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We utilize the coset construction to derive the effective field theory of magnon-phonon interactions
in (anti)-ferromagnetic and ferrimagnetic insulating materials. The action is used to calculate the
equations of motion which generalize the Landau-Lifshitz and stress equations to allow for magneto-
acoustic couplings to all orders in the fields at lowest order in the derivative expansion. We also
include the symmetry breaking effects due to Zeeman, and Dzyaloshinsky-Moriya interactions. This
effective theory is a toolbox for the study of magneto-elastic phenomena from first principles. As an
example we use this theory to calculate the leading order contribution to the magnon decay width
due to its the decay into phonons.
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I. INTRODUCTION

In this paper we utilize effective field theory (EFT)
techniques to investigate magneto-elastic phenomena in
insulators in the long wavelength limit. The interaction
between phonons and magnons is a well developed sub-
ject. For earlier theoretical work on phonon-magnon in-
teractions, see for instance [1–9] and for experimental
work, see [10–12]. Here, we will be utilizing the coset
construction [13–16] which, to the best of our knowledge,
has yet to be applied to magneto-elastic systems. A pri-
mary, but not limited, goal of this paper is to set the
stage for understanding the interactions of Skyrmionic
with magnons and phonons [17].

Within our EFT approach, the action is completely
dictated by the spontaneous symmetry breaking pattern.
In the absence of gapless modes which carry conserved
quantum numbers (e.g. itinerant electrons), the rele-
vant degrees of freedom at sufficiently low energies are
the Goldstone bosons associated with the spontaneously
broken global symmetries. The latter act non-linearly on
the Goldstone fields, and therefore are not always man-
ifest. The coset construction [13–16] is a powerful algo-
rithmic tool to generate an effective action for the Gold-
stone modes which is invariant under all the symmetries,
including the ones that are realized non-linearly. The ac-
tion will be organized as a derivative expansion valid up
to a cutoff energy of the order of the spontaneous sym-
metry breaking scale. We also use this formalism to cap-
ture systematically the consequences of a small explicit
breaking of certain symmetries–e.g. due to an external
magnetic field, or the presence of Dzyaloshinsky-Moriya
(DM) interactions among spins.

Solids break a multitude of space-time symmetries, in-
cluding translations, rotations and boosts. Moreover, ho-
mogeneous and isotropic solids possess emergent internal
translational and rotational symmetries (see e.g. [18–
20]), which are also spontaneously broken in the ground
state, as will be discussed below. We should stress that
the assumption of isotropy is convenient but by no means
necessary. It is straightforward to relax this assumption
and consider instead a finite subgroup of rotations (for
a relativistic solid, this was done for instance in [21]).
The relevant symmetries and the associated generators
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are given in Table I. The resulting symmetry breaking
pattern is summarized in Eq. (2).

Magneto-elastic interactions are characterized by a
multitude of scales, and the derivative expansion can be
implemented in different ways depending upon whether
or not there are hierarchies among them. We will re-
fer to these possible choices as different power counting
schemes. For simplicity of presentation we will make a
simple choice of scales. Exploring other hierarchies can
be achieved by minor variations. Our EFT approach can
in principle predict a large number of effects from first
principles. Here, we will only focus on a set of illustra-
tive observables calculated in a particular power counting
scheme.

Conventions: we will work in units such that ℏ = 1.
Lowercase indices a, b, c, ... run over 1, 2, lowercase in-
dices i, j, k, ... run over the number of spatial dimensions,
while uppercase indices A,B,C, ... run over 1, 2, 3. We
use (−,+,+,+) as the metric convention. Our conven-
tions for (anti-)symmetrization of indices are A(ij) =
1
2 (Aij +Aji) and A[ij] =

1
2 (Aij −Aji).

II. RELEVANT SYMMETRIES

Given the non-relativistic nature of the system we are
considering, the appropriate space-time symmetry group
is the Galilean group, which is comprised of time and
spatial translations, spatial rotations, Galilean boosts,
and total mass (or, equivalently, particle number). As
we will discuss at length below, the spontaneous break-
ing of Galilean invariance, places non-trivial constraints
on the dynamics of the system, which in turn enhances
predictive power.

Our system also admits a number of internal symme-
tries including spin rotations and, if we restrict ourselves
to homogeneous and isotropic systems, an emergent in-
ternal ISO(d) symmetry [20] (in d spatial dimensions)
whose implementation will be discussed in the next sec-
tion.

All these continuous symmetries and their correspond-
ing generators are summarized in Table I. The generators
satisfy an algebra whose only non-vanishing commutators
are

[Li,Kj ] = iϵijkKk, [Li, Pj ] = iϵijkPk,

[Ki, H] = −iPi, [Ki, Pj ] = −iMδij ,

[Qi, Tj ] = iϵijkTk, [Qi, Qj ] = iϵijkQk

[SA, SB ] = iϵABCSC . [Li, Lj ] = iϵijkLk

(1)

Notice in particular that the internal symmetry gener-
ators Qi, SA and Ti, commute with all the generators
of the Galilei group, as befits the generators of internal
symmetries.

Symmetries Generators

Time translations: H

Spatial translations: Pi

Spatial rotations: Li

Galilean boosts: Ki

Total mass: M

Spin rotations: SA

Homogeneity: Ti

Isotropy: Qi

TABLE I. Relevant symmetries of lattice of spins in three spa-
tial dimensions in the continuum limit. Some of these sym-
metries may be spontaneously and/or explicitly broken.

Generators Parity Time-reversal

H + −
Pi − +

Li + +

Ki − −
M + −
SA + +

Ti − +

Qi + +

TABLE II. Transformation properties of various symmetry
generators under parity and time-reversal. Each generator X
in the first column transforms as iX → ±iX with the appro-
priate sign shown in the second and third column.

Discrete symmetries such as parity and time-reversal
will also play an important role in what follows. The
transformation properties of the above generators under
these symmetries are listed in Table II. Under parity and
time-reversal, each generator X in the first column trans-
forms as iX → ±iX with the appropriate sign shown
in the second and third column. A factor of “i” was
included in these transformation rules for later conve-
nience, to more easily account for the fact that time-
reversal is implemented in a way that is anti-linear and
anti-unitary (as opposed to parity, which is linear and
unitary). Notice however that our transformation rules
are equivalent to the ones that some readers may already
be familiar with. For instance, the transformation rule
of the spin SA under time reversal, which we write as
iSA → iSA, is equivalent to SA → −SA owing to the
anti-linear nature of time-reversal.

III. EFFECTIVE ACTIONS

In this section, we will discuss the way in which the
symmetries are realized in (anti-)ferromagnets and ferri-
magnets. We first address how some of these symmetries
are spontaneously broken, and derive the effective action
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for the ensuing Goldstone modes. A discussion of explicit
symmetry breaking is postponed until Section VII.

A. Spontaneous symmetry breaking pattern

The full symmetry group will be denoted by G with
elements g, while the unbroken subgroup will be denoted
byH with elements h. The vacuum manifold corresponds
to the coset G/H. (Anti-)ferromagnets and ferrimagnets
have the same symmetry breaking pattern save for time
reversal, as depicted in Figure 1. Including lattice effects,
all three cases possess the following spontaneous breaking
pattern:

unbroken =



H

Pi + Ti ≡ P̄i

Li +Qi ≡ L̄i

S3

M

, broken =


Ki

Ti

Qi

S1, S2 ≡ Sa

,

(2)
where we have assumed the spins to be oriented along the
“3” direction. This pattern describes all the spin configu-
rations in Figure 1. The distinction between these cases
can be understood by recalling that SA → −SA under
time-reversal. Thus, the first configuration (ferromag-
nets) maximally breaks time-reversal invariance, the sec-
ond one (antiferromagnets) preserves it, and the last one
(ferrimagnets) once again breaks it, but in a more “gen-
tle way”, as the amount of breaking is controlled by the
difference between the magnitude of the spins pointing
upward and those pointing downwards. In other words,
time-reversal gets restored in the limit where these spins
have the same magnitude. As is well known, the fate of
time-reversal invariance turns out to have a significant
effect on the spectrum of gapless modes (see e.g. [22]),
which will be discussed in Section VB.

At this stage, it is worth pointing out that, since Ti

and Qi are spontaneously broken, Pi and Li must be
as well in order for the linear combinations P̄i and L̄i

to remain unbroken. In fact, broken generators are al-
ways defined only up to the addition of unbroken ones.
The broken generators listed above are just one particular
choice of bases for the coset space of broken symmetries.
Moreover, since some of these are space-time symmetries,
not all the broken generators in our basis will give rise
to Goldstone modes [23]. As we will see, phonons and
magnons are the only Goldstone modes associated with
the symmetry breaking pattern in Eq. (2).

B. Coset construction for phonons and magnons

Starting from the symmetry breaking pattern (2),
there exists a systematic procedure, known as the coset
construction, [13–16] to write down a low energy effective
action for the Goldstone modes. A modern and concise

FIG. 1. Schematic representation of the ground state spin
configuration of (a ) ferromagnets, (b ) antiferromagnets, and
(c ) ferrimagnets.

review of this technique can be found for instance in Sec.
2 of [24]. We will now apply it to the problem at hand to
write down an effective action for phonons and magnons.1

The starting point of a coset construction is a choice
of parametrization of the vacuum manifold. The
parametrization that we will work with is

Ω = e−iHteix
iP̄ieiη

iKieiπ
iTieiθ

iQieiχ
aSa . (3)

There is a considerable amount of freedom involved in
choosing this parameterization, as the order of the ex-
ponentials and the basis of broken generators are to a
large extent arbitrary. However, different choices are con-
nected to each other by a field redefinition and thus gen-
erate identical predictions for physical quantities. One
can think of Ω as the most general broken symmetry
transformation, supplemented by an unbroken spatial
and time translation.
The fields ηi, πi, θi and χa in Eq. (3) are the Gold-

stone modes associated with the spontaneous breaking
ofKi, Ti, Qi and Sa respectively and their transformation
rules under the action of G is defined by the equation [16]

gΩ(t, x,Φ) = Ω(t′, x′,Φ′)h(Φ, g), (4)

where Φ = {ηi, πi, θi, χa}, and h is some element of the
unbroken subgroup that generically depends on the Gold-
stone fields as well as the group element g.

As previously mentioned, not all of these modes are phys-
ically independent of each other. In fact, we will see in
a moment that the fields ηi and θi can be removed while
preserving all the symmetries by imposing certain “in-
verse Higgs” constraints [30]. The remaining fields, πi

1 For separate discussions of magnons and (relativistic) phonons
based on the coset construction, see respectively [22, 25] and [20].
The low-energy effective theory of (anti-)ferromagnets was also
discussed in [26–29].
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t′ x⃗′ π′
i(t

′, x⃗′) χ′
a(t

′, x⃗′)

H t+ c x⃗ πi(t, x⃗) χa(t, x⃗)

P̄i t x⃗+ a⃗ πi(t, x⃗) χa(t, x⃗)

L̄i t R−1
ij (θ⃗)xj R−1

ij (θ⃗)πj χa(t, x⃗)

S3 t x⃗ πi(t, x⃗) R−1
ab (θ3)χb(t, x⃗)

M t x⃗ πi(t, x⃗) χa(t, x⃗)

Ki t x⃗− v⃗t πi + vit χa(t, x⃗)

Qi t x⃗ R−1
ij (θ⃗)ϕj − xi χa(t, x⃗)

Ti t x⃗ πi + ci χa(t, x⃗)

Sa t x⃗ πi(t, x⃗) χa(t, x⃗) + ωa + ...

P t −x⃗ −πi(t, x⃗) χa(t, x⃗)

T −t x⃗ πi(t, x⃗) χa(t, x⃗)

TABLE III. Action of the symmetries on the coordinates, the
phonon fields πi, and the magnon fields χa.

and χa, will respectively describe phonon and magnon ex-
citations. The transformation properties of coordinates,
phonon fields, and magnon fields are summarized in Ta-
ble III.

Starting from the coset parametrization Ω, one can
calculate the Maurer-Cartan form defined as Ω−1dΩ:

Ω−1dΩ = i

{
−Hdt+ P̄ i(ηidt+ dxi)−M(ηidxi + 1

2 η⃗ · η⃗ dt) +Qi 1
2ϵ

ijk
[
R−1(θ)dR(θ)

]
jk

+Kidηi

+ T j
[
(dxi + dπi)Rij(θ)− ηjdt− dxj

]
+ Sa 1

2ϵ
aBC

[
O−1(χ)dO(χ)

]BC
}
, (5)

where we have introduced the matrices Rij ≡
(
eiθ

iQi

)
ij

and OAB ≡
(
eiχ

aSa
)
AB

. Note that this result follows

using only the algebra in Eq. (1), and as such, can be
obtained without committing to any particular represen-
tation for the group generators.

Even though we are considering a non-relativistic sys-
tem, it is convenient to use the relativistic notation where
xµ = (t, xi), and define P̄t ≡ −H. We should stress that
this is just a matter of notational convenience, and we
are not imposing Lorentz invariance. With this notation,
we can rewrite the Maurer-Cartan form as follows:

Ω−1dΩ ≡ idxνeν
µ
(
P̄µ +∇µπ

iTi +∇µθ
i Qi +∇µη

iKi

+∇µχ
aSa +AµM +A′

µS3

)
. (6)

This equation defines the “covariant derivatives” of the
Goldstones ∇µπ

i,∇µθ
i,∇µη

i and ∇µχ
a, as well as the

“connections” Aµ and A′
µ and vierbein eν

µ, which read:

e0
0 = 1, ei

j = δij , ei
0 = 0, e0

i = ηi (7a)

∇tπ
i = (∂tϕ

j − ηk∂kϕ
j)Rj

i(θ) (7b)

∇jπ
i = ∂jϕ

kRk
i(θ)− δij (7c)

∇tθ
i = 1

2ϵ
ikl

[
R−1(θ)(∂t − ηj∂j)R(θ)

]
kl

(7d)

∇jθ
i = 1

2ϵ
ikl

[
R−1(θ)∂jR(θ)

]
kl

(7e)

∇tη
i = ∂tη

i − ηj∂jη
i (7f)

∇jη
i = ∂jη

i (7g)

∇tχ
a = 1

2ϵ
aBC

[
O−1(χ)(∂t − ηj∂j)O(χ)

]
BC

(7h)

∇jχ
a = 1

2ϵ
aBC

[
O−1(χ)∂jO(χ)

]
BC

(7i)

At =
1
2 η⃗

2 (7j)

Ai = −ηi (7k)

A′
t =

1
2ϵ

ab
[
O−1(χ)(∂t − ηj∂j)O(χ)

]
ab

(7l)

A′
j =

1
2ϵ

ab
[
O−1(χ)∂jO(χ)

]
ab

(7m)

where we have defined ϕi ≡ xi + πi to streamline the
notation. ϕi’s are the comoving coordinates of the solid,
which at equilibrium (i.e. when πi = 0), can be chosen
to be aligned with the physical coordinates xi [18].
The fields ηi and θi can now be removed from the the-

ory in a way that is compatible with all the symmetries
by solving the inverse Higgs constraints [30]

∇tπ
i ≡ 0, ∇[iπj] ≡ 0. (8)

The first constraint can be solved immediately for ηi and
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yields ηi = ∂tπ
j(D−1)j

i, with Dij ≡ ∂iϕj . The second
constraint can instead be solved for Rij(θ) using the same
strategy employed for instance in Sec. V of [20]. After
substituting both solutions back into the remaining co-
variant derivatives, the low-energy effective action will
only depend on the phonon field πi and the magnon field
χa through the combinations:2

∇(iπj) = (D
√
DTDD−1)ij − δij (9a)

∇tχ
a =

1

2
ϵaBC

{
O−1[∂t − ∂tπ

k(D−1)k
j∂j ]O

}
BC

(9b)

∇iχ
a =

1

2
ϵaBC(O−1∂iO)BC , (9c)

where Dij = ∂iϕj = δij + ∂iπj and, once again, OAB ≡(
eiχ

aSa
)
AB

.
Covariant derivatives of η’s and θ’s, once expressed

solely in terms of the fields πi and χa, turn out to have
a higher number of derivatives per field compared to the
ones in Eqs. (9). Thus, these quantities can be neglected
at lowest order in the derivative expansion. Moreover,
the coset connections Aµ and A′

µ are needed only if one
is interested in higher covariant derivatives of the π’s and
χ’s, or in couplings with additional fields. In this paper
we won’t be interested in either, and therefore these con-
nections won’t play any role for our purposes.

By combining the building blocks (9) in a way that
preserves the unbroken symmetries in Eq. (2), one can
write down all the terms in the low-energy effective ac-
tion that are exactly invariant under all the symmetries,
including the ones that are broken spontaneously. How-
ever, the latter are realized non-linearly and thus are not

manifest. Therein lies the power of the coset construc-
tion.
There are also some terms that we can write down

that are invariant only up to a total derivative. Follow-
ing the high-energy physics terminology (see e.g. [31]),
we will generically refer to these terms as Wess-Zumino-
Witten (WZW) terms, even though they do not have a
topological origin and their coefficient is not quantized.
These kind of terms can be obtained systematically by
combining the 1-forms that appear in front of the var-
ious generators in Eq. (5) to build 5-forms α that are
exact, i.e. α = dβ, and manifestly invariant under all
unbroken transformations.3 Once again, the coset con-
struction ensures that any α built this way is actually in-
variant under all the symmetries—including the broken
ones. Therefore, the 4-form β is in principle allowed to
shift by a total derivative under a symmetry transforma-
tion [31–33], and its integral is in general a WZW term.4

Using the solutions to the inverse Higgs constraints (8),
we can always express these WZW terms solely in terms
of π’s and χ’s.
For the system under consideration, there are two

WZW terms that we should include in our effective La-
grangian. In particular, note that if we were restricted to
our building blocks (9) our action would not have time
derivatives acting on the phonon field. In order to write
down WZW terms, it is convenient to denote with ωX the
1-form associated with the generator X in the Maurer-
Cartan form (5) up to an over all factor of “i”. Hence,
with this notation we have for instance ωH = −dt, and
so on. The two exact 5-forms that we we can write down
are then

απ = ϵijkδℓmωKm
∧ ωP̄ℓ

∧ (ωP̄i
+ ωTi

) ∧ (ωP̄j
+ ωTj

) ∧ (ωP̄k
+ ωTk

) = d
[(
ηℓdx

ℓ + 1
2 η⃗

2dt
)
∧ dϕi ∧ dϕj ∧ dϕkϵijk

]
(10a)

αχ = ϵijkϵab ωSa
∧ ωSb

∧ (ωP̄i
+ ωTi

) ∧ (ωP̄j
+ ωTj

) ∧ (ωP̄k
+ ωTk

) = d
[
2ϵab(O−1dO)ab ∧ dϕi ∧ dϕj ∧ dϕkϵijk

]
. (10b)

The derivation of the RHS of Eq. (10b) is summarized in
Appendix A. Once again, notice that the 5-forms above
are fully invariant under all the symmetries, even though
they are manifestly invariant only under the unbroken
ones. The 4-forms that give rise to the relevant WZW
terms are the ones in square brackets on the RHS of Eqs.

2 Notice that, although it’s not obvious, the tensor (D
√
DTDD−1)

that appears in (9a) is actually symmetric. This can be checked
explicitly by working perturbatively in the fields πi.

3 More generally, in d space-time dimensions one would need to
consider a (d+ 1)−form α that is exact.

4 More precisely, not all the terms built this way will be WZW
terms, since they could turn out to be accidentally exactly in-
variant. However, all WZW terms can be built this way [32].

(10). Using the solutions to the inverse Higgs constraints,
we can then write down the WZW terms explicitly as
follows:

Lπ
WZW ≡c1

2
det(D) [∂tπ

j(D−1)j
i]2 (11a)

Lχ
WZW ≡ c2

2
det(D) ϵab

[
(O−1∂tO)ab (11b)

−∂tπ
k(D−1)k

j(O−1∂jO)ab
]
,

with c1, c2 arbitrary coefficients.
Up until now we have only concerned ourselves with

invariance under continuous symmetries. However, time-
reversal plays a crucial role in determining the spec-
trum of low-energy excitations in magnetic systems.
It is straightforward to derive how space-time coordi-
nates and Goldstone fields transform under parity and
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time-reversal. To this end, we require that the coset
parametrization Ω remains invariant when the broken
generators transform according to the rules summarized
in Table II. This leads to the transformation rules shown
in Table III.

Using these results, we infer that ∇(iπj),∇tχ
a,

Lπ
WZW ,Lχ

WZW (∇iχ
a) are even (odd) under parity,

whereas ∇(iπj),∇iχ
a,Lπ

WZW , (∇tχ
a,Lχ

WZW ) are even
(odd) under time-reversal.

Finally, we should point out that, although the quan-
tities in Eqs. (9) and (11) have been derived in three
dimensions, they can be used in any number of spa-
tial dimensions d, provided one lets the lowercase indices
i, j, k, ... run from 1 to d. In the remainder of this paper
we will mostly restrict ourselves to the d = 3 case, unless
otherwise stated.

C. Effective action for phonons and magnons

At low-energies and large distances, the most relevant
terms in the Lagrangian will be those with the least num-
ber of derivatives. In practice, this requirement means
something slightly different for the phonon field πi and
the magnon field χa, i.e. the derivative expansion is im-
plemented differently on the two fields. This can be easily
seen from the fact that, unlike the χ’s, each π in Eqs. (9)
and (11) appears with a derivative.5 Therefore at lowest
order in the derivative expansion, anharmonic corrections
to the free Lagrangian for phonons and magnons are sup-
pressed by higher powers of ∂iπ

j and χa (which, with our
conventions, are both dimensionless). When these quan-
tities are small, one can safely expand the terms in Eqs.

(9) and (11) in powers of ∂π and χ and keep only the
first few terms. This is certainly the appropriate thing
to do if we are interested in studying small fluctuations
around a particular ground state of the system—as we
will do for instance in Secs. IVB and VB.

It is however not necessary to perform such an expan-
sion at this stage. In fact, by keeping intact the non-
linear structures in (9) and (11) we will be able to also
describe non-trivial field configurations where the first
derivative of the phonon field is of order one, with second
derivatives being suppressed. A similar approach is taken
in General Relativity where the Einstein-Hilbert action
can be derived starting from spin-2 perturbations around
a particular ground state—the Minkowski vacuum—and
then resumming all non-linear interactions that are dic-
tated by symmetry, locality, and self-consistency [34].
This action can then be used to describe spacetimes other
than Minkowski as long as higher derivative curvature in-
variants for these solutions remain small in units of the
cutoff.
Since magnons do not carry one derivative per field,

we allow the field itself to vary at the order one level,
but its first derivatives must remain small in units of the
cutoff. We can systematically include higher derivative
corrections at the cost of introducing additional unknown
Wilson coefficients.

Thus, we are going to use the full expression for our
Goldstone covariant derivatives and WZW terms, and
write down the most general effective Lagrangian that
contains one derivative on each π, and the least possible
number of derivatives on the χ’s. For ferromagnets, this
requirement leads to the following effective Lagrangian:

Lferromagnets = Lπ
WZW + Lχ

WZW − F1(u)− 1
2F

ij
2 (u)∇iχa∇jχ

a, (12)

where we have defined uij ≡ ∇(iπj) for notational convenience, F1 and F ij
2 admit an a priori arbitrary series expansion

in powers of uij . Notice that the i-type indices and a-type indices cannot be contracted with each other, because
the former transform under L̄i, whereas the latter under S3. Moreover, we have not included a term of the form
∇tχa∇tχ

a which would contain a term quadratic in χ with two time derivatives, because for ferromagnets it is
subleading compared to Lχ

WZW which contains a quadratic term with only one time derivative. The latter, in turn,
is allowed only because time-reversal is broken. Hence, this term cannot appear in the effective Lagrangian for
anti-ferromagnets, which reads:

Lantiferromagnets = Lπ
WZW − F1(u)− 1

2F
ij
2 (u)∇iχa∇jχ

a + 1
2F3(u)∇tχa∇tχ

a. (13)

The leading kinetic term for the χ’s now comes from the last term in Eq. (13) rather than from Lχ
WZW , and this

leads to a different dispersion relation for magnons [22], as we will see in a moment.
Finally, the low-energy excitations in ferrimagnets derive their kinetic term from an interplay between the term

∇tχa∇tχ
a and Lχ

WZW . The coefficient c2 in Lχ
WZW is much smaller than in ferromagnets since its size is determined

by the scale at which time reversal is spontaneously broken, which in ferrimagnets is parametrically smaller than the
scale at which all other symmetries are broken. Thus, the effective action for ferrimagnets is:

Lferrimagnets = Lπ
WZW + Lχ

WZW − F1(u)− 1
2F

ij
2 (u)∇iχa∇jχ

a + 1
2F3(u)∇tχa∇tχ

a. (14)

5 The reason for this is that the phonons are associated with a
broken Abelian group.
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IV. PHONONS

Let us start by turning off the magnon field and fo-
cusing on the phonons. Then, our effective Lagrangian
reduces to

L → c1
2
det(D) [∂tϕ

j(D−1)j
i]2 − F1(u), (15)

where, as the reader may remember, we have previously

defined Dij = ∂iϕj and uij = (D
√
DTDD−1)ij − δij .

A. The Elasticity equations

It is convenient to exploit the fact that, in an isotropic
system, the function F1 depends only on the SO(3)-
invariant contraction of the tensor uij . In any such con-
traction, the outermost tensors D and D−1 drop out.
This means that F1 can also be regarded as an arbi-

trary function of
√
DTD or, equivalently, (DTD)ij =

∂kϕi∂
kϕj ≡ Bij , which is the metric in the co-moving

coordinate system. Therefore, we can work with the La-
grangian

L → c1
2
det(D) [∂tϕ

j(D−1)j
i]2 − F1(B), (16)

where, with a slight abuse of notation, we have replaced
F1(u) → F1(B).
This action admits a simple physical interpretation if

we think of the ϕi’s as comoving coordinates—meaning
that ϕi(x) labels the volume element at position x. De-
noting by ρ(ϕi) the mass density in the comoving frame,
the mass density in the lab frame is [18]

ρ(x) = ρ(ϕi) det(∂iϕj). (17)

This quantity is actually the zero component of the iden-
tically conserved current6

Jµ =
ρ(ϕ)

3!
ϵµνρσ∂νϕ

i∂ρϕ
j∂σϕ

kϵijk. (18)

From this current, we can deduce the velocity at which
volume elements move around in the lab frame:

vi =
J i

J0
= −(∂tϕ

j)(D−1)j
i. (19)

With this identification, the equation ∂µJ
µ = 0 repro-

duces the standard continuity equation, ∂tρ+∂i(ρv
i) = 0.

Notice that this result for vi is consistent with the co-
variant derivative in eq. (9b), where the time derivative
becomes the “fisherman derivative”.

Moreover, homogeneity implies that the comoving
mass density must be a constant, i.e. ρ(ϕi) = ρ̄. This

6 By identically conserved we mean that this is not a Noether
current that follows from a symmetry of the Lagrangian (16).

can be deduced more formally by noting that the symme-
try generators Ti act on the fields ϕi as constant shifts:
ϕi → ϕi + ci. As a result, we see that the first term in
the Lagrangian (16) is just the usual kinetic energy 1

2ρv
2

with the identification c1 ≡ ρ̄; the second term can be
thought of as a potential energy contribution.
The equations of motion can be obtained as usual from

the Euler-Lagrange equations for πi, or equivalently ϕi,
that follow from the Lagrangian (16). However, as is usu-
ally the case for Goldstone fields, their equation of motion
are also equivalent to the conservation equations for the
associated broken generators. In our case, the equations
for the phonons follow from the conservation equations
for the “homogeneity generators” Ti. Equivalently, we
can also consider the equations for momentum conserva-
tion, since the momentum generators Pi and the Ti’s are
equivalent up to an unbroken generator: Ti = P̄i − Pi.
We therefore consider

∂µT
µi = 0, (20)

with

Tµi =
∂L

∂(∂µϕj)
∂iϕj − ηµiL. (21)

An explicit calculation of Tµi yields

T 0i = ρ̄(detD)(∂tϕ
k(D−1)ik) = −ρvi (22a)

T ij =
∂L

∂Dik
Djk − δijL = −ρvivj + σij . (22b)

where we have identified the stress tensor

σij ≡ F̃1δij − 2
∂F̃1

∂Bkℓ
∂iϕ

k∂jϕ
ℓ. (23)

Then, leveraging the conservation of the current (18), Eq.
(20) reduces to the familiar elasticity equations:

ρ(∂t + vj∂j)v
i = ∂jσ

ji, (24)

B. Phonon Spectrum

Let us now expand the Lagrangian (16) up to quadratic
order in the π fields to derive the existence of phonon
excitations in the static unstressed ground state ⟨ϕI⟩ =
xI . Expanding Bij in the phonon fields π’s, we find

Bij = δij + ∂iπj + ∂jπi + ∂kπi∂
kπj (25)

At quadratic order in the π fields the Lagrangian is
then given by

L(2)
π = c1

2 ∂tπ
i∂tπi − c4+c5

2 (∂iπ
i)2 − c5+c3

2 ∂iπj∂
iπj (26)

where the coefficients c3, c4 and c5 are defined by the
relations:

∂F1

∂Bij

∣∣∣∣
δij

≡ c3
2
δij (27)

∂2F1

∂Bij∂Bkl

∣∣∣∣
δij

≡ c4
4
δijδkl +

c5
4
(δikδjl + δjkδil). (28)
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where we have utilized the isotropy of the background.
Given the assumption of isotropy, we can decompose the
strains into their irreducible components

∂iπj = (Sijkl +Aijkl + Tijkl)∂kπl (29)

where Sijkl, Aijkl and Tijkl are the projectors onto the
symmetric-traceless, anti-symmetric and the trace parts.

Sijkl =
1

2
(δikδjl + δilδjk)−

1

3
δijδkl

Aijkl =
1

2
(δikδjl − δilδjk)

Tijkl =
1

3
δijδkl

(30)

It is easy to see that the anti-symmetric part is just the
θ goldstone and can be set to zero since we have inte-
grated it out. The irreducible components of the strains
are orthogonal to each other. The decomposition in (29)
allows us to re-write the action in (26) as

L =
c1
2
(∂tπ

i)2 − c5 + c3
2

(Sijkl∂
kπl)2−

4c5 + 3c4 + c3
2

(Tijkl∂
kπl)2

(31)

This puts constraints on the coefficients of the La-
grangian

G ≡ c5 + c3 > 0 3K ≡ 2c5 + 3c4 − c3 > 0 (32)

where we have identified the coefficients with the shear
G and bulk modulus K. This is straightforward to see
since the trace part only contributes to pure compression
whereas the traceless symmetric part contributes to pure
shear of the material. It is now convenient to decompose
πi into the sum of a longitudinal part πi

L and a transverse
part πi

T , such that

∇⃗ · π⃗T = 0, ∇⃗ × π⃗L = 0. (33)

It follows from the Lagrangian (31) that these two com-
ponents satisfy two different wave equations, which ad-
mit solutions—the sound waves, or phonons—with linear
dispersion relations ω2 = v2L,T k

2, and longitudinal and
transverse speeds given by

v2L =
4G+ 3K

3ρ̄
v2T =

G

ρ̄
(34)

From (32), this implies that v2L > 4
3v

2
T .

7

7 See however [35] for an interesting UV model that violates this
bound.

C. Power Counting

The effective Lagrangian (16) is the leading term in a
suitably defined derivative expansion. This means that
the elasticity equations we derived from it are only valid
to the extent that higher derivative corrections are neg-
ligible. Similarly, the quadratic Lagrangian (26) can be
trusted only if it is safe to neglect the non-linear cor-
rections that arise by expanding (16) to higher orders
in πi. Under what circumstances are these good approx-
imations?
To address this question, we will make the simplifying

assumption that vL and vT are of the same order, which
we will schematically denote with vπ. Then, the effective
action (16) can be written as

S

ℏ
=

∫
dtd3r

ρ̄ v2π
ℏ

L(π̇/vπ, ∂iπj), (35)

where we have momentarily reintroduced an explicit fac-
tor of ℏ to make dimensional analysis more transpar-
ent. On naturalness grounds, we will assume that the
Lagrangian density L—which is a dimensionless function
of dimensionless arguments—only contains coefficients of
order one. This implies immediately that quadratic La-
grangian (26) is a good approximation for field configu-
rations such that π̇/vπ, ∂iπj ≪ 1.
It is convenient to introduce a new time variable t′ ≡

vπt. This is equivalent to introducing new units such
that time is measured in the same units as lengths, and
the sound speeds are dimensionless numbers of O(1). In
these new units, the action above becomes

S

ℏ
=

∫
dt′d3r

ρ̄ vπ
ℏ

L(∂t′π, ∂iπj). (36)

This action now depends on a single length scale, Lπ ≡
(ρ̄vπ/ℏ)−1/4, which therefore should be identified with
the length cutoff of our effective theory. This means that
higher derivative corrections to (36) must appear in the
combinations Lπ∂i and Lπ∂t′ = (Lπ/vπ)∂t. Hence, our
effective action can reliably describe phonon excitations

with frequencies ω ≪ vπ/Lπ and wave-numbers |⃗k| ≪
1/Lπ.

V. MAGNONS

In the incompressible limit one can neglect the phonon
field, and the effective Lagrangian for the magnon fields
reduces to

L → c2
2
ϵab(O−1∂tO)ab +

c6
2
(∇tχa)

2 − c7
2
(∇iχa)

2, (37)

where we have defined F3(u = 0) ≡ c6 and F ij
2 (u = 0) ≡

c7δ
ij . The coefficient c2 is ∼ (c6c7)

3/4 for ferromagnets,
≪ (c6c7)

3/4 for ferrimagnets, and vanishes for antiferro-
magnets.
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A. Nonlinear Equations of Motion

As we did for the phonons in the previous section, we
can easily derive the non-linear equations of motion for
the magnons. This will allow us to make contact with
the standard literature on magnetism. To this end, it is
convenient to perform the following field redefinition:

χ1 ≡ θ sinϕ, χ2 ≡ −θ cosϕ , (38)

and to introduce the unit-norm vector

n̂ = O(χ)x̂3 = (sin θ cosϕ, sin θ sinϕ, cos θ). (39)

In terms of these new fields, after some algebra, the La-
grangian (37) becomes

L → −c2 ϕ̇ cos θ + c6
2 (∂tn̂)

2 − c7
2 (∂in̂)

2. (40)

Note that the first term doesn’t admit a simple ex-
pression in terms of n̂ because, unlike the other ones, it
is only invariant up to a total derivative. This can be
easily checked using the fact that n̂ transform linearly
under spin rotations, and hence that its change under
infinitesimal spin rotations is δn̂ = ω⃗ × n̂. This implies
that

δθ = ωy cosϕ− ωx sinϕ

δϕ = ωz − ωx cot θ cosϕ− ωy cot θ sinϕ, (41)

or, equivalently, that the χ fields must transform as

δχ1 = − ωx

1 + χ2
1/χ

2
2

(χ2
1/χ

2
2 +

√
χ2
1 + χ2

2 cot
√
χ2
1 + χ2

2)

δχ2 = − ωy

1 + χ2
1/χ

2
2

(1 + χ2
1/χ

2
2

√
χ2
1 + χ2

2 cot
√

χ2
1 + χ2

2).

(42)

It is then easy to check that the Lagrangian (40) changes
by a total time derivative under a spin rotation:

δL = − d

dt

[
1

sin θ
(ωy sinϕ+ ωx cosϕ)

]
. (43)

Once again, rather than deriving the equations of mo-
tion by varying the Lagrangian (37) with respect to our
fields, we will resort to the conservation of the Noether
currents associated with spin rotations. In order to cal-
culate the currents, we must account for the fact that the
WZ term is only invariant up to a total time derivative.
Including this contribution leads to

Jµ
a = (−na, (∇⃗n× n̂)a). (44)

The equations of motion, for θ and ϕ can now be writ-
ten in a very compact form in terms of n̂ by imposing
∂µJ

µ
a = 0 to find:

c2 ∂tn̂ = −(c6∂
2
t n̂− c7∇2n̂)× n̂ . (45)

When c6∂t ≪ c2, the first term on the righthand side can
be neglected, and our result reduces to the well-known
Landau-Lifshitz equation for ferromagnets [22, 36].
The informed reader will notice that these equations

are missing the so-called “Gilbert damping” term, in-
duced by the magnon finite lifetime. As is well known,
an action formalism, from which we have derived our
equations of motion, is inherently time symmetric. To
account for damping one should work within the so-called
“in-in” formalism. In section (VID) we will calculate the
magnon damping using our formalism. To generate the
Gilbert damping would entail using these results in con-
junction with the in-in formalism [37].

B. Magnon Spectrum

Let us now turn our attention to the spectrum of long-
wavelength excitations around the ground state. For sim-
plicity, we will work with the Lagrangian (37), which
strictly speaking is appropriate for ferrimagnets; (anti-
)ferromagnets can be easily recovered by taking appro-
priate limits. These limits will in turn affect the power
counting, as we will discuss in the next section.
Expanding (37) up to quadratic order in the χ’s, we

find

L(2)
χ =

c2
2
ϵabχ

a∂tχ
b +

c6
2
∂tχa∂tχ

a − c7
2
∂iχa∂

iχa, (46)

The dispersion relations for the magnon modes then fol-
low by demanding that the determinant of the quadratic
kernel vanishes in Fourier space. If the coefficient c2
doesn’t vanish, as is the case for ferri- and ferro-magnets,
then one finds that, in the small k limit,

ω2
+ ≃ ∆2 +O(k2), ω2

− ≃
(

k2

2m

)2

+O(k6), (47)

where we have introduced the gap ∆ = c2/c6 and the
effective mass m = c2/(2c7). The gapped modes with
dispersion relation ω2

+ are physical provided c2 is small
enough that the energy gap ∆ falls below the cutoff of
the effective theory. This is the case for ferrimagnets, but
not ferromagnets, as we discuss in the following section
and further elaborate on in Appendix B.
When c2 = 0, one instead finds two modes with iden-

tical linear dispersion relation:

ω2
± = v2χk

2, (48)

with the phase velocity equal to v2χ = c7/c6. Note that
the three parameters that appear in the dispersion rela-
tions above are not all independent: they are related to
each other by ∆ = 2mv2χ. The mechanism by which a
term with a single time derivatives can turn a pair of gap-
less modes with linear dispersion relation into a gapped
mode and a mode with quadratic dispersion relation has
been studied extensively in the literature—see e.g. [38–
40] and references therein.
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C. Power counting

Let us first consider anti-ferromagnets, where c2 = 0;
in this case, the low-energy effective Lagrangian (37) ac-
quires an accidental symmetry. Although Galilean boosts
appear to be explicitly broken in the incompressible limit,
when the phonon fields are neglected, the Lagrangian
for antiferromagnets is formally invariant under Lorentz
transformations with “speed of light” v2χ = c7/c6; in-
deed, it has the same form as the Lagrangian for a rel-
ativistic nonlinear sigma model SO(3)/SO(2). This ad-
ditional symmetry ensures that the coefficients c6,7 get
renormalized by nonlinearities in (37) in such a way that
their ratio remains constant. Higher derivative correc-
tions to (37) won’t generically preserve this accidental
symmetry—even though it would be technically natu-
ral for them to do so—and can therefore affect the ratio
c7/c6.

Because of this accidental symmetry, the power count-
ing scheme for anti-ferromagnets is virtually identical to
that for a relativistic theory, with the speed of light re-
placed by vχ. Keeping length and time scales separate,
we find that the only length scale that can be built out
of c6 and c7 is Lχ = (c6c7)

−1/4, and the only time scale
is Lχ/vχ. In the absence of fine-tunings, these must be
the scales that suppress higher derivative corrections to
the effective Lagrangian (37) (as usual, up to loop fac-
tors of 4π and coefficients of order one).8 In other words,
observables in the effective theory can be calculated in
an expansion in powers of ωLχ/vχ and kLχ. Further-
more, non-linearities in (37) are suppressed compared to
the quadratic terms as long as χa ≪ 1.

Let us now turn our attention to the case of ferro-
magnets, where c2 ∼ L−3

χ . The gap ∆ becomes com-
parable to the energy cutoff of the effective theory, i.e.
∆ ∼ vχ/Lχ

9, and therefore the corresponding mode exits
the regime of validity of the effective theory. An equiv-
alent viewpoint is that the second term in the quadratic
Lagrangian (46) becomes negligible compared to the first
one for ω ≪ vχ/Lχ. By themselves, the first and third
term describe a single propagating mode with a non-
relativistic dispersion relation—the second mode in Eq.
(47). In fact, combining the χa in a single complex field
Ψ = χ1 + iχ2, the Lagrangian (46) with c6 = 0 reduces
to the standard Lagrangian for a non-relativistic field Ψ.
Thus, in this case the power counting is implemented ex-
actly like in a theory for non-relativistic point particles
(see e.g. [24, 41]).10

Finally, let us discuss the case of ferrimagnets, where c2
is non-zero but small in units of the cutoff, i.e. c2L

3
χ ≪ 1.

This ratio introduces an additional expansion parame-
ter that controls the soft breaking of time reversal [25].

The low-energy excitations are akin to a light relativistic
particle and a heavy non-relativistic particle interacting
with each other (of course, the interactions that are not
invariant under Galilei nor Lorentz boosts). At ener-
gies ∆ ≪ ω ≪ vχ/Lχ, the gap is negligible and one is
left with an essentially gapless mode interacting with a
heavy non-relativistic particle; explicit power counting
can then be implemented as in non-relativistic QED and
QCD [24, 41, 42]. At energies ω ≪ ∆, one can treat
also the gapped mode as non-relativistic, and switch to
a new effective theory with cutoff ∆ that describes soft
interactions of two non-relativistic particles with widely
separated masses ∆ and m. Note that there is no dis-
tinction between the various cases
As in the case of the solid we may relate the cut-off

to the UV parameters of the theory. There is one fun-
damental energy scale J , the exchange energy (see sec-
tion VII ) and one length scale, the lattice spacing a.
Therefore, these must be the length (Lχ = a) and time
(Lχ/vχ = ℏ/J) scales which suppress higher dimensional
operators.

VI. MAGNON-PHONON INTERACTIONS

We will finally turn our attention to the coupled system
of phonons and magnons. Magnetoelastic effects have al-
ready been studied in ferromagnets [9, 43–46], ferrimag-
nets [47], and antiferromagnets [48–50]. However, the
focus has been on particular effects (e.g. Spin Seebeck
effect [51–53]) or particular materials (e.g. Yttrium Iron
Garnet [11, 46]). In contrast, we are interested in uni-
versal low-energy phenomena that follow directly from
symmetries. In this section we will derive a few such
results.

A. Generalized equations of motion

We will start by deriving the coupled equations of mo-
tion for magnon and phonon fields, which generalize the
elasticity and Landau-Lifshitz equations discuss previ-
ously. In order to obtain the most general form of these
equations, we work with the Lagrangian for ferrimag-
nets. Using the definition for n̂, ρ and v⃗ we can rewrite
Eq. (14) as

L = 1
2ρv

2 + Lχ
WZW − F1(B) (49)

− 1
2F

ij
2 (B) ∂in̂ · ∂j n̂+ 1

2ρF̃3(B)Dtn̂ ·Dtn̂

where in the last term we have used eq. (9b) and defined

Dt ≡ (∂t + vi∂i) and redefined F3 = ρF̃3. Varying this
Lagrangian with respect to the magnon fields, we obtain

8 Of course, one can always engineer materials where this assump-
tion fails, i.e. higher derivative terms are suppressed by unnatu-
rally small coefficients. In this case, the power counting must be

adjusted accordingly.
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ρ
c2
c1

Dtn̂− ρn̂×Dt(F̃3Dtn̂) + ρF̃3∂iv
in̂×Dtn̂+ n̂× ∂i(F

ij
2 ∂j n̂) = 0, (50)

while varying with respect to the phonon fields yields:

ρDt

[
vi +

c2
2c1

ϵab(O−1∂iO)ab + F̃3Dtn̂ · ∂in̂
]
= ∂j(σji + σ̄ji + σ̃ji), (51)

where

σ̄ji = (∂mn̂) · (∂pn̂)
[
δij
2
Fmp
2 − ∂Fmp

2

∂Bkl
∂kϕi∂lϕj

]
(52)

σ̃ji = −ρ(Dtn̂) · (Dtn̂)

[
δij
2
F̃3 −

∂F̃3

∂Blk
∂iϕl∂jϕk

]
.(53)

These equations are a generalization of previous works on
magneto-elastic equations [54–57]. Notice that we have
used the continuity equation ∂tρ+∂i(ρv

i) = 0 to simplify
Eqs. (50) and (51). We can recover the equations for

ferromagnets (anti-ferromagnets) by setting F̃3 = 0 (c2 =
0). Interestingly, when the stresses on the right-hand side
of Eq. (51) are negligible, the quantity that is conserved
in a comoving sense is no longer the local velocity of the
solid, but in fact a combination that also involves the
magnons. To the best of our knowledge the results for
the fully non-linear equations of motion, to leading order
in derivatives, (50) and (51) are novel.

B. Power Counting in the Mixed Theory

Once we consider both magnons and phonons at the
same time, the power counting becomes much more com-
plex. Consider, for instance, the case of antiferromag-
nets, for which Lχ

WZW = 0. We now have two charac-
teristic length scales, Lχ and Lπ (which need not be of
the same order as their ratio is dictated by the micro-
physics), and at least two independent speeds, vχ and
vπ (assuming that longitudinal and transverse speeds are
of the same order, which need not be the case). Based
on our previous discussions on power counting, the nat-
ural expectation is that the functions appearing in the
Lagrangian (49) scale like

F1 ∼ vπ
L4
π

, F ij
2 ∼ vχ

L2
χ

, F̃3 ∼ vπL
4
π

vχL2
χ

, (54)

and that higher powers of π̇ are suppressed by vπ. Ob-
servables should now be calculated in an expansion in

9 Here we have used the relation c2 ∼ (c6c7)3/4 valid for ferromag-
nets.

10 One technical difference compared to ordinary non-relativistic
particles is that all magnon self-interactions are suppressed by
at least two derivatives.

powers of ωL</v>, kL<, L</L>, and v</v>, where L>

(L<) is the largest (smallest) between Lπ and Lχ, and
similarly for the speeds.

Unfortunately, one cannot associate a priori a definite
scaling to each term in the Lagrangian (49). This is
because, when vertices are combined into Feynman di-
agrams, internal lines can be off-shell but an amount
that is controlled by one or more of the expansion pa-
rameters listed above. A similar problem occurs in non-
relativistic QED and QCD, and it’s handled by resorting
to the method of regions (see e.g. [24, 41, 42, 58]). Ferro-
and ferri-magnets11 presents a similar challenge, except
that the relevant kinematical regions are different com-
pared to those of ferromagnets.

Ultimately, these subtleties related to power counting
become relevant only if one wants to calculate higher or-
der corrections in a systematic way. At lowest order, it
is usually straightforward to drop subleading corrections
and zero in on the leading contribution to whatever pro-
cess one is interested in. To illustrate this, in what follows
we will consider the leading corrections to the propaga-
tion of magnons due to couplings with the phonons. At
leading order, these effects are captured by interactions
in the Lagrangian (49) that are quadratic in χ and linear
in π

Lint =
c2
2
∂iπ

iϵabχ
a∂tχ

b − c2
2
ϵabχ

a∂tπ
i∂iχ

b

− c8
2
∂kπ

k∂iχ
a∂iχa − c9∂iχ

a∂jχ
a∂(iπj)

+
c10
2

(∂iπ
i)(∂tχ

a)2 − c6χ̇aπ̇
k∂kχa, (55)

where we have defined

δF ij
2

δBkl
≡ c8

2
δijδkl +

c9
2
(δikδjl + δilδjk), (56a)

δF3

δBij
≡ c10

2
δij . (56b)

It is straightforward to estimate the natural size of the
coefficients in (55) in terms of Lχ,π and vχ,π.

11 As we discussed in the previous section, ferrimagnets feature yet
another expansion parameter, c2L3

χ, controlling the amount of
time reversal breaking.
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C. Magnons in a stressed sample

Consider now a magnetic material under the applica-
tion of a constant stress (normal and shear). This causes
the atoms to displace from their equilibrium positions,
which is captured by a non-zero expectation value for
the phonon fields. We will denote the linear strain ten-
sor in the sample by γij = ⟨∂(iπj)⟩. In the limit where the
strain is small (note that γij is dimensionless), the lead-
ing corrections to the quadratic Lagrangian for magnons
in Eq. (46) will come from the interactions shown in Eq.
(55) with the phonon fields replaced by their expectation
value:

Lint →
c2γ

2
ϵabχ

a∂tχ
b − c8γ

2
∂iχ

a∂iχa (57)

− c9γ
ij∂iχ

a∂jχ
a +

c10γ

2
(∂tχ

a)2,

where we used the fact that the shear is by assumption
time-independent, and we defined γ = δijγij .

Assuming moreover that the stress is homogeneous,
i.e. that γij is just a constant tensor, we can easily de-
rive the corresponding modification to the dispersion re-
lations of magnons. Once again, the case of ferro- and
ferri-magnets need to be treated separately from the case
of antiferromagnets, for which c2 = 0. The final outcome
is that the magnon dispersion relations retain the same
qualitative form, but the parameters ∆,m and v2χ get
modified as follows:

∆ →∆′ = ∆

[
1 + γ

(
1− c10

c6

)]
, (58a)

m →m′ = m

[
1 + γ

(
1− c8

c7

)
− 2

c9
c7

γij k̂ik̂j

]
, (58b)

v2χ→ v2 ′
χ = v2χ

[
1 + γ

(
c8
c7

− c10
c6

)
+ 2

c9
c7

γij k̂ik̂j

]
. (58c)

Interestingly, it remains true that ∆′ = 2m′v2 ′
χ . We

should also emphasize that the full action (49) can also
be used to calculate the magnon dispersion relations in
regimes where γij ∼ O(1). In that case, however, one
needs to take into account the full non-linear structure
of the functions Fi(B). The advantage of focusing on
small strains is that the coefficients appearing in (57)
will also control other phenomena, such as the magnetic
damping we are about to discuss. The effect of straining
the lattice on anti-ferromagnetic magnons has also been
studied in [59].

D. Magnetic Damping

As previously mentioned our analysis has not included
the Gilbert damping, which is typically added as a
phenomenological term, but for magnetic insulators the
damping arises due to magnon decay mediated by the
interaction Lagrangian in Eq. (55). The decay width
can be calculated from the cut diagram, which is the

p

p′

k

FIG. 2. Feynman diagram describing the emission of a phonon
from a magnon

square of the amplitude shown in Fig. 2. This process
induces a torque on the lattice that contributes to the
Einstein-de Haas effect [60]. The converse process, where
a phonon emits a magnon, is not allowed unless some of
the symmetries are explicitly broken, as will be discussed
in the next section. For simplicity, in what follows we
are going to focus on (anti-)ferromagnets. Our analysis
can be easily extended to the case of ferrimagnets.

Ferromagnets. On general grounds, we would expect
interactions with the lowest number of derivatives to
give the dominant low-energy contribution to the pro-
cess shown in Fig. (2). In ferromagnets, where c2 ̸= 0,
this suggests that we focus on the term in the first line
of Eq. (55). In fact, when the derivatives are estimated
on-shell using the dispersion relation appropriate for fer-
romagnets, we find that

c2
2 ∂iπ

iϵabχ
a∂tχ

b

c2
2 ϵabχ

a∂tπi∂iχb
∼ k3/m

vπk2
=

k

mvπ
. (59)

This means that the second interaction in (55) is actually
the leading one, i.e.

Lint → −c2
2
ϵabχ

a∂tπ
i∂iχ

b. (60)

The corresponding amplitude is given by

iM = − i

2
√
c1

ωλ(k)ϵ̂
⋆
λ(k) · (p⃗+ p⃗′) (61)

where ωλ(k) and ϵ̂λ(k) are respectively the dispersion
relation and the polarization vector associated with a
phonon of polarization λ. Notice also that the ampli-
tude associated with the interaction (60) includes a factor
of (1/

√
c1)(1/

√
c2)

2 that accounts for the non-canonical
normalization of the phonon and magnon fields.
The total decay rate can be obtained as usual by

integrating the amplitude squared over all possible fi-
nal states that conserve momentum, with a relativistic
(nonrelativistic) normalization for the phonon (magnon)
states. The explicit results for longitudinal and trans-
verse phonons are:



13

ΓL =
1

4c1

∫
d3p′

(2π)3
d3k

2ωL(k)(2π)3
ωL(k)

2 [(p⃗+ p⃗′) · k⃗]2

k⃗2
(2π)4δ3(p⃗− p⃗′ − k⃗)δ(ω(p)− ω(p′)− ωL(k))

=
2m3v3L
3πρ̄p

(p−mvL)
3θ(p−mvL),

(62)

and

ΓT =
1

4c1

∫
d3p′

(2π)3
d3k

2ωT (k)(2π)3
ωT (k)

2

{
(p⃗+ p⃗′)2 − [(p⃗+ p⃗′) · k⃗]2

k⃗2

}
(2π)4δ3(p⃗− p⃗′ − k⃗)δ(ω(p)− ω(p′)− ωT (k))

=
mvT
15πρ̄p

(p−mvT )
4 (4p+mvT ) θ(p−mvT ),

(63)

where in final results we have used the fact that c1 is
equal to the background density ρ̄.

Anti-Ferromagnets. In the antiferromagnetic case, c2 = 0
and the power counting is such that the momentum and
energy scale in the same way. This is because both

phonons and magnons now have linear dispersion rela-
tions: ω2

L,T = v2L,T k
2 and ω2 = v2χp

2, respectively. Thus

all the terms in (55) contribute at the same order, and
the expressions for the decay rates become more compli-
cated:

ΓT =
2p5(1− v̂T )v̂T

(
v̂3T + 6v̂2T + 14v̂T + 14

)
(c6 + c9)

2

105πc1c26(v̂T + 1)5
Θ(1− v̂T ), (64)

ΓL =
p5

210πc1c26v̂L(v̂L + 1)5
(4c26v̂

6
L + 20c26v̂

5
L + 32c26v̂

4
L − 56c6c10v̂

2
L + 8c6c8v̂

4
L + 40c6c8v̂

3
L + 8c6c8v̂

2
L + 8c6c9v̂

6
L

+40c6c9v̂
5
L + 72c6c9v̂

4
L + 40c6c9v̂

3
L − 48c6c9v̂

2
L + 14c210v̂

2
L − 35c210v̂L + 35c210 + 28c10c8v̂

2
L − 70c10c8v̂L + 14c10c8

−140c10c9v̂L + 84c10c9+18c28v̂
2
L − 15c28v̂L + 11c28 + 8c8c9v̂

4
L + 40c8c9v̂

3
L + 72c8c9v̂

2
L − 100c8c9v̂L + 36c8c9 + 4c29v̂

6
L

+20c29v̂
5
L + 40c29v̂

4
L + 40c29v̂

3
L + 12c29v̂

2
L − 120c29v̂L + 60c29)Θ(1− v̂L),

(65)

where v̂L,T ≡ vL,T /vχ .

The purpose of this calculation is only illustrative. For
one thing the result is a function of the unknown quan-
tities (vL,T , vχ, c6, c8, c9, c10), all of which would have to
be fit from data. Furthermore, phenomenologically, one
would typically be more interested in the finite tempera-
ture decay rate as as well as the transport lifetime. This
analysis was performed for the special case of Yttrium
Iron Garnet in [46]. It is straightforward exercise to cal-
culate these quantities in the effective field theory.

VII. EXPLICIT SYMMETRY BREAKING

Explicitly breaking internal spin rotations leads to a
broad range of interesting phenomena. To gain some
physical intuition for how explicit symmetry breaking can
arise, we shall begin by recalling the microscopic origin
of the symmetric Lagrangian in the incompressible limit,
Eq. (37).

A. Continuum limit of the Heisenberg model

The strong coupling expansion of the half filled Hub-
bard model reduces to the Heisenberg model,

H = −J
∑
⟨ij⟩

S⃗i · S⃗j . (66)

Since the Hubbard model only involves spin independent
nearest neighbor interactions, this Hamiltonian is inde-
pendent of the magnetic moment. i.e. J only depends
upon the matrix element of the Coulomb interaction be-
tween electrons centered on neighboring atoms. In this
way we can think of the Heisenberg model as an effective
theory of the Hubbard model where we have integrated
out the atomic orbits. At higher orders in the strong
coupling expansion, the Hamiltonian (66) gets corrected
by the so-called “bi-quadratic” terms of the form

∆H = −J̃
∑
⟨ij⟩

(S⃗i · S⃗j)
2. (67)
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While such terms, if numerically significant, can have
considerable effects on the phase transition [61] the low
energy theory of Goldstones below the critical point is
unchanged by their presence.

Starting from the Heisenberg Hamiltonian (66), we can
obtain (minus) the static limit of the Lagrangian density
(40) by taking to the continuum limit. This is accom-

plished by parameterizing the spins as S⃗i ≡ Sn̂i, where
the magnitude S is constant and replacing i → r⃗, j →
r⃗ + δ⃗, where r⃗ is the position of the ith spin with some
choice of origin. The sum over nearest neighbors becomes
an integral over r⃗. We then coarse grain by averaging over

the δ⃗’s,12 and take the limit δ⃗ → 0,S → ∞ with δ2S2

fixed.
The final result is

−Lstatic =
c7
2
(∂in̂)

2, (68)

and c7 ∼ Jδ2S2.

B. Explicit symmetry breaking and spurions

To properly capture the long distance physics of ex-
plicit symmetry breaking we utilize a spurion analysis
(see e.g. [62]). We will assume that the associated
length and time scales are much longer than those at
which spontaneous symmetry breaking occurs, so that
explicit breaking can be treated perturbatively using spu-
rion fields. The symmetry breaking parameter (in cut-off
units) is treated as an additional expansion parameter,
whose relative size compared to other corrections will de-
pend upon the energy/length scale of interest.

1. Zeeman Interactions

Arguably the simplest source of explicit symmetry
breaking is the Zeeman coupling between spins and a

constant external magnetic field. At the microscopic
level, this is described by supplementing the microscopic
Hamiltonian with a term

∆H = −µ
∑
i

B⃗ · S⃗i. (69)

This interaction explicitly breaks the spin SO(3) down

to the SO(2) subgroup that leaves B⃗ invariant

The spurion technique amounts to treating the explicit
symmetry breaking as if it were a spontaneous breaking

due to an operator Ψ⃗—the spurion field—that develops a

small expectation value ⟨Ψ⃗⟩ = µB⃗. The advantage of this
approach is that the spurion can be treated like any other
matter field and coupled to the Goldstone modes follow-
ing the standard rules of the coset construction [16, 63].
The spurion transforms in a linear representation of the

full symmetry group (G), Ψ⃗ → g Ψ⃗. However, to form in-
variant using the coset construction we are interested in
objects which transform under the unbroken subgroupH.

The field Ψ⃗′ = Ω−1Ψ⃗ is such an object as it transforms

as Ψ⃗′ → h(Φ, g)Ψ⃗′, where Φ stands for all the Goldstone

fields. However, Ψ⃗′ transforms reducibly under H so we

decompose Ψ⃗′ into irreducible representations of the un-
broken group, i.e. Ψ′

a and Ψ′
3. Finally we add to the

effective action terms that depend on these irreps and
are manifestly invariant under the unbroken group. To
this end it is helpful to notice that the microscopic inter-
action preserves time reversal if the spurion is assumed

to be odd, i.e. to transform as Ψ⃗ → −Ψ⃗.

In a ferromagnet, where time reversal is spontaneously
broken, we are allowed to write terms involving the spu-
rion that are not invariant under time reversal. Conse-
quently, at leading order in µBLχ/vχ we have

Lspurion = F (B)Ψ′
3 = F (B)O−1

3A(χ)Ψ
A = F (B)n̂ · Ψ⃗ → F (B)µn̂ · B⃗, (70)

where in the last step we have replaced the spurion with
its expectation value. Since, in the continuum limit,
an external magnetic field couples to the Noether den-
sity of spin [22], the function F (B) is constrained 13.
More precisely, since the Ferromagnetic spin density is
given by s⃗ = c2det(D)n̂ for a ferromagnet, this fixes
F (B) = c2det(D). The operator in (70) introduces mix-

12 By isotropy, we must have ⟨δiδj⟩ ∼ δ2δij .
13 We thank Tomas Brauner for pointing this out to us.

ing between magnons and longitudinal phonons when B⃗
is not aligned with the unbroken spin direction (the 3
direction, in our notation)14 . Of course, the incompress-
ible limit (F (B) = constant) of this result could have
also been obtained more easily by taking the continuum
limit of the microscopic interaction (69).

14 When B⃗ is not aligned with the magnetization, the system will
precess around the field. Damping will eventually lead to align-
ment on longer time scales.
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In the case of an antiferromagnet, the leading inter-
action with the spurion must be invariant under time
reversal, and therefore we have

Lspurion = F (B)Ψ′
a∇tχ

a → F (B)O−1
aA(χ)µB

A∇tχ
a.
(71)

Of course, the interaction (71) is also allowed for fer-
romagnets. But in the incompressible limit, this is not
the leading correction to the effective action for ferro-
magnons. The functional form of F (B) is also con-
strained in this case from the anti-ferromagnetic spin
density to be ρF̃3(B). As in (70), this also results in

phonon-magnon mixing when B⃗ is not aligned with the
unbroken spin direction. Interestingly, Zeeman inter-
actions cannot introduce mixing between magnons and
transverse phonons—a result that follows straightfor-
wardly from our spurion analysis.

2. The Dzyaloshinsky-Moriya (DM) interactions

At the microscopic level the Dzyaloshinsky-Moriya
(DM) interaction [64, 65] takes the form:

H =
∑
⟨ij⟩

(S⃗i × S⃗j) · D⃗ij , (72)

where the vector D⃗ij depends on two neighboring lattice
points, and in perturbation theory can be expressed as a
linear combination of matrix elements of the orbital an-
gular momentum operator [66]. This interaction occurs
when the inversion symmetry is broken in a material, and
leads to the canting of the spins in the ground state. It
explicitly breaks spin and spatial rotations down to the

diagonal subgroup, generated by J⃗ ≡ S⃗ + L⃗.
At the microscopic level, one can distinguish between

two types of DM interactions depending on whether D⃗ij

is parallel or perpendicular to the lattice vector r⃗ij con-
necting the sites i and j. In the continuum limit, the
first case yields the so-called Bloch-type DM interactions,
which arise for instance in non-centrosymmetric bulk ma-
terials [67]. In the second case, the resulting DM interac-
tion is dubbed Néel-type. This interaction is anisotropic,
and it occurs for example when a thin film ferromagnet
is placed on top of a non-magnetic material with a large
spin-orbit interaction (interfacial DM interaction) [68].
Significant theoretical and experimental attention has
been recently devoted to DM interactions, as they pro-
vide a mechanism to stabilize magnetic Skyrmions [69–
82].

Instead of taking the continuum limit of the micro-
scopic interactions (72), we are going to use the spurion
technique to infer the corresponding terms in the effec-
tive action for magnons and phonons. In order to break
spatial and spin rotations down to the diagonal subgroup,
we need a spurion field that transforms in a non-trivial
representations of both symmetries, which we will take
to be the fundamental representations for simplicity, i.e.

we will use a field ΨA
i . There are two distinct ways of

implementing the desired explicit breaking by giving a
vev to the spurion, and they correspond to the two types
of DM interactions mentioned above:

Bloch: ⟨ΨA
i ⟩ = δAi D∥, (73a)

Néel: ⟨ΨA
i ⟩ = ϵAijD

j
⊥. (73b)

In order to couple the spurion to phonon and magnons,
we will follow the blueprint outlined for the Zeeman in-
teraction: we first introduce a new field Ψ′ ≡ Ω−1Ψ, then
break it up into its irreducible representations under the
(spontaneously) unbroken group, Ψ′3

i and Ψ′a
i . The lead-

ing symmetry breaking term in the effective Lagrangian
is then

Lspurion = F (B)Ψ′a
i ∇iχa → F (B)O−1(χ)aA⟨ΨA

i ⟩∇iχa.
(74)

It is easy to show that, after replacing the spurion with
the appropriate expectation values in (73) and taking
the incompressible limit (F (B) = constant), this spurion
action reproduces the familiar expressions for the Bloch
and Néel DM interactions:

Bloch: D∥ϵijkn̂
i∂j n̂k, (75a)

Néel: Dj
⊥(n̂j∂in̂

i − n̂i∂in̂
j). (75b)

Away from the incompressible limit, the coupling (74)
gives rise to a kinetic mixing between the longitudinal
phonon and either ∂aχ

a (Bloch) or ϵab∂aχb (Néel). This
however is not the only source of kinetic mixing, since
one should also consider the operator

L′
spurion = F ′(B)Ψ′a

i ∇(iπj)∇jχa. (76)

which additionally generates a kinetic mixing between
magnons and the transverse phonons. See e.g. [83–86]
for recent work on phonon-magnon mixing.

VIII. CONCLUSIONS

We have demonstrated how to build an effective field
theory for magneto-elastic interactions using the space-
time coset construction. The action non-linearly realizes
all of the broken symmetries in a long wavelength ap-
proximation. The action includes all orders in the fields
with a fixed number of derivatives, which makes the the-
ory valid for any background where ∂2χ/Λ2

χ ≪ 1. We
have also shown how to systematically include the ef-
fects of explicit symmetry breaking due to Zeeman and
DM interactions. Other symmetry breaking terms can
be included using the same line of reasoning as presented
in the last section. We have presented several new re-
sults most important of which are eqs. (50) and (51)
that generalized the Landau-Lifshitz equations to allow
for incompressibility. Applications of our formalism to
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Skyrmionic physics will follow in a subsequent publica-
tion.
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Appendix A: WZW term for magnons

In this short appendix, we provide a few more de-
tails about the derivation of the RHS of Eq. (10b).
To this end, we’ll focus our attention on the 2-form
ω2 ≡ ϵab ωSa

∧ ωSb
, which can be written more explic-

itly as

ω2 = 1
2ϵ

aBC [O−1dO]a3 ∧ [O−1dO]BC . (A1)

Using the fact that O−1 = OT , and writing explicitly the
sums over the indices B = b, 3 and C = c, 3, we find

ω2 = ϵabOAaOBb dOA3 ∧ dOB3. (A2)

At this point, it is convenient to think of the matrix ele-
ments OAB as a triplet of mutually orthogonal unit vec-
tors defined by

m̂
(a)
A ≡ OA

a, n̂A ≡ OA3 (A3)

Then,

ϵabOAaOBb = (m̂
(1)
A m̂

(2)
B − m̂

(2)
A m̂

(1)
B ) = ϵABC n̂

C . (A4)

The result on the RHS follows from the fact that the
expression in the intermediate step must be antisymmet-
ric, orthogonal to n̂A and n̂B , and its contraction with
ϵABC n̂C must be equal to 2. Thus, the 2-form in Eq.
(A2) can be written as

ω2 = ϵABC n̂A dn̂B ∧ dn̂C . (A5)

Now, if we parametrize the unit vector as in Eq. (39),
we can calculate ω2 explicitly to obtain

ω2 = 2 sin θ dθ ∧ dϕ = d[−2 cos θ dϕ]. (A6)

However, the discussion in Sec. VA shows that this is
also equivalent to

ω2 = d[ϵab(O−1dO)ab]. (A7)

Appendix B: Magnons in ferromagnets

In the ferromagnetic case, the term in the action with
one time derivative is the leading order kinetic term.
Therefore, we may eliminate the term with two time
derivatives via a field redefinition such that

∂tχa∂tχ
a → (∂2χa)

2 + .... (B1)

where the remaining terms involves sub-leading operators
(see e.g. [41]). Recall that our power counting for the FM
case dictates that time derivatives scale like two spatial
derivatives, based on the dispersion relation ω = k2/2m.
Then, the effective action for a ferromagnet describes a
single propagating degree of freedom. This can be traced
back to the existence of a primary (second class) con-
straint

paχ − 1

2
ϵabχb = 0, (B2)

where the paχ’s are the momenta conjugate to the χa’s.
The canonical quantization of this constrained theory has
been discussed in detail in [25, 87]. One must use care
in defining the external states, by proceeding through
the Dirac procedure for constrained systems. The Dirac
bracket algebra will be satisfied via the field expansions
for χ and its conjugate momentum pχ,

χa =

∫
d3k

(2π3)
(akϵ

ae−ik·x + a†kϵ
a⋆eik·x)

paχ = −1

2

∫
d3k

(2π3)
(akϵ

ae−ik·x − a†kϵ
a⋆eik·x)

(B3)

where k · x = −ωkt+ k⃗ · x⃗ and [ak, a
†
k] = (2π)3δ3(k⃗− k⃗′),

and

ϵa = (1,−i)/
√
2. (B4)

This is equivalent to the statement that the complex field
Ψ = 1√

2
(χ1 + iχ2) only contains annihilation operators,

as is the case for an ordinary non-relativistic field:

Ψ =

∫
d3k

(2π3)
ake

−ik·x (B5)
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