they write we have developed a theoretical treatment,
applicable to rather general choices of confining potentials and inhomogeneous swim
velocities. I think the sentence should be updated once they answer to (4).
Reply: To account for the modifications described above, we removed the part
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applicable to rather general choices of confining potentials and inhomogeneous swim
velocities of the aforementioned sentence and, instead write in the third paragraph of
the conclusion: Despite our particular attention to one spatial dimension, we recall
that we practically obtain the same results for a planar geometry in higher spatial
dimensions and that we expect that our theory is also suitable for sufficiently well-
behaved potentials and velocity fields in other geometries (compare the discussion in
Sec. 3.1).

Below, we answer the minor points raised by the reviewer:

1) Comment: In the main text the authors indicate different appendix with capital
letters, however, there are no letters in the appendix section.
Reply: We thank the referee for his/her careful reading and pointing out this tech-
nical problem, which has now been resolved by using an updated package.

2) Comment: Introduction: The motility of active particles is much higher than that of
their passive counterparts What does it mean? A passive bead immersed in a thermal
bath is not motile. I think the authors mean that motility induces a diffusive regime
whose diffusion constant is much bigger than that due to the thermal bath. I would
ask the authors to state properly this sentence.
Reply: We are grateful to the referee for pointing out such a mistake, which is
corrected in the new version of the paper by speaking of a diffusivity instead.

3) Comment: Abstract: Our results can be confirmed by real-space experiments on ac-
tive colloidal Janus particles in the external field. Usually, Janus particles are well
captured by Active Brownian motion rather than AOUP,
Reply: The referee is right, we removed this sentence from the abstract and re-
placed it with the more general and even more important conclusion that We thus
demonstrate that the interplay of two relatively simple physical fields can be utilized
to generate complex emerging behavior.

4) Comment: Introduction: The ABP model is harder to use to make theoretical
progress it does not look totally true to me, there are several theoretical works where
the coarse-graining properties of active systems are obtained from ABP (see for in-
stance T Speck, AM Menzel, J Bialké, H Löwen The Journal of chemical physics 142
(22), 224109) and RT (ME Cates, J Tailleur Annu. Rev. Condens. Matter Phys.
6 (1), 219-244) or even starting from minimal swimmer models (A Baskaran, MC
Marchetti Proceedings of the National Academy of Sciences 106 (37), 15567-15572).

Reply: Our intention was only to say that, according to our experience in the field,
theoretical predictions can be obtained quite easily in the case of the AOUP model
with respect to the ABP model. Anyway, the referee is right and, of course, there are
some theoretical contributions obtained through the ABP model (without employing
the AOUP approximation). Thus, we follow his/her suggestion and we reduce our
claim, by rephrasing that sentence and citing the references suggested by the referee.

5) Comment: Introduction: AOUP model is recovered upon substituting v20 = Da/τ
I think in d dimensions (that is the situation where they are working in 2a and 2b,
otherwise bold symbols do not make any sense) Da = v20τ/d.
Reply: We thank the reviewer for pointing out this issue, which tells us that we
have not been clear enough on our notational convention. In our manuscript, we
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simply choose to work with Da = v20τ for convenience of our notation (avoiding
the dimensional factor d). We are aware of the usual mapping and discuss it in
the footnote [69] (old version) and now [73], which is reported here for clarity: The
common mapping between ABPs and AOUPs in d > 1 spatial dimensions relates the
persistence time τ = D−1r /(d− 1) and the active diffusion coefficient Da = v20τ/d of
the AOUP model to the rotational diffusivity Dr and self-propulsion-velocity scale v0
of the ABP model [72]. To ease the notation for the predictions of our generalized
AOUP model, we follow the convention of Ref.[74] and do not imply this mapping,
simply setting d = 1, which gives the same physics. If one wishes to make explicit
contact to the ABP model for d > 1, the last term in Eq. (2b) should be replaced by√

2τ/dχ, such that the formulas subsequently derived for arbitrary spatial dimension

d should be interpreted by rescaling u(x)→ u(x)/
√
d.

In the new version of manuscript, we completely reworded the paragraph of the
main text discussing these points to make it clearer that all details are given in [73],
emphasizing that this is a footnote and not a reference. The relevant comments
read: (except for a dimensional factor which we ignore here for convenience [73])
and Da = v20τ (see also footnote [73] for a general discussion of the mapping between
ABPs and the different versions of AOUPs in d spatial dimensions).

6) Comment: In section Model I think they start with considering AOUP in two spatial
dimensions (since they write η is a two-dimensional Ornstein-Uhlenbeck process)
however, I believe this information might get missed by a distracted reader. Could
the authors introduce at the beginning of the section if they work in 1,2 or d spatial
dimensions?
Reply: We thank the referee for pointing out this inconsistency. In the first sections,
our intention was to show an approximation holding for more general systems than
the one-dimensional one discussed in the numerical section (say, holding for general
dimensions and general swim velocity profiles). For this reason, we did not intend
to specify the spatial dimensions until the numerical part in Sec. 4. Therefore, we
removed the specification “two-dimensional” after equation (1).

7) Comment: Figure 1: why the linear force looks like |x|?
Reply: We thank the referee for the careful reading. When the particle is stuck
into an accumulation region such that x < 0, the active force is negative, say η < 0.
On the contrary, if the particle is stuck at x > 0 the active force is positive, say
η > 0. This occurs because for x < 0, the linear force due to the potential pushes
the particle to x = 0 so that F (x) > 0 while for x > 0 we have F (x) < 0. As a
consequence, the modulus of the active force, say u(x), needs to be compared with
the modulus of the potential force, |F (x)|.
Speaking of a linear force instead of the modulus of a linear force was a typo, which
we corrected in the caption of Fig. 1 and Fig. 2 and in the text.
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Abstract

We investigate how the competing presence of a nonuniform motility landscape and an
external confining field affects the properties of active particles. We employ the active
Ornstein-Uhlenbeck particle (AOUP) model with a periodic swim-velocity profile to de-
rive analytical approximations for the steady-state probability distribution of position
and velocity, encompassing both the Unified Colored Noise Approximation and the the-
ory of potential-free active particles with spatially dependent swim velocity recently de-
veloped. We test the theory by confining an active particle in a harmonic trap, which
gives rise to interesting properties, such as a transition from a unimodal to a bimodal
(and, eventually multimodal) spatial density, induced by decreasing the spatial period
of the self propulsion. Correspondingly, the velocity distribution shows pronounced de-
viations from the Gaussian shape, even displaying a bimodal profile in the high-motility
regions. We thus show that the interplay of two relatively simple physical fields can be
employed to generate complex emerging behavior.
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1 Introduction

The control of active matter [1–4] is an important issue for technological, biological and med-
ical applications and has recently stimulated many experimental and theoretical works. It is
also very important in the future perspective of self-assembling and nano-fabricating active
materials. The diffusivity of active particles is much higher than the one of their passive coun-
terparts. Indeed, the former may be caused by high motility induced by either an internal
“motor” (metabolic processes, chemical reactions, etc.) or a directed external driving force
acting on each particle, while the latter is simply due to random collisions with the particles
of the thermal bath. This property offers intriguing perspectives since it is possible to achieve
navigation control of active particles [5,6], for instance when driving their trajectories by some
feedback mechanism [7,8].

In the case of active colloids, such as Janus particles activated by external stimuli, the
motility can be tuned by modulating the intensity of light [9–14]. This property has been
employed to trap them [15,16] and to obtain polarization patterns induced by motility gradi-
ents [17,18]. Experimentally, the existence of an approximately linear relation between light
intensity and swim velocity [19] allows to tune the motility and design spatial patterns with
specific characteristics. Recent applications range from micro-motors [20,21] and rectification
devices [22,23] to motility-ratchets [24]. Two experimental groups [25–27], have devised an
intriguing technique to control the swimming speed of bacteria by using patterned light fields
to enhance/reduce locally their motility by increasing/decreasing the light intensity. This leads
to a consequent accumulation/depletion of particles in some regions, so that this procedure
can be used to draw two dimensional images with the bacteria [25].

The fundamental physical concept behind experiments on light-controlled bacteria has
been investigated many years ago in a theoretical context for noninteracting random walkers
by Schnitzer [28] and later been extended to the interacting Run-and-Tumble model by Cates
and Tailleur [29]: the lower the speed of active particles, the higher their local density. This
theoretical result has been tested and confirmed in many numerical works and the existence
of such a relation between particle velocity and density is now considered one of the most
distinguishing features of active matter. A subsequent theoretical modeling of these effects
has been proposed in Refs. [19, 30–33] by generalizing the active Brownian particle (ABP)
model to include a spatially dependent swim velocity. This additional ingredient accounts
for the well-known quorum sensing [34–36], chemotaxis and pseudochemotaxis [37–40] and
correctly predicts a scaling of the density profile of individual particles with the inverse of the
swim velocity. Including particle interactions in the ABP model may lead to the spontaneous
formation of a membrane in two-step motility profiles [41] or cluster formation in regions with
small activity [42]. Moreover, a temporal dependence in the activity landscape [43–48]may, in
some cases, produce directed motion opposite to the propagation of the density wave [23,49].

The ABP model has been widely employed to obtain theoretical predictions [50–52] and
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still represents one of the more spread active matter models for its versatility and broad ap-
plicability [53–58]. Nevertheless, the more recent active Ornstein-Uhlenbeck particle (AOUP)
model [59–65], to be regarded as a “sister/brother” [66] of the ABP model, is generally easier
to handle and often conveniently used to achieve further theoretical progress. For an ABP,
the modulus of the active force is fixed and its orientation diffuses, while for an AOUP each
component of the propulsion force evolves independently according to an Ornstein-Uhlenbeck
process. Therefore, AOUPs can be used as an alternative to ABPs with simplified dynam-
ics [67–69], to describe the behaviour of a colloidal particle in an active bath [70,71]. More-
over, a convenient mapping between the parameters of the two models can be performed on
the level of the autocorrelation function of the self-propulsion velocity [72,73], such that their
predictions agree fairly well for small and intermediate persistence time of the active mo-
tion [66]. The present authors recently modified the AOUP model to account for a spatially
dependent swim velocity in Ref. [74] and obtained exact results for both the density profile
and velocity distribution of a potential-free particle.

Analytical results for active particles in competing external potential and motility fields
are sparse. Therefore, in this work, we extend the theoretical treatment from Ref. [74] by
including the presence of an external force field, revealing more interesting properties than
those obtained for constant swim velocity. For example, the density profile exhibits multiple
peaks due to a competition between external forces and motility patterns, while the velocity
distribution at fixed position displays a transition from a unimodal to a bimodal shape. The
paper is structured as follows: In Sec. 2, we present the model to describe an active particle
in a spatially dependent swim-velocity landscape and subject to an external potential, while,
in Sec. 3, we develop our theoretical approach to describe the steady-state properties of such
a system. The theory is numerically tested in Sec. 4 in the case of a harmonic potential and
sinusoidal swim-velocity profile. Finally, conclusions and discussions are reported in Sec. 5.
The appendices contain derivations and information supporting the theoretical treatment.

2 Model

2.1 Active particles with spatially dependent swim velocity

The position, x, of an active particle evolves according to overdamped dynamics supplemented
by a stochastic equation for the active driving, the so-called self-propulsion (or active) force,
fa. Such a force term is responsible for the persistence of the trajectory and its physical ori-
gin depends on the system under consideration: flagella for bacteria and chemical reactions
for Janus particles, to mention just two examples. The active force fa can be written in the
following form [66]:

fa = γv0η , (1)

where η is a stochastic process of unit variance, γ is the friction coefficient and v0 is the con-
stant swim velocity induced by the active force. To describe an active particle with a spatially
dependent swim velocity, we employ the transformation v0 → u(x, t) in Eq. (1), which in-
troduces a dependence on both position and time. The shape of u(x, t) must satisfy some
properties related to physical arguments:

i) positivity: u(x, t) ≥ 0, for every x and t, since u(x, t) is the modulus of the velocity
induced by the active force.

ii) boundedness: u(x, t) needs to be a bounded function of its arguments because the swim
velocity cannot be infinite.
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In what follows, we focus on the stochastic model introduced in Ref. [74], representing a
generalization of the AOUP dynamics with u(x, t).

Assuming inertial effects to be negligible at the microscopic scale, typically realized at small
Reynolds numbers, the overdamped dynamics of the active particle with spatially modulating
swim velocity reads:

γẋ= F+ γ
p

2Dtw + γu(x, t)η , (2a)

τη̇= −η+
p

2τχ , (2b)

where χ and w are δ-correlated noises with zero average and unit variance and F is the force
exerted on the particle, resulting from the gradient of a potential U(x), i.e., F(x) = −∇U(x).
In this paper, we consider only a single particle, so that U(x) is a one-body potential, but the
description can be straightforwardly extended to the case of many interacting particles. The
coefficient Dt is the translational diffusion coefficient due to the solvent satisfying the Einstein’s
relation with Dt = Tt/γ and the temperature, Tt , of the passive bath (for unit Boltzmann
constant). The dynamics of η is characterized by the typical time, τ, which represents the
correlation time of the active force autocorrelation and is usually identified with the persistence
time of the single-trajectory, i.e., the time that a potential-free active particle spends moving
in the same direction with velocity u(x, t). In what follows, we neglect the contribution of
the thermal bath by setting Dt = 0, which is well justified in most of the experimental active
systems [1].

By writing the active force in Eq. (2) as fa(x, t) = γu(x, t)η we have achieved two impor-
tant goals. First, the spatial dependence of the self propulsion velocity can be conveniently
accounted for through a multiplicative factor u(x, t), which does not affect the dynamics of
the noise vector. Therefore, in the absence of external or time dependent forces, we are able
to analytically recover the law ρ(x) ∼ 1/u(x) for the stationary density profile ρ(x) [74], at
variance with the alternative AOUP dynamics developed in Ref. [63] where such a law is re-
produced only for profiles of u(x) with slow spatial variation. As a consequence, our AOUP
model is more suitable to describe the class of experimental systems for which the relation
ρ(x)∼ 1/u(x) is observed, such as engineered E. Coli bacteria [25,27] or active colloids [19].
We expect that this consistency is also an advantage for describing interacting systems. Sec-
ond, the Ornstein-Uhlenbeck process in Eq. (2b) has unit equal-time variance (except for a
dimensional factor which we ignore here for convenience [73]), such that the reduced sta-
tionary probability distribution of η does not depend on the time scale τ. This means that
u(x) provides a unique velocity scale. Moreover, this unit-variance version of the AOUP model
allows us to establish a direct link to the ABP model and an even larger family of models [66]
for which Eq. (2a) has the same form. In turn, from Eq. (1) (or by taking u(x, t) = v0), the
standard version of the AOUP model is recovered by absorbing the velocity scale v0 into the
active diffusion coefficient Da = v2

0τ (see also footnote [73] for a general discussion of the
mapping between ABPs and the different versions of AOUPs in d spatial dimensions). From
this identification, we see that the condition, Dt� Da, necessary to neglect the thermal noise
requires u(x, t)> 0, which is stronger than the one stated above.

2.2 Velocity description of an active Ornstein-Uhlenbeck particle (AOUP)

Our equation of motion (2a) of an AOUP with a spatially dependent swim velocity contains a
multiplicative colored noise, which does not readily allow us to gain further analytic insight. As
a first step to ease the theoretical treatment of our model, we switch to the auxiliary dynamics
employed earlier in the potential-free case [74]. Instead of describing the system in terms of
position x and self-propulsion velocity u(x)η, we take advantage of the relation (holding for
Dt = 0)

γẋ= F+ γu(x, t)η (3)
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to perform the simple change of variables (x,η)→ (x, ẋ = v). This trick allows us to directly
study the position and the velocity of the active particle as for u(x, t) = v0. As in the potential-
free case, to return to the original variables, we need to account for the space-dependent
Jacobian matrix J of the transformation reported in Appendix A. The resulting Jacobian reads:

det[J ] = u(x, t) , (4)

where det[·] represents the determinant of a matrix. Therefore, the probability distributions,
p̃(x,η, t) and p(x,v, t), in the two coordinate frames satisfy the following relation:

p̃(x,η, t) = det[J ] p(x,v, t) . (5)

Note that the condition u(x, t) > 0 implies det[J ] > 0 and, thus guarantees the possibility of
performing the transformation. In what follows, we use these new variables to study a system
subject to both a spatially dependent swim velocity, u(x, t), and an external potential U(x).
The generalization to include a thermal noise can be achieved by following Ref. [75].

To derive the dynamics in the variables x and v, we adopt a simple strategy whose leading
steps are reported in details in Appendix A. We perform the time-derivative of Eq. (3), sub-
stitute η̇ with Eq. (2b) and then replace η with v and U(x), using again Eq. (3), and finally
obtain an equivalent equation of motion for the velocity v. The full result reads

ẋ=v , (6a)

γτv̇=− γΓ (x) · v−∇U + γu(x, t)
p

2τχ (6b)

+τ
[γv+∇U]

u(x, t)

�

∂

∂ t
+ v · ∇

�

u(x, t) .

In Eq. (6b), the first line is identical to the expression describing the constant case u(x, t) = v0:
the dynamics of an overdamped active particle is mapped onto that of an underdamped pas-
sive particle with a spatially dependent friction matrix, γΓ (x), which depends on the second
derivatives of the potential and reads:

Γ (x) = I+
τ

γ
∇∇U(x) , (7)

where I is the identity matrix. Such a term increases or decreases the effective particle friction
according to the value of the curvature of U(x), which becomes more and more important as
τ becomes large. In addition, as already found in the potential-free case, the noise amplitude
contains a spatial and temporal dependence through the multiplicative factor u(x, t). The
second line of Eq. (6b) contains the new terms, absent for u(x, t) = v0, accounting for both
the time- and space-dependence of u(x, t).

For a further discussion of the new terms arising from a modulating swim-velocity profile,
we restrict ourselves to the time-independent case, u(x, t) = u(x). Then, we identify two
contributions to the total force. The first one, ∝ vv · ∇u, is proportional to the square of
the velocity and appears also in the absence of an external potential. Since it is even under
time-reversal transformation, it cannot be interpreted as an effective Stokes force. The second
force,∝ (∇U)v · ∇u, couples the gradients of the potential and the swim velocity and gives
rise to an extra space-dependent contribution to the effective friction. This allows us to absorb
this term into a generalized effective friction matrix Λ(x), which reads:

Λ(x) = Γ (x) +
τ

γ
F(x)
∇u(x)
u(x)

, (8)

where Γ (x) is given by the expression for constant u(x) = v0 (see Eq. (7)). The new term
in Eq. (8) linearly increases with increasing τ and provides a further spatial dependence to
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the friction matrix. Its sign is determined by ∇u(x) and F(x) = −∇U(x), such that it can
increase (positive sign) or decrease (negative sign) the effective friction. As a matter of fact,
the spatial modulation of the swim velocity and the action of an effective potential are two
distinct physical phenomena, which cannot be simply mapped onto each other. Indeed, u(x)
provides an additional contribution to the effective friction in the dynamics of v but does
not give any contributions to the confining force, at variance with the potential U(x) that
affects both the force acting on the particle and the effective friction matrix (see footnote [76]
for an explicit example with a detailed discussion of the physical implications). Moreover,
the interplay between the gradients of both fields in the second term of Eq. (8) gives rise to
nontrivial physical effects that will be investigated in the following.

3 Theoretical predictions

3.1 Approximate stationary distributions

So far, all steps in Sec. 2.2 were exact and the drawn conclusions general. To make further
theoretical progress, we continue to restrict ourselves to a static swim-velocity profile u(x). At
variance with the potential-free case, U(x) = 0, the exact steady-state probability distribution
of positions and velocities, p(x,v), is unknown and one needs to resort to approximations.
To this end, we assume that all components of the probability current vanish, as in the case
of a homogeneous swim velocity, u(x) = v0. As shown in Appendix B, this condition means
that in the Fokker-Planck equation associated to Eq. (6) the effective drift and diffusive terms
mutually balance. To derive a closed expression for the spatial density ρ(x), we follow in
Appendix B the idea of Hänggi and Jung behind the Unified Colored Noise Approximation
(UCNA) [77–79]: having derived the auxiliary dynamics (6), where the colored noise η is
replaced by a white noise χ , we formally identify a new variable ż := ẋ/u(x) to eliminate
the multiplicative nature of the noise and then neglect the generalized inertial term ∝ z̈ in
Eq. (6b). This procedure yields an effective overdamped equation for the particle position
x and finally, via the associated Smoluchowski equation for the time evolution of ρ(x, t), the
stationary density distributionρ(x) for a system with space-dependent activity. Our theoretical
method employs the vanishing-currents approximation and, as a consequence, allows us to
derive an effective equilibrium theory whose validity will be investigated numerically. In the
absence of thermal noise, the same (stationary) ρ(x) can be obtained using the path-integral
method proposed by Fox [80,81]. As already shown in the case of homogeneous swim velocity,
both the UCNA and the Fox approach give rise to the exact distribution in the small-persistence
regime, i.e., when the persistence time is smaller than the other typical times characterizing
the dynamics, while they only capture the qualitative behavior of the system in the opposite
regime (i.e., when the persistence time is comparable or larger than the other relevant time
scales). In particular, in the present case, τ needs to be compared to both the relaxation
time due to the potential and to the typical time induced by the spatial modulation of the
swim-velocity profile (see Sec. 4.1 for an explicit discussion in the specific case of a harmonic
oscillator).

Here, we report only the main results while the details of the derivation can be found in
Appendix B. The whole stationary probability distribution reads:

p(x,v)≈ ρ(x)
p

det[Λ(x)]
p

2πu(x)
exp

�

−
v ·Λ(x) · v

2u2(x)

�

. (9)

We remark that the prefactor
p

det[Λ(x)]/(
p

2πu(x)) is the explicit factor normalizing the
conditional velocity distribution (i.e., at fixed position x). The function ρ(x) is approximated
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by

ρ(x)≈
N

u(x)
det[Λ(x)]exp

�

1
γτ

∫ x

dy ·
Λ(y) · F(y)

u2(y)

�

(10)

with N being a normalization constant. Our expression for ρ(x) coincides with the spatial
density because it follows from integrating out the velocity in Eq. (9). The full distribution (9)
displays a multivariate Gaussian profile in the velocity, whose covariance matrix accounts for
the nontrivial coupling between velocity and position:

〈vv(x)〉= u2(x)Λ−1(x) . (11)

The covariance 〈vv(x)〉 is spatially modulated by u(x), which also occurs in the potential-
free case, so that, in the regions where the swim velocity is large, the particle moves faster.
Moreover, the external potential not only affects the velocity covariance through Γ (x), as in the
case u(x) = v0 (see for instance Refs. [82,83]), but contains an additional spatial dependence
through the coupling to the velocity gradient in the second term of Eq. (8).

We remark that a necessary condition to obtain predictions (9) and (10) (and, conse-
quently, (11)) is that the matrix Λ is positive definite, so that its inverse exists. This is the
main limitation of our theoretical approach, which is always suitable to describe the system
in the small-persistence regime (when τ is small compared to the other relevant time scales),
but can break apart in the large-persistence regime where the position-dependent part of the
matrix Λ(x) becomes dominant (with respect to I). As a consequence, our approach is sup-
posed to work (at least qualitatively) in any spatial dimension and for every value of τ if (i)
U(x) is a convex function, (ii) U(x) depends on a single Cartesian coordinate or has a positive
slope in a radial geometry and (iii) the gradients of U(x) and u(x) enclose a sufficiently large
angle α ≥ π/2. The requirements (i) and (ii) correspond to a positive definiteness of Γ (x),
given in Eq. (7), and are thus already necessary for u(x) = v0 [72], while (iii) arises in addition
from the second term in Eq. (8). If the two functions U(x) and u(x) violate either of the three
conditions (i-iii), our predictions cannot qualitatively reproduce the behavior of a system for
large enough τ.

Since the distribution ρ(x) from Eq. (10) can be interpreted as the effective density dis-
tribution of the system, the particle behaves as if it was subject to an effective potential,
V(x) := −τγv2

0 ln(ρ(x)), which explicitly reads:

V(x) = −v2
0

∫ x

dy ·
Λ(y) · F(y)

u2(y)
−τγv2

0 ln
�

v0
det[Λ(y)]

u(x)

�

(12)

up to a constant. This expression contains two terms, i) the spatial integral of the external force
modulated by the inverse of the covariance matrix of the velocity distribution, cf. Eq. (11),
and ii) the logarithm containing both the velocity modulation u(x) and the determinant of the
position-dependent matrix Λ−1(x). For a constant swim velocity, u(x) = v0, we can perform
the integral explicitly and the effective potential V(x) reduces to the known closed form found
within the standard UCNA or Fox approach [72] since we neglect translational Brownian noise.
Note that the spatial dependence of the swim velocity gives rise to an additional potential term
with respect to the case u(x) = v0 contained in the expression for Λ(x). At equilibrium, when
u(x) = v0 and τ→ 0, the density reduces to the well known Maxwell-Boltzmann profile, since
Λ(x) becomes unity.

3.2 Multiscale method for the full-space distribution

To check the validity of our predictions, at least in the small-persistence regime, we resort to an
exact perturbative approach in powers of the persistence time τ. For simplicity, the technique

7
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is presented in the one-dimensional case because the generalization to higher dimensions is
technically more involved and does not provide additional insight. In addition, as in experi-
ments based on active colloids [19], we will consider a one-dimensional swim-velocity profile
u(x) in the remainder of this work, justifying our particular attention to the one-dimensional
case in the following presentation.

Our starting point is the following Fokker-Planck equation for the probability distribution
p(x , v, t):

∂t p =
Λ(x)
τ

∂

∂ v
(vp) +

u2(x)
τ

∂ 2

∂ v2
p−

F(x)
τγ

∂

∂ v
p− v

∂

∂x
p−

1
u(x)

�

∂

∂ x
u(x)

�

∂

∂ v

�

v2p
�

, (13)

associated to the dynamics (6) in one spatial dimension. Its solution is unknown for a general
potential U(x), even in the special case u(x) = v0. Therefore, one needs to resort to approx-
imation methods or perturbative strategies to obtain analytical insight. As shown in previous
works [84, 85], it is possible to obtain perturbatively both the full distribution p(x , v, t) and
the configurational Smoluchowski equation for the reduced space distribution ρ(x , t) follow-
ing the method developed by Titulaer in the seventies [86]: starting from the Fokker-Planck
equation (13) the velocity degrees of freedom can be eliminated by using a multiple-time-scale
technique. Physically speaking, the fast time scale of the system corresponds to the time in-
terval necessary for the velocities of the particles to relax to the configurations consistent with
the values imposed by the vanishing of the currents. The characteristic time of the slow time
scale is much longer and corresponds to the time necessary for the positions of the particles
to relax towards the stationary configuration.

In the present case, the perturbative parameter is the persistence time τ. Since we are
mainly interested in time-independent properties, we limit ourselves to compute the steady-
state probability distribution by generalizing the results of Refs. [87, 88] previously obtained
for the case u(x) = v0 (see also Ref. [89] for a more general expansion with an additional
thermal noise). For space reasons, the details of the calculations are reported in Appendix C.
Our main result is the following exact perturbative expansion of the distribution p(x , v) in
powers of the parameter τ: [90]

p(x , v) =ρs(x)ps(x , v)

�

1+
τ

γ

�1
2

U ′′(x)−
v2

2u2(x)
U ′′(x) +

�

v2

2u(x)2
−

1
2

�

U ′(x)
u′(x)
u(x)

�

+
τ2

6γ
u(x)

�

v3

u3(x)
− 3

v
u(x)

�

�

U ′′′(x)−
∂

∂ x

�

U ′(x)
u(x)

u′(x)
��

�

+O(τ3)

(14)

where the normalized distribution ps(x , v) is given by

ps(x , v) =
N

p
2πu(x)

exp

�

−
v2

2u2(x)

�

, (15)

and the function ρs(x) reads

ρs(x) =N Λ(x)
u(x)

exp

�

−
1
γτ

∫ x

d y U ′(y)
Λ(y)
u2(y)

�

. (16)

with the normalization factor N and the prime as a short notation for the spatial derivative.
Already at order τ/γ our general result (14) for a nonuniform swim velocity contains an extra
term proportional to ∂xu(x), compared to the expansion derived in Ref. [87,88,90], which is
responsible for an additional coupling between position and velocity.

The product ρs(x) × ps(x , v) in Eq. (14) plays the role of an effective equilibrium-like
distribution, which is exact in the limit τ→ 0. The required expression (15) for ps(x , v) is the
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exact solution of the potential-free active system with a spatially dependent swim velocity as
derived in Ref. [74]: it is a Gaussian probability distribution for the particle velocity v with
an effective position-dependent kinetic temperature provided by u2(x). The spatial density
ρs(x) from Eq. (16) corresponds to the UCNA result (10) in one dimension. Our previous
approximated expression (9) for p(x , v) is consistent with the full result (14) at first order in
the expansion parameter∝ τ. The first deviation between the two formulas occurs at order
O(τ2), where the exact expression for p(x , v) contains additional odd terms in v. The exact
density profile ρ(x) =

∫

dvp(x , v) = ρs(x) + O(τ2) deviates from the UCNA result beyond
linear orders in τ. As a consequence, we expect that our UCNA approximation, ρs(x), is exact
in the small-persistence regime, while it could only reproduce the qualitative behavior of ρ(x)
in the large-persistence regime.

4 The harmonic oscillator

4.1 Swim-velocity profile and external potential in one dimension

In this section, we present and investigate the interplay between a spatially modulated swim
velocity and an external confining potential in one spatial dimension. While, in Sec. 3.2, we
have shown that our analytical predictions from Eqs. (9), (10) and (11) are exact in the small-
persistence regime through analytical arguments, a numerical analysis is necessary to check
our approximations in the large-persistence regime.

To fix the form of the profile u(x) employed in our numerical study and theoretical treat-
ment, we take inspiration from experimental works on active colloids [19] and consider a
static periodic profile u(x) varying along a single direction, namely the x axis, so that:

u(x) = v0

�

1+α cos
�

2π
x
S

��

, (17)

where α < 1 and v0 > 0 so that u(x) > 0 for every x . The parameter α determines the
amplitude of the swim velocity oscillation while S > 0 sets its spatial period. As a consequence,
the active particle is subject to the minimal swim velocity v0(1− α) and to the maximal one
v0(1 + α). This choice and the features of the AOUP allow us to consider directly a one-
dimensional system, essentially focusing only on the x component and neglecting the dynamics
of the other spatial coordinates.

We remind that, in the potential-free case [56], the system admits two typical length scales,
i.e., the persistence length v0τ and the spatial period, S, of the swim-velocity profile (17). In
other words, by rescaling the time by τ and the particle position by v0τ, the dynamics is con-
trolled by the dimensionless parameter v0τ/S and by the dimensionless parameter α quanti-
fying the amplitude of the swim-velocity oscillation. The external force F(x) then introduces
at least one additional length-scale, `, which depends on the specific nature of F , and, thus,
an additional dimensionless parameter, say `/(v0τ), related to the external potential. The last
dimensionless parameter controls the dynamics also in the case u(x) = v0 [91]. Now, we can
identify the small-persistence regime, where the self-propulsion velocity relaxes faster than
the particle position, with the criterion v0τ/S � 1 and `/(v0τ)� 1. Under the former con-
dition, we expect that the system behaves as its passive counterpart: if τ � S/v0 holds, the
self-propulsion behaves as an effective white noise. In the opposite case, when v0τ/S � 1,
the dynamics is strongly persistent and we expect intriguing nonequilibrium properties.

Now, we confine the particles through a harmonic potential,

U(x) =
k
2

x2 , (18)

9
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Figure 1: Density distributions. Panels (a) and (b): swim-velocity profile u(x) for
different values of S (colored curves), compared with the modulus of the linear force
profile, |F(x)| = −k|x |/γ (black curve) as a reference. The colored stars are placed
at the first cross point between u(x) and F(x)/γ. Panels (c) and (d): spatial density
profile, ρ(x), for different values of S. Points are obtained by numerical simulations
while solid lines by plotting the theoretical prediction (10) (that reduces to Eq. (16)
in one dimension with Λ(x) given by Eq. (19)). The integral occurring in Eq. (16)
has been performed numerically. Panels (a), (c) and (b), (d) share the same legend.
Simulations are realized in one spatial dimension with τk/γ= 1 and α= 0.9.

where the constant k determines the strength of the linear force. The dimensionless parameter
associated with this external potential is thus kτ/γ, i.e., ` = v0τ

2k/γ. By observing that
the curvature of the potential is constant, the effective friction coefficient Λ(x) from Eq. (8)
becomes:

Λ(x) =
�

1+τ
k
γ

�

 

1+
αx

u(x)2
2π
S

sin
�

2π
x
S

� τ k
γ

1+τ k
γ

!

. (19)

As shown by Eq. (19), the two dimensionless parameters τk/γ and α play a similar role. In-
deed, they only determine the relative amplitude of the spatial modulation of Λ(x). When
either α or τk/γ vanish, the effective friction becomes constant and the coupling between ve-
locity and position disappears. Instead, when we approach both limits τk/γ→∞ and α→ 1,
the amplitude of the spatial oscillations becomes maximal. By varying the dimensionless pa-
rameter v0τ/S, on the other hand, one can explore the different properties of the system:
when v0τ/S grows, the spatial period of u(x) decreases and the position-dependent term of
Λ(x) becomes less relevant. To study the resulting behavior of the system in detail, we keep
fixed α= 0.9 and τk/γ= 1 and we change only v0τ/S to study the properties of the system.

4.2 Density distribution

To understand the peculiar behavior of an AOUP with spatial modulation (17) of the swim
velocity and confined in a harmonic trap (18), we first focus in Figs. 1 and 2 on the spatial
density profile, ρ(x). The bottom panels show ρ(x) for different values of the spatial period
S (through the dimensionless parameter v0τ/S) of the swim velocity u(x), which we compare
in the top panels to the modulus |F(x)|/γ of the confining force F(x) = −U ′(x) as a reference.

In the small-persistence regime, v0τ/S� 1 (see panels (a) and (c) of Fig. 1), the unimodal
density distribution is fairly described by expanding the UCNA solution (10) in powers of x/S,
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Figure 2: Density distributions. Panels (a) and (b): swim-velocity profile u(x) for two
different values of S (colored curves), compared with the modulus of the linear force
profile, |F(x)| = −k|x |/γ (black curve) as a reference. Panels (c) and (d): spatial
density profile, ρ(x), for different values of S. Solid colored lines (blue in panel (c)
and red in panel (d)) are obtained by numerical simulations while dashed black lines
by plotting the theoretical prediction (10) (that reduces to Eq. (16) in one dimension
with Λ(x) given by Eq. (19)). The integral occurring in Eq. (16) has been performed
numerically. Grey rectangles are drawn in the regions where Eq. (10) is not defined,
say when Λ(x) < 0 (see the main text for more details). Panels (a), (c) and (b),
(d) share the same legend. Simulations are realized in one spatial dimension with
τk/γ= 1 and α= 0.9.

obtaining:

ρ(x)∼ exp

 

−
1+τ k

γ

(1+α)2
k
v2

0

x2

2

!

. (20)

In the expression (20), we have neglected the terms proportional to x2/S2, x4/S2 and all
higher-order terms in power of ∼ 1/S. Remarkably, even in this crude approximation, we see
from the factor (1 + α)2 that the oscillations of the swim velocity lead to a decrease of the
second moment 〈x2〉 of ρ(x) compared to the homogeneous case u(x) = v0. This prediction
is consistent with previous results obtained in the absence of an external potential, where the
swim-velocity oscillations produce the decrease of the long-time diffusion coefficient [74] (see
also Ref. [92]). In this regime, the spatial pattern u(x) produces an effective potential with
increasing stiffness for increasing spatial modulation. For higher v0τ/S, the distribution starts
developing non-Gaussian tails, which are still well-described by including higher-order terms
in the UCNA expansion (20).

When increasing v0τ/S further (see panels (b) and (d) of Fig. 1), ρ(x) becomes a bimodal
distribution with two peaks symmetric to the origin, as in a system confined in a double-well
potential. This effect is absent in the case u(x) = v0 where the AOUP density distribution in a
harmonic potential always has a Gaussian shape [60,93–95]. For a position-dependent swim
velocity, the comparison between the analytical result (10) (that reduces to Eq. (16) in one di-
mension) and the numerical simulations still reveals a good agreement: in particular, Eq. (10)
is able to predict the observed bimodality of the distribution. To explain the occurrence of this
bimodality in the shape of ρ(x), we can use an effective (but rather general) force-balance
argument in Eq. (2a). This argument can be applied to the present intermediate-persistence
regime, v0τ/S ∼ 1 (or also for v0τ/S� 1 discussed later), where the self-propulsion vector η
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in the active force can be considered to be roughly constant for typical times t ® τ. Since the
variance of η is unitary, the most likely value assumed by the self-propulsion velocity at point
x is simply u(x) (in absolute value). For this reason, it is generally unlikely to find the particle
in regions with u(x) < |F(x)|/γ, because there the particle’s self propulsion is not sufficient
to climb up the potential gradient. Moreover, in the spatial points where u(x)> |F(x)|/γ, the
active particle does not get stuck on average because its high self-propulsion velocity allows
for its directed motion until u(x) = |F(x)|/γ is fulfilled. When this force balance occurs, the
particle can explore further spatial regions only because of large (and rare) fluctuations of
η. This reasoning is confirmed by inspecting Fig. 1 for different fixed values of v0τ/S. It is
evident from the dashed arrows that the peaks of the distribution in Fig. 1(d) coincide with
the intersection between the modulus |F(x)|/γ of the external force (black curve) and u(x)
(colored curves) in Fig. 1(c).

Starting from the theoretical result (10), we can predict the critical value Sc at which the
distribution becomes bimodal, by simply requiring that d2/dx2ρ(x) = 0 (at x = 0), obtaining:

S2
c

v2
0τ

2
= (2π)2α(1+α)





1+ 3τ k
γ

�

1+τ k
γ

�2





γ

kτ
. (21)

In general, we predict that the value of Sc/(v0τ) increases with increasing α (recall that
0 < α < 1) and is a decreasing function of τk/γ. This is consistent with our physical in-
tuition: larger oscillations (i.e., larger α) facilitate the transition to a bimodal shape. Indeed,
the larger α, the smaller the minimal self-propulsion velocity, that hinders the particle’s ability
to come back to the origin. Instead, the increase of τk/γ gives rise to the opposite behavior:
the larger τk/γ, the steeper the effective confining trap. As a consequence, the active particle
needs larger fluctuations of η to reach spatial regions where u(x) assumes low values which
compete with the external force. Specifically, for the chosen parameters α= 0.9 and τk/γ= 1,
Eq. (21) predicts the onset of bimodality for v0τ/S > 1/8. From Fig. 1, we also observe that
the increase of v0τ/S beyond this threshold enhances the bimodality showing two symmetric
peaks with increasing height but occurring at spatial positions which get closer.

In the large-persistence regime v0τ/S� 1 (see Fig. 2), we observe the emergence of many
symmetric peaks in ρ(x). Their positions are still determined by the balance between u(x)
and |F(x)|/γ, and, in this case, roughly coincide with the minima of u(x) close to the origin
(i.e., the minimum of U(x)). As shown in Fig. 2 (a), u(x) first crosses |F(x)|/γ almost in
its first minima (at x/v0τ ≈ ±0.15) for v0τ/S = 4. This implies that small fluctuations of
the self-propulsion velocity allows the particle to explore spatial regions which are even more
distant from the potential minimum, so that it also accumulates at the second crossing point
(at x/v0τ≈ 0.4). According to Fig. 2 (c), the height of these secondary peaks is smaller than
that of the primary ones because the particle remains trapped at the first balance points for
most of the time, while only on rare occasions its swim velocity is sufficient to further climb up
the potential gradient. In Fig. 2 (d), for an even larger value of v0τ/S = 10, we observe that
the height of the peaks near the origin is lower than that of the successive peaks. In this case,
Fig. 2 (b) shows that the minima of u(x) closest to the origin are still larger than |F(x)|/γ, so
that (most of the time) the particle has a sufficiently large self-propulsion velocity to go further
until entering the spatial region where the first intersection of u(x) and |F(x)|/γ occurs. We
conclude that, even in the case of a harmonic potential, the oscillation of the swim velocity
allows the AOUP to climb up the potential barrier and accumulate preferredly in spatial regions
(corresponding to minima of u(x)), which are further away from the origin.

Finally, we note that in the large-persistence regime, the UCNA prediction (10) (or Eq. (16)
in one-dimension) for the spatial distribution fails. This occurs because of the presence of spa-
tial regions where the effective friction Λ(x), given by Eq. (19), becomes negative (see the
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Figure 3: Velocity distributions. Panels (a), (b) and (c): simulated density distribu-
tion ρ(x) for S/(v0τ) = 32,2, 1/4, respectively, as a reference. Colored rectangles
are drawn in correspondence of the spatial regions used to calculate the velocity dis-
tribution in the other panels. Panels (d), (e), (f), (g) and (h): velocity distribution
p(v, x) as a function of v calculated at fixed positions x = x̄ v0τ according to the leg-
end. Panel (d) is calculated at S = 32, panels (e) and (f) at S = 2 and panels (g) and
(h) at S = 0.25. Colored symbols and lines are obtained by numerical simulations
and solid black lines show the theoretical prediction (9) if applicable (the theory
yields a one-dimensional Gaussian and requires a positive definiteness of Λ(x) given
by Eq. (19)). Simulations are realized in one spatial dimension with τk/γ = 1 and
α= 0.9.

gray-shaded regions in Fig. 2(c) and (d)). This implies that also the corresponding approx-
imation for ρ(x) can assume negative values. This failure resembles the one of the UCNA
(or the Fox approach) for the standard AOUP model with u(x) = v0 confined in a nonconvex
potential [72]. In that case, the strongly non-Gaussian nature of the system is at the basis of
new intriguing phenomena, such as the occurring of effective negative mobility regions [96],
the overcooling of the system [97] and the violation of the Kramers law for the escape proper-
ties [98,99]. We expect that our model could display a similar phenomenology and that such
problems can be treated by using similar theoretical techniques [96, 100–102]. However, we
stress that the generalized UCNA still accurately predicts the positions of the main peaks in
Fig. 2 (c), although in Fig. 2 (d) there emerge additional smaller peaks further away from the
origin, which are absent in simulations. The appearance of those fake peaks is reminiscent of
the overestimated wall accumulation predicted by UCNA for u(x) = v0.

4.3 Velocity distribution

We now focus on the dependence of the full joint probability density p(x , v) on the velocity,
shown in Fig. 3 for some representative values of the particle’s position x . Moreover, we choose
three different values of S/(v0τ) to explore the three distinct regimes observed in Sec 4.2. For
each regime, we report once again the density distribution ρ(x) in panels (a), (b) and (c),
where colored bars mark the regions for which we calculate p(x , v) as a function of v in panels
(d), (e), (f), (g), (h).

In the regime of small persistence, (v0τ)/S � 1, the shape of p(v, x) is Gaussian, inde-
pendently of the position x (Fig. 3 (d)). This result fully agrees with the prediction (9) (that
simply reduces to a one-dimensional Gaussian) as revealed by the comparison between col-
ored data points and black solid lines in Fig. 3 (d). As predicted by the position-dependent
variance in Eq. (11), different positions x come along with a change in the width of the velocity
distribution.

In Fig. 3 (e) and (f), the regime of intermediate persistence, v0τ/S ∼ 1, is investigated,
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which displays a bimodality in the density distribution. Here, we compare p(x , v) calculated
in the vicinity of a peak of ρ(x) to the velocity profile near the local minimum of ρ(x) (close
to the origin). In the former case, the distribution p(x , v) displays an almost Gaussian shape in
agreement with Eq. (9), while in the latter case, it deviates from the theoretical prediction due
to its non-Gaussian nature. In particular, the shape of p(x , v) becomes asymmetric in v and
develops non-Gaussian tails. While the prediction (9) cannot account for the non-Gaussianity
induced by the interplay of confinement and spatially modulating swim velocity, we remark
that its quality near the regions where the particle preferably accumulates is still very good.
This conclusion resembles the one obtained in Ref. [91], where an AOUP (with u(x) = v0) has
been studied in a single-well anharmonic confinement.

Finally, the large-persistence regime, v0τ/S � 1, where the density distribution has mul-
tiple peaks also gives rise to a rich phenomenology of the stationary velocity profile, as shown
in Fig. 3 (g) and (h). In the spatial regions for which Λ(x) > 0, i.e., where the particles ac-
cumulate, the velocity distribution p(x , v) (at fixed x) is again well described by the Gaussian
distribution with position-dependent variance given by Eq. (9) (see Fig. 3 (g)), as in the case
v0τ/S ® 1. Instead, in the spatial regions where Λ(x) < 0, i.e., between the primary and
the secondary peaks (see also Fig. 2 (c)), the distribution displays a non-Gaussian shape (see
Fig. 3 (h)). Compared to the case v0τ/S ∼ 1, the non-Gaussianity is much more evident due to
the occurrence of a bimodal behavior in the velocity distribution. In more detail, upon shifting
the coordinate x in the first argument of p(x , v) closer to the origin (Fig. 3 (g) and (h)), we ob-
serve that, starting from a nearly Gaussian shape centered at v = 0 (pink curve), the main peak
moves toward v < 0 and a second small peak starts growing for v > 0 (brown curve). Shifting
again x , the second peak becomes dominant (yellow curve) and moves closer toward v = 0
until the distribution is again described by a Gaussian (green curve). This phenomenology
resembles the one observed in the case of an AOUP with u(x) = v0 in a double-well poten-
tial [96]. Also in the latter case, the velocity distribution at fixed position exhibits bimodality
in the spatial regions where the effective friction coefficient Λ(x) ' Γ (x) becomes negative,
although this effect is then induced by the negative curvature of the potential. Intuitively, par-
ticles that are stuck in an accumulation region placed far from the potential minima (where
u(x)η balances the confining force) could move back towards the center or other minima when
their active force varies because of the noise fluctuations. For example, when η changes sign
(or |η| decreases), the particle comes back leftward or rightward (depending on the sign of η)
moving with a large velocity induced by the deterministic force (that is particularly large far
from the potential minimum) until to reach a new accumulation region. This simple argument
provides an additional intuitive explanation for the bimodality of the velocity distribution.

4.4 Spatial profile of the kinetic temperature

To emphasize the dynamical effects due to the spatial modulation of the swim velocity, we
focus on the profile of the kinetic temperature defined as the variance of the particle velocity,
〈v2(x)〉. We show 〈v2(x)〉 as a function of x in Fig. 4 for values of v0τ/S spanning all regimes
from small (panel (c)) to intermediate and large persistence (panel (d)), see also panels (a)
and (b) for a direct comparison with the corresponding density profiles.

For small values of v0τ/S� 1, the spatial profile of the variance, 〈v2(x)〉, is rather flat and
attains its maximum value at x = 0, i.e., the position of the potential minimum (see Fig. 4 (c)).
When v0τ/S increases, e.g., due to a shorter periodicity S of the swim-velocity u(x), 〈v2(x)〉
decreases upon moving away from the potential minimum. This is consistent with the scenario
observed in Fig. 4 (a): the particles accumulate in the regions where they move slowly and the
velocity variance is small. Such a result agrees with the observed behavior in the potential-free
case (such that u(x) coincides the particle velocity), where the particles accumulate in regions
corresponding to the minima of u(x), according to the law ρ(x)∼ 1/u(x). In this regime, the

14



SciPost Physics Lecture Notes Submission

〈
v
2
(x
)〉

x/(v0�)

(c) (d)

10
-1

10
0

-4 -3 -2 -1 0 1 2 3 4

v0τ/S=1/32

v0τ/S=1/16

v0τ/S=1/8

v0τ/S=1/4

v0τ/S=1/2

x/(v0�)

10
-3

10
-2

10
-1

10
0

10
1

-0.4 -0.2 0 0.2 0.4

v0τ/S=1

v0τ/S=4

10
-2

10
-1

10
0

10
1

-4 -3 -2 -1 0 1 2 3 4

v0τ/S=1/32

v0τ/S=1/16

v0τ/S=1/8

v0τ/S=1/4

v0τ/S=1/2

0

2

4

6

8

10

-0.4 -0.2 0 0.2 0.4

v0τ/S=1

v0τ/S=4

(x
)

(a) (b)

Figure 4: Spatial profile of the kinetic temperature. Panels (a) and (b): simulated
density profile ρ(x) for different values of the dimensionless parameter v0τ/S as a
reference. Panels (c) and (d): kinetic temperature 〈v2(x)〉 with the same color leg-
end. In particular, panels (a) and (c) show the small-persistence regime, v0τ/S ≤ 1,
while panels (b) and (d) display the intermediate-persistence and large-persistence
regimes, namely v0τ/S ∼ 1 and v0τ/S ≥ 1, respectively. Colored symbols (and
dotted lines drawn as a guide to the eye) are obtained from numerical simulations
while solid colored lines show the theoretical prediction (11) (in the regions where
Λ(x), given by Eq. (19), is positive definite). Simulations are realized in one spatial
dimension with τk/γ= 1 and α= 0.9.

comparison between numerical data and the theoretical prediction (11) (with Λ(x) given by
Eq. (19)) shows a good agreement.

For larger values of v0τ/S (large-persistence regime), the velocity variance shows a more
complex profile (see Fig. 4 (d)), which resembles the oscillating shape of u(x). In particular,
〈v2(x)〉 is very small near the peaks of the density distribution, while it assumes larger values in
the regions where the density is very small and the probability of finding a particle is very low.
This finding is consistent with the fact that active particles accumulate in the regions where
the velocity variance is small and the observation of an increasing number of such regions
for increasing v0τ/S. Finally, in this regime, the prediction (11) reproduces quite well the
behavior near the origin but fails further away from it, specifically, in the regions where the
effective friction displays negative values, Λ(x)< 0.

5 Conclusion

In this paper, we have investigated the stationary behavior of an active particle subject to two
competing spatially dependent drivings: the self-propulsion velocity and the external force.
While the two mechanisms were already investigated separately, to the best of our knowledge,
this is the first time that their interplay has been considered. Starting from a Fokker-Planck
description of the particle’s dynamics in our generalized AOUP model [56], we have developed
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a theoretical treatment, which provides the steady-state distribution (9) of both positions and
velocities as a function of the input potential and of the swim-velocity profile. The theory
presented here contains as special cases both the UCNA describing the time evolution of dis-
tribution of positions and velocities of an AOUP with constant swim velocity in an external
field [59, 88], and the recent theory of a free AOUP driven by an inhomogeneous propul-
sion force, which is exact in the stationary case [74]. Our theoretical method is exact in the
small-persistence regime, where it is consistent with the results obtained through an exact per-
turbative method, and also provides a useful approximation to qualitatively predict the shape
of the distributions in the large-persistence regime.

Specifically, we have applied our theory to a one-dimensional AOUP in a sinusoidal motility
landscape subject to a harmonic potential, such that the deviations of the velocity distributions
from a Gaussian shape exclusively arise from the interplay of these two fields. We corroborated
all theoretical predictions by numerical simulations and found a good agreement. The system
revealed an intriguing scenario determined by the joint action of the self-propulsion velocity
gradient and the external force. While, in the regime of small persistence, both the density and
the velocity distributions are bell shaped and well-approximated by Gaussians, we predict that,
as the persistence length becomes comparable with the spatial period of the swim velocity, a
transition from a unimodal to a bimodal density occurs, also accompanied by a strong non-
Gaussian effects in the velocity distribution. Interestingly, in the large-persistence regime,
as the density shows multi-modality, the velocity distribution becomes bimodal in the spatial
regions between two successive peaks of the density.

Despite our particular attention to one spatial dimension, we recall that we practically ob-
tain the same results for a planar geometry in higher spatial dimensions and that we expect
that our theory is also suitable for sufficiently well-behaved potentials and velocity fields in
other geometries (compare the discussion in Sec. 3.1). While, for active colloids, the emer-
gence of an additional effective torque due to the spatial modulation of the swim velocity
could be responsible for an even more complex phenomenology [16,19], we outline that our
theory should be suitable in the case of engineered bacteria whose velocity profile can be
manipulated by external light [25, 27]. From a pure theoretical perspective, our techniques
may also be extended and applied to more complex dynamics, for instance accounting for the
presence of thermal noise [72,75], a spatially dependent torque [16,19], or additional com-
peting nonconservative force fields like a Lorentz force [103]. A final challenging research
point concerns the dynamical properties of our model and, in particular, the extension of the
theory to time-dependent swim-velocity profiles u(x , t), for instance in the form of traveling
waves [23,24,49].

In conclusion, we have shown that the interplay between an external force and a spatially
modulating swim velocity can be used to tune the behavior of a confined active particle, for
instance by locally increasing the kinetic temperature or by forcing the particles to accumulate
in particular spatial regions with different probability. We demonstrated that by combining
these two physically distinct effects, it is possible to generate two complex density patterns
through relatively simple fields, which is surely easier to realize in practice than generating a
single external field with a complex shape. This possibility to fine-tune the stationary proper-
ties of active particles in experimental systems opens up a new avenue for future applications
and developments.
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A Derivation of the auxiliary dynamics (6)

To derive the auxiliary dynamics (6), we start from Eq. (2a) chosing Dt = 0. We recall that
following Ref. [75] it is possible to generalize the procedure also to include the more general
case with Dt > 0. At first, we take the time-derivative of Eq. (2a), obtaining:

γẍ= −∇∇U · ẋ+ γη
�

∂

∂ t
+ v · ∇

�

u(x, t) + γu(x, t)η̇ . (22)

By defining the v= ẋ as the particle velocity and replacing ḟa with the dynamics (2b), we get:

γv̇=−∇∇U · v+ γη
�

∂

∂ t
+ v · ∇

�

u(x, t) + γu(x, t)

�

−
η

τ
+
p

2
p
τ
χ

�

. (23)

Finally, by replacing η in favor of v and x, taking advantage of the relation (2a), we obtain
the dynamics (6).

We remind that this sequence of operation is fully equivalent to performing a change of
variables, by considering that the dynamics (2a) is a deterministic relation that allows us to
replace η with x and v. The Jacobian matrix J of this transformation a= (x,η)→ b= (x′,v)
with x′ = x reads:

J = ∂ b
∂ a
=

�

∂ x′

∂ x
∂ x′

∂η
∂ v
∂ x

∂ v
∂η

�

=

�

1 0
0 u(x)

�

. (24)

The determinant of this matrix, det[J ] = u(x), yields the Jacobian of the transformation as
stated in Eq. (4).

B Derivation of predictions (9) and (10)

To predict the shape of the stationary probability distributions, p(x,v) and ρ(x), stated in
Sec. 3, we start from the dynamics in the variables x and v, namely Eq. (6), for a static profile
of the swim velocity, u(x). Switching to the Fokker-Planck equation for p = p(x,v, t), we
obtain the exact time evolution:

∂t p =∇v ·
�

Γ

τ
· vp+

u2(x)
τ
∇v p

�

− v · ∇p+∇ ·
∇U
γτ

p−∇v ·
[γv+∇U]
γu(x)

(v · ∇)u(x) , (25)

where ∇ and ∇v are the vectorial derivative operators in position and velocity space, respec-
tively. Balancing the diffusion term (proportional to the Laplacian of v) and the other effective
friction terms (say the one linearly proportional to v), we get the approximate condition [82]:

0=∇v ·
�

Λ

τ
· vp+

u2(x)
τ
∇v p

�

(26)

with the effective friction matrix

Λ(x) = I+
τ

γ
∇∇U(x)−

τ

γ
∇U(x)

∇u(x)
u(x)

, (27)
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that has been defined in Eq. (8). The condition (26) corresponds to requiring that the diver-
gence of the irreversible (with respect to time-reversal transformations) currents is zero. To
proceed further, we require that the irreversible currents vanish, i.e., that the expression in
the brackets of Eq (26) is zero in the same spirit of Ref. [88]. This choice is consistent with
an effective equilibrium approach and allows us to find the explicit approximate steady-state
solution for p(x,v) as

p(x,v)∝ g(x)exp
�

−
v ·Λ(x) · v

2u2(x)

�

, (28)

where g(x) is a function purely depending on x, which is still to be determined. Expressing
g(x) = ρ(x)

p

det[Λ(x)]/(
p

2πu(x)) without loss of generality, we obtain Eq. (9), where ρ(x)
represents the density of the system derived below.

To determine the function ρ(x), we first identify the acceleration term [78]

u(x)
d
d t

v
u(x)

= v̇−
v

u(x)
(v · ∇)u(x) (29)

in the dynamics (6) with ∂ u(x)/∂ t = 0. Assuming that the velocity relaxes faster than the
position (as for example in the small-persistence regime) allows us to neglect both these terms
in Eq. (6), obtaining the following overdamped equation:

ẋ= −
1
γ
Λ−1 · ∇U +

p
2τu(x)Λ−1 ·χ . (30)

From this dynamics, it is convenient to switch to the effective Smoluchowski equation for the
density of the system, ρ(x, t), and use the Stratonovich convention, obtaining:

∂ ρ

∂ t
=
∂

∂ x i

�

1
γ
Λ−1

i j

�

∂ U
∂ x j

�

ρ +τuΛ−1
ik
∂

∂ x j

�

Λ−1
jk uρ

�

�

. (31)

Here and in what follows, we have explicitly written Latin indices for the spatial components
of vectors and matrices and adopted also the Einstein’s convention for repeated indices, for
convenience.

To proceed, we assume the zero-current condition (as in Refs. [59, 104]), obtaining an
effective equation for the stationary density ρ(x):

1
γ
Λ−1

i j

�

∂ U
∂ x j

�

ρ +τuΛ−1
ik
∂

∂ x j

�

Λ−1
jk uρ

�

= 0 . (32)

Multiplying by ΛlhΛhi and summing over repeated indices, we get the following relation after
some algebraic manipulations

1
γτu2

Λl j
∂ U
∂ x j

+Λlk
∂

∂ x j
Λ−1

jk +
ΛlkΛ

−1
jk

uρ
∂

∂ x j
[uρ] = 0 , (33)

whose solution for the density distribution ρ(x) reads:

ρ(x)≈
N

u(x)
exp

�

1
γτ

∫ x

dy ·
Λ(y) · F(y)

u2(y)
+

∫ x

dy ·Λ(y) · ∇ ·Λ−1(y)

�

. (34)

Finally, by assuming a planar symmetry for both u and U , we have ∇ · Λ−1 ≡ êx · ∂Λ−1/∂ x ,
where êx denotes the unit vector corresponding to the coordinate x , and can therefore use the
explicit Jacobi relation

Λ · êx ·
∂Λ−1

∂ x
= −

1
det[Λ]

êx
∂ det[Λ]
∂ x

= −êx
∂ lndet[Λ]

∂ x
(35)
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for the determinant detΛ of a matrix Λ. We remark that the general relation

Λ · ∇ ·Λ−1 = −∇ lndet[Λ] (36)

only holds in the above planar case (35) or for a constant swim velocity u(x ) = v0, see also
appendix B of Ref. [72]. However, since there are no conceptual differences, we can plug the
approximation (36) into the prediction (34) to obtain the compact representation (10) of ρ(x )
in the main text.

The same stationary condition (33) can be obtained using the Fox approach [81] (when
generalized to multiple components [105, 106]), while the corresponding time evolution dif-
fers from the UCNA dynamics (31) by the additional occurrence of the factors Λ−1

i j and Λ−1
ik

therein. Note that, if we do not neglect the thermal Brownian noise in Eq. (2), also the sta-
tionary predictions of Fox and UCNA differ, even for a spatially constant swim velocity [72].

C Multi-scale technique: derivation of Eq. (14)

In this appendix, we derive the perturbative result (14) for the probability distribution p(x , v)
in the one-dimensional active system described by the Fokker-Planck equation (13). We adopt
the multiple-time-scale technique, which is designed to deal with problems with fast and slow
degrees of freedom. In the regime of small persistence time (where τ is the smallest time
scale of the system), the dynamics (13) exhibits the separation of time scales: in this case,
the particle velocity rapidly arranges according to its stationary distribution and the spatial
distribution evolves on a slower time scale.

To derive the multiple-time expansion, let us introduce the following dimensionless vari-
ables:

t̃ = t
v0

S
, (37)

X =
x
S

, (38)

V =
v
v0

, (39)

F̃(X ) = −
S

v2
0τγ

∂ U(x)
∂ x

, (40)

Γ̃ (X ) = 1−τ2 v2
0

S2

∂ F̃(X )
∂ X

, (41)

w(X ) =
u(x)

v0
, (42)

and the small expansion parameter ζ−1∝ τ, where

ζ=
S
τv0

(43)

is the ratio between the spatial period of the swim velocity S and the persistence length of
the self-propulsion velocity v0τ. With our choice, a large (small) value of ζ corresponds to
the small-persistence (large-persistence) regime. Now, we express the Fokker-Planck equa-
tion (13) in these variables and find:

∂ P(X , V, t̄)
∂ t̄

+ V
∂

∂ X
P + F̃(X )

∂

∂ V
P +

1
ζ

R(X )
∂

∂ V
V P

+
1

w(X )
∂

∂ X
w(X )

∂

∂ V
(V 2P) = ζLFPP , (44)
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where we have further introduced the operator

LFP ≡
∂

∂ V

�

V +w2(X )
∂

∂ V

�

(45)

and the function

R(X )≡
�∂ F̃
∂ X
− F̃(X )

1
w(X )

∂

∂ X
w(X )

�

, (46)

for convenience.
To develop our perturbative solution, we notice that the local operator LFP is proportional

to the inverse expansion parameter ζ in Eq. (44). We find that LFP has the following integer
eigenvalues:

ν= 0,−1,−2, . . . (47)

and the Hermite polynomials as eigenfunctions:

Hν(X , V ) =
(−1)ν
p

2π
(w(X ))(ν−1) ∂

ν

∂ V ν
e−

V2

2w2(X ) . (48)

Using these basis functions, we obtain the ansatz to write the solution of the partial differential
equation as a linear combination:

P(X , V, t̃) =
∞
∑

ν=0

φν(X , t̃)Hν(X , V ) . (49)

Upon substituting the expansion (49) in Eq. (44) and replacing LFP by its eigenvalues, we
obtain the equation:

−ζ
∑

ν

νφνHν =
∑

ν

∂ φν
∂ t̃

Hν

+
∑

ν

V Hν
∂

∂ X
φν +

∑

ν

φνV
∂

∂ X
Hν + F̃

∑

ν

φν
∂

∂ V
Hν

+
w′

w

∑

ν

φν
∂

∂ V
V 2Hν +

1
ζ

R
∑

ν

φν
∂

∂ V
V Hν , (50)

from which we must determine the unknown functions φν(x , t).
Now, instead of truncating arbitrarily the infinite series in Eq. (50) at some order ν, we

consider the multiple-time expansion which orders the series in powers of the small parameter
1/ζ. In such a way we perform an expansion near the equilibrium solution. To this end, each
amplitude φν (apart from φ0(X , t̃) which is of order ζ0) is expanded in powers of 1/ζ as:

φν(X , t̃) =
∞
∑

s=0

1
ζs
ψsν(X , t̃) . (51)

Then, we replace the actual probability distribution P(X , V, t̄) by an auxiliary distribution
Pa(X , V, t̄0, t̄1, t̄2, . . .), which reads:

Pa =
∞
∑

s=0

1
ζs

∞
∑

ν=0

ψsν(X , t̄0, t̄1, t̄2, . . .)Hν(X , V ) . (52)

This distribution depends on many time variables { t̄s}, associated with the perturbation order
s, which are defined as t̄s = t̄/ζs. The time derivative with respect to t̄ is then expressed as
the sum of partial time-like derivatives:

∂

∂ t̄
=
∂

∂ t̄0
+

1
ζ

∂

∂ t̄1
+

1
ζ2

∂

∂ t̄2
+ . . . . (53)
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Substituting the expansions (51) and (53) into Eq. (50) one obtains at each order 1/ζs and
for each Hermite function an equation involving the amplitudes ψsν(X , t̃). The perturbative
structure of the resulting set of equations is such that the amplitudesψsν(X , t̃) can be obtained
by the amplitudes of the lower order (s− 1). In particular, we find the following equation for
ψ00 = φ0

∂ψ00(X , t̄)
∂ t̃

=
1
ζ

∂

∂ X

�

w(X )
∂

∂ X

�

w(X )ψ00

�

−F̃(X )ψ00 +
1
ζ2

w(X )
∂

∂ X

�

w(X )Rψ00

��

, (54)

whose steady-state solution reads

ψ00(X ) =
N

w(X )

�

1−
1
ζ2

R(X )
�

× exp

�

∫ X

d y
F̃(y)

w2(y)

�

1−
1
ζ2

R(y)
�

�

, (55)

where N is a normalization factor. In our perturbative procedure, all the remaining amplitudes
are expressed in terms of the pivot functionψ00(X ). The steady-state amplitudes of the higher-
order Hermite polynomials are given by:

ψ22 =
1
2

R(X )ψ00 (56)

ψ33(X ) = −
1
6

w(X )ψ00(X )
∂

∂ X
R(X ) (57)

ψ42 = −
3
2
∂

∂ X
[w(X )ψ33] + R(X )ψ22 (58)

ψ44(X ) = −
1
4

� ∂

∂ X
[w(X )ψ33]− R(X )ψ22

�

, (59)

where we have reported only the nonvanishing coefficients for s ≤ 4. Note that, if ν > s, the
coefficients ψsν are always zero.

Once Eq. (55) and the coefficients of the double series (52) have been determined, one
returns to the original dimensional variables and obtains the perturbative result for p(x , v)
reported in Eq. (14).
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