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Abstract

Single parameter estimation is known to benefit from extreme sensitivity to parameter
changes in quantum critical systems. However, the simultaneous estimation of multiple
parameters is generally limited due to the incompatibility arising from the quantum na-
ture of the underlying system. A key question is whether quantum criticality may also
play a positive role in reducing the incompatibility in the simultaneous estimation of
multiple parameters. We argue that this is generally the case and verify this prediction
in paradigmatic quantum many-body systems close to first and second order phase tran-
sitions. The antiferromagnetic and ferromagnetic 1-D Ising chain with both transverse
and longitudinal fields are analysed across different regimes and close to criticality.
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1 Introduction

The main purpose of metrology is gaining the best accuracy possible in the estimation of phys-
ical parameters, both in classical [1] and quantum systems [2]. Quantum metrology exploits
quantum effects to enhance the sensitivity in the estimation, providing advantages in a va-
riety of applications which ranges from gravitational wave detection [3], measuring stan-
dards, magnetometry [4], thermometry, imaging [5, 6], navigation, remote sensing, super-
resolution [7–10] and many more [11]. Most of these applications intrinsically involve the
estimation of multiple parameters at the same time, which explains the growing interest
in multiparameter quantum metrology [12–14], both theoretically [15–42] and experimen-
tally [43–47].
The extreme sensitivity to small parameter changes is one of the defining characteristic of quan-
tum many-body systems near criticality [48, 49]. The possibility of exploiting this sensitivity
in single parameter metrology has attracted a growing interest in the last few years [50–61].
Therefore, a question naturally arises: can the advantages of using interacting many-body sys-
tems near criticality be extended to the simultaneous estimation of multiple parameters?
Answering this question is not straightforward, both on a conceptual and computational level.
With respect to single parameter quantum metrology, the multiparameter case poses an extra
challenge, arising from the very foundation of quantum mechanics: the incompatibility of mul-
tiple variables [62, 63]. This results in a trade-off between uncertainties, which complicates
in a non-trivial way the quest for the optimal simultaneous measurements already in finite
dimensional systems [38, 46, 64]. Extending this problem to a many-body setup in presence
of incompatibility is certainly a daunting task.
One way around this task is evaluating the extent to which this incompatibility affects the es-
timation problem. This can be done efficiently by resorting to a recently introduced quantity
called quantumness [37, 65]. The quantumness measures the asymptotic incompatibility of a
multiparameter metrological problem in the limit of an infinite number of copies. The novelty
and importance of this approach resides in its simplicity. Indeed, it allows the straightforward
evaluation of the estimation’s incompatibility from easy-to-compute quantities of the system
of interest.
The standard bounds in the accuracy of a quantum multiparameter protocol are given in the
form of a matrix inequality for the mean square error matrix by the quantum Cramer-Rao
bound (QCRB) [2, 66, 67]. The QCRB is not always tight, due to the aforementioned incom-
patibility. Instead, the Holevo-Cramer-Rao bound (HCRB) stands out as the ultimate (scalar)
bound of multiparameter quantum estimation problems [66], in that it is always achievable
in collective measurements on asymptotically large number of copies [68–72]. However, the
HCRB, except for few simple cases [73–76], is far from straightforward to compute, even nu-
merically [38].
By contrast, the quantumness, denoted by Rλ

1, is a scalar quantity that can be easily evaluated
through the quantum Fisher information matrix (QFIM) FQ and the mean Uhlmann curvature
(MUC) matrix U [77] and quantifies the discrepancy between the HCRB and the QCRB. Its
values range in Rλ ∈ [0,1], with Rλ = 0 if and only if the two bounds coincide, in which
case the multiparameter estimation problem is asymptotically compatible. Its maximum value,
Rλ = 1, marks the maximal discrepancy between the QCRB and the HCRB which in turn signals
the maximal incompatibility between the parameters to be estimated, even in the asymptotic
limit [78,79].

In this work, we analyze the compatibility of multiparameter quantum metrology near
continuous quantum phase transitions (QPTs) and first order QPTs, using as a main figure of
merit the quantumness along with the scaling properties of the QFIM. To this end, we consider

1The pedix λ denotes the set of parameters to be estimated in the metrological protocol
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two paradigmatic models: a ferromagnetic and antiferromagnetic Ising chain, both interacting
with transverse and longitudinal fields. Moreover, a third model, a spin-1/2 X Y chain with
transverse field, is also considered in appendix B.

Each multiparameter protocol displays peculiar features related to details of the model,
however, when it comes to QPT, the quantumness tipically vanishes as criticality is approached.
This can be understood using standard scaling arguments [48]. Close to a continuous phase
transition physical quantities are characterised by power-law scalings in the system size L,
hence one may assume that the quantumness scales as Rλ ∼ LdR where dR is a suitable expo-
nent. However, the upper bound Rλ ≤ 1 [80] is only compatible with non-positive exponents,
i.e. dR ≤ 0. Analogous arguments applied to first order phase transitions lead to similar
conclusions, with scalings which are however dependent on the boundary conditions (Scaling
analysis section). A further insight is also provided by the definition of the quantumness which
reads [80]

Rλ =




2iF−1
Q U







∞
, (1)

where ‖X‖∞ denotes the largest eigenvalue of X . The inverse dependence of Rλ on FQ, which
generally diverges at criticality, together with the fact that the MUC may at most diverge with
the same rate as FQ [80], explains the vanishing behaviour of Rλ. Hence, one may argue
that the divergence of FQ, which is the feature that makes critical systems highly attractive
for single parameter quantum estimation, is also behind the mechanism responsible for the
mitigation of the incompatibility.

2 Brief summary of the theoretical background

A system involved in a quantum estimation problem can be described by a family of quan-
tum states ρλ labelled by a set of parameters λ, defined in a p-dimensional manifold M . A
multi-parameter quantum estimation problem is a quest for the best accuracy possible in the
simultaneous estimation of λ [41, 63, 65, 80]. The quantum Cramer-Rao bound (QCRB) pro-
vides a lower bound for the mean square errors of the parameters λ, which can be formally
written as [41],

Σ≥ F−1
Q , (2)

where Σ= cov(λ̂) is the covariance matrix of any locally unbiased estimators λ̂ of the param-
eters λ and FQ is the Fisher information matrix, whose components

FQµν =
1
2

Tr
�

ρλ
�

Lµ, Lν
	�

, (3)

are defined in terms of {Lµ}
p
µ=1, a set of self adjoint operators known as symmetric logarithmic

derivatives (SLD), each satisfying the equation

Lµρλ +ρλLµ
2

= ∂µρλ, (4)

where ∂µ = ∂ /∂λµ . As mentioned in the introduction, the bound in Eq. (2) is not always tight,
unless the following compatibility condition is met [41,63]

Uµν = −
1
4

Tr
�

ρλ
�

Lµ, Lν
�	

= 0 ∀µ,ν, (5)

where Uµν is known as mean Uhlmann curvature [65,77], a quantity which reduces to the Berry
curvature when ρλ is a family of pure states. The compatibility condition (5) ensures that the
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discrepancy between the QCRB and the Holevo-Cramer-Rao bound (HCRB) is zero [41]. The
discrepancy between the two bounds can be expressed as

D (W ) = CH(W )− tr
�

W F−1
Q

�

, (6)

where W is a positive definite weight matrix and CH(W ) is the HCRB [41]

tr
�

WΣ
�

≥min
{X i}

¦

tr
�

Wℜ(V )
�

+




p
Wℑ(V )

p
W




1

©

= CH (W ) ,
(7)

with ‖·‖1 being the operator trace norm (‖·‖ = tr (|·|)), Vi, j = tr
�

X iX jρθ
�

, and the minimiza-
tion being performed over the Hermitian matrices X i , satisfying 1

2 tr
��

X i , L j

	

ρθ
�

= δi, j . This
last constraint plays the role of the local unbiasedness condition. It should be pointed out that
the minimization performed in Eq. (7) makes really difficult to evaluate the HCRB for systems
of interest. The discrepancy in Eq. (6) satisfies [80]

0≤ D (W )≤ tr
�

W F−1
Q

�

Rλ, (8)

where Rλ is a scalar index, known as quantumness, defined as

Rλ =




2iF−1
Q U







∞
, (9)

with ‖X‖∞ denoting the largest eigenvalue of X , and the pedix λ specifying the set of param-
eters to be estimated in the metrological protocol. As already noted, the value of Rλ ranges in
[0,1]: the limit Rλ = 0 is equivalent to Eq. (5), and therefore denotes compatibility, whereas
Rλ = 1 marks the maximal incompatibility of the metrological problem. The quantumness
obeys a monotonic behaviour with respect to quantum estimation sub-model [78] that could
be formalized as follows. If R(p)

λ
is the quantumness of an estimation model defined by a set of

p parameters λ, and R(p−1)
λ̃

is the quantumness of the possible sub-model defined by a subset

of (possibly reparameterised) p− 1 parameters λ̃, they satisfy the following bound

R(p−1)
λ̃

≤ R(p)
λ

. (10)

In other words, any multi-parameter estimation protocol is incompatible at least as much
as any of its sub-models. This also means that evaluating the quantumness of a full multi-
parameter estimation protocol may hide possible compatibilities between some of its param-
eters. In this sense, it may be more informative to analyse the quantumness of some of its
sub-models separately.

In particular, for a two-parameter estimation problem the expression for the quantumness
acquires a particularly simple form [37]

R(2)
λ
=

√

√

√

det (2U)

det
�

FQ

� . (11)

3 Scaling analysis

In this section we provide a scaling analysis of the quantumness close to QCP. This analysis
shows that Rλ cannot increase close to QCP and generally decreases with a critical exponent
which depends both on the property of the critical system and on the chosen parameters. We
follow closely the method reported in Ref. [81,82] that can be applied to study the finite size
scaling (FSS) of both continuous and first order quantum phase transition (QPT). We first focus
on a continuous QPT.
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3.1 Continuous phase transition

Let us suppose to have a d-dimensional lattice model with linear size L, whose Hamiltonian
H(λ) depends on the set of parameters {λµ}. The critical point of a continuous QPT is char-
acterized by scale invariance, and by power-law behaviours of physical quantities which have
universal character. Such a universal behaviour emerges between microscopic Hamiltonians
which differ by terms, known as irrelevant operators, that become vanishingly small under
coarse-graining transformation of the lattice. In such a situation, one can extract information
on the universal properties of the system by performing scaling transformations that mod-
ify the lattice spacing a → αa. As a consequence, lengths and time rescale as x → xα and
t → tαz [48], where z is the dynamical critical exponent. Around the critical point, each local
operator can be decomposed in a set of operators, called relevant operators, which dominates
the physical property of the system and obey a power-law scaling, Oi → α−diOi , where di is
the operator scaling dimension. If one of the parameter, e.g. λµ, drives the system close to
the criticality, the correlation length of the system is given by ξµ = (|λµ −λc

µ|/λ
c
µ)
−νµ , where

λc
µ is the critical value of the parameter and νµ is the correlation length critical exponent.

One can use the scaling behaviours with respect to α in conditions in which the system
nearly obeys scale invariance. The most relevant perturbation which breaks the scale invari-
ance dominates the scaling behaviour. For example, if L� ξµ, the most relevant perturbation
is given by α ∼ ξ−1

µ = (|λµ − λc
µ|/λ

c
µ)
νµ . On the other hand, close to criticality in a finite

system with size L � ξµ, the system is dominated by system size effect and α ∼ L−1 is the
most relevant perturbation. The latter is the regime on which we focus.

As for any other physical quantity, one may assume that the quantumness obeys a scaling
law Rλ ∼ α−dR , which in a finite size regime, with L� ξµ, implies that

Rλ ∼ LdR . (12)

As mentioned in the introduction, the upper bound Rλ ≤ 1 [80], is only compatible with a
non-positive exponent, i.e. dR ≤ 0.

Although, this argument is quite general, one can make a more detailed analysis on the
scaling behaviour of the quantumness, based on the scaling properties of FQ and U and on the
universal properties of the underlying model. To this end, we will assume that the operators
∂µH can be expressed as the sum of local operators i.e. ∂µH = Oµ =

∑

x Oµ(x), where x labels a
spatial position on the lattice, and that Oµ’s are relevant operators with scaling dimension dµ’s.
For the system in its ground state, FQµν and Uµν can be expressed in a compact form [80,83,84]

FQµν =
2
π

∫ +∞

−∞

dω
ω2

S+µν(ω) (13)

Uµν =
i
π

∫ +∞

−∞

dω
ω2

S−µν(ω) (14)

where S±µν(ω) :=
Sµν(ω)±Sνµ(ω)

2 are the symmetric and anti-symmetric parts of the dynamical

structure factor Sµν(ω) :=
∫∞
−∞ d teiωt〈Oµ(t)Oν〉, and Oµ(t) := eiH tOµe−iH t .

The scaling of FQ close to a critical point can be derived from the symmetric structure
factors, which scale as

∫∞
−∞ dωS+µν ∼ 〈{Oµ, Oν}〉 ∼ α−dµ−dν , and ω → ωα−z . Thus, from

Eqs. (13) we get

FQµν→ FQµνα
−dµ−dν+2z . (15)

On the other hand, the anti-symmetric structure factor scales as
∫∞
−∞ dωS−µν ∼ 〈[Oµ, Oν]〉, with

a dependence on the commutator which scales with an exponent d−µν ≤ dµ + dν. Accordingly,
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from Eq. (14) we obtain the following scaling for Uµν

Uµν→ Uµνα
−d−µν+2z . (16)

According to Eq. (9) or its two parameter version (Eq. (11)), and in the hypothesis in which
the scaling of FQ and U is dominated by their universal behaviours, we obtain

Rλ→ Rλα
−dR with dR = d−µν − dµ − dν ≤ 0. (17)

For a system with finite size at the critical point the scale invariance is broken by the system
size, which scales as L ∼ α−1, yielding

Rλ ∼ LdR with dR < 0 . (18)

Alternatively, by exploiting the relation (34), one can compute the scaling of FQ from the
that of the fidelity, as

F (λ,δλ, L) = 1− 1
8

∑

µ,ν

δλµδλνFQµν + 0
�

δλ3
�

, (19)

whereF (λ,δλ, L) denotes the fidelity between infinitely close ground statesψ(λ) andψ(λ+δλ)
of a system of size Ld . By following standard scaling argument [48] any physical observable
O close to a QCP can be expressed in terms of a scaling function fO(κ) as

O ≈ L−yO fO(κ) (20)

where yO is the scaling dimension of O and κ= {κµ} is a collection of suitable combinations
of parameters λ and L as

κµ = λµL yµ (21)

Generalising the arguments in Ref. [81] to multiparameter scenarios we can express the
fidelity close to QPT in terms of the rescaled parameterisation as

F (λ,δλ, L)≈ F (κ,δκ) , (22)

where the dependence on L is implicit in κ, and δκ are variations due to δλ. Now expanding
F in power of δκ as

F (κ,δκ) = 1−
∑

µ,ν

δκµδκν fµν (κ) + o
�

δκ3
�

(23)

and combining Eq.(19) and Eq.(23), it is possible to obtain the QFIM as

FQµν ≈ 8L yµ+yν fµν(κ). (24)

Again, the scaling of the quantumness for a two parameter model can be inferred from Eq. (11)
and from the scaling of FQ and U . As argued already, the scaling of the determinant of MUC is
always bounded above by the scaling of the determinant of QFIM. This can be deduced from
Schrödinger-Robertson uncertainty inequality applied to the SLD [85]

det
�

1
2

Trρ{Lµ, Lν}
�

≥ det
�

−
i
2

Trρ[Lµ, Lν]
�

, (25)

which, compared to Eqs. (3) and (5), yields

det FQ ≥ det2 U . (26)

If, for simplicity, we assume FQ in diagonal form, then det FQ ≈ L2(yµ+yν) fµµ fνν, and det U ≈ L2u fu
with u≤ yλ + yσ. And we find again the scaling of the quantumness as

Rλσ ≈ Lu−(yλ+yσ) fR = L yR fR, (27)

where yR ≤ 0.
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3.2 First order phase transition

It is possible to apply a similar procedure to study first order QPT scaling. The scaling behavior
of this kind of QPT is crucially dependent on the boundary conditions [81]. As before, let us
assume to have an Hamiltonian H(λ) dependent of a set of parameters λ = {λµ} and let’s
study the FSS in proximity of a first order QPT. First order QPT generally arises from level
crossing, which only occurs in the infinity-volume limit. For finite size systems, the QPT is
characterised instead by avoiding level crossings, whose energy gap rules the FSS behaviour.
Following Ref [82] we define the avoiding level crossing energy gap

∆0(L) =∆ (λ= λ
c , L) , (28)

where λc are critical values of the parameters, and we introduce a set of rescaled parameters
which characterize the FSS

λ̃µ =
Eµ (λ, L)

∆0
, (29)

where Eµ (λ, L) is the energy gap variation due to a change in λµ from its critical value λc
µ. By

following a similar argument as in [81] one can derive the following scaling

FQµ,ν ∼
(∂µEµ) (∂νEν)

∆2
0(L)

. (30)

Notice that the divergence of the QFIM with sistem size is strongly influenced by the depen-
dence of the energy gap ∆0(L). Depending on the type of boundary condition, the gap may
vanishes exponentially with the system size, i.e. ∆0(L)∼ e−aLd

or with a power-law behaviour,
∆0(L) ∼ L−b [82]. In either case, using the same argument as in the previous section, one
can show that the scaling of U is bounded by that of FQ, and the quantumness must scale as

Rµν ∼
yU∆

2
0(L)

(∂µEµ)(∂νEν)
≤ 1 . (31)

Notice the dependence of∆0(L) in Eq. (31), which is compatible with an exponential or power-
law scaling to zero, depending on the boundary conditions.

4 Ising model with transverse and longitudinal fields.

We analyse the metrological properties of a 1-D quantum Ising chain with a transverse mag-
netic field in x and y directions, and a longitudinal magnetic field in z direction. The pa-
rameters to be estimated are the coupling constants of the magnetic field, appearing in the
Hamiltonian

H = −
n
∑

i=1

σz
iσ

z
i+1 + hxσ

x
i + hyσ

y
i + hzσ

z
i , (32)

where σi are the Pauli matrices and n is the number of spins. This kind of estimation pro-
tocol cannot be interpreted as a canonical interferometric metrological scheme [86]. Rather,
this coincides with the standard picture used in single-parameter quantum critical metrol-
ogy, whereby the Hamiltonian parameters are estimated through the effects they have on
corresponding equilibrium state [50, 51, 54, 58]. Therefore, we can find an estimate of the
parameters of interest by studying how the properties of the probe states change as the Hamil-
tonian parameters varies. To analyse in details the compatibility of this model we will con-
sider the quantumness associated to pairs of magnetic field amplitude, which we will denote
Rµν ≡ R{hµ,hν} with µ,ν ∈ {x , y, z}.
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Figure 1: Panel (a): phase diagram of the ferromagnetic 1-D Ising chain with lon-
gitudinal and transverse magnetic fields. Panel (b): phase diagram of the antiferro-
magnetic 1-D Ising chain with longitudinal and transverse magnetic fields.

At hz = 0, hy = 0 (hx = 0) and hx = 1
�

hy = 1
�

the model undergoes a continuous QPT be-
longing to the two-dimensional Ising universality class, separating a disordered phase (hx > 1)
from an ordered one (hx < 1). For any point in |hx − hy | < 1, the longitudinal field drives a
first order QPT along the hz = 0 plane (see panel (a) of Fig. 1). We will limit to study the sys-
tem at T = 0, hence we can choose the ground state of Eq. (32) as input probe, which on the
one hand allows capturing the features of the QPT, and on the other simplifies the evaluation
of QFIM and MUC. Note that the presence of a longitudinal field term in Eq. (32) breaks the
integrability of the Hamiltonian and the estimation problem requires a numerical approach.
Despite the further complication due to the non-analyticity of the problem, the presence of a
longitudinal term hz allows us to add in the estimation problem a parameter that couples with
the order parameter of the second order QPT (〈Sz〉). This provides the opportunity to test the
role of the order parameter in the estimation problem.

The Hamiltonian in Eq. (32) is numerically diagonalized through the application of the im-
plicitly restarted Lanczos method. Due to the lacking of an analytic expression for the ground
state of Eq. (32), we will resort to the fidelity approach to calculate the QFIM susceptibility
( See appendix A). This approach is a multiparameter generalization of the method used in
Ref. [81, 87]. After computing the ground states for two relatively close values of the param-
eters, the fidelity can be calculated as the overlap between these two states. This procedure
is repeated with different pairs of states which are taken progressively away from each other
along the λi direction on the parameter space. Eventually, the fidelity susceptibility is found
through a parabolic fitting of the fidelity against λi [81]. Similarly, the MUC can be evaluated
with a numerical approach similar to that of Ref. [88]. Exploiting the relation with the Berry
curvature for pure states, the MUC can be computed through the Bargmann phase [89, 90],
which is a version of the Berry phase evaluated on a discretized circuit in the parameter space
( see appendix A). The results of these calculations are used to evaluate Rλ through its analytic
expression (9), across the phase diagram, as displayed in panel (a) of Fig. 2.

A detailed numerical analysis of the quantumness displays an apparent insensitivity across
the QPT in

�

hx = 1, hy = 0, hz = 0
�

. Specifically, we find that for hy = hz = 0 and hx ∈ (0,2]
the quantumness is constantly equal to Rx y = Rxz = 0 and R yz = 1.

This trivial behaviour, not shown here, of the quantumness is due to the overwhelming
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effects of the first order phase transition, which hides the dependence of Rµν on the continuous
QPT.

On the other hand, panel (a) and (e) of Fig. 2 displays the behaviour of
�

Rx y , Rxz , R yz

�

versus the longitudinal field hz , for hy = 0 and hx fixed. Also in this case Rxz and R yz are
insensitive to the field, both in the ordered phase (panel (a), hx = 0.2) and in the disordered
one (panel (e), hx = 1.2). Panel (a) shows that the only component sensitive to the first order
QPT is Rx y , with a sharp reduction to zero across hz = 0, for hx < 1 (ordered phase). However,
panel (e) of Fig. 2 shows that Rx y goes to zero also for hx > 1 (region in which no first order
phase transition is present). Despite the apparent similarity in the behaviours of Rx y for hx > 1
and hx < 1, their behaviour is qualitatively different in the two regions, due to the presence
(in the ordered phase) and absence (in the disordered phase) of a first order QPT. In order to
show that Rx y is actually sensitive to the first order QPT, we report in panels (b) and (f) of
Fig. 2 the scaling behaviour with the system size of Rx y in the two different regions.

In panel (b), when the system crosses hz = 0 with hx < 1, the first order QPT occurs and
Rx y goes abruptly to zero with a rate which grows exponentially with the number of spins,
as shown explicitly in panel (c). On the contrary, panel (f) displays the behaviour of Rx y
across hz = 0, in the disordered region (hx > 1), where no first order QPT occurs: here the
quantumness goes smoothly to zero with a rate which is power-law dependent on the system
size (see also panel (g) for a power-law fitting).

From a metrological point of view it is also meaningful to study closely the behaviour of the
QFI and its scaling near the phase transition. Panels (d) and (h) in Fig. 2 show that the QFI has
different scaling behaviours in the two regions of the phase diagram. In panel (d) it is shown
that in the ferromagnetic region, with hx near 1, both the x and y components of the QFI
have a scaling very close to the Heisenberg limit, which allows to perform precise estimation
in each direction. Otherwise, in the paramagnetic region (panel (h)) both the components of
the QFI have a less enhanced scaling, closer to the normal quantum limit.

The behaviour of the two components of the inverse QFI is not far from that of the recip-
rocal QFI since, despite their presence, the off-diagonal elements in the QFI matrix are order
of magnitude smaller than the diagonal elements.

It is worth mentioning that analyzing the quantumness associated with all the components
of the magnetic field does not provide useful information for this system. Panel (a) and panel
(e) of figure 2 show that the quantumness associated with at least one pair of components of
magnetic fields is always maximal. In fact, from Eq. (10) it is straightforward to deduce that
the quantumness of the complete set of parameters is always maximal, i.e. Rx yz = 1.

5 Antiferromagnetic Ising chain.

Due to the presence of a longitudinal magnetic field, the antiferromagnetic Ising chain has
different properties from those of the ferromagnetic one. In fact, the Hamiltonian

H =
∑

i

σz
iσ

z
i+1 − hxσ

x
i − hyσ

y
i − hzσ

z
i (33)

is characterized by a completely different phase diagram, as we can see from panel (b) of
Fig. 1 [91]. The main difference, in the region of interest, lies in a stable antiferromagnetic
phase for values of the longitudinal magnetic field different from zero with a consequent line
of continuous QPTs in which hz 6= 0. This shifts our focus in a region of the parameter space
in which more than one component of the magnetic field is non vanishing.

To map the Hamiltonian in Eq. (33) into a ferromagnetic model we need a staggered mag-
netic field [92], which justifies the differences between the models. We notice that the phase
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Heisenberg scalin
g

Normal scalin
g

Figure 2: Behaviour of the quantumness and Fisher information in the ordered phase
(panels (a-d)) and in the disordered phase (panels (e-h)). In panel (a) and (e) is
plotted the quantumness as a function of hz for hx = 0.2 and hx = 1.2, respectively,
with n= 11. Panel (b) displays the scaling behaviour of the quantumness for hx = 0.3
as a function of hz . Panel (c) plots in a semi-log scale the quantumness as a function
of n, very close to the first order QPT (hx = 0.3 and hz ∼ 10−10 ): this shows that
Rx y decreases abruptly to zero in hz = 0, with a rate which scales exponentially with
n. Analogously, panel (f) displays the dependence of Rx y on hz and panel (g) its
dependence on n close to hz = 0 and for hx = 1.2 (log-log scale): the quantumness
decreases to zero, but in absence of a first order QPT, it vanishes with a rate which
scales as a power-law in n. In the log-log plots in panel (d) and (h) is shown the
scaling behaviour of the components of the QFI with respect to the number of spins
n. In panel (d) it is shown that for hx = 0.95 both the components are very close to
a Heisenberg scaling. Otherwise, in panel (h) in absence of QPT (hx = 1.2) both the
components are far from a Heisenberg scaling and closer to a normal one. Notice
that the fitting parameter m is the slope of the linear fitting, while A and λ are the
amplitude and the coefficient of the exponential fitting, respectively. In panel (d)
and (h), the blue dashed lines are guides for the eye corresponding to Heisenberg
and normal scalings, respectively.
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Figure 3: The compatibility index Rx y for different values of the chain size and
hx = 0.2 as a function of the longitudinal field hz . The inset shows the behaviour of
the compatibility index near the critical point.

diagram in panel (b) of Fig. 9 can be derived through the fidelity approach [91]. In Ref. [91]
it is shown that at the phase transition from an antiferromagnetic to a paramagnetic order,
the x component of the QFI matrix exhibits a maximum. Here we study closely the scaling
behaviour of the QFI at the transition point and how it affects the compatibility index. We
also use only even numbers of spins, to avoid frustration due to the antiferromagnetic nature
of the chain, and periodic boundary conditions. As for the ferromagnetic scenario, Rx y is,
again, the only component of the quantumness sensitive to the phase transition. However,
the different properties of the model affects profoundly the behaviour of the quantumness,
leading to a completely different behaviour. Fig. 3 shows that Rx y < 1 in all the range of the
parameters evaluated and that at the phase transition the critical behaviour of the QFI makes
the quantumness vanish as the size of the chain increases. In panel (a) of Fig.4 it is reported
the scaling behaviour of the QFI for hx = 0.5: the x component exhibits a maximum and it
reaches a Heisenberg scaling (QFI∼ N2), whereas the y component at the critical point has a
standard quantum scaling (QFI∼ N). So, at criticality, the system reaches the highest preci-
sion in one of the two components while displaying asymptotic compatibility with the other
component. Panel (b) of Fig. 4 shows the dependence on system size of the determinants of
QFI and MUC, which both display a power-law scaling. Since the QFI has a scaling higher
than the MUC, from Eq. (9) we can extrapolate that the quantumness asymptotically vanishes
at the criticality.

6 Conclusion

In this work we have analyzed the performance of multiparameter quantum critical estimation
protocols focusing on the role of QPT in mitiganting the incompatibility among parameters.
From the prototypical models analyzed, in both first and second order QPT, a common feature
emerging is the strong dependence of Rλ on criticality, and a general influence of QPT in
reducing the incompatibility. In a two-parameter magnetometry model with a 1D Ising chain,
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Figure 4: In panel (a) The log-log plot of the diagonal components of the quantum
Fisher information whit hx = 0.5 at the critical point. In blue the scaling of the y
component, with a slope m= 0.98, and in black that of the x component, with a slope
m = 2.01, as a function of the number of spins n. In the log-log plot in panel (b)
it is shown in blue the scaling behaviour of the quantum Fisher information matrix
determinant at the critical point for hx = 0.5 as a function of the number of spins n,
with a slope m = 3.09. In black the scaling behaviour of twice the mean Uhlmann
curvature determinant at the critical point for hx = 0.5, with a slope m = 2.784. In
panel (a), the blue and orange dashed lines are guides for the eye corresponding to
Heisenberg and normal scalings, respectively.

the sensitivity of the quantumness to a first order QPT is numerically demonstrated. Indeed,
the exponential scaling of Rλ represents a signature of the first order QPT. A similar setup,
in an antiferromagnetic scenario, displays an asymptotic compatibility at the critical point,
demonstrated by a vanishing behaviour of Rλ.

Our work strongly suggests that quantum critical metrology provides a promising frame-
work for multi-parameter estimation. One of the desirable features of critical metrology,
i.e. the divergence of the Fisher information, comes with an extra advantage in the multi-
parameter scenario: criticality may help in mitigating the incompatibility. The latter is one of
the main drawback in quantum multi-parameter metrology, which makes the estimation chal-
lenging both on a computational and a conceptual level. Our approach opens up the possibility
to explore multi-parameter metrology in many-body setups using easy-to-compute figures of
merit, thereby paving the way to fundamental theoretical advances and technological appli-
cations.
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A Numerical procedure

In the case of non-integrable system, the lacking of closed form expressions for the ground
states prevents the calculation of the QFIM and MUC through the SLD. Instead, one can evalu-
ate the QFIM through the fidelity susceptibility, by exploiting the following relation [67,80,87]

FQµν = −4∂µ∂νF[ρλ,ρλ+δ], (34)

where δ is a small variation of the parameters along the directions λµ and λν, and
F[ρ,σ] = Tr

�pp
ρσ
p
ρ
�

is the quantum Uhlmann fidelity [93] beetween ρ and σ, which
for pure states reduces to the state overlap F[ψ,ψ′] = | 〈ψ|ψ′〉 |.
Similarly, when only pure states are involved, the MUC coincides with the Berry curvature [80],
i.e.

Uµν = i 〈∂µψ|∂νψ〉 − i 〈∂νψ|∂µψ〉 . (35)

In turns the Berry curvature can be thought of as the geometric phase per unit area on an
infinitesimal loop on the parameter spaces [80], and it can be evaluated with numerical meth-
ods specifically designed for geometric phases [88]. This numerical methods consists in the
evaluation of a discretised version of the Berry phase, namely the Bargmann phase [88–90],
which is defined as

Φ= arg{
N−1
∏

i=0

〈ψi|ψi+1〉}. (36)

where {ψi}N−1
i=0 (with ψN =ψ0) is a set of states lying on the vertices of a discrete close loop

on the parameter space. The calculation of the MUC in a given point λ of the parameter space
is obtained via the Bargmann phase per unit area evaluated on an infinitesimal loop, i.e.

Uµν(λ) = lim
δA→0

Φµν(λ)

δA
, (37)

where Uµν(λ) is the matrix element of the MUC, Φµν(λ) is the Bargmann phase calculated
on an infinitesimal loop centred on λ and lying on the plane identified by the parameters
λµ and λν, and δA is the area of the loop. An example is shown in Fig. 5, where the states
picked for the computation are on the vertices of the infinitesimal rectangle of sides δλµ and
δλν. Moreover, to improve the numerically stability of the value of Uµν, we exploit the linear
dependence of Φµν(λ) on δA and evaluate Uµν through a linear fitting of Φµν(λ) against δA.
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Figure 5: Rectangular circuit in the parameter space.

B Ground state rotation of the XY spin chain.

We report here on a model that, unlike the two discussed in the previous sections, can be
interpreted as a canonical interferometric model, in which the parameters to be estimated are
introduced through a unitary operator. We show that even in this scenario the quantmuness is
strongly affected by criticality. The model analyzed is a XY spin chain, whose Hamiltonian is

H = −
M
∑

i=−M

�

(1+ γ)
2

σx
i σ

x
i+1 +

(1− γ)
2

σ
y
i σ

y
i+1 +λσ

z
i

�

, (38)

where the sigmas are the Pauli matrices, γ is the anisotropic parameter, and λ is the strength
of the external field. We limit our analysis to a region of the phase diagram with γ ∈ (0,1], in
which the criticality is at λc = 1 and belongs to the Ising universality class [49,94]. Moreover,
we only consider the case T = 0, in order to capture the essential behaviour of quantum phase
transitions. Finally, we assume that the input probe of the estimation is

ρ0 = |ψg〉〈ψg |, (39)

where |ψg〉 is the ground state of Eq. (38). The set of parameters to be estimated isϕ =
�

ϕx ,ϕy ,
ϕz} with

ρϕ = U†
ϕρ0Uϕ and Uϕ = ei(ϕx Sx+ϕy Sy+ϕzSz), (40)

whereϕµ withµ= {x , y, x} are the angles by which the probe state is rotated and Sµ =
∑

i σ
µ
i /2

are the corresponding global spin operators. This unitary transformation can be thought of
as the result of adiabatic variation of the parameter ϕ in the system Hamiltonian U†

ϕHUϕ.
This coincides whit the standard picture used in single-parameter quantum critical metrology,
whereby the Hamiltonian parameters are estimated through the effects they have on the cor-
responding equilibrium state [50, 51, 54, 58]. Alternatively, this unitary transformation can
be the result of a dynamical evolution applied to the initial probe state ρ0. In this sense the
protocol bears close similarity with the standard interferometric paradigm of quantum metrol-
ogy [86]. We exploit the unitary symmetry of the problem, thus confining ourselves to the

14



SciPost Physics Submission

Figure 6: The compatibility index R (n,λ) for the X Y Ising chain at different values
of n, up to n = 256, with γ = 0.2 as a function of λ. Inset: the compatibility index
R (γ,λ) for the X Y Ising chain, for different values of γ ∈ (0,1] and n = 64, as a
function of λ. The behaviour of R in the parametric regions appears to sharpen as
γ gets closer to 0. This effect can be seen in the inset of Fig. 6, that displays the
different behaviour of R as γ varies in (0, 1], with n fixed.

estimation around the point where ϕx = ϕy = ϕz = 0. For a pure state probe the SLD [63] is
easily calculated, yielding in our case

Lµ = 2∂ϕµρ = 2i
�

Sµ,ρ
�

µ= {x , y, z} , (41)

which in turn leads to the following expressions for the matrix elements of QFIM and MUC

Fµν = 4C
�

Sµ, Sν
�

, (42)

Uµ,ν = −iTr
�

ρ
�

Sµ, Sν
��

, (43)

where C
�

Sµ, Sν
�

is the covariance between the two spin operators.
By exploiting the analytical expressions for the correlation and the expectation values of the
Sµ’s for the XY model (see Refs. [94–96]), the compatibility index in Eq. (9) is readily eval-
uated. In Figure 6 is shown the behaviour of the quantumness Rϕ for different sets of the
Hamiltonian parameters and for different numbers of spins. In all the configurations the val-
ues of Rϕ , close to zero in the ferromagnetic region, increase gradually for λ < λC(= 1). When
the critical point λ = λC is reached the quantumness abruptly saturate to its maximum value
Rϕ = 1. Hence, the system goes from maximal incompatibility in the paramagnetic phase to
a relatively compatible situation in the ferromagnetic phase, with a more pronounced transi-
tion as the number of spins increases. Intuitively, the high compatibility in the ferromagnetic
region can be ascribed to the multipartite entanglement of ρ0. Indeed, the form of ρ0 in the
ferromagnetic phase bears close similarity to the density matrix of the GHZ states [49], which
are optimal probes for multi-parameter quantum magnetometry [3].
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