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Abstract

Using two suitable benchmark scenarios that satisfy the experimental con-
straints on the total decay width of the 125GeV Higgs boson, we determine
the bounds on light CP-odd spin-0 states in the 2HDM+a model that arise
from existing LHC searches. Our work should prove useful for 2HDM+a in-
terpretations of future ATLAS, CMS and LHCb searches for pseudoscalars
with masses below the electroweak scale.
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1 Motivation

The so-called 2HDM+a model [1–4] is the simplest gauge-invariant and renormalisable
extension of the simplified pseudoscalar dark matter (DM) model [5,6]. It includes a DM
candidate in the form of a Dirac fermion that is a singlet under the Standard Model (SM)
gauge group, four two-Higgs-doublet model (2HDM) spin-0 states and an additional CP-
odd mediator that provides the dominant portal between the dark and the visible sector.
Since for models with pseudoscalar mediators the DM direct detection (DD) constraints are
weaker compared to models with scalar mediators, such models are more attractive from
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an astrophysical point of view since they often allow to reproduce the observed DM relic
abundance in a wider parameter space and with less tuning. These features admit a host
of missing transverse momentum (Emiss

T ) signatures at colliders which can be consistently
compared and combined, making the 2HDM+a model one of the pillars of the LHC DM
search programme [7–23].

Besides Emiss
T searches also direct searches for spin-0 states in SM final states can be

used to explore and to constrain the 2HDM+a parameter space. While the latter subject
has received some attention [4, 8, 24–27] mostly focusing on heavy non-SM Higgses, the
goal of this work is to study in more detail the case of a light pseudoscalar a. In particular,
we will discuss in Section 2 in which case searches for exotic decays of the 125 GeV Higgs
of the form h → aa → 4f [28–41] as well as measurements of dimuon cross sections
targeting pp → a → µ+µ− [29, 42–50] provide valuable probes of the parameter space
of the 2HDM+a model at the LHC. Our general findings will be illustrated in Section 3
by considering two suitable parameter benchmark scenarios as examples. For these two
benchmark choices we derive the constraints from existing LHC searches and compare
them to the regions in parameter space that allow to obtain the correct DM relic density
assuming standard thermal freeze-out. The constraints from DM DD experiments are also
discussed. We commence without further ado.

2 Theoretical framework in a nutshell

Since comprehensive discussions of the structure of the 2HDM+a model can be found in
the articles [4,11,21,22] to which we refer the interested reader for further details, we will
only review the ingredients of the model that are relevant for our study.

If the spin-0 mediator a that provides the dominant link between the dark and the
visible sector in the 2HDM+a model is sufficiently light, the 125 GeV Higgs boson h
discovered at the LHC can decay into a pair of such CP-odd states. The corresponding
partial decay width can be written as

Γ (h→ aa) =
g2
haamh

32π

√
1− 4m2

a

m2
h

, (1)

where ma denotes the relevant pseudoscalar mass. In the so-called alignment limit, i.e. as-
suming cos (β − α) = 0, which guarantees that the Higgs h is SM-like and assuming
degenerate 2HDM heavy Higgs masses, i.e. mA = mH = mH± , the coupling ghaa in (1)
takes the form [4]

ghaa =
1

mhv

[
2

(
m2
A −m2

a +
m2
h

2
− λ3v

2

)
sin2 θ

− 2
(
λP1 cos2 β + λP2 sin2 β

)
v2 cos2 θ

]
.

(2)

Here mh ' 125 GeV is the Higgs mass, v ' 246 GeV denotes the vacuum expectation value
of the SM Higgs field and θ represents the mixing angle of the two CP-odd weak spin-0
eigenstates. The three quartic couplings λ3, λP1 and λP2 appear in the scalar potential
of the 2HDM+a model and serve commonly as input parameters [4, 11,21,22].

If mχ < ma/2 with mχ the mass of the fermionic DM candidate in the 2HDM+a
model, the decay h → aa followed by a → χχ̄ will be lead to an invisible Higgs decay
signal (h→ inv). For values of |ghaa| that are not fine-tuned the latest searches for invisible
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decays of the Higgs boson [51,52] impose in such a case a lower limit of ma & 100 GeV on
the pseudoscalar mass [4]. On the other hand, for mχ > ma/2 the decay channel a→ χχ̄
is closed and h → inv provides no constraints. Exotic Higgs decays are however still
possible in such a case since the pseudoscalar can decay via a → 2f to all kinematically
accessible SM fermions, i.e. those with mf < ma/2. This opens up the possibility to
constrain 2HDM+a realisations with a light pseudoscalar a through direct measurements
of the total Higgs decay width Γh [22]. In fact, using (1) and recalling that the total
Higgs decay width in the SM is with ΓSM

h ' 4.07 MeV [53] much smaller than the LHC
sensitivity on Γh, one can derive the following approximate inequality

|ghaa| .
√

32πΓh
mh

. (3)

For the best 95% confidence level (CL) bound of Γh < 1.1 GeV that derives at present
from the direct measurements of the total Higgs width [54,55], the result (3) implies

|ghaa| . 0.94 . (4)

3 Numerical study and discussion

From the earlier discussion it follows that in order for the processes h → aa → 4f
and pp → a → µ+µ− to provide relevant constraints on the 2HDM+a parameter space
one has to dial the 2HDM+a parameters entering (2) such that the coupling ghaa ful-
fils the bound (3) or equivalent (4). While this requires always some tuning, suitable
benchmark scenarios can be simply obtained from the recommendations in the LHC DM
Working Group (LHCDMWG) white paper [11]. The parameter choices cos (β − α) = 0,
mA = mH = mH± and λ3 = λP1 = λP2 are common to the benchmarks studied in the
following and we furthermore employ a Yukawa sector of type-II throughout this work.
As a result the couplings of the pseudoscalar a to up-, down-type quarks and charged
leptons behave as gauū ∝ cotβ and gadd̄ ∝ tanβ and ga`+`− ∝ tanβ, respectively. Con-
straints are then derived in the ma–mχ plane keeping the parameters mA, tanβ, sin θ,
λ3 and yχ fixed in each scan. Here yχ denotes the dark Yukawa coupling that enters the
coupling gaχχ̄.

3.1 Benchmark I

The first 2HDM+a benchmark scenario that we will study as an example to illustrate the
typical constraints that derive from the h→ aa→ 4f and pp→ a→ µ+µ− processes is:{

mA, tanβ, sin θ, λ3, yχ
}

=
{

1.2 TeV, 1, 0.35, 3, 1
}
, (benchmark I) . (5)

Notice that the value of mA has been chosen such that the benchmark leads to a value
of (1) consistent with the current bound (4) on |gahh| assuming a light pseudoscalars a.
This corresponds to a parameter tuning of around 5%. Since the benchmark I represents a
slight variation of one of the standard parameter choices recommended by the LHCDMWG
in [11] all constraints that arise from Higgs and flavour physics, electroweak precision
measurements and vacuum stability are automatically fulfilled for the choices (5). See the
works [4, 11,21,22] for details.

In the right panel of Figure 1 we show an assortment of constraints in the ma–mχ

plane for the 2HDM+a parameters (5). One observes from the orange contours that
the existing h → aa → 4f searches exclude almost the entire parameter space with
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Figure 1: Left: Branching ratios of the pseudoscalar a as a function of its mass in
the benchmark I model assuming that the decays a → χχ̄ is kinematically forbid-
den. Right: Constraints in the ma–mχ plane for benchmark I in the 2HDM+a model.
The orange contours represent the combined bound from the existing h → aa → 4f
searches [28,30–40], while the red contour corresponds to the best limits due to the avail-
able dimuon cross section measurements at the LHC [42,45,47–50]. The parameter region
shaded purple is excluded by the dimuon searches in radiative Υ-mesons decays [56, 57].
The blue contour is the exclusion that derives from the latest searches for h→ inv [51,52],
while the constraint that derives from a recast of the h + Emiss

T analysis in the h → bb̄
channel [18] is shown in green. The black dotted contours indicate the parameter choices
for which the correct DM relic density Ωχh

2 = 0.12 [58] is achieved. In the gray shaded
areas DM is overabundent. The measurement of the spin-independent (SI) DM-nucleon
cross section σSI [59] disfavours the shaded region inside the brown dashed curve. See
main text for further details.

ma ∈ [1, 62] GeV and mχ > ma/2 at 95% CL.1 Only small mass windows close to the J/ψ
and Υ resonances remain allowed since these mass ranges are vetoed in all experimental
analyses. For ma < 10 GeV the most constraining searches are h → aa → 4µ [33, 39, 40],
h → aa → 2µ2τ [37] and h → aa → 4τ [28, 35], while in the case of ma > 10 GeV
the searches for h → aa → 2µ2b [38], h → aa → 2τ2b [31] and h → aa → 4b [32]
provide the leading bounds at present. The relevance of these decay modes can be un-
derstood by looking at the left panel in Figure 1 which displays the branching ratios of
the pseudoscalar a as a function of its mass for decoupled DM, i.e. assuming mχ > ma/2.
We emphasise that the shown results correspond to a leading-order perturbative calcu-
lation. In particular, non-perturbative effects that are relevant for ma . 3 GeV as well
as in the vicinity of ma ' mJ/ψ and ma ' mΥ are not included. For details see for
instance [29, 43, 62]. This simplification has no impact on the constraints displayed on
the right-hand side. The search for narrow resonances in pp → a → µ+µ− produc-
tion by LHCb [50] furthermore excludes the parameter space with ma ∈ [1, 8] GeV and
mχ > ma/2. The corresponding 90% CL is displayed as a red vertical line. The c pro-

1The parameter space with ma . mh/2 ' 62.5 GeV is also disfavoured by the measurements of the
global signal strength µ of the 125 GeV Higgs boson [60, 61]. The bounds on the individual branching
ratios from the h→ aa→ 4f searches are however more stringent and direct than the rather indirect limit
arising from the determinations of µ.
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duction cross sections needed to extract this limit have been calculated at leading order
in QCD with the help of MadGraph5 aMCNLO [63] using NNPDF31 nlo as 118 parton dis-
tribution functions [64]. The constraints due to the BaBar searches for dimuon pairs in
radiative decays of Υ mesons [56, 57] are shaded purple and lead to the 90% CL limit
ma ∈ [1, 2.5] GeV for mχ > ma/2. Our recast relies in this case on the methodology
described in Appendix A of [65]. We add that light pseudoscalars a with ma . 10 GeV
are also subject to the constraints of various other rare B- and K-meson decays (see for
example [65]). For better readability these bounds have not been included in our figure.

In order to probe the parameter region with mχ < ma/2 we consider the latest searches
for h → inv [51, 52] that imply Br (h→ inv) < 0.11 and the h + Emiss

T analysis in the
h → bb̄ channel

(
h(bb̄) + Emiss

T

)
[18]. The corresponding 95% CL exclusions are shown

in blue and green in the right panel of Figure 1, respectively. The expected sensitivity
of the h(bb̄) + Emiss

T signal is estimated from the model-independent upper limits on the
visible cross section and the product A · ε of the signal acceptance A and reconstruction
efficiency ε provided by ATLAS in the auxiliary material of [18]. In this way upper limits
on the signal strength in each of the analysis regions are derived that are then statistically
combined to obtain the total expected sensitivity. In this combination it is assumed that
the signal contributions in the different analysis regions are independent of each other.
We add that the h(bb̄) +Emiss

T search [18] provides at present the most stringent mono-X
constraint for the 2HDM+a parameter scenario (5). This can be interfered for instance
from the left plot in Figure 7 of the review article [22]. Notice that the h → inv and the
h(bb̄) + Emiss

T search are complementary to each other in the sense that only the region
with ma < mh/2 ' 62.5 GeV and mχ < ma/2 is kinematically accessible to the former,
while the latter tests the parameter space with ma > mh/2 ' 62.5 GeV and mχ < ma/2,
because Br

(
h→ bb̄

)
becomes very small for ma < mh/2.

The parameter sets in the ma–mχ plane for which the DM relic density Ωχh
2 = 0.12

as measured by Planck [58] is obtained are indicated by the black dotted contours in the
right panel of Figure 1. Areas with DM overproduction are shaded gray. The DM relic
density calculation is performed using MadDM [66] and relies on the simplified assumption
that Ωχh

2 is solely determined by the interactions predicted in the 2HDM+a model.
The observed DM relic abundance can be achieved in three distinct regions of parameter
space. For mχ ' ma/2 where DM annihilation via χχ̄→ a→ ff̄ is resonantly enhanced
as well as in the island just above the diagonal mχ = ma/2 where χχ̄ → ha followed
by SM Higgs decays and a → ff̄ sets Ωχh

2. Notice that in the former case χχ̄ → bb̄
dominates for ma . 350 GeV, while for ma & 350 GeV annihilation via χχ̄→ tt̄ also plays
an important role and leads to a rise of the relic density contour. Finally, at mχ ' 1.5 TeV
it is again possible to obtain Ωχh

2 = 0.12 for low pseudoscalar masses ma. In this case
the dominant annihilation channels are χχ̄→ hA, χχ̄→ ZH and χχ̄→W±H∓ with the
final-state bosons subsequently decaying to SM fermions.

Although loop suppressed in the 2HDM+a model [10,67–69] we also consider the con-
straints that DM DD experiments like XENON1T [59] set in the benchmark I scenario.
The object of interest in this case is the SI DM-nucleon cross section that can be approx-
imated by

σSI '
(

mNmχ

mN +mχ

)2 c2
N

π
, (6)

with mN ' 939 MeV the average of the nucleon mass and cN the Wilson coefficient of the
dimension-six nucleon operator ON = χχ̄N̄N . As explained in detail in [68,69] the Wilson
coefficient cN receives in general contributions from Higgs-induced one-loop triangle and
box diagrams as well as two-loop contributions leading to effective DM-gluon interactions.
By utilising the results of the calculation [69] we find that for benchmark I the effects of
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one-loop box diagrams and two-loop graphs with bottom- and charm-quark loops are below
a percent in the relevant parameter space. Neglecting these contributions and evaluating
the two-loop top-quark corrections in the infinite mass limit, it then turns out that the
Wilson coefficient cN can be very well approximated by the following simple expression:

cN '
y2
χ sin2 θ

16π2

mN

mχ

(
2gahhfN
m2
h

+
fG
v2

cos2 θ

)
C(1)(xa/χ) . (7)

Here ghaa has already been given in (2) and we have introduced xi/j = m2
i /m

2
j . In the

case of the 2HDM+a model of type-II the effective interaction strengths fN and fG are
given by

fN =
∑

q=u,d,s

fNTq +
2

9
fNTG , fG =

2 cot2 β

27
fNTG , (8)

where fNTu ' 0.019, fNTd ' 0.045 and fNTs ' 0.043 [70–73] are the quark-nucleon ma-

trix elements and fNTG = 1 −
∑

q=u,d,s f
N
Tq
' 0.89 is the effective gluon-nucleon coupling.

The one-loop triangle form factor finally reads

C(1)(x) =
(3− x)

√
x ln

(
1
2

[√
x− 4 +

√
x
])

√
x− 4

+
1

2
(x− 1) lnx− 1

'

−
lnx+2

2 , x→ 0 ,

1
2x , x→∞ .

(9)

The above formulae can be used to translate the latest XENON1T 90% CL upper limit on
the SI DM-nucleon cross section [59] into constraints on the 2HDM+a parameter space.
The tiny shaded region at ma ' 1 GeV and mχ ' 25 GeV in the right panel of Figure 1
that is enclosed by a brown dashed curve corresponds to the exclusion found in the case of
the benchmark I model. Notice that the DM DD constraint is so weak not only because it
is suppressed by a loop factor and sin2 θ but also because the coupling gahh that enters (7)
fulfils the bound (4). In fact, in the case at hand the contributions proportional to fN
and fG in (7) interfere destructively, since ghaa < 0 in the relevant parameter region,
which leads to a further suppression. While DM DD experiments hence do not provide
meaningful constraints on (5) we have decided to keep the formulae (6) to (9) because they
allow for a straightforward evaluation of σSI for all 2HDM+a model realisation of type-II
with mA � ma and sufficiently small values of tanβ. They hence can be applied in the
majority of the benchmark scenarios recommended in the LHCDMWG white paper [11].

3.2 Benchmark II

To further demonstrate the constraining power of h → aa → 4f and pp → a → µ+µ−

searches in 2HDM+a model realisations that satisfy the upper bound (4), we consider the
following parameter choices:{

mA, tanβ, sin θ, λ3, yχ
}

=
{

1.0 TeV, 40, 0.7, 8, 0.1
}
, (benchmark II) . (10)

Notice that the parameters chosen in benchmark II give rise to one of the parameter
scenarios that has been recently studied in [74] and aims to explain a possible excess in
the measurement of the anomalous magnetic moment aµ = (g−2)µ/2 of the muon. We add
that to satisfy (4) for (10) the common heavy Higgs massmA has to be tuned to around 2%.
While constraints from flavour physics, electroweak precision measurements and vacuum
stability are again fulfilled for benchmark II, the width of the heavy CP-even Higgs turns
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out to be very large since the decay H → aa is unsuppressed and kinematically allowed
for ma < 500 GeV with gHaa becoming non-perturbative in a large region of parameter
space. Since a→ bb̄ is the dominant decay mode of the pseudoscalar this may result in an
observable 4b signature that we however do not attempt to calculate because of the large
value of ΓH .

Since this article mainly addresses the LHC physics practitioner let us briefly explain
how a light pseudoscalar a contributes to aµ in the 2HDM+a model of type-II. See also
also [74–81] for related discussions. The virtual exchange of a pseudoscalar a leads to a
correction to aµ at the one-loop level. The corresponding contribution is given by [75]

δa(1)
µ = − α

8π sin2 θw

m4
µ

m2
Wm2

a

sin2 θ tan2 β F (1)
(
xµ/a

)
, (11)

where α ' 1/137 is the electromagnetic fine-structure constant, mW ' 80.4 GeV denotes
the W -boson mass and sin2 θw ' 0.23 is the sine squared of the weak mixing angle. The
one-loop form factor appearing in (11) takes the form

F (1)(x) =

∫ 1

0
dz

z3

1− z + z2x
'

− lnx− 11
6 , x→ 0 ,

1
2x , x→∞ .

(12)

Since the one-loop correction (11) is strongly Yukawa suppressed by a factor of m4
µ,

two-loop diagrams of Barr-Zee type [82] can be numerically important and even larger
than the one-loop contribution. The dominant two-loop correction of Barr-Zee type in-
volves the exchange of a pseudoscalar a and a photon and takes the following form [75]2

δa(2)
µ =

α2

8π2 sin2 θw

m2
µ

m2
W

sin2 θ
∑
f

cf
m2
f

m2
a

F (2)
(
xf/a

)
, (13)

in the 2HDM+a model. Notice that (13) contains contributions that are parametrically
enhanced with respect to (11) by a factor of m2

f/m
2
µ. Barr-Zee type diagrams with internal

Z-boson exchange also exist but their contribution is numerically insignificant because they
are suppressed by the vector coupling of the Z boson to muons 1−4 sin2 θw ' 0.08. In (13)
the sum over f includes all SM fermions and we have introduced the coefficients cu = 4/3,
cd = tan2 β/3 and c` = tan2 β for up-, down-type quarks and charged leptons, respectively.
The relevant two-loop form factor reads

F (2)(x) =

∫ 1

0
dz

ln
(

x
z (1−z)

)
x− z (1− z)

'

ln2 x+ π2

3 , x→ 0 ,

lnx+2
x , x→∞ .

(14)

Employing now the benchmark II parameter choices (10) together with ma = 10 GeV

one finds from (11) to (14) that δa
(1)
µ ' −1.4 · 10−9 and δa

(2)
µ ' 3.8 · 10−9. The

total 2HDM+a contribution to the anomalous magnetic moment of the muon is thus

δaµ = δa
(1)
µ +δa

(2)
µ ' 2.4 ·10−9. For the chosen parameters the 2HDM+a corrections to aµ

therefore just have the right sign and size to explain the 4.2σ discrepancy between exper-
iment [83, 84] and the SM prediction endorsed by the muon g − 2 theory initiative [85]:

δaµ = aexp
µ − aSM

µ = (2.51± 0.59) · 10−9 . (15)

2The formulae in [74] that correspond to our results for δa
(2)
µ and F (2)(x) contain two typographical

mistakes.
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Figure 2: As Figure 1 but for the 2HDM+a benchmark II scenario (10). Parameter
choices inside the yellow dash-dotted vertical band shown in the right panel allow to
accommodated the excess (15) observed in aµ at the 95% CL. For additional explanations
consult main text.

We add that the BMW collaboration has presented a new lattice-QCD evaluation of the
hadronic vacuum polarisation contribution to aµ [86]. If the BMW value of the hadronic
vacuum polarisation is used to predict a SM the deviation in (15) is reduced to 1.6σ,
meaning that there is no particular evidence for a discrepancy with experiment. Notice
finally that in order to enhance aµ in the 2HDM+a model of type-II the positive two-loop
contribution (13) has to outweigh the negative one-loop correction (11). This generically
only happens for parameter choices with tanβ = O(50) and ma = O(10 GeV).

In the left and right panel of Figure 2 we show for benchmark II the branching ratios
of the pseudoscalar a as a function of ma assuming that mχ > ma/2 and the most relevant
constraints in the ma–mχ plane, respectively. From the right panel one observes that the
ranges in ma that are excluded by the combination of the h→ aa→ 4f searches [28,30–40]
in benchmark II resemble those that are also disfavoured in the case of benchmark I.
However, in the case of benchmark II the exclusions that are set by h → aa → 4f do
not stop at mχ = ma/2 but extend down to low DM masses. This feature is readily
understood by noticing that for the benchmark II parameter choices (10) the invisible
decay width of the pseudoscalar a is strongly suppressed, i.e. Γ (a→ χχ̄) ∝ y2

χ cos2 θ '
0.005, meaning that in benchmark II even pseudoscalars with ma > 2mχ have large
branching ratios into SM fermions. This feature also explains why in the case of (10) the
h → inv bound [51, 52] covers only the small triangular region with ma ∈ [0, 3.5] GeV
and mχ < ma/2, and why the h(bb̄) + Emiss

T search [18] leads to no relevant constraint.3

One also sees that the searches for pp → a → µ+µ− production [42, 45, 47–50] allow to
put severe constraints on the parameter space of benchmark II. The constraints from the
dimuon searches are so powerful in this case because the production cross sections gg → a
and bb̄ → a are again enhanced by a factor sin2 θ tan2 β ' 780. The same enhancement
factor also appears in the partial decay rate Γ (a→ µ+µ−). At present the most relevant
pp → a → µ+µ− searches are [49] and [50] which provide the leading constraints for
ma & 20 GeV and ma . 8 GeV, respectively. In the mass region ma ∈ [11.5, 20] GeV both

3We also note that in the case of the h(bb̄)+Emiss
T signature, benchmark II leads to a much softer Emiss

T

spectrum than benchmark I, which also affects the sensitivity.
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searches have similar sensitivities. We add that the gluon-gluon fusion channel represents
the dominant production process in benchmark II forma . 25 GeV, while forma & 25 GeV
bottom-quark fusion is the main production mechanism. The BaBar constraint from
radiative Υ decays [56,57] is also stronger in benchmark II than in benchmark I.

From the right panel in Figure 2 it is also evident that a combination of the limits
stemming from the considered LHC searches almost entirely rules out the parameter space
with ma ∈ [3.4, 20.1] GeV that leads to an explanation of the excess (15) of the measured
value of aµ compared its SM prediction. The relevant ma range is indicated by a yellow
dash-dotted vertical band in the figure. The only viable mass ranges are presently ma ∈
[9.2, 9.7] GeV, ma ∈ [9.8, 10.1] GeV and ma ∈ [10.2, 10.5] GeV, but improved searches for a
dimuon resonance in the Υ mass region [43,47] might further reduce the allowed parameter
space or even fully close it. Let us add in this context that benchmark II is in principle
also excluded by the search pp→ A→ τ+τ− [87] for all the values of ma that are shown
in the right panel of Figure 2. It is therefore questionable if one can find a 2HDM+a
type-II model realisation that can explain the aµ anomaly and survive the existing LHC
constraints from non-SM Higgs production. Notice that in the case of a lepto-specific
2HDM+a model of type-X the latter conclusion does not hold and addressing (15) is
possible in the 2HDM+a context [74].

The black dotted curves in the right panel of Figure 2 correspond to the contours
with Ωχh

2 = 0.12 as measured by Planck [58]. As in benchmark I the observed DM relic
abundance can be achieved in three separate regions in the ma–mχ plane. For not too
heavy DM with mχ . 500 GeV annihilation proceeds dominantly via χχ̄→ a→ bb̄. This
process therefore sets Ωχh

2 in the bulk region.4 In the island at mχ ' 250 GeV also
χχ̄→ ha can provide a relevant source of wash-out in particular for light pseudoscalars a.
For large DM masses multiple channels contribute to DM annihilation with χχ̄→ ha and
χχ̄→ hA being the most important reactions. As illustrated by the brown dashed curve
in the right panel in Figure 2, compared to benchmark I the constraints that arise from
XENON1T [59] are stronger in benchmark II. The dominant correction to σSI arise in this
case from Higgs-induced one-loop triangle diagrams and two-loop contributions involving
bottom quarks. While the former contribution can be calculated by considering the term
proportional to fN in (7) to correctly include the two-loop bottom-quark contribution one
has to perform the full calculation [68, 69]. While estimating the two-loop bottom-quark
contribution by using (7) together with (8) but replacing cot2 β by tan2 β in fG is not a
good approximation, such a replacement allows one to understand qualitatively why the
DM direct detection constraints are more stringent in benchmark II than in benchmark I.

3.3 Final words

The main conclusion that can be drawn from the numerical results presented in this work
is that LHC searches for h → aa → 4f and pp → a → µ+µ− production can provide
interesting and complementary constraints on 2HDM+a model realisations that feature a
light pseudoscalar a. In particular, we have shown that the latter two types of processes
can lead to relevant constraints even in scenarios with a light pseudoscalar a in which the
stringent limits from Br (h→ inv) and Γh are evaded by tuning the coupling ghaa such
that (3) or equivalently (4) is satisfied. To emphasise this generic finding we have studied
two distinct parameter benchmarks and explored the sensitivity of the most relevant col-
lider searches to them by performing parameter scans in the ma–mχ plane. The results

4The MadDM calculation of the relic abundance varies strongly in the parameter region where both
the mass of the pseudoscalar a and the DM candidate χ are light. This makes it difficult to determine
accurately the border between under- and overabundance and for this reason the lower black dotted curve
stops at ma ' 13 GeV and mχ ' 2 GeV.
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of these scans are displayed in the right panels of Figures 1 and 2. To make contact to the
astrophysical constraints on DM, we have also indicated in these two-dimensional scans
the bounds that arise from DD experiments and the requirement to obtain the measured
relic abundance. One important feature that is nicely illustrated in our scans is that LHC
searches for h→ aa→ 4f and pp→ a→ µ+µ− production can probe regions of parameter
space that lead to the correct value of Ωχh

2 but lie in the off-shell region mχ > ma/2 and
are therefore not accessible with mono-X searches. In the context of the 2HDM+a model
of type-II and large tanβ we have also argued that an explanation of a possible excess in
the measurement of the anomalous magnetic moment aµ of the muon (15) is generically
at odds with the bounds from h → aa → 4f and pp → a → µ+µ− and possibly other
non-SM Higgs search results. We believe that the results presented in our work should
prove useful for 2HDM+a interpretations of future ATLAS, CMS and LHCb searches
for pseudoscalars a with masses below the electroweak scale.
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