
Dear Editor,

please find enclosed the new version of the manuscript “Active particles driven by com-
peting spatially dependent self-propulsion and external force” authored by L. Caprini, U.
Marini Bettolo Marconi, R. Wittmann and H. Löwen.

We are glad that two of the three reviewers considered our paper suitable for publication,
raised very positive judgments on our paper and encouraged us to reply and resubmit in
SciPost despite the negative comments of one of the three reviewers. In the new version
of the manuscript, we have accounted for the comments of the three reviewers in order to
clarify the main concerns of the second reviewer.

The text has been amended according to the recommendations of the referees and the
relevant changes have been highlighted in red for a faster check.

Before providing below a point-by-point reply to all individual remarks of the reviewers,
let us briefly elaborate on our main points:

• We acknowledge that the second referee has a good point that there exists a mapping
to an effective system that essentially does not contain a multiplicative noise, which
in our case represents the swim-velocity field. This mapping is mathematically valid
and, indeed, we have implicitly used it to derive our approximate theory. Anyway,
through this mapping the system still cannot be solved analytically (in contrast to
the system in Ref. [84]) and, thus, does not add clear insight to the problem that still
requires a numerical evaluation or analytical approximations. To this end, we added
a short description of the new Ref. [84] and a new appendix C which explains in
detail that the analytical methods (which we push forward in appendix B) actually
rely on this mapping (a point which was not clearly stated in the previous version of
the manuscript).

• We do, however, strongly contradict the conclusion drawn by the second reviewer
from the existence of the aforementioned mapping, because it simply provides an
alternative description that does not change the physics at hand. The explicit de-
pendence of the actual position and velocity of our AOUP on the swim-velocity field
(the multiplicative noise) is now hidden in the effective coordinate of the mapped
system and needs to be accounted for when interpreting the results in a physical
context (through explicitly transforming back to the original coordinates). As a fur-
ther example to support our argument, we note that the same argumentation can be
used to justify the statement that all systems with a multiplicative (white) noise are
nothing more than ordinary Brownian motion.

• In particular, being reassured by consulting experimentalists, we also insist on the
point that combining a periodic swim velocity with a harmonic trap is experimen-
tally easier accessible than generating a complicated and highly modulating external
potential. This conclusion has also been rephrased for more clarity.

• Regarding the existence of two theories for AOUPs with space-dependent swim speed:
we do not claim that our theory is superior (as one might have gotten the impression
due to our previous modifications asked for in the review process). Both theories are
valid in their own right and we chose the one which suits the class of experiments we
want to describe (and for which the interplay of two distinct fields should in fact be
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advantageous). Irrespective of this point, neither of these theories have been used
to study the effect of an additional external force. For this reason, we think that
the existence of two similar theories for space-dependent activity does not affect the
originality of the present manuscript.

Given the positive judgment of the other two referees, we think that these clarifications
together with the final modifications of the manuscript are convincing that our work is
now suitable for publication in SciPost.

Our best regards.

Lorenzo Caprini,
Umberto Marini Bettolo Marconi,
René Wittmann,
Hartmut Löwen.

Reply to Reviewer #1

I thank the authors for their careful consideration of my comments and for modifying their
manuscript accordingly. From my side, the authors have satisfactorily addressed all my
concerns.

I have read the discussion between the authors and the second referee. The first main
concern of the referee is that the dynamics of the AOUP with both a confining potential
and a spatially-varying self-propulsion velocity can be mapped, under a change of variable,
unto a dynamics with fixed self-propulsion velocity and an effective force field. The sec-
ond main concern is the experimental relevance of using both a confining potential and a
space-dependent self-propulsion velocity.
Reply: We thank the referee for his/her careful reading of both the manuscript and the
correspondence between us and the second referee.

Given that the mapping proposed by the referee is rather convoluted, one could argue
that the specific study of the interaction between an external potential and a varying self-
propulsion velocity is relevant if there exist experimental realisations of these. I would
suggest the authors to insist on this point.
Reply: We thank the present referee for the above suggestion, on which we agree: The
change of variables presented by the second referee is indeed rather convoluted such that
it hinders the physical meaning of the variables. For instance, the new variable x̃ =
G(x) =

∫ x

1
1/u(s)ds does not correspond to any intuitive physical variable, x̃ being not

to the position of the particle. After the transformation from x to x̃, the system cannot
be solved analytically and numerical solutions are needed, from which one has to come
back to the original variable, i.e. a physical description of the system.

As also suggested by the current referee, experimental realizations of the mapped
dynamics is not easy to obtain because of the complicated expression of the resulting po-
tential, while a harmonic confinement and a periodic swim velocity can surely be realized
experimentally. To insist on this statement, we have rephrased the final paragraph of
the conclusions, which now reads: We demonstrated that by combining these two physi-
cally distinct effects, it is possible to generate complex density patterns through relatively
simple fields, as in our example a harmonic trap and a periodic velocity landscape. In
practice, realizing such particle distributions through a single external field is surely more
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involved due to the required complex form of the potential. The possibility to fine-tune the
stationary properties of active particles in experimental systems through adapting both the
external force and the swim velocity opens up a new avenue for future applications and
developments.

To address the first concern, the authors may consider showing a specific example where
the proposed mapping fails, e.g. because u(x) is not bijective, or partially explains the
physics at play.
Reply: First of all, let us remark that bijectivity of u(x) is not really required but only its
positivity (such that the map G(x) is bijective). Therefore, the mapping can, in principle
be applied to our situation involving a periodic and thus nonbijective velocity field. We
thus rather address the first concern by emphasizing that the mapping does not change
the physics of the system. To this end, we report here the answer provided later also to
the second referee:
1) Despite the mapping is correct, we do not agree with the general argument of the ref-
eree. The original system does contain new physics with respect to the mapped one, the
velocity dependence is simply hidden in the new variable. This is because the probabil-
ity distribution of the original system, p, is related to the probability distribution of the
transform system pt, through the well-known relation:

p = pt det J

where det J is the Jacobian of the transformation from the transformed back to the original
variables. With the change of variables proposed by the referee, we have det J = 1/u(x),
and, as a result, the functional shape of the transformed probability distribution has
changed with respect to that of the original system. In turn, this means that the new
physical effects come into play when doing the back transformation involving a nontrivial
dependence on u(x).

To better illustrate these ideas, let us consider the simpler (and explicitly solvable)
scenario of Brownian motion with a multiplicative (linear) diffusivity, which represents a
subcase of the general change of variables proposed by the referee to map a system with
multiplicative noise onto a system with additive noise. Indeed, it is known in the literature
that the system

ẏ = y
√

2η (1)

(where η is a white noise), can be always mapped onto the simple diffusive dynamics

Ẏ =
√

2η (2)

after introducing the change of variables Y = log(y). Despite such a mapping is use-
ful to solve the problem, it is rather indisputable that Eq. (1) gives rise to new physics
with respect to Eq. (2): the former dynamics is characterized by a log-normal Gaussian
distribution (for instance, used to model the stock prices in economics), while the latter
describes a simple diffusive process. This example shows that the existence of the mapping
onto an additive system does not mean that the original system with multiplicative noise
does not contain new physics.
Now that we have clarified the need of studying the original system (numerically), we can
reassure that the new physical effects described in our manuscript indeed occur because
of the interplay between external confinement and spatial-dependent swim velocity. Of
course, the same density profile can be obtained for a particle in an effective (and very
involved) potential alone, but this conclusion is almost trivial.
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Explicitly, the new physical effects described in our manuscript can be summarized and
understood by recalling the following two observations. i) An Active Ornstein Uhlembeck
particle (AOUP) in a harmonic potential is characterized by a Gaussian velocity distribu-
tion. This is known in the literature (see for instance Refs. [60,64]). ii) A potential-free
AOUP particle with space-dependent swim velocity has a Gaussian velocity distribution,
as shown in Ref. [74]. In this work, we have shown by combining i) and ii) that an AOUP
with harmonic confinement and a spatial-dependent swim velocity yields a distribution
in the velocity v displaying non-Gaussian tails and even double-well shape in the regime
of large persistence. Therefore, the interplay between harmonic confinement and spatial-
dependent swim velocity plays a fundamental role in our model. In the new version of the
manuscript, we have put more emphasis on this discussion (see the highlighted revised
paragraphs on pages 3, 10, 13, and 16).

In the footnote [76], it is unclear why the physics is different: the particle escaping to
infinity in the case of a modulation of the self-propulsion velocity is also a consequence of
fluctuations induced in the active force. If the stationary density profile is identical, what
quantity would distinguish the physics at play in the two systems considered?
Reply: We are grateful to the referee for this important question, which helps us to
make the distinction between the two systems more precise. i) A potential-free particle
subject to an activity field cannot be confined and is going to display a diffusive behavior,
see Ref. [74]. This means that, through this method, one can achieve a particular shape
of the density, ρ(x) ∼ 1/u(x), only because of periodic boundary conditions. Removing
periodic boundary conditions the only steady-state solution is the vanishing one typical
of diffusive systems. ii) Including an external confining potential, the system does not
show a diffusive behavior. The system approaches a non-vanishing steady-state density
ρ(x). So, even if i) and ii) give rise to the same steady-state solution ρ(x), this occurs only
because of the periodic boundary conditions considered in i). The physics of i) and ii)
is then distinguished by giving rise to diffusive and non-diffusive dynamics, respectively.
In other words, one can use dynamical observables like the mean-squared displacement,
which in the long time limit diverges in case i) or remains finite in case ii), to distinguish
the physics at play.

In the new version of the manuscript, we have clarified this point by rewriting footnote
[76] as: To shed light on the essential physical difference between a confined particle with
uniform swim velocity and a free particle subject to a swim-velocity profile, let us consider,
as a basic example, an AOUP with constant swim velocity u(x) = v0 trapped in a harmonic
potential, system (i), which can be solved exactly. The exact stationary density profile
ρ(x) of (i) has a Gaussian shape. In principle, this distribution can be realized also by a
nontrivial swim-velocity profile in the absence of external forces, system (ii), upon choosing
a modulation of the form u(x) ∝ 1/ρ(x). However, the physics of (i) and (ii) are crucially
distinct. In case (i), the particle is externally confined and can explore the region far from
the minimum of the potential only because of fluctuations induced by the active force. In
the case (ii), the particle is free and shows a diffusive behavior: the Gaussian density
profile ρ(x) is obtained since the particle spends more time in the central region where it
moves slowly and because of the boundary conditions. More precisely, due to the absence
of external forces (or other confining mechanisms), the swim velocity allows the particle
to escape to infinity. This means that such an effective confinement can only formally be
achieved through periodic boundary conditions: the particle moves slowly in the minimum
of u(x), escapes rightwards (or leftwards) with an increasing swim velocity and approaches
again the slow region by coming back from the other side of the box. Dynamical observables

4



like the mean-squared displacement are thus different in the two cases.

Reply to Reviewer #2

I thanks the authors for their answers to my concerns and for the changes implemented.
I further apologize for the change of variable that I used to support my point about the
similarity between spatially-dependent self-propulsion and driving forces: it contains indeed
an error as the authors correctly noticed. I used it as a fast example to make my claim
more precise but I should have detailed it more to exemplify what I meant. Let me correct
it below by detailing how this change of variable should be carefully processed in order to
map a dynamics with position-dependent self-propulsion speed onto one with a constant
self-propulsion speed. I also take the opportunity to comment on the replies sent by the
authors. All the references below correspond to the new version of the manuscript.
We thank the reviewer for the clarification. Here, we reply to the main issues raised by
the referee:

1) Comment: The starting point is the evolution equation considered by the authors
in one spatial dimension

ẋ = −∂xU + u(x)η (3)

where η is an OU noise. Assuming that the spatially-dependent activity u(x) is a
positive, bijective function then we can divide both sides by u(x) to obtain

ẋ

u(x)
= −∇U

u(x)
+ η . (4)

Then we define the primitive of u−1 as G(x) =
∫ x

1
1/u(s)ds. Because u is a positive

function, G is also a bijection. Furthermore, we have that

dG(x)

dt
=

ẋ

u(x)
(5)

So, if we define the change of variable x̃ = G(x) we then have

˙̃x = −∂xU(G−1(x̃))

u(G−1(x̃))
+ η (6)

which I think achieves to show that, in this case, one can map the model of the
authors to the dynamics of an AOUP with a constant self-propulsion speed. This is
only a rapid reasoning which might not be exempt of misstakes: I hope the authors
will point out these caveats if they find them. However, if (4) is indeed confirmed, it
really maps the model of the authors to the dynamics of an AOUP with constant self-
propulsion speed evolving in a complex (possibly non potential) landscape. And this is
why I am not convinced by the authors arguments supporting the motivation of their
model. It seems to me that the effect of the interplay between spatially-dependent
self-propulsion speed and potential forces will be equivalent, in a lot of cases and at
least in one dimension (as studied in this paper), to the effect of a more complicated
landscape in a normal setting with constant self-propulsion speed.
Reply: As already mentioned in our previous reply, we acknowledge that such a
definition of a new variable x̃ is possible and also helpful when it comes to deriving
our approximate probability distributions. We now also agree with the steps outlined
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by the reviewer, although we would like to stress that the assumption of bijectivity
of u(x) (which in fact would not hold for our system) is not really required but only
its positivity (such that the map G(x) is bijective). Therefore, we put more emphasis
on the definition of the new variable x̃ by adding a new appendix C, in which we
present a modified version of the above definition, which reads: In this appendix we
briefly discuss a change of variables [78,84] which allows us to formally absorb the
effect of the spatially dependent swim velocity into an effective force. Since u(x) is
positive definite, we can define a new variable x̃ such that

˙̃x :=
ẋ

u(x)
.

Substituting into Eq. (3) yields

˙̃x =
γ−1F(G−1(x̃))

u(G−1(x̃))
+ η ,

where G−1(x̃) denotes the inverse of the bijection G(x) = x̃ mediating the variable
transform x→ x̃. Moreover, we refer to this appendix after Eq. (29), which implicitly
uses ¨̃x as the acceleration term which is neglected to obtain the UCNA.
However, we disagree that this mapping shows that the physics of a system with a
spatially-dependent self-propulsion is trivial. Below, we provide two main arguments.
1) Despite the mapping is correct, we do not agree with the general argument of the
referee. The original system does contain new physics with respect to the mapped
one, the velocity dependence is simply hidden in the new variable. This is because
the probability distribution of the original system, p, is related to the probability
distribution of the transform system pt, through the well-known relation:

p = pt det J

where det J is the Jacobian of the transformation from the transformed back to the
original variables. With the change of variables proposed by the referee, we have
det J = 1/u(x), and, as a result, the functional shape of the transformed probability
distribution has changed with respect to that of the original system. In turn, this
means that the new physical effects come into play when doing the back transforma-
tion involving a nontrivial dependence on u(x).

To better illustrate these ideas, let us consider the simpler (and explicitly solvable)
scenario of Brownian motion with a multiplicative (linear) diffusivity, which repre-
sents a subcase of the general change of variables proposed by the referee to map
a system with multiplicative noise onto a system with additive noise. Indeed, it is
known in the literature that the system

ẏ = y
√

2η (7)

(where η is a white noise), can be always mapped onto the simple diffusive dynamics

Ẏ =
√

2η (8)

after introducing the change of variables Y = log(y). Despite such a mapping is
useful to solve the problem, it is rather indisputable that Eq. (7) gives rise to new
physics with respect to Eq. (8): the former dynamics is characterized by a log-normal
Gaussian distribution (for instance, used to model the stock prices in economics),
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while the latter describes a simple diffusive process. This example shows that the
existence of the mapping onto an additive system does not mean that the original
system with multiplicative noise does not contain new physics.
2) In addition, the mapping proposed by the referee cannot be easily interpreted with-
out including the notion of the swim-velocity field u(x). Indeed, the new variable x̃
has no intuitive physical meaning because it does not correspond to the position of
the particle at variance with x. Even though it is mathematically valid, the map-
ping does not add any insight to the physical description of the system: neither the
new system described by x̃ nor the one described by x can be solved analytically.
A numerical evaluation is needed in both cases, but the original system has a clear
physical meaning, simply describing an active particle in a harmonic potential with
spatially dependent swim velocity.
To emphasize these points in the new version of our manuscript we added the follow-
ing comment at the end of Sec. 3.1 (where we introduce our approximate solutions):
Finally, we remark that there exists a formal mapping of a system subject to a spa-
tially dependent swim velocity, represented by a multiplicative noise in Eq. (2a), to a
system with an effective external potential and additive noise. This mapping is medi-
ated by a change of variables, reported and discussed in appendix C for completeness.
Such a trick has been proven particularly helpful to find the explicit solution in a
one-dimensional Run&Tumble model without external potential [84]. In our case,
the newly defined variable allows us to identify the proper acceleration term which
should be neglected to obtain the final UCNA result. However, to describe physically
meaningful coordinates, i.e., the position and velocity of an AOUP, it is imperative
to account for the notion of a swim velocity field u(x) in the stationary distributions
of an AOUP stated above.
Moreover, we provide further discussion in the second paragraph of appendix C which
reads: There are two possible ways of interpreting Eq. (38). First, on the right-hand
side, we can identify an effective external force and an additive noise. It is thus
possible to argue that the multiplicative nature of the swim-velocity field u(x) can be
absorbed into a convoluted expression of an external potential (and implicitly in the
definition of x̃). However, since the new coordinate x̃ has the dimension of time
rather than length, this is only a mathematical analogy, which, owing to the simpler
form might be useful to find an explicit solution as, for example, in the case of a
Run&Tumble model in one dimension [84]. Transforming back to the original co-
ordinates explicitly requires the notion of the swim velocity u(x), compare Eq. (37).
Second, multiplying both sides of Eq. (38) with u(x), we recover an equation with a
multiplicative noise in which the combined term u(x) ˙̃x has a proper dimension of
a velocity. Moreover, upon first calculating the second time derivative ¨̃x and then
multiplying with u(x), we are able to identify the acceleration term which can be
neglected to obtain the UCNA [78], compare Eq. (2). In other words, the physical
interpretation of our results is the same whether or not we perform such a change of
variables.

In addition, I dont understand the authors description non-Gaussianity induced by
the interplay of confinement and spatially modulating swim velocity. As it is already
known that an active particle with potential forces and constant self-propulsion speed
has a non-Gaussian distribution both in x and v, then there is no need to have an in-
terplay with a spatially-dependent self-propulsion to get a non-Gaussian distribution.
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Reply: We thank the referee for the question, but we disagree with the referee: i) An
Active Ornstein Uhlembeck particle (AOUP) in a harmonic potential is characterized
by a Gaussian velocity distribution. This is known in the literature (see for instance
Refs. [60,64]). ii) A potential-free AOUP particle with space-dependent swim ve-
locity has a Gaussian velocity distribution, as shown in Ref. [74]. In this work, we
have shown by combining i) and ii) that an AOUP with harmonic confinement and
a spatial-dependent swim velocity yields a distribution in the velocity v displaying
non-Gaussian tails and even double-well shape in the regime of large persistence.
Therefore, the interplay between harmonic confinement and spatial-dependent swim
velocity plays a fundamental role in our model. In the new version of the manuscript,
we have put more emphasis on this discussion (see the highlighted revised paragraphs
on pages 3, 10, 13, and 16).

2) Comment: Concerning my remarks explaining how the findings of the authors on
figure 1 and 2 could be retrieved by applying general and common principles of active
matter, I understand the stance of the authors with respect to the accessibility of their
manuscript to less experienced readers. However, I think that the Ref [74] (written
by the authors), already provides an accessible manuscript with detailed numerics
and analytics about a very similar problem. Furthermore, there are other references
already tackling the problem of position-dependent self-propulsion in AOUPs such as
Ref [63]. It is not clear to me what are the authors additional contribution with
respect to these previous works.
Reply: Our Ref. [74] does not study the same problem studied here, and, given the
comments in reply to the previous point, also does not constitute a trivial extension.
Indeed, In Ref. [74], we introduced an AOUP model with spatial-dependent swim
velocity in the absence of external potential. The system shows a diffusive behavior
(because of the absence of confinement) and a Gaussian distribution of the velocity.
In the potential-free case, the steady-steady state distribution can be derived exactly.
In the present paper, we are studying an AOUP model with spatial-dependent swim
velocity in a confinement potential, going beyond the potential-free case considered
in Ref. [74]. When confinement and spatial-dependent swim velocity are present, the
system cannot be solved exactly: we derived an approximated approach to obtain
theoretical predictions. This theory is broken in some regimes of the parameters
where, for instance, non-Gaussian effects and bimodality of velocity and positional
distribution are observed numerically.

Ref. [63] introduces an AOUP with spatial-dependent swim velocity in a different
way. The model of Ref. [63] and the one of Ref. [74] do not coincide, as shown in
Ref. [74] (see the appendix of this work). The two models could thus lead to dif-
ferent physical results (see also our response to the next point). Most importantly,
the model Ref. [63] has also not yet been applied to study the joint action of in-
homogeneous swim speed and external forces. Therefore, the study in the present
manuscript is original.

3) Comment: In their replies, the authors pointed out a main difference between the
model in Ref [63] and the model described in their manuscript, which, according to
them, makes their proposed model more relevant for experiments. Indeed, they assert
that the model in Ref [63] has a distribution of the form ρ(x) = 1/u(x) (with u(x)
being once again the spatially dependent self-propulsion) only in a limited regime
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depending on the persistence length. However, I believe that this statement is wrong
because a careful reading of Ref [63] shows that the distribution ρ(r) = 1/u(r) is
recovered in a limited regime only when the self-propulsion speed u(r) depends on
the set of position {r} of the other active particles. When the self-propulsion speed
u(x) depends on the absolute position of only the particle under consideration, then
the result ρ(x) = 1/u(x) of Ref[63] holds without any limitations. Thus, the authors
have not convinced me about the relevance of their models with respect to the other
ones in the literature. Why should it be relevant and more adequate for describing
experiments?
Reply: Let us, first of all, clarify that we do not claim that our model is better than
the model in Ref. [63]. We merely state that our model suits the class of experiments
we want to describe in the present manuscript and elaborated on the differences
between the two models as part of the review process. We apologize if this point
has been mistaken. We have rephrased the respective statements. That said, after
having another look at Ref. [63], we do not agree with the referee. In Ref. [63], pag.5,
second column, after Eq. (29), the authors of Ref. [63] wrote:
”It is then a simple exercise to check that varying τ(r) and D(r) while keeping T =
D/τ uniform leads to a Maxwellian steady-state Ps(r,v) ∝ exp(−v2/(2T )) and hence
to a uniform distribution in position space Ps(r). Under more general conditions, and
somewhat surprisingly, Eq. (29) does not seem to admit simple steady-state solutions.
As we show next, for slowly varying τ(r) and D(r), one can nevertheless show the
steady-state distribution to be given by Ps(r) ∝ 1/T (r) = τ(r)/D(r).”

Following Ref. [63], by fixing τ(r) = const, the result Ps(r) ∝ 1/T (r) can be obtained
only for for slowly varying τ(r) and D(r). There is no trace of the coordinates of
other particles in the paper or in the derivation reported in the paper. The AOUP
model proposed in Ref. [74], instead, gives rise to a spatial density proportional to
the inverse of the swim velocity independently of the choice of the swim velocity and
for general dimensions, as shown in Ref. [74]. Therefore, our chosen AOUP model
(Ref. [74]) can be conveniently used to describe those experiments where the spatial
density is proportional to the inverse of the swim velocity. To be more specific on the
points discussed above, we have rephrased the discussion of Eq. (2) in our revised
manuscript and now write: Therefore, in the absence of external forces and time
dependence, we analytically recover the law ρ(x) ∼ 1/u(x) for the stationary density
profile ρ(x) [74]. Our model is therefore suitable to describe the class of experimen-
tal systems including engineered E. Coli bacteria [25,27] or active colloids [19] for
which this relation is observed. Note that the alternative spatially dependent AOUP
dynamics proposed in Ref. [63] is characterized by equations of motions that do not
coincide with Eqs. (2) (as shown in the appendix of Ref. [74]). This alternative model
thus leads to different predictions as it reproduces the relation ρ(x) ∼ 1/u(x) only
for slow spatial variation of u(x) [63] but could be in principle suitable to describe
another class of experiments.

Finally, we stress once more that, for the present manuscript, the question of which
model should be better is completely irrelevant, since the problem of an active particle
with spatially dependent swim velocity in an external force field is original and could
have been addressed with either theory.

4) Comment: Finally, I would like to come back to the concern I expressed with respect
to the authors statement the interplay between the external force and the modulation
of the swim velocity can be used to manipulate the behavior of a confined active par-
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ticle, for instance by locally increasing the kinetic temperature or by forcing the par-
ticles to accumulate in distinct spatial regions with different probability. My concern
was that in their previous work [74] the authors have already shown that an active par-
ticle with spatially-dependent self-propulsion u(x) has a distribution ρ(x) ∝ 1/u(x).
Thus, my point was that the potential was not needed if one wanted to manipulate
and sort active particles: a spatially-dependent u(x) is enough. The authors reply
that in a typical experimental setting the active particles are confined and that thus
there is a need to study the interplay between confinement and self-propulsion speed.
I am not convinced by this reply because if the particles are confined then one can
just manipulate the confining potential in order to force the particles to accumulate
where one wants.
Reply: We suspect that we were not clear in our previous reply, such that some
points may have been misunderstood. Confinement is not strictly necessary in ex-
periments (if one is able to set up a sufficiently large bulk) but just another screw
that can be turned (together with the swim velocity) to fine-tune the behavior of the
experimental system, as we further detail in response to the subsequent points.

In my opinion, the authors did not clearly explain what are the physical features exhib-
ited by their model which are not already present in an AOUP evolving in a complex
potential with fixed self-propulsion speed (see the first point above with the change
of variable). That is why I am not convinced by several claims of the authors about
the emerging complex behaviour from the interplay between spatially-dependent self-
propulsion and potential forces. For example, the deviations of the velocity distribu-
tions from a Gaussian shape exclusively arise from the interplay of these two fields.
For a single AOUP with fixed self-propulsion evolving in a (not harmonic) potential,
the velocity distribution is already non gaussian without needing to invoke a complex
interplay.
Reply: The referee is right: for a single AOUP with fixed self-propulsion evolving in
a (not harmonic) potential, the velocity distribution is already non-Gaussian. Nev-
ertheless, our sentence “the deviations of the velocity distributions from a Gaussian
shape exclusively arise from the interplay of these two fields” is well-justified. Indeed,
as already argued in a previous point, it is known that an AOUP in a harmonic poten-
tial with constant swim velocity is characterized by a Gaussian velocity distribution.
It is also known that a Gaussian distribution in the velocity also characterizes the dis-
tribution of potential-free active particles with spatial-dependent swim velocity (see
Ref. [74]). The interplay between harmonic confinement and spatial-dependent swim
velocity generates non-Gaussianity in the velocity distribution, that in some regimes
of parameters could even display a bimodality. This clearly demonstrates that new
physical effects arise from the interplay between these two ingredients. The fact that
there is already non-Gaussianity for a more complex confining potential does not
change this conclusion (which is, however, nicely illustrated in the considered special
case of a harmonic trap).

Another example is the following statement We demonstrated that by combining these
two physically distinct effects, it is possible to generate complex density patterns
through two relatively simple fields, which is surely easier to realize in practice than
generating a single external field with a complex shape.. First, it is not clear to me
why generating two external fields is easier than one, especially when this last one is
a confining potential. I dont believe that it is hard to manufacture a sheet of plastic
with some meanders and up-and-downs where you can put your active particles on.
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Second, it is not clear to me what is the aforementioned complex density pattern be-
cause, as I explained in my first review, one could have deduced it by applying two
fundamental principles of active matter.
Reply: We do not agree with the referee: the experimental confinement of an ac-
tive particle (a Janus particle or a bacterium) into a simple potential, such as a
roughly single-well harmonic potential or a double-well potential is quite easy. The

complicated potential proposed by the referee, ∂xU(G−1(x̃))
u(G−1(x̃))

where G(x) =
∫ x

1
1/u(s)ds

and x̃ = G(x), should be rather complicated to implement experimentally to confine
Janus particles. In addition, we do not think that “a sheet of plastic with some me-
anders” could be suitable to confine active Janus particles, bacteria or other typical
examples of active particles. Regarding the last sentence, we think that understand-
ing how the emergence of complex density patterns can be explained theoretically
(which is what the reviewer is alluding to) and actually creating such patterns in
an experiment (for which we suggest to explicitly using the interplay of two simpler
fields) are two completely different things.

To be more explicit on these points, we have extended and rephrased the final para-
graph of the conclusions, which now reads: We demonstrated that by combining
these two physically distinct effects, it is possible to generate complex density pat-
terns through relatively simple fields, as in our example a harmonic trap and a pe-
riodic velocity landscape. In practice, realizing such particle distributions through a
single external field is surely more involved due to the required complex form of the
potential. The possibility to fine-tune the stationary properties of active particles in
experimental systems through adapting both the external force and the swim velocity
opens up a new avenue for future applications and developments.

Nonetheless, I agree with the authors that there are physical differences between an
AOUP with spatially-dependent self-propulsion speed and an AOUP in a confining
potential which are clarified in the new footnote [76]. My concern is that I do not
see the new complex behaviour or the new features due to the interplay between the
two ingredients (potential forces and spatially-dependent self-propulsion) which are
not already present whenever only one of the two ingredients is present.
Reply: We are glad that our clarification in footnote [76] is convincing. To conclude
once more on the general concern, which we believe to have answered in sufficient
detail above, we would like to draw an analogy to an equilibrium system. Consider
a confined system of interacting particles. The interplay of external forces and inter-
particle interactions usually leads to oscillating density patterns ρ(x) in the vicinity
of the walls, which are absent for both noninteracting (ideal) particles in the same
confinement and in a bulk system of interacting particles. The same density pat-
terns could, however, be realized by confining ideal particles in an effective external
potential U(x) = −β−1 ln ρ(x). Although this example does not come along with an
explicit mapping of the coordinates, we believe that the reviewer would agree here
that the interplay of interactions and confinement does bring new physics, although,
in principle, complex confinement alone is capable of reproducing the same observ-
able, namely ρ, in a simpler system. In our opinion, the interplay of two different
driving forces is a general source of emergent behavior in a broad variety of physical
systems and thus generally worth investigating.

My opinion is that the authors have not answered to my main concerns, and especially
that the novelty and importance of their work with respect to the current literature (Ref
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[74] and Ref [63]) is not clear to me. Because of all the points discussed above, it seems
to me that the main message of interplay between spatially-dependent self-propulsion and
potential forces yields complex physics is not really grounded. Therefore, I would not
recommend this manuscript for publication in scipost.

In our opinion, we have addressed the main concerns and doubts of all referees, at
least now, at this second stage of the review. The discussion concerning the difference
between the present paper and Ref. [74] has been put forward: we think that there is
a non-trivial conceptual difference between the study of non-confined diffusive systems
and confined systems. The model used in the present paper and the one considered in
Ref. [63] are different, as shown explicitly in Ref. [74]. The message that: “the interplay
between spatially-dependent self-propulsion and potential forces yields complex physics”
has been further motivated. Indeed, a potential active Ornstein Uhlembeck (AOUP) with
spatial-dependent swim velocity has a Gaussian velocity distribution and an AOUP with
constant swim velocity and harmonic potential is again described by a Gaussian. Instead,
a harmonically confined AOUP with spatial-dependent swim velocity is characterized by
a strongly non-Gaussian distribution that could even show bimodality.

Reply to Reviewer #3

Let me thank the authors for having considered my comments and for their replies. From
my side, I have to say that they adequately addressed my major and minor comments.
However, at this stage of the review process, I understand there are still open issues with
Reviewer 2 (R2). It looks to me like there are two main criticisms that should be taken
into account by the authors and addressed properly.
Reply: We thank the referee for his/her careful reading of both the new version of the
paper and of the correspondence with Reviewer 2 (R2).

The first criticism raised by R2 is about the novelty of the work in comparison with (i)
Ref. [74] of the same authors, where they introduce the model considered here without
any external fields, and (ii) Ref [6], where, in Section II-D (across p. 5 and 6), there
is a short discussion about AOUPs in the presence of spatially varying activity in the
small-tau limit. I think a clarification about that would be an additional improvement to
the manuscript.
Reply: We thank the referee. A clarification on this point has been included in the new
version of the paper. In particular, we stress that in Ref. [63], pag.5, second column, after
Eq. (29), the authors of Ref. [63] wrote:
”It is then a simple exercise to check that varying τ(r) and D(r) while keeping T = D/τ
uniform leads to a Maxwellian steady-state Ps(r,v) ∝ exp(−v2/(2T )) and hence to a uni-
form distribution in position space Ps(r). Under more general conditions, and somewhat
surprisingly, Eq. (29) does not seem to admit simple steady-state solutions. As we show
next, for slowly varying τ(r) and D(r), one can nevertheless show the steady-state distri-
bution to be given by Ps(r) ∝ 1/T (r) = τ(r)/D(r).”
As we understand it, this statement contradicts the comment of R2, since, following
Ref. [63], by fixing τ(r) = const, the result Ps(r) ∝ 1/T (r) can be obtained only for for
slowly varying τ(r) and D(r). The AOUP model proposed in our paper, instead, gives
rise to a spatial density proportional to the inverse of the swim velocity independently
of the choice of the spatial swim velocity profile and for general dimensions, as shown in
Ref. [74] in the potential-free case. Therefore, our AOUP model is more suitable than
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the model proposed in Ref. [63] to describe at least those experiments where the spatial
density is proportional to the inverse of the swim velocity. We have revised the corre-
sponding paragraph in our manuscript to be more explicit about these two models and to
stress that the model of Ref. [63] could be in principle suitable to describe another class
of experiments.

The second criticism looks to me to be still linked with point (i) of the previous comment:
What is the new phenomenology one gets once we turn on a confining external poten-
tial in a system of AOUP with space-varying motility. As already shown in PRE 100,
052147 (2019) in the case of one-dimensional non-interacting run-and-tumble particles
with space-dependent speed (see Eq. (7) of that reference), R2 noticed a possible map-
ping into the dynamics of AOUP in a complicated force field. My feeling is that, since
the problem does not map simply into the dynamics with an effective conservative field, I
think it might be opportune to talk about some sort of complex behavior for the resulting
dynamics (if I interpret correctly the reply of the authors). Again, although the authors
in their reply wrote about this issue showing that the dynamics is not just the dynamics
of an active particle into an effective potential, I think it is opportune to have further
improvements. For instance, the authors might better clarify how the competition between
external confining potential and space-varying velocity works
Reply: We thank the referee for the above comment and for suggesting the interesting
paper which is now cited as Ref. [84]. In the case of the one-dimensional Run&Tumble
model in Ref. [84], the mapping proposed by R2 is really useful because the resulting
effective system with uniform swim velocity can be solved exactly and from the trans-
formed variable one can come back to the original description in terms of the position of
the particles. In the case of our AOUP model, the mapping is not really useful because we
have to proceed numerically and then we have to numerically come back to the original
physical description in terms of the particle position. Indeed, the physical meaning of the
new transformed variable is unclear since it does not coincide with the particle position.

In the new version of the manuscript, we have added a discussion at the end of Sec. 3.1
on the mapping proposed by R2 and also discussed its suitability to find an exact solution
for the system in Ref. [84]: Finally, we remark that there exists a formal mapping of
a system subject to a spatially dependent swim velocity, represented by a multiplicative
noise in Eq. (2a), to a system with an effective external potential and additive noise. This
mapping is mediated by a change of variables, reported and discussed in appendix C for
completeness. Such a trick has been proven particularly helpful to find the explicit solution
in a one-dimensional Run&Tumble model without external potential [84]. In our case, the
newly defined variable allows us to identify the proper acceleration term which should be
neglected to obtain the final UCNA result. However, to describe physically meaningful
coordinates, i.e., the position and velocity of an AOUP, it is imperative to account for
the notion of a swim velocity field u(x) in the stationary distributions of an AOUP stated
above.

The more detailed account given in appendix C reads: In this appendix we briefly
discuss a change of variables [78,84] which allows us to formally absorb the effect of the
spatially dependent swim velocity into an effective force. Since u(x) is positive definite,
we can define a new variable x̃ such that

˙̃x :=
ẋ

u(x)
.
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Substituting into Eq. (3) yields

˙̃x =
γ−1F(G−1(x̃))

u(G−1(x̃))
+ η ,

where G−1(x̃) denotes the inverse of the bijection G(x) = x̃ mediating the variable trans-
form x→ x̃.

There are two possible ways of interpreting Eq. (38). First, on the right-hand side,
we can identify an effective external force and an additive noise. It is thus possible to
argue that the multiplicative nature of the swim-velocity field u(x) can be absorbed into
a convoluted expression of an external potential (and implicitly in the definition of x̃).
However, since the new coordinate x̃ has the dimension of time rather than length, this
is only a mathematical analogy, which, owing to the simpler form might be useful to find
an explicit solution as, for example, in the case of a Run&Tumble model in one dimen-
sion [84]. Transforming back to the original coordinates explicitly requires the notion of
the swim velocity u(x), compare Eq. (37). Second, multiplying both sides of Eq. (38)
with u(x), we recover an equation with a multiplicative noise in which the combined term
u(x) ˙̃x has a proper dimension of a velocity. Moreover, upon first calculating the second
time derivative ¨̃x and then multiplying with u(x), we are able to identify the acceleration
term which can be neglected to obtain the UCNA [78], compare Eq. (2). In other words,
the physical interpretation of our results is the same whether or not we perform such a
change of variables.

what are the novelties with respect to the case without an external field and why it is im-
portant to consider the effect of external fields:
Reply: Let us start by summarizing the main physical difference between a potential-
free AOUP with spatial-dependent swim velocity (system i) and an AOUP with spatial-
dependent swim velocity confined through an external potential (system II)). In case
I), the system shows a diffusive behavior. Indeed, the system is described by a density
ρ(x) ∼ 1/u(x) only if we assume periodic boundary conditions [74]. Otherwise, the only
steady-state solution is the vanishing one. In case II), the system is really confined and
admits a steady-state distribution, whose properties are physically due to the interplay
between confinement and spatial-dependent swim velocity. I) is characterized by a Gaus-
sian distribution of the velocity, while II) is characterized by a non-Gaussian distribution
of the velocity, showing even bimodality.
Now we elaborate that the combined effect of external confinement and spatial-dependent
swim velocity leads to new physical effects. i) An Active Ornstein Uhlembeck particle
(AOUP) in a harmonic potential is characterized by a Gaussian velocity distribution. This
is known in the literature (see for instance Refs. [60,64]). ii) A potential-free AOUP par-
ticle with space-dependent swim velocity has a Gaussian velocity distribution, as shown
in Ref. [74]. In this work, we have shown by combining i) and ii) that an AOUP with
harmonic confinement and a spatial-dependent swim velocity yields a distribution in the
velocity v displaying non-Gaussian tails and even double-well shape in the regime of
large persistence. Therefore, the interplay between harmonic confinement and spatial-
dependent swim velocity plays a fundamental role in our model.

In the new version of the manuscript, we have put more emphasis on the discussion of
the different cases, i.e., a free AOUP in a velocity field, a confined AOUP with constant
velocity and, considering the interplay of both, a confined AOUP in a velocity field (see
the highlighted revised paragraphs on pages 3, 10, 13 and 16 and the revised footnote [76]).
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Abstract

We investigate how the competing presence of a nonuniform motility landscape and an
external confining field affects the properties of active particles. We employ the active
Ornstein-Uhlenbeck particle (AOUP) model with a periodic swim-velocity profile to de-
rive analytical approximations for the steady-state probability distribution of position
and velocity, encompassing both the Unified Colored Noise Approximation and the the-
ory of potential-free active particles with spatially dependent swim velocity recently de-
veloped. We test the theory by confining an active particle in a harmonic trap, which
gives rise to interesting properties, such as a transition from a unimodal to a bimodal
(and, eventually multimodal) spatial density, induced by decreasing the spatial period
of the self propulsion. Correspondingly, the velocity distribution shows pronounced de-
viations from the Gaussian shape, even displaying a bimodal profile in the high-motility
regions. We thus show that the interplay of two relatively simple physical fields can be
employed to generate complex emerging behavior.
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1 Introduction

The control of active matter [1–4] is an important issue for technological, biological and med-
ical applications and has recently stimulated many experimental and theoretical works. It is
also very important in the future perspective of self-assembling and nano-fabricating active
materials. The diffusivity of active particles is much higher than the one of their passive coun-
terparts. Indeed, the former may be caused by high motility induced by either an internal
“motor” (metabolic processes, chemical reactions, etc.) or a directed external driving force
acting on each particle, while the latter is simply due to random collisions with the particles
of the thermal bath. This property offers intriguing perspectives since it is possible to achieve
navigation control of active particles [5,6], for instance when driving their trajectories by some
feedback mechanism [7,8].

In the case of active colloids, such as Janus particles activated by external stimuli, the
motility can be tuned by modulating the intensity of light [9–14]. This property has been
employed to trap them [15,16] and to obtain polarization patterns induced by motility gradi-
ents [17,18]. Experimentally, the existence of an approximately linear relation between light
intensity and swim velocity [19] allows to tune the motility and design spatial patterns with
specific characteristics. Recent applications range from micro-motors [20,21] and rectification
devices [22,23] to motility-ratchets [24]. Two experimental groups [25–27], have devised an
intriguing technique to control the swimming speed of bacteria by using patterned light fields
to enhance/reduce locally their motility by increasing/decreasing the light intensity. This leads
to a consequent accumulation/depletion of particles in some regions, so that this procedure
can be used to draw two dimensional images with the bacteria [25].

The fundamental physical concept behind experiments on light-controlled bacteria has
been investigated many years ago in a theoretical context for noninteracting random walkers
by Schnitzer [28] and later been extended to the interacting Run-and-Tumble model by Cates
and Tailleur [29]: the lower the speed of active particles, the higher their local density. This
theoretical result has been tested and confirmed in many numerical works and the existence
of such a relation between particle velocity and density is now considered one of the most
distinguishing features of active matter. A subsequent theoretical modeling of these effects
has been proposed in Refs. [19, 30–33] by generalizing the active Brownian particle (ABP)
model to include a spatially dependent swim velocity. This additional ingredient accounts
for the well-known quorum sensing [34–36], chemotaxis and pseudochemotaxis [37–40] and
correctly predicts a scaling of the density profile of individual particles with the inverse of the
swim velocity. Including particle interactions in the ABP model may lead to the spontaneous
formation of a membrane in two-step motility profiles [41] or cluster formation in regions with
small activity [42]. Moreover, a temporal dependence in the activity landscape [43–48]may, in
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some cases, produce directed motion opposite to the propagation of the density wave [23,49].
The ABP model has been widely employed to obtain theoretical predictions [50–52] and

still represents one of the more spread active matter models for its versatility and broad ap-
plicability [53–58]. Nevertheless, the more recent active Ornstein-Uhlenbeck particle (AOUP)
model [59–65], to be regarded as a “sister/brother” [66] of the ABP model, is generally easier
to handle and often conveniently used to achieve further theoretical progress. For an ABP,
the modulus of the active force is fixed and its orientation diffuses, while for an AOUP each
component of the propulsion force evolves independently according to an Ornstein-Uhlenbeck
process. Therefore, AOUPs can be used as an alternative to ABPs with simplified dynam-
ics [67–69], to describe the behavior of a colloidal particle in an active bath [70, 71]. More-
over, a convenient mapping between the parameters of the two models can be performed on
the level of the autocorrelation function of the self-propulsion velocity [72,73], such that their
predictions agree fairly well for small and intermediate persistence time of the active mo-
tion [66]. The present authors recently modified the AOUP model to account for a spatially
dependent swim velocity in Ref. [74] and obtained exact results for both the density profile
and velocity distribution of a potential-free particle.

Analytical results for active particles in competing external potential and motility fields
are sparse. Therefore, in this work, we extend the theoretical treatment of free AOUPs with
spatially dependent self-propulsion from Ref. [74] by including the presence of an external
force field, revealing more interesting properties than those obtained for either a constant swim
velocity or in the absence of external forces. For example, an AOUP with constant swim velocity
displays a Gaussian density in a harmonic trap, while the competition between external forces
and motility patterns gives rise to a density profile characterized by multiple peaks. Moreover,
in the latter case, the velocity distribution at fixed position displays strong non-Gaussian effects
and even a transition from a unimodal to a bimodal shape, which does not occur in the former
case.

The paper is structured as follows: In Sec. 2, we present the model to describe an active
particle in a spatially dependent swim-velocity landscape and subject to an external potential,
while, in Sec. 3, we develop our theoretical approach to describe the steady-state properties of
such a system. The theory is numerically tested in Sec. 4 in the case of a harmonic potential and
sinusoidal swim-velocity profile. Finally, conclusions and discussions are reported in Sec. 5.
The appendices contain derivations and information supporting the theoretical treatment.

2 Model

2.1 Active particles with spatially dependent swim velocity

The position, x, of an active particle evolves according to overdamped dynamics supplemented
by a stochastic equation for the active driving, the so-called self-propulsion (or active) force,
fa. Such a force term is responsible for the persistence of the trajectory and its physical ori-
gin depends on the system under consideration: flagella for bacteria and chemical reactions
for Janus particles, to mention just two examples. The active force fa can be written in the
following form [66]:

fa = γv0η , (1)

where η is a stochastic process of unit variance, γ is the friction coefficient and v0 is the con-
stant swim velocity induced by the active force. To describe an active particle with a spatially
dependent swim velocity, we employ the transformation v0 → u(x, t) in Eq. (1), which in-
troduces a dependence on both position and time. The shape of u(x, t) must satisfy some
properties related to physical arguments:
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i) positivity: u(x, t) ≥ 0, for every x and t, since u(x, t) is the modulus of the velocity
induced by the active force.

ii) boundedness: u(x, t) needs to be a bounded function of its arguments because the swim
velocity cannot be infinite.

In what follows, we focus on the stochastic model introduced in Ref. [74], representing a
generalization of the AOUP dynamics with u(x, t).

Assuming inertial effects to be negligible at the microscopic scale, typically realized at small
Reynolds numbers, the overdamped dynamics of the active particle with spatially modulating
swim velocity reads:

γẋ= F+ γ
p

2Dtw + γu(x, t)η , (2a)

τη̇= −η+
p

2τχ , (2b)

where χ and w are δ-correlated noises with zero average and unit variance and F is the force
exerted on the particle, resulting from the gradient of a potential U(x), i.e., F(x) = −∇U(x).
In this paper, we consider only a single particle, so that U(x) is a one-body potential, but the
description can be straightforwardly extended to the case of many interacting particles. The
coefficient Dt is the translational diffusion coefficient due to the solvent satisfying the Einstein’s
relation with Dt = Tt/γ and the temperature, Tt , of the passive bath (for unit Boltzmann
constant). The dynamics of η is characterized by the typical time, τ, which represents the
correlation time of the active force autocorrelation and is usually identified with the persistence
time of the single-trajectory, i.e., the time that a potential-free active particle spends moving
in the same direction with velocity u(x, t). In what follows, we neglect the contribution of
the thermal bath by setting Dt = 0, which is well justified in most of the experimental active
systems [1].

By writing the active force in Eq. (2) as fa(x, t) = γu(x, t)η we have achieved two impor-
tant goals. First, the spatial dependence of the self propulsion velocity can be conveniently
accounted for through a multiplicative factor u(x, t), which does not affect the dynamics of
the noise vector. Therefore, in the absence of external forces and time dependence, we analyt-
ically recover the law ρ(x)∼ 1/u(x) for the stationary density profile ρ(x) [74]. Our model is,
therefore, suitable to describe the class of experimental systems including engineered E. Coli
bacteria [25,27] or active colloids [19] for which this relation is observed. Note that the alter-
native spatially dependent AOUP dynamics proposed in Ref. [63] is characterized by equations
of motions that do not coincide with Eqs. (2) (as shown in the appendix of Ref. [74]). This al-
ternative model thus leads to different predictions as it reproduces the relation ρ(x)∼ 1/u(x)
only for slow spatial variation of u(x) [63] but could be in principle suitable to describe another
class of experiments. Second, the Ornstein-Uhlenbeck process in Eq. (2b) has unit equal-time
variance (except for a dimensional factor which we ignore here for convenience [73]), such
that the reduced stationary probability distribution of η does not depend on the time scale τ.
This means that u(x) provides a unique velocity scale. Moreover, this unit-variance version
of the AOUP model allows us to establish a direct link to the ABP model and an even larger
family of models [66] for which Eq. (2a) has the same form. In other words, the relation
ρ(x) ∼ 1/u(x) in the force-free case can be consistently obtained for all dynamics of the self-
propulsion vector η. In turn, from Eq. (1) (or by taking u(x, t) = v0), the standard version
of the AOUP model is recovered by absorbing the velocity scale v0 into the active diffusion
coefficient Da = v2

0τ (see also footnote [73] for a general discussion of the mapping between
ABPs and the different versions of AOUPs in d spatial dimensions). From this identification,
we see that the condition, Dt� Da, necessary to neglect the thermal noise requires u(x, t)> 0,
which is stronger than the one stated above.
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2.2 Velocity description of an active Ornstein-Uhlenbeck particle (AOUP)

Our equation of motion (2a) of an AOUP with a spatially dependent swim velocity contains a
multiplicative colored noise, which does not readily allow us to gain further analytic insight. As
a first step to ease the theoretical treatment of our model, we switch to the auxiliary dynamics
employed earlier in the potential-free case [74]. Instead of describing the system in terms of
position x and self-propulsion velocity u(x)η, we take advantage of the relation (holding for
Dt = 0)

γẋ= F+ γu(x, t)η (3)

to perform the simple change of variables (x,η)→ (x, ẋ = v). This trick allows us to directly
study the position and the velocity of the active particle as for u(x, t) = v0. As in the potential-
free case, to return to the original variables, we need to account for the space-dependent
Jacobian matrix J of the transformation reported in Appendix A. The resulting Jacobian reads:

det[J ] = u(x, t) , (4)

where det[·] represents the determinant of a matrix. Therefore, the probability distributions,
p̃(x,η, t) and p(x,v, t), in the two coordinate frames satisfy the following relation:

p̃(x,η, t) = det[J ] p(x,v, t) . (5)

Note that the condition u(x, t) > 0 implies det[J ] > 0 and, thus guarantees the possibility of
performing the transformation. In what follows, we use these new variables to study a system
subject to both a spatially dependent swim velocity, u(x, t), and an external potential U(x).
The generalization to include a thermal noise can be achieved by following Ref. [75].

To derive the dynamics in the variables x and v, we adopt a simple strategy whose leading
steps are reported in details in Appendix A. We perform the time-derivative of Eq. (3), sub-
stitute η̇ with Eq. (2b) and then replace η with v and U(x), using again Eq. (3), and finally
obtain an equivalent equation of motion for the velocity v. The full result reads

ẋ=v , (6a)

γτv̇=− γΓ (x) · v−∇U + γu(x, t)
p

2τχ (6b)

+τ
[γv+∇U]

u(x, t)

�

∂

∂ t
+ v · ∇

�

u(x, t) .

In Eq. (6b), the first line is identical to the expression describing the constant case u(x, t) = v0:
the dynamics of an overdamped active particle is mapped onto that of an underdamped pas-
sive particle with a spatially dependent friction matrix, γΓ (x), which depends on the second
derivatives of the potential and reads:

Γ (x) = I+
τ

γ
∇∇U(x) , (7)

where I is the identity matrix. Such a term increases or decreases the effective particle friction
according to the value of the curvature of U(x), which becomes more and more important as
τ becomes large. In addition, as already found in the potential-free case, the noise amplitude
contains a spatial and temporal dependence through the multiplicative factor u(x, t). The
second line of Eq. (6b) contains the new terms, absent for u(x, t) = v0, accounting for both
the time- and space-dependence of u(x, t).

For a further discussion of the new terms arising from a modulating swim-velocity profile,
we restrict ourselves to the time-independent case, u(x, t) = u(x). Then, we identify two
contributions to the total force. The first one, ∝ vv · ∇u, is proportional to the square of
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the velocity and appears also in the absence of an external potential. Since it is even under
time-reversal transformation, it cannot be interpreted as an effective Stokes force. The second
force,∝ (∇U)v · ∇u, couples the gradients of the potential and the swim velocity and gives
rise to an extra space-dependent contribution to the effective friction. This allows us to absorb
this term into a generalized effective friction matrix Λ(x), which reads:

Λ(x) = Γ (x) +
τ

γ
F(x)
∇u(x)
u(x)

, (8)

where Γ (x) is given by the expression for constant u(x) = v0 (see Eq. (7)). The new term
in Eq. (8) linearly increases with increasing τ and provides a further spatial dependence to
the friction matrix. Its sign is determined by ∇u(x) and F(x) = −∇U(x), such that it can
increase (positive sign) or decrease (negative sign) the effective friction. As a matter of fact,
the spatial modulation of the swim velocity and the action of an effective potential are two
distinct physical phenomena, which cannot be simply mapped onto each other. Indeed, u(x)
provides an additional contribution to the effective friction in the dynamics of v but does
not give any contributions to the confining force, at variance with the potential U(x) that
affects both the force acting on the particle and the effective friction matrix (see footnote [76]
for an explicit example with a detailed discussion of the physical implications). Moreover,
the interplay between the gradients of both fields in the second term of Eq. (8) gives rise to
nontrivial physical effects that will be investigated in the following.

3 Theoretical predictions

3.1 Approximate stationary distributions

So far, all steps in Sec. 2.2 were exact and the drawn conclusions general. To make further
theoretical progress, we continue to restrict ourselves to a static swim-velocity profile u(x). At
variance with the potential-free case, U(x) = 0, the exact steady-state probability distribution
of positions and velocities, p(x,v), is unknown and one needs to resort to approximations.
To this end, we assume that all components of the probability current vanish, as in the case
of a homogeneous swim velocity, u(x) = v0. As shown in Appendix B, this condition means
that in the Fokker-Planck equation associated to Eq. (6) the effective drift and diffusive terms
mutually balance. To derive a closed expression for the spatial density ρ(x), we follow in
Appendix B the idea of Hänggi and Jung behind the Unified Colored Noise Approximation
(UCNA) [77–79]: having derived the auxiliary dynamics (6), where the colored noise η is
replaced by a white noise χ , we formally identify a new variable ż := ẋ/u(x) to eliminate
the multiplicative nature of the noise and then neglect the generalized inertial term ∝ z̈ in
Eq. (6b). This procedure yields an effective overdamped equation for the particle position
x and finally, via the associated Smoluchowski equation for the time evolution of ρ(x, t), the
stationary density distributionρ(x) for a system with space-dependent activity. Our theoretical
method employs the vanishing-currents approximation and, as a consequence, allows us to
derive an effective equilibrium theory whose validity will be investigated numerically. In the
absence of thermal noise, the same (stationary) ρ(x) can be obtained using the path-integral
method proposed by Fox [80,81]. As already shown in the case of homogeneous swim velocity,
both the UCNA and the Fox approach give rise to the exact distribution in the small-persistence
regime, i.e., when the persistence time is smaller than the other typical times characterizing
the dynamics, while they only capture the qualitative behavior of the system in the opposite
regime (i.e., when the persistence time is comparable or larger than the other relevant time
scales). In particular, in the present case, τ needs to be compared to both the relaxation
time due to the potential and to the typical time induced by the spatial modulation of the
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swim-velocity profile (see Sec. 4.1 for an explicit discussion in the specific case of a harmonic
oscillator).

Here, we report only the main results while the details of the derivation can be found in
Appendix B. The whole stationary probability distribution reads:

p(x,v)≈ ρ(x)
p

det[Λ(x)]
p

2πu(x)
exp

�

−
v ·Λ(x) · v

2u2(x)

�

. (9)

We remark that the prefactor
p

det[Λ(x)]/(
p

2πu(x)) is the explicit factor normalizing the
conditional velocity distribution (i.e., at fixed position x). The function ρ(x) is approximated
by

ρ(x)≈
N

u(x)
det[Λ(x)]exp

�

1
γτ

∫ x

dy ·
Λ(y) · F(y)

u2(y)

�

(10)

with N being a normalization constant. Our expression for ρ(x) coincides with the spatial
density because it follows from integrating out the velocity in Eq. (9). The full distribution (9)
displays a multivariate Gaussian profile in the velocity, whose covariance matrix accounts for
the nontrivial coupling between velocity and position:

〈vv(x)〉= u2(x)Λ−1(x) . (11)

The covariance 〈vv(x)〉 is spatially modulated by u(x), which also occurs in the potential-
free case, so that, in the regions where the swim velocity is large, the particle moves faster.
Moreover, the external potential not only affects the velocity covariance through Γ (x), as in the
case u(x) = v0 (see for instance Refs. [82,83]), but contains an additional spatial dependence
through the coupling to the velocity gradient in the second term of Eq. (8).

We remark that a necessary condition to obtain predictions (9) and (10) (and, conse-
quently, (11)) is that the matrix Λ is positive definite, so that its inverse exists. This is the
main limitation of our theoretical approach, which is always suitable to describe the system
in the small-persistence regime (when τ is small compared to the other relevant time scales),
but can break apart in the large-persistence regime where the position-dependent part of the
matrix Λ(x) becomes dominant (with respect to I). As a consequence, our approach is sup-
posed to work (at least qualitatively) in any spatial dimension and for every value of τ if (i)
U(x) is a convex function, (ii) U(x) depends on a single Cartesian coordinate or has a positive
slope in a radial geometry and (iii) the gradients of U(x) and u(x) enclose a sufficiently large
angle α ≥ π/2. The requirements (i) and (ii) correspond to a positive definiteness of Γ (x),
given in Eq. (7), and are thus already necessary for u(x) = v0 [72], while (iii) arises in addition
from the second term in Eq. (8). If the two functions U(x) and u(x) violate either of the three
conditions (i-iii), our predictions cannot qualitatively reproduce the behavior of a system for
large enough τ.

Since the distribution ρ(x) from Eq. (10) can be interpreted as the effective density dis-
tribution of the system, the particle behaves as if it was subject to an effective potential,
V(x) := −τγv2

0 ln(ρ(x)), which explicitly reads:

V(x) = −v2
0

∫ x

dy ·
Λ(y) · F(y)

u2(y)
−τγv2

0 ln
�

v0
det[Λ(y)]

u(x)

�

(12)

up to a constant. This expression contains two terms, i) the spatial integral of the external force
modulated by the inverse of the covariance matrix of the velocity distribution, cf. Eq. (11),
and ii) the logarithm containing both the velocity modulation u(x) and the determinant of the
position-dependent matrix Λ−1(x). For a constant swim velocity, u(x) = v0, we can perform
the integral explicitly and the effective potential V(x) reduces to the known closed form found
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within the standard UCNA or Fox approach [72] since we neglect translational Brownian noise.
Note that the spatial dependence of the swim velocity gives rise to an additional potential term
with respect to the case u(x) = v0 contained in the expression for Λ(x). At equilibrium, when
u(x) = v0 and τ→ 0, the density reduces to the well known Maxwell-Boltzmann profile, since
Λ(x) becomes unity.

Finally, we remark that there exists a formal mapping of a system subject to a spatially
dependent swim velocity, represented by a multiplicative noise in Eq. (2a), to a system with
an effective external potential and additive noise. This mapping is mediated by a change
of variables, reported and discussed in appendix C for completeness. Such a trick has been
proven particularly helpful to find the explicit solution in a one-dimensional Run&Tumble
model without external potential [84]. In our case, the newly defined variable allows us to
identify the proper acceleration term which should be neglected to obtain the final UCNA
result. However, to describe physically meaningful coordinates, i.e., the position and velocity
of an AOUP, it is imperative to account for the notion of a swim velocity field u(x) in the
stationary distributions of an AOUP stated above.

3.2 Multiscale method for the full-space distribution

To check the validity of our predictions, at least in the small-persistence regime, we resort to an
exact perturbative approach in powers of the persistence time τ. For simplicity, the technique
is presented in the one-dimensional case because the generalization to higher dimensions is
technically more involved and does not provide additional insight. In addition, as in experi-
ments based on active colloids [19], we will consider a one-dimensional swim-velocity profile
u(x) in the remainder of this work, justifying our particular attention to the one-dimensional
case in the following presentation.

Our starting point is the following Fokker-Planck equation for the probability distribution
p(x , v, t):

∂t p =
Λ(x)
τ

∂

∂ v
(vp) +

u2(x)
τ

∂ 2

∂ v2
p−

F(x)
τγ

∂

∂ v
p− v

∂

∂x
p−

1
u(x)

�

∂

∂ x
u(x)

�

∂

∂ v

�

v2p
�

, (13)

associated to the dynamics (6) in one spatial dimension. Its solution is unknown for a general
potential U(x), even in the special case u(x) = v0. Therefore, one needs to resort to approx-
imation methods or perturbative strategies to obtain analytical insight. As shown in previous
works [85, 86], it is possible to obtain perturbatively both the full distribution p(x , v, t) and
the configurational Smoluchowski equation for the reduced space distribution ρ(x , t) follow-
ing the method developed by Titulaer in the seventies [87]: starting from the Fokker-Planck
equation (13) the velocity degrees of freedom can be eliminated by using a multiple-time-scale
technique. Physically speaking, the fast time scale of the system corresponds to the time in-
terval necessary for the velocities of the particles to relax to the configurations consistent with
the values imposed by the vanishing of the currents. The characteristic time of the slow time
scale is much longer and corresponds to the time necessary for the positions of the particles
to relax towards the stationary configuration.

In the present case, the perturbative parameter is the persistence time τ. Since we are
mainly interested in time-independent properties, we limit ourselves to compute the steady-
state probability distribution by generalizing the results of Refs. [88, 89] previously obtained
for the case u(x) = v0 (see also Ref. [90] for a more general expansion with an additional
thermal noise). For space reasons, the details of the calculations are reported in Appendix D.
Our main result is the following exact perturbative expansion of the distribution p(x , v) in
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powers of the parameter τ: [91]

p(x , v) =ρs(x)ps(x , v)

�

1+
τ

γ

�1
2

U ′′(x)−
v2

2u2(x)
U ′′(x) +

�

v2

2u(x)2
−

1
2

�

U ′(x)
u′(x)
u(x)

�

+
τ2

6γ
u(x)

�

v3

u3(x)
− 3

v
u(x)

�

�

U ′′′(x)−
∂

∂ x

�

U ′(x)
u(x)

u′(x)
��

�

+O(τ3)

(14)

where the normalized distribution ps(x , v) is given by

ps(x , v) =
N

p
2πu(x)

exp

�

−
v2

2u2(x)

�

, (15)

and the function ρs(x) reads

ρs(x) =N Λ(x)
u(x)

exp

�

−
1
γτ

∫ x

d y U ′(y)
Λ(y)
u2(y)

�

. (16)

with the normalization factor N and the prime as a short notation for the spatial derivative.
Already at order τ/γ our general result (14) for a nonuniform swim velocity contains an extra
term proportional to ∂xu(x), compared to the expansion derived in Ref. [88,89,91], which is
responsible for an additional coupling between position and velocity.

The product ρs(x) × ps(x , v) in Eq. (14) plays the role of an effective equilibrium-like
distribution, which is exact in the limit τ→ 0. The required expression (15) for ps(x , v) is the
exact solution of the potential-free active system with a spatially dependent swim velocity as
derived in Ref. [74]: it is a Gaussian probability distribution for the particle velocity v with
an effective position-dependent kinetic temperature provided by u2(x). The spatial density
ρs(x) from Eq. (16) corresponds to the UCNA result (10) in one dimension. Our previous
approximated expression (9) for p(x , v) is consistent with the full result (14) at first order in
the expansion parameter∝ τ. The first deviation between the two formulas occurs at order
O(τ2), where the exact expression for p(x , v) contains additional odd terms in v. The exact
density profile ρ(x) =

∫

dvp(x , v) = ρs(x) + O(τ2) deviates from the UCNA result beyond
linear orders in τ. As a consequence, we expect that our UCNA approximation, ρs(x), is exact
in the small-persistence regime, while it could only reproduce the qualitative behavior of ρ(x)
in the large-persistence regime.

4 The harmonic oscillator

4.1 Swim-velocity profile and external potential in one dimension

In this section, we present and investigate the interplay between a spatially modulated swim
velocity and an external confining potential in one spatial dimension. While, in Sec. 3.2, we
have shown that our analytical predictions from Eqs. (9), (10) and (11) are exact in the small-
persistence regime through analytical arguments, a numerical analysis is necessary to check
our approximations in the large-persistence regime.

To fix the form of the profile u(x) employed in our numerical study and theoretical treat-
ment, we take inspiration from experimental works on active colloids [19] and consider a
static periodic profile u(x) varying along a single direction, namely the x axis, so that:

u(x) = v0

�

1+α cos
�

2π
x
S

��

, (17)

where α < 1 and v0 > 0 so that u(x) > 0 for every x . The parameter α determines the
amplitude of the swim velocity oscillation while S > 0 sets its spatial period. As a consequence,
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the active particle is subject to the minimal swim velocity v0(1− α) and to the maximal one
v0(1 + α). This choice and the features of the AOUP allow us to consider directly a one-
dimensional system, essentially focusing only on the x component and neglecting the dynamics
of the other spatial coordinates.

We remind that, in the potential-free case [56], the system admits two typical length scales,
i.e., the persistence length v0τ and the spatial period, S, of the swim-velocity profile (17). In
other words, by rescaling the time by τ and the particle position by v0τ, the dynamics is con-
trolled by the dimensionless parameter v0τ/S and by the dimensionless parameter α quanti-
fying the amplitude of the swim-velocity oscillation. The external force F(x) then introduces
at least one additional length-scale, `, which depends on the specific nature of F , and, thus,
an additional dimensionless parameter, say `/(v0τ), related to the external potential. The last
dimensionless parameter controls the dynamics also in the case u(x) = v0 [92]. Now, we can
identify the small-persistence regime, where the self-propulsion velocity relaxes faster than
the particle position, with the criterion v0τ/S � 1 and `/(v0τ)� 1. Under the former con-
dition, we expect that the system behaves as its passive counterpart: if τ � S/v0 holds, the
self-propulsion behaves as an effective white noise. In the opposite case, when v0τ/S � 1,
the dynamics is strongly persistent and we expect intriguing nonequilibrium properties.

To proceed further with the numerical investigation, we consider a simple shape for the
confinement, i.e., the harmonic potential

U(x) =
k
2

x2 , (18)

where the constant k determines the strength of the linear force. The dimensionless parameter
associated with this external potential is thus kτ/γ, i.e., ` = v0τ

2k/γ. By observing that
the curvature of the potential is constant, the effective friction coefficient Λ(x) from Eq. (8)
becomes:

Λ(x) =
�

1+τ
k
γ

�

 

1+
αx

u(x)2
2π
S

sin
�

2π
x
S

� τ k
γ

1+τ k
γ

!

. (19)

As shown by Eq. (19), the two dimensionless parameters τk/γ and α play a similar role. In-
deed, they only determine the relative amplitude of the spatial modulation of Λ(x). When
either α or τk/γ vanish, the effective friction becomes constant and the coupling between ve-
locity and position disappears. Instead, when we approach both limits τk/γ→∞ and α→ 1,
the amplitude of the spatial oscillations becomes maximal. By varying the dimensionless pa-
rameter v0τ/S, on the other hand, one can explore the different properties of the system:
when v0τ/S grows, the spatial period of u(x) decreases and the position-dependent term of
Λ(x) becomes less relevant. To study the resulting behavior of the system in detail, we keep
fixed α= 0.9 and τk/γ= 1 and we change only v0τ/S to study the properties of the system.

4.2 Density distribution

Before considering the peculiar behavior of an AOUP with spatial-dependent swim velocity
and confined in a harmonic trap (18), it is useful to remind the reader that, in the absence
of motility landscape, the AOUP in a harmonic trap is described by a Gaussian density. The
spatial density profile, ρ(x), are shown in Figs. 1 and 2 for the spatial profile of u(x) given by
Eq. (17). The bottom panels show ρ(x) for different values of the spatial period S (through
the dimensionless parameter v0τ/S) of the swim velocity u(x), which we compare in the top
panels to the modulus |F(x)|/γ of the confining force F(x) = −U ′(x) as a reference.

In the small-persistence regime, v0τ/S� 1 (see panels (a) and (c) of Fig. 1), the unimodal
density distribution is fairly described by expanding the UCNA solution (10) in powers of x/S,
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Figure 1: Density distributions. Panels (a) and (b): swim-velocity profile u(x) for
different values of S (colored curves), compared with the modulus of the linear force
profile, |F(x)| = −k|x |/γ (black curve) as a reference. The colored stars are placed
at the first cross point between u(x) and F(x)/γ. Panels (c) and (d): spatial density
profile, ρ(x), for different values of S. Points are obtained by numerical simulations
while solid lines by plotting the theoretical prediction (10) (that reduces to Eq. (16)
in one dimension with Λ(x) given by Eq. (19)). The integral occurring in Eq. (16)
has been performed numerically. Panels (a), (c) and (b), (d) share the same legend.
Simulations are realized in one spatial dimension with τk/γ= 1 and α= 0.9.

obtaining:

ρ(x)∼ exp

 

−
1+τ k

γ

(1+α)2
k
v2

0

x2

2

!

. (20)

In the expression (20), we have neglected the terms proportional to x2/S2, x4/S2 and all
higher-order terms in power of ∼ 1/S. Remarkably, even in this crude approximation, we see
from the factor (1 + α)2 that the oscillations of the swim velocity lead to a decrease of the
second moment 〈x2〉 of ρ(x) compared to the homogeneous case u(x) = v0. This prediction
is consistent with previous results obtained in the absence of an external potential, where the
swim-velocity oscillations produce the decrease of the long-time diffusion coefficient [74] (see
also Ref. [93]). In this regime, the spatial pattern u(x) produces an effective potential with
increasing stiffness for increasing spatial modulation. For higher v0τ/S, the distribution starts
developing non-Gaussian tails, which are still well-described by including higher-order terms
in the UCNA expansion (20).

When increasing v0τ/S further (see panels (b) and (d) of Fig. 1), ρ(x) becomes a bimodal
distribution with two peaks symmetric to the origin, as in a system confined in a double-well
potential. This effect is absent in the case u(x) = v0 where the AOUP density distribution in a
harmonic potential always has a Gaussian shape [60,94–96]. For a position-dependent swim
velocity, the comparison between the analytical result (10) (that reduces to Eq. (16) in one di-
mension) and the numerical simulations still reveals a good agreement: in particular, Eq. (10)
is able to predict the observed bimodality of the distribution. To explain the occurrence of this
bimodality in the shape of ρ(x), we can use an effective (but rather general) force-balance
argument in Eq. (2a). This argument can be applied to the present intermediate-persistence
regime, v0τ/S ∼ 1 (or also for v0τ/S� 1 discussed later), where the self-propulsion vector η
in the active force can be considered to be roughly constant for typical times t ® τ. Since the
variance of η is unitary, the most likely value assumed by the self-propulsion velocity at point
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Figure 2: Density distributions. Panels (a) and (b): swim-velocity profile u(x) for two
different values of S (colored curves), compared with the modulus of the linear force
profile, |F(x)| = −k|x |/γ (black curve) as a reference. Panels (c) and (d): spatial
density profile, ρ(x), for different values of S. Solid colored lines (blue in panel (c)
and red in panel (d)) are obtained by numerical simulations while dashed black lines
by plotting the theoretical prediction (10) (that reduces to Eq. (16) in one dimension
with Λ(x) given by Eq. (19)). The integral occurring in Eq. (16) has been performed
numerically. Grey rectangles are drawn in the regions where Eq. (10) is not defined,
say when Λ(x) < 0 (see the main text for more details). Panels (a), (c) and (b),
(d) share the same legend. Simulations are realized in one spatial dimension with
τk/γ= 1 and α= 0.9.

x is simply u(x) (in absolute value). For this reason, it is generally unlikely to find the particle
in regions with u(x) < |F(x)|/γ, because there the particle’s self propulsion is not sufficient
to climb up the potential gradient. Moreover, in the spatial points where u(x)> |F(x)|/γ, the
active particle does not get stuck on average because its high self-propulsion velocity allows
for its directed motion until u(x) = |F(x)|/γ is fulfilled. When this force balance occurs, the
particle can explore further spatial regions only because of large (and rare) fluctuations of
η. This reasoning is confirmed by inspecting Fig. 1 for different fixed values of v0τ/S. It is
evident from the dashed arrows that the peaks of the distribution in Fig. 1(d) coincide with
the intersection between the modulus |F(x)|/γ of the external force (black curve) and u(x)
(colored curves) in Fig. 1(c).

Starting from the theoretical result (10), we can predict the critical value Sc at which the
distribution becomes bimodal, by simply requiring that d2/dx2ρ(x) = 0 (at x = 0), obtaining:

S2
c

v2
0τ

2
= (2π)2α(1+α)





1+ 3τ k
γ

�

1+τ k
γ

�2





γ

kτ
. (21)

In general, we predict that the value of Sc/(v0τ) increases with increasing α (recall that
0 < α < 1) and is a decreasing function of τk/γ. This is consistent with our physical in-
tuition: larger oscillations (i.e., larger α) facilitate the transition to a bimodal shape. Indeed,
the larger α, the smaller the minimal self-propulsion velocity, that hinders the particle’s ability
to come back to the origin. Instead, the increase of τk/γ gives rise to the opposite behavior:
the larger τk/γ, the steeper the effective confining trap. As a consequence, the active particle
needs larger fluctuations of η to reach spatial regions where u(x) assumes low values which
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compete with the external force. Specifically, for the chosen parameters α= 0.9 and τk/γ= 1,
Eq. (21) predicts the onset of bimodality for v0τ/S > 1/8. From Fig. 1, we also observe that
the increase of v0τ/S beyond this threshold enhances the bimodality showing two symmetric
peaks with increasing height but occurring at spatial positions which get closer.

In the large-persistence regime v0τ/S� 1 (see Fig. 2), we observe the emergence of many
symmetric peaks in ρ(x). Their positions are still determined by the balance between u(x)
and |F(x)|/γ, and, in this case, roughly coincide with the minima of u(x) close to the origin
(i.e., the minimum of U(x)). As shown in Fig. 2 (a), u(x) first crosses |F(x)|/γ almost in
its first minima (at x/v0τ ≈ ±0.15) for v0τ/S = 4. This implies that small fluctuations of
the self-propulsion velocity allows the particle to explore spatial regions which are even more
distant from the potential minimum, so that it also accumulates at the second crossing point
(at x/v0τ≈ 0.4). According to Fig. 2 (c), the height of these secondary peaks is smaller than
that of the primary ones because the particle remains trapped at the first balance points for
most of the time, while only on rare occasions its swim velocity is sufficient to further climb up
the potential gradient. In Fig. 2 (d), for an even larger value of v0τ/S = 10, we observe that
the height of the peaks near the origin is lower than that of the successive peaks. In this case,
Fig. 2 (b) shows that the minima of u(x) closest to the origin are still larger than |F(x)|/γ, so
that (most of the time) the particle has a sufficiently large self-propulsion velocity to go further
until entering the spatial region where the first intersection of u(x) and |F(x)|/γ occurs. We
conclude that, even in the case of a harmonic potential, the oscillation of the swim velocity
allows the AOUP to climb up the potential barrier and accumulate preferably in spatial regions
(corresponding to minima of u(x)), which are further away from the origin.

Finally, we note that in the large-persistence regime, the UCNA prediction (10) (or Eq. (16)
in one-dimension) for the spatial distribution fails. This occurs because of the presence of spa-
tial regions where the effective friction Λ(x), given by Eq. (19), becomes negative (see the
gray-shaded regions in Fig. 2(c) and (d)). This implies that also the corresponding approx-
imation for ρ(x) can assume negative values. This failure resembles the one of the UCNA
(or the Fox approach) for the standard AOUP model with u(x) = v0 confined in a nonconvex
potential [72]. In that case, the strongly non-Gaussian nature of the system is at the basis of
new intriguing phenomena, such as the occurring of effective negative mobility regions [97],
the overcooling of the system [98] and the violation of the Kramers law for the escape prop-
erties [99, 100]. We expect that our model could display a similar phenomenology and that
such problems can be treated by using similar theoretical techniques [97,101–103]. However,
we stress that the generalized UCNA still accurately predicts the positions of the main peaks
in Fig. 2 (c), although in Fig. 2 (d) there emerge additional smaller peaks further away from
the origin, which are absent in simulations. The appearance of those fake peaks is reminiscent
of the overestimated wall accumulation predicted by UCNA for u(x) = v0.

4.3 Velocity distribution

A potential-free AOUP in a motility landscape and an AOUP with constant swim velocity con-
fined by harmonic traps are both described by Gaussian distributions of the velocity. To il-
lustrate the new properties arising from the interplay between these two fields, we focus on
the dependence of the full joint probability density p(x , v) on the velocity, shown in Fig. 3 for
some representative values of the particle’s position x . Moreover, we choose three different
values of S/(v0τ) to explore the three distinct regimes observed in Sec 4.2. For each regime,
we report once again the density distribution ρ(x) in panels (a), (b) and (c), where colored
bars mark the regions for which we calculate p(x , v) as a function of v in panels (d), (e), (f),
(g), (h).

In the regime of small persistence, (v0τ)/S � 1, the shape of p(v, x) is Gaussian, inde-
pendently of the position x (Fig. 3 (d)). This result fully agrees with the prediction (9) (that
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Figure 3: Velocity distributions. Panels (a), (b) and (c): simulated density distribu-
tion ρ(x) for S/(v0τ) = 32,2, 1/4, respectively, as a reference. Colored rectangles
are drawn in correspondence of the spatial regions used to calculate the velocity dis-
tribution in the other panels. Panels (d), (e), (f), (g) and (h): velocity distribution
p(v, x) as a function of v calculated at fixed positions x = x̄ v0τ according to the leg-
end. Panel (d) is calculated at S = 32, panels (e) and (f) at S = 2 and panels (g) and
(h) at S = 0.25. Colored symbols and lines are obtained by numerical simulations
and solid black lines show the theoretical prediction (9) if applicable (the theory
yields a one-dimensional Gaussian and requires a positive definiteness of Λ(x) given
by Eq. (19)). Simulations are realized in one spatial dimension with τk/γ = 1 and
α= 0.9.

simply reduces to a one-dimensional Gaussian) as revealed by the comparison between col-
ored data points and black solid lines in Fig. 3 (d). As predicted by the position-dependent
variance in Eq. (11), different positions x come along with a change in the width of the velocity
distribution.

In Fig. 3 (e) and (f), the regime of intermediate persistence, v0τ/S ∼ 1, is investigated,
which displays a bimodality in the density distribution. Here, we compare p(x , v) calculated
in the vicinity of a peak of ρ(x) to the velocity profile near the local minimum of ρ(x) (close
to the origin). In the former case, the distribution p(x , v) displays an almost Gaussian shape in
agreement with Eq. (9), while in the latter case, it deviates from the theoretical prediction due
to its non-Gaussian nature. In particular, the shape of p(x , v) becomes asymmetric in v and
develops non-Gaussian tails. While the prediction (9) cannot account for the non-Gaussianity
induced by the interplay of confinement and spatially modulating swim velocity, we remark
that its quality near the regions where the particle preferably accumulates is still very good.
This conclusion resembles the one obtained in Ref. [92], where an AOUP (with u(x) = v0) has
been studied in a single-well anharmonic confinement.

Finally, the large-persistence regime, v0τ/S � 1, where the density distribution has mul-
tiple peaks also gives rise to a rich phenomenology of the stationary velocity profile, as shown
in Fig. 3 (g) and (h). In the spatial regions for which Λ(x) > 0, i.e., where the particles ac-
cumulate, the velocity distribution p(x , v) (at fixed x) is again well described by the Gaussian
distribution with position-dependent variance given by Eq. (9) (see Fig. 3 (g)), as in the case
v0τ/S ® 1. Instead, in the spatial regions where Λ(x) < 0, i.e., between the primary and
the secondary peaks (see also Fig. 2 (c)), the distribution displays a non-Gaussian shape (see
Fig. 3 (h)). Compared to the case v0τ/S ∼ 1, the non-Gaussianity is much more evident due to
the occurrence of a bimodal behavior in the velocity distribution. In more detail, upon shifting
the coordinate x in the first argument of p(x , v) closer to the origin (Fig. 3 (g) and (h)), we ob-
serve that, starting from a nearly Gaussian shape centered at v = 0 (pink curve), the main peak
moves toward v < 0 and a second small peak starts growing for v > 0 (brown curve). Shifting
again x , the second peak becomes dominant (yellow curve) and moves closer toward v = 0
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Figure 4: Spatial profiles of the kinetic temperature. Panels (a) and (b): simulated
density profile ρ(x) for different values of the dimensionless parameter v0τ/S as a
reference. Panels (c) and (d): kinetic temperature 〈v2(x)〉 with the same color leg-
end. In particular, panels (a) and (c) show the small-persistence regime, v0τ/S ≤ 1,
while panels (b) and (d) display the intermediate-persistence and large-persistence
regimes, namely v0τ/S ∼ 1 and v0τ/S ≥ 1, respectively. Colored symbols (and
dotted lines drawn as a guide to the eye) are obtained from numerical simulations
while solid colored lines show the theoretical prediction (11) (in the regions where
Λ(x), given by Eq. (19), is positive definite). Simulations are realized in one spatial
dimension with τk/γ= 1 and α= 0.9.

until the distribution is again described by a Gaussian (green curve). . This phenomenology
resembles the one observed in the case of an AOUP with u(x) = v0 in a double-well poten-
tial [97]. Also in the latter case, the velocity distribution at fixed position exhibits bimodality
in the spatial regions where the effective friction coefficient Λ(x) ' Γ (x) becomes negative,
although this effect is then induced by the negative curvature of the potential. Intuitively, par-
ticles that are stuck in an accumulation region placed far from the potential minima (where
u(x)η balances the confining force) could move back towards the center or other minima when
their active force varies because of the noise fluctuations. For example, when η changes sign
(or |η| decreases), the particle comes back leftward or rightward (depending on the sign of η)
moving with a large velocity induced by the deterministic force (that is particularly large far
from the potential minimum) until to reach a new accumulation region. This simple argument
provides an additional intuitive explanation for the bimodality of the velocity distribution.

4.4 Spatial profile of the kinetic temperature

To emphasize the dynamical effects due to the spatial modulation of the swim velocity, we
focus on the profile of the kinetic temperature defined as the variance of the particle velocity,
〈v2(x)〉. We show 〈v2(x)〉 as a function of x in Fig. 4 for values of v0τ/S spanning all regimes
from small (panel (c)) to intermediate and large persistence (panel (d)), see also panels (a)
and (b) for a direct comparison with the corresponding density profiles.

For small values of v0τ/S� 1, the spatial profile of the variance, 〈v2(x)〉, is rather flat and
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attains its maximum value at x = 0, i.e., the position of the potential minimum (see Fig. 4 (c)).
When v0τ/S increases, e.g., due to a shorter periodicity S of the swim-velocity u(x), 〈v2(x)〉
decreases upon moving away from the potential minimum. This is consistent with the scenario
observed in Fig. 4 (a): the particles accumulate in the regions where they move slowly and the
velocity variance is small. Such a result agrees with the observed behavior in the potential-free
case (such that u(x) coincides the particle velocity), where the particles accumulate in regions
corresponding to the minima of u(x), according to the law ρ(x)∼ 1/u(x). In this regime, the
comparison between numerical data and the theoretical prediction (11) (with Λ(x) given by
Eq. (19)) shows a good agreement.

For larger values of v0τ/S (large-persistence regime), the velocity variance shows a more
complex profile (see Fig. 4 (d)), which resembles the oscillating shape of u(x). In particular,
〈v2(x)〉 is very small near the peaks of the density distribution, while it assumes larger values in
the regions where the density is very small and the probability of finding a particle is very low.
This finding is consistent with the fact that active particles accumulate in the regions where
the velocity variance is small and the observation of an increasing number of such regions
for increasing v0τ/S. Finally, in this regime, the prediction (11) reproduces quite well the
behavior near the origin but fails further away from it, specifically, in the regions where the
effective friction displays negative values, Λ(x)< 0.

5 Conclusion

In this paper, we have investigated the stationary behavior of an active particle subject to two
competing spatially dependent drivings: the self-propulsion velocity and the external force.
While the two mechanisms were already investigated separately, to the best of our knowledge,
this is the first time that their interplay has been considered. Starting from a Fokker-Planck
description of the particle’s dynamics in our generalized AOUP model [56], we have developed
a theoretical treatment, which provides the steady-state distribution (9) of both positions and
velocities as a function of the input potential and of the swim-velocity profile. The theory
presented here contains as special cases both the UCNA describing the time evolution of dis-
tribution of positions and velocities of an AOUP with constant swim velocity in an external
field [59, 89], and the recent theory of a free AOUP driven by an inhomogeneous propul-
sion force, which is exact in the stationary case [74]. Our theoretical method is exact in the
small-persistence regime, where it is consistent with the results obtained through an exact per-
turbative method, and also provides a useful approximation to qualitatively predict the shape
of the distributions in the large-persistence regime.

Specifically, we have applied our theory to a one-dimensional AOUP in a sinusoidal motil-
ity landscape subject to a harmonic potential, observing intriguing effects, which arise from
the interplay between these two fields. Indeed, it is known that an AOUP with constant swim
velocity in a harmonic potential is described by Gaussian distributions for position and veloc-
ity [60, 64] while the velocity distribution of a potential-free AOUP in a motility landscape is
described by a Gaussian velocity distribution [74]. The joint effect of harmonic confinement
and motility landscape revealed an intriguing scenario determined by the joint action of the
self-propulsion velocity gradient and the external force. While, in the regime of small persis-
tence, both the density and the velocity distributions are bell-shaped and well-approximated
by Gaussians, we predict that, as the persistence length becomes comparable with the spa-
tial period of the swim velocity, a transition from a unimodal to a bimodal density occurs,
also accompanied by strong non-Gaussian effects in the velocity distribution. Interestingly,
in the large-persistence regime, as the density shows multi-modality, the velocity distribution
becomes bimodal in the spatial regions between two successive peaks of the density.
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Despite our particular attention to one spatial dimension, we recall that we practically ob-
tain the same results for a planar geometry in higher spatial dimensions and that we expect
that our theory is also suitable for sufficiently well-behaved potentials and velocity fields in
other geometries (compare the discussion in Sec. 3.1). While, for active colloids, the emer-
gence of an additional effective torque due to the spatial modulation of the swim velocity
could be responsible for an even more complex phenomenology [16,19], we outline that our
theory should be suitable in the case of engineered bacteria whose velocity profile can be
manipulated by external light [25, 27]. From a pure theoretical perspective, our techniques
may also be extended and applied to more complex dynamics, for instance accounting for the
presence of thermal noise [72, 75], a spatially dependent torque [16, 19], or additional com-
peting nonconservative force fields like a Lorentz force [104]. A final challenging research
point concerns the dynamical properties of our model and, in particular, the extension of the
theory to time-dependent swim-velocity profiles u(x , t), for instance in the form of traveling
waves [23,24,49].

In conclusion, we have shown that the interplay between an external force and a spatially
modulating swim velocity can be used to tune the behavior of a confined active particle, for
instance by locally increasing the kinetic temperature or by forcing the particles to accumulate
in particular spatial regions with different probability. We demonstrated that by combining
these two physically distinct effects, it is possible to generate complex density patterns through
relatively simple fields, as in our example a harmonic trap and a periodic velocity landscape.
In practice, realizing such particle distributions through a single external field is surely more
involved due to the required complex form of the potential. The possibility to fine-tune the
stationary properties of active particles in experimental systems by adapting both the external
force and the swim velocity opens up a new avenue for future applications and developments.
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A Derivation of the auxiliary dynamics (6)

To derive the auxiliary dynamics (6), we start from Eq. (2a) choosing Dt = 0. We recall that
following Ref. [75] it is possible to generalize the procedure also to include the more general
case with Dt > 0. At first, we take the time-derivative of Eq. (2a), obtaining:

γẍ= −∇∇U · ẋ+ γη
�

∂

∂ t
+ v · ∇

�

u(x, t) + γu(x, t)η̇ . (22)
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By defining the v= ẋ as the particle velocity and replacing ḟa with the dynamics (2b), we get:

γv̇=−∇∇U · v+ γη
�

∂

∂ t
+ v · ∇

�

u(x, t) + γu(x, t)

�

−
η

τ
+
p

2
p
τ
χ

�

. (23)

Finally, by replacing η in favor of v and x, taking advantage of the relation (2a), we obtain
the dynamics (6).

We remind that this sequence of operation is fully equivalent to performing a change of
variables, by considering that the dynamics (2a) is a deterministic relation that allows us to
replace η with x and v. The Jacobian matrix J of this transformation a= (x,η)→ b= (x′,v)
with x′ = x reads:

J = ∂ b
∂ a
=

�

∂ x′

∂ x
∂ x′

∂η
∂ v
∂ x

∂ v
∂η

�

=

�

1 0
0 u(x)

�

. (24)

The determinant of this matrix, det[J ] = u(x), yields the Jacobian of the transformation as
stated in Eq. (4).

B Derivation of predictions (9) and (10)

To predict the shape of the stationary probability distributions, p(x,v) and ρ(x), stated in
Sec. 3, we start from the dynamics in the variables x and v, namely Eq. (6), for a static profile
of the swim velocity, u(x). Switching to the Fokker-Planck equation for p = p(x,v, t), we
obtain the exact time evolution:

∂t p =∇v ·
�

Γ

τ
· vp+

u2(x)
τ
∇v p

�

− v · ∇p+∇ ·
∇U
γτ

p−∇v ·
[γv+∇U]
γu(x)

(v · ∇)u(x) , (25)

where ∇ and ∇v are the vectorial derivative operators in position and velocity space, respec-
tively. Balancing the diffusion term (proportional to the Laplacian of v) and the other effective
friction terms (say the one linearly proportional to v), we get the approximate condition [82]:

0=∇v ·
�

Λ

τ
· vp+

u2(x)
τ
∇v p

�

(26)

with the effective friction matrix

Λ(x) = I+
τ

γ
∇∇U(x)−

τ

γ
∇U(x)

∇u(x)
u(x)

, (27)

that has been defined in Eq. (8). The condition (26) corresponds to requiring that the diver-
gence of the irreversible (with respect to time-reversal transformations) currents is zero. To
proceed further, we require that the irreversible currents vanish, i.e., that the expression in
the brackets of Eq (26) is zero in the same spirit of Ref. [89]. This choice is consistent with
an effective equilibrium approach and allows us to find the explicit approximate steady-state
solution for p(x,v) as

p(x,v)∝ g(x)exp
�

−
v ·Λ(x) · v

2u2(x)

�

, (28)

where g(x) is a function purely depending on x, which is still to be determined. Expressing
g(x) = ρ(x)

p

det[Λ(x)]/(
p

2πu(x)) without loss of generality, we obtain Eq. (9), where ρ(x)
represents the density of the system derived below.

To determine the function ρ(x), we first identify the acceleration term [78]

u(x)
d
d t

v
u(x)

= v̇−
v

u(x)
(v · ∇)u(x) (29)
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in the dynamics (6) with ∂ u(x)/∂ t = 0, see appendix C for more details. Assuming that the
velocity relaxes faster than the position (as for example in the small-persistence regime) allows
us to neglect both these terms in Eq. (6), obtaining the following overdamped equation:

ẋ= −
1
γ
Λ−1 · ∇U +

p
2τu(x)Λ−1 ·χ . (30)

From this dynamics, it is convenient to switch to the effective Smoluchowski equation for the
density of the system, ρ(x, t), and use the Stratonovich convention, obtaining:

∂ ρ

∂ t
=
∂

∂ x i

�

1
γ
Λ−1

i j

�

∂ U
∂ x j

�

ρ +τuΛ−1
ik
∂

∂ x j

�

Λ−1
jk uρ

�

�

. (31)

Here and in what follows, we have explicitly written Latin indices for the spatial components
of vectors and matrices and adopted also the Einstein’s convention for repeated indices, for
convenience.

To proceed, we assume the zero-current condition (as in Refs. [59, 105]), obtaining an
effective equation for the stationary density ρ(x):

1
γ
Λ−1

i j

�

∂ U
∂ x j

�

ρ +τuΛ−1
ik
∂

∂ x j

�

Λ−1
jk uρ

�

= 0 . (32)

Multiplying by ΛlhΛhi and summing over repeated indices, we get the following relation after
some algebraic manipulations

1
γτu2

Λl j
∂ U
∂ x j

+Λlk
∂

∂ x j
Λ−1

jk +
ΛlkΛ

−1
jk

uρ
∂

∂ x j
[uρ] = 0 , (33)

whose solution for the density distribution ρ(x) reads:

ρ(x)≈
N

u(x)
exp

�

1
γτ

∫ x

dy ·
Λ(y) · F(y)

u2(y)
+

∫ x

dy ·Λ(y) · ∇ ·Λ−1(y)

�

. (34)

Finally, by assuming a planar symmetry for both u and U , we have ∇ · Λ−1 ≡ êx · ∂Λ−1/∂ x ,
where êx denotes the unit vector corresponding to the coordinate x , and can therefore use the
explicit Jacobi relation

Λ · êx ·
∂Λ−1

∂ x
= −

1
det[Λ]

êx
∂ det[Λ]
∂ x

= −êx
∂ lndet[Λ]

∂ x
(35)

for the determinant detΛ of a matrix Λ. We remark that the general relation

Λ · ∇ ·Λ−1 = −∇ lndet[Λ] (36)

only holds in the above planar case (35) or for a constant swim velocity u(x ) = v0, see also
appendix B of Ref. [72]. However, since there are no conceptual differences, we can plug the
approximation (36) into the prediction (34) to obtain the compact representation (10) of ρ(x )
in the main text.

The same stationary condition (33) can be obtained using the Fox approach [81] (when
generalized to multiple components [106, 107]), while the corresponding time evolution dif-
fers from the UCNA dynamics (31) by the additional occurrence of the factors Λ−1

i j and Λ−1
ik

therein. Note that, if we do not neglect the thermal Brownian noise in Eq. (2), also the sta-
tionary predictions of Fox and UCNA differ, even for a spatially constant swim velocity [72].
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C Effective change of variables for multiplicative noise

In this appendix, we briefly discuss a change of variables [78,84] which allows us to formally
absorb the effect of the spatially dependent swim velocity into an effective force. Since u(x) is
positive definite, we can define a new variable x̃ such that

˙̃x :=
ẋ

u(x)
. (37)

Substituting into Eq. (3) yields

˙̃x=
γ−1F(G−1(x̃))

u(G−1(x̃))
+η , (38)

where G−1(x̃) denotes the inverse of the bijection G(x) = x̃ mediating the variable transform
x→ x̃.

There are two possible ways of interpreting Eq. (38). First, on the right-hand side, we
can identify an effective external force and an additive noise. It is thus possible to argue that
the multiplicative nature of the swim-velocity field u(x) can be absorbed into a convoluted
expression of an external potential (and implicitly in the definition of x̃). However, since the
new coordinate x̃ has the dimension of time rather than length, this is only a mathematical
analogy, which, owing to the simpler form might be useful to find an explicit solution as,
for example, in the case of a Run&Tumble model in one dimension [84]. Transforming back
to the original coordinates explicitly requires the notion of the swim velocity u(x), compare
Eq. (37). Second, multiplying both sides of Eq. (38) with u(x), we recover an equation with a
multiplicative noise in which the combined term u(x) ˙̃x has a proper dimension of a velocity.
Moreover, upon first calculating the second time derivative ¨̃x and then multiplying with u(x),
we are able to identify the acceleration term which can be neglected to obtain the UCNA [78],
compare Eq. (29). In other words, the physical interpretation of our results is the same whether
or not we perform such a change of variables.

D Multi-scale technique: derivation of Eq. (14)

In this appendix, we derive the perturbative result (14) for the probability distribution p(x , v)
in the one-dimensional active system described by the Fokker-Planck equation (13). We adopt
the multiple-time-scale technique, which is designed to deal with problems with fast and slow
degrees of freedom. In the regime of small persistence time (where τ is the smallest time
scale of the system), the dynamics (13) exhibits the separation of time scales: in this case,
the particle velocity rapidly arranges according to its stationary distribution and the spatial
distribution evolves on a slower time scale.

To derive the multiple-time expansion, let us introduce the following dimensionless vari-
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ables:

t̃ = t
v0

S
, (39)

X =
x
S

, (40)

V =
v
v0

, (41)

F̃(X ) = −
S

v2
0τγ

∂ U(x)
∂ x

, (42)

Γ̃ (X ) = 1−τ2 v2
0

S2

∂ F̃(X )
∂ X

, (43)

w(X ) =
u(x)

v0
, (44)

and the small expansion parameter ζ−1∝ τ, where

ζ=
S
τv0

(45)

is the ratio between the spatial period of the swim velocity S and the persistence length of
the self-propulsion velocity v0τ. With our choice, a large (small) value of ζ corresponds to
the small-persistence (large-persistence) regime. Now, we express the Fokker-Planck equa-
tion (13) in these variables and find:

∂ P(X , V, t̄)
∂ t̄

+ V
∂

∂ X
P + F̃(X )

∂

∂ V
P +

1
ζ

R(X )
∂

∂ V
V P

+
1

w(X )
∂

∂ X
w(X )

∂

∂ V
(V 2P) = ζLFPP , (46)

where we have further introduced the operator

LFP ≡
∂

∂ V

�

V +w2(X )
∂

∂ V

�

(47)

and the function

R(X )≡
�∂ F̃
∂ X
− F̃(X )

1
w(X )

∂

∂ X
w(X )

�

, (48)

for convenience.
To develop our perturbative solution, we notice that the local operator LFP is proportional

to the inverse expansion parameter ζ in Eq. (46). We find that LFP has the following integer
eigenvalues:

ν= 0,−1,−2, . . . (49)

and the Hermite polynomials as eigenfunctions:

Hν(X , V ) =
(−1)ν
p

2π
(w(X ))(ν−1) ∂

ν

∂ V ν
e−

V2

2w2(X ) . (50)

Using these basis functions, we obtain the ansatz to write the solution of the partial differential
equation as a linear combination:

P(X , V, t̃) =
∞
∑

ν=0

φν(X , t̃)Hν(X , V ) . (51)
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Upon substituting the expansion (51) in Eq. (46) and replacing LFP by its eigenvalues, we
obtain the equation:

−ζ
∑

ν

νφνHν =
∑

ν

∂ φν
∂ t̃

Hν

+
∑

ν

V Hν
∂

∂ X
φν +

∑

ν

φνV
∂

∂ X
Hν + F̃

∑

ν

φν
∂

∂ V
Hν

+
w′

w

∑

ν

φν
∂

∂ V
V 2Hν +

1
ζ

R
∑

ν

φν
∂

∂ V
V Hν , (52)

from which we must determine the unknown functions φν(x , t).
Now, instead of truncating arbitrarily the infinite series in Eq. (52) at some order ν, we

consider the multiple-time expansion which orders the series in powers of the small parameter
1/ζ. In such a way we perform an expansion near the equilibrium solution. To this end, each
amplitude φν (apart from φ0(X , t̃) which is of order ζ0) is expanded in powers of 1/ζ as:

φν(X , t̃) =
∞
∑

s=0

1
ζs
ψsν(X , t̃) . (53)

Then, we replace the actual probability distribution P(X , V, t̄) by an auxiliary distribution
Pa(X , V, t̄0, t̄1, t̄2, . . .), which reads:

Pa =
∞
∑

s=0

1
ζs

∞
∑

ν=0

ψsν(X , t̄0, t̄1, t̄2, . . .)Hν(X , V ) . (54)

This distribution depends on many time variables { t̄s}, associated with the perturbation order
s, which are defined as t̄s = t̄/ζs. The time derivative with respect to t̄ is then expressed as
the sum of partial time-like derivatives:

∂

∂ t̄
=
∂

∂ t̄0
+

1
ζ

∂

∂ t̄1
+

1
ζ2

∂

∂ t̄2
+ . . . . (55)

Substituting the expansions (53) and (55) into Eq. (52) one obtains at each order 1/ζs and
for each Hermite function an equation involving the amplitudes ψsν(X , t̃). The perturbative
structure of the resulting set of equations is such that the amplitudesψsν(X , t̃) can be obtained
by the amplitudes of the lower order (s− 1). In particular, we find the following equation for
ψ00 = φ0

∂ψ00(X , t̄)
∂ t̃

=
1
ζ

∂

∂ X

�

w(X )
∂

∂ X

�

w(X )ψ00

�

−F̃(X )ψ00 +
1
ζ2

w(X )
∂

∂ X

�

w(X )Rψ00

��

, (56)

whose steady-state solution reads

ψ00(X ) =
N

w(X )

�

1−
1
ζ2

R(X )
�

× exp

�

∫ X

d y
F̃(y)

w2(y)

�

1−
1
ζ2

R(y)
�

�

, (57)

where N is a normalization factor. In our perturbative procedure, all the remaining amplitudes
are expressed in terms of the pivot functionψ00(X ). The steady-state amplitudes of the higher-
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order Hermite polynomials are given by:

ψ22 =
1
2

R(X )ψ00 (58)

ψ33(X ) = −
1
6

w(X )ψ00(X )
∂

∂ X
R(X ) (59)

ψ42 = −
3
2
∂

∂ X
[w(X )ψ33] + R(X )ψ22 (60)

ψ44(X ) = −
1
4

� ∂

∂ X
[w(X )ψ33]− R(X )ψ22

�

, (61)

where we have reported only the nonvanishing coefficients for s ≤ 4. Note that, if ν > s, the
coefficients ψsν are always zero.

Once Eq. (57) and the coefficients of the double series (54) have been determined, one
returns to the original dimensional variables and obtains the perturbative result for p(x , v)
reported in Eq. (14).
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