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Abstract

Primordial black holes (PBHs) lose mass by Hawking evaporation. For sufficiently small
PBHs, they may lose a large portion of their formation mass by today, or even evaporate
completely if they form with mass M < Mcrit ∼ 5×1014 g. We investigate the effect of this
mass loss on extended PBH distributions, showing that the shape of the distribution is
significantly changed between formation and today. We reconsider the γ-ray constraints
on PBH dark matter in the Milky Way center with a correctly ‘evolved’ lognormal dis-
tribution, and derive a semi-analytic time-dependent distribution which can be used to
accurately project monochromatic constraints to extended distribution constraints. We
also derive the rate of black hole explosions in the Milky Way per year, finding that al-
though there is a significant number, it is extremely unlikely to find one close enough to
Earth to observe. Along with a more careful argument for why monochromatic PBH dis-
tributions are unlikely to source an exploding PBH population today, we (unfortunately)
conclude that we are unlikely to witness any PBH explosions.
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1 Introduction

Primordial black holes (PBHS) [1–4] are one of the earliest and most intriguing dark matter
candidates. With the recent direct observations of black holes [5–7], PBHs could be considered
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to be back in the limelight as a popular dark matter candidate. However, the fraction fPBH of the
dark matter energy density in PBHs is constrained by a wide range of observations across the
PBH mass spectrum [8,9]. Typically, these constraints are given for monochromatic dark matter
distributions, but there has been growing interest in studying extended mass distributions [10–
14].

Black holes are understood to have a temperature proportional to the surface gravity at
the horizon and so lose mass by Hawking radiation [15,16]. The black holes radiate a thermal
spectrum consisting of all particles with a mass below this surface temperature, with emission
rate,

d2Ni

d tdE
=

1
2π

∑

dof

Γi(E, M , a∗)
eE′/T ± 1

, (1)

where Ni is the number of particles emitted, Γi is the ‘greybody factor’, E′ is the energy of
the particle (including the BH spin), a∗ is the reduced spin parameter, the sum is over the
degrees of freedom of the particle (including color and helicity), and the ± sign accounts for
fermions and bosons respectively. For large black holes, mass loss from Hawking evaporation is
negligible over their lifetime. For sufficiently small black holes, however, the effect of Hawking
evaporation is large. These PBHs may lose a significant portion of their mass by today, or
even evaporate completely (possibly leaving some small remnant behind). Black holes which
evaporate exactly with the lifetime of the universe are called ‘critical mass’ black holes, forming
with a mass Mcrit ∼ 5×1014g. In this paper we will explore the effect that Hawking evaporation
has on extended PBH distributions, centered near this critical mass. Throughout, we use the
public code BlackHawk [17, 18] to calculate lifetimes and emission spectra of the primordial
black holes.

First we look at monochromatic PBH distributions at masses just slightly above the critical
mass. These could leave behind a sizeable remnant population of tiny black holes today, with
masses M < Mcrit. We will argue that this scenario, however, requires a very high level of fine-
tuning for the initial black hole mass, and so there is a kind of ‘stability’ bound disqualifying
such a remnant population1. Since the bounds on PBH dark matter are always given in terms
of the black hole initial mass, this small section offers a more satisfying answer to the question
of what comprises the dark matter today.

In the second part of this paper, we explore extended mass distributions with central mass
near the critical mass. Since black holes of different masses evolve at different rates, these
extended mass distributions evolve non-trivially from their formation time until today. That
means that a distribution which is e.g. lognormal at PBH formation, has quite a different shape
today—we will refer to this as the ‘evolved’ distribution, which we derive explicitly. Often,
constraints on extended distributions are derived by ‘adapting’ the monochromatic constraints
with a kind of interpolation [10]. However, it was pointed out in Ref. [13] that this method
does not work for small PBH masses, for the above reason—the distribution changes over time.
We show that using the correct evolved distribution, however, allows us to still use the method
of Ref. [10] to derive correct constraints. In particular, we rederive the constraints on galactic
center γ-rays detected by HESS and Fermi [20–22] for a lognormal extended distribution,
showing the rather large effect of properly evolving the PBH distribution (and agreeing with
the isotropic γ-ray constraints found numerically in Ref. [13]).

In the final portion of this paper, we investigate the ‘exploding’ tail of the tiniest black holes
in the evolving distribution, and calculate the rate of black hole explosions over time. We find
that there are a significant number of black hole explosions in the Milky Way every year—

1There are a number of constraints that already exist for monochromatic PBH distributions which form just
above the critical mass. However, it is still instructional to consider this argument which so often goes unstated.
If, for instance, Hawking radiation proceeded much faster than expected in the Schwarzschild case, this argument
would still hold while the aforementioned constraints might not; see, e.g., Ref. [19].
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Figure 1: For a range of black hole masses today, we show the relative difference
between their mass at formation and the critical black hole mass. This difference
is so small that we would need incredible fine-tuning to consistently produce these
populations today, far beyond the precision with which we are even able to perform
these calculations. Below 1011 g, the black hole lifetime is less than a year, making
such a scenario even more unreasonable (unless we consider ourselves to be in an
extra-special period where all the PBHs are about to explode, any day now).

however, the expected distance to the nearest black hole explosion from Earth is sufficiently
large that the photon flux is probably too small to witness one of these transient events, with-
out exceptional luck. Nonetheless, it is interesting to consider the possible signal from such
an event—since black holes evaporate with the entire particle spectrum, witnessing such an
explosion could have profound science consequences [15,16,23,24].

This paper is structured as follows. In Section 2 we address the question of whether there
could be a monochromatic spectrum of PBHs today with masses m < Mcrit. In Section 3,
we derive the evolving PBH distribution, before calculating the γ-ray bounds for a lognormal
distribution in Section 4. Finally, we examine the PBH explosion rate in Section 5, and conclude
in Section 6.

2 The monochromatic stability constraint

It is often stated that ‘black holes with masses m < Mcrit cannot be the dark matter, since
they evaporate before today’. This statement is technically true, when considering the mass
at formation. But there remains the question—can a monochromatic distribution with mass
slightly larger than the critical mass leave behind a sizeable population today of very tiny
black holes? Constraints from Hawking emissions already do exist for such a population.
However, this question can be answered on more theoretical grounds, without reference to
specific observations.

Consider the scenario where there is a remnant population today of black holes of masses
m< Mcrit. If the black holes had mass 1.1×1011 g, the mass of these black holes at formation
would have been 7.4 × 1014 g (very close to the critical mass). However, if the population
had mass 1.1×1014 g today, the initial mass would have been just 7.5×1014 g. Clearly, there
is extremely little difference between these two initial populations. For these two examples,
we can compute ∆Minit/Mcrit ∼ 0.01—so there is roughly a 1% difference in formation mass
for a three orders-of-magnitude difference in black hole mass today. In Fig. 1, we show this
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percentage difference for a range of black hole masses today, using Mcrit as the ‘reference’ mass.
We can see that minuscule changes in formation mass have drastic impact on the remnant mass
today. As a result, we have a kind of ‘stability’ constraint on a theory which predicts a specific
range of black holes today with M < Mcrit, since it is so sensitive to the initial conditions—
the precision required to source such a population would be smaller than the theoretical and
observational uncertainties in our calculation.

Essentially, we can not expect to find a rapidly evaporating monochromatic distribution
of black holes today. However, if the distribution was instead extended, this becomes a more
interesting question to ask, since the tail of an extended distribution near the critical mass
would seed an evaporating PBH population today. We investigate such a distribution in the
following sections.

3 Evolving PBH distributions

With the increased interest in primordial black holes in recent years, constraining extended
distributions has become a more pressing task. In Ref. [10], Carr et al. derived the constraints
on extended distributions by interpolating the monochromatic distribution constraints. In
Ref. [13], Arbey et al. argue that this method will not work for small black holes, since Hawking
evaporation changes the PBH distribution between formation and today. Arbey et al. rederived
the PBH constrains from isotropic gamma rays numerically, by simulating the evaporation of
a number of black holes using the program BlackHawk [17, 18]. Here, we will show that the
method of Carr can still be rescued for evolved distributions, as long as one uses the correct
distribution at relevant epochs. We show how to derive this distribution and later rederive the
galactic center γ-ray bounds. We define the fraction of total PBHs in the range [M , M + dM]
as,

φ(M)≡
1

nBH

dn(M)
dM

, (2)

where nBH is the total PBH number density and n(M) is the number density of PBHs in the
mass range [M , M + dM]. The physical interpretation of φ is that if you had a population of
a certain number of black holes, the fraction of this population in a particular mass range (by
number) can be found by integrating φ over the mass range. This is to be compared to the
often-used definition ψ ≡ Mdn/dM , which would give you the fraction of energy density in
some mass range. Defining the quantity as in Eq. 2 is perhaps more useful, however, in our
case. This is because the Hawking process happens to each black hole separately, rather than
to the black hole population as a whole. Then φ(M), at PBH formation, would be normalized
as,

∫

dM φ(M) = 1 , (3)

and we could compute,

ρBH = nBH

∫

dM Mφ(M) , (4)

for some choice of volume V . However, we are interested in the time evolution of this distri-
bution. In this case, the fraction of black holes in the range [M , M + dM] at a particular time
has two arguments, φ(M , t). We assume that the initial distribution dn(M)/dM is fixed by
whatever physics produces the PBHs, and from then on is able to evolve. Then the fraction at
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Figure 2: Four initial distributions with M∗ = 1015 g and different σ, evolved to later
times. It is evident that the low-mass tail tends towards a slope∝ M2, which means
a suppression of masses around the peak, and an enhancement at low masses (the
σ = 1.5 case is too wide to show this behaviour within the bounds of our data). Note
that t is in units of the age of the universe.
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a particular time is given by,

φ(M , t) = φ(M0(M , t), t0)
dM0(M , t)

dM
, (5)

where M0(M , t) is the formation mass corresponding to a black hole of mass M at time t, and
t0 is the time of formation. The second term can be thought of as a change of variable, since
we need to preserve φ(M)dM = φ(M0)dM0.

Let us then compute the time-dependent distribution, assuming black holes without spin
or charge (the arguments will not change drastically with the inclusion of this complication).
Also, although black holes of different sizes form at different epochs in the early universe,
accounting for this properly will only have a minuscule effect on the distribution, since we are
considering black hole evolution times on the scale of the age of the universe. For simplicity,
we can then define the time of formation as t = 0. The Hawking mass-loss equation [25] is
given by,

dM
dt
= −
ħhc4

G2

α

M2
, (6)

where α is a coefficient depending on which species are possible to emit, which is determined
by the mass. A black hole will spend the majority of its lifetime near its initial mass, so α≈ α0
is a sufficiently good approximation for our purposes and allows for the analytic solution of
the differential equation,

M(t) =

�

M3
0 − 3α0

ħhc4

G2
t

�1/3

, t ≤ τ. (7)

This equation can trivially be inverted to calculate the initial mass M0 for a black hole of mass
M at time t after formation:

M0(M , t) =

�

M3 + 3α0
ħhc4

G2
t

�1/3

. (8)

However, determining α0 is generally complicated, and so does not make for a nice analytic
solution. One could use the ‘classical’ value αclassical = 1/15360π, but this is not particularly
accurate, since it only accounts for photon radiation. In order to proceed semi-analytically, we
use the approximation α0 = αeff, which we define as,

αeff ≡
G2

ħhc4

M3
0

3τ
, (9)

whereτ is the black hole lifetime, calculated numerically with BlackHawk. This means thatαeff
guarantees we obtain the correct lifetime for any initial mass. We find that using this effective
parameter instead of the numerical value gives a correct evolved mass to within a few percent
at all times for the majority of initial masses. We show a plot of αeff in Fig. 3, which must be
derived numerically. If one is desperate for a purely analytical evolved distribution, this could
be approximated with the following function, which we fit with a χ2 regression:

αeff,fit =

¨

c1 + c2M p
0 M0 ≲ 1018 g

2.011× 10−4 M0 ≳ 1018 g
, (10)

where c1 = −0.3015, c2 = 0.3113, and p = −0.0008 and the value for M0 ≳ 1018 is taken
from Ref. [25]. This fit is shown in Fig. 3. Combining Eqs. 5 & 8, we find the time-dependent
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Figure 3: We show αeff as a function of initial black hole mass. This parameter is
defined in such a way that the Hawking lifetime of a black hole, calculated using
αeff, is the same as the lifetime of a black hole with that initial mass, fully calculated
numerically with BlackHawk. For convenience, we also fit an approximate power
law. Using the fit gives the correct black hole evolution to within a few percent for
most of the distribution, diverging a bit more for larger masses.

evolved distribution,

φ(M , t) = φ(M0(M , t), t0)×M2

�

M3 +αeff(M0(M , t))
ħhc4

G2
t

�−2/3

(11)

This equation can be used easily by anyone wishing to study extended PBH distributions which
are effected by Hawking radiation. If one wishes to study a different kind of mass change, such
as by accretion in the early universe, however, the second term would need to be modified
according to the mass-change equations for that physical process.

There a few subtleties which should be addressed. Firstly, nBH in Eq. 2 is defined at the
black hole formation time. Since some black holes will completely evaporate, this means that
the integral in Eq. 3 will be less than one as time goes on, as the M = 0 portion of the integral
is lost. Secondly, two black holes with different initial masses, but which have eventually
evaporated, will not be distinguishable (since there is nothing to distinguish)—so one must
be careful when applying Eq. 8 for fully evaporated black holes. Finally, this method requires
that the black hole masses evolve via a continuous function of mass and time. Here, that
function was the black hole mass loss due to Hawking radiation in Eq. 8—but this method
could equally be applied for anything else which affects the black hole mass in a continuous
way (e.g., accretion in the early universe).

Eq. 11 also provides a simple explanation for the shape of the evolved distributions in
Fig. 2. It is useful to examine the two extreme regimes. For M3≫ αeff

ħhc4

G2 t, the second term is
suppressed, leading to an essentially unchanged distribution. This is indeed the behaviour seen
for large masses. Conversely, when M3≪ αeff

ħhc4

G2 t, the second term dominates, scaling∝ M2.
Since evolved PBHs with small masses originate at almost the same initial mass, φ(M0, t0)
and αeff(M0) become essentially constant in M , and the evolved distribution becomes∝ M2,
which is indeed also the behaviour seen for small masses at later times. Where the two terms
are of comparable size, there will be an intermediate region. This analysis is independent of
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Figure 4: Expected signal from the galactic centre for evolved populations to-
day, contrasted with the expected signal for unevolved lognormal distributions, for
fpbh = 10−8. Larger values of fpbh produce signals roughly larger than observed by
HESS [20] and Fermi-LAT data [21,22], setting constraints on the PBHs.

the initial distribution, and will hold as long as φ(M0, t0) does not vary extremely quickly in
mass.

It would certainly be interesting to examine in addition the evolution of the distribution
from mergers, although it would not be trivial to calculate. The PBH-binary parameter dis-
tribution from even a monochromatic distribution [26,27] is already somewhat complicated,
and performing this calculation with an extended mass distribution is well beyond the scope of
this paper, if it is even analytically tractable (and it is difficult to intuit which way the bounds
would shift, after including this effect).

4 γ-ray constraints

For demonstrative purposes, we will recompute the γ-ray constraints from the galactic center,
using a lognormal distribution. The lognormal distribution is relatively well-motivated, since
many physically realistic processes are expected to result in such distributions [13, 28–33],
and is given by,

dn(M)
dM

=
nBHp

2πσM
exp

�

−
(ln(M/M∗))2

2σ2

�

(12)

8



SciPost Physics Submission

The γ-ray flux from an extended distribution of black holes is given as

d2Nγ
dEd t

(E) =

∫

dM
d f
dM

d2Nγ
dEd t

(M , E) , (13)

and given that the emission of low-mass black holes is much larger than that of larger masses,
the low-mass tail of φ(M) becomes very important, as was noted in Ref. [13]. We use this to
compute the expected flux in γ-rays, Φ, from the galactic centre, using

dΦγ
dE
(E) = fpbh

D
M̄

d2Nγ
dEd t

(E), (14)

where M̄ is the initial mean PBH mass, and D is the D-factor commonly used for decaying dark
matter predictions [34], given by

D =

∫

dldΩρdm. (15)

In Fig. 4 we show the expected signal from the galactic centre, using the Navarro–Frenk–White
dark matter profile [35] for the PBHs, contrasted with the expected signal for a lognormal PBH
distribution which does not evolve. Note that for evolved distributions, we use fpbh to refer
to the PBH fraction of dark matter at formation. For distributions with significant portions of
low-mass PBHs, part of that mass would be evaporated at later times.

By requiring that the emission from PBHs does not exceed the observed flux from the galac-
tic centre, we can constrain fpbh for a specific distribution. An alternative method for doing
this was proposed in [10], which does not require computing the signal from a given distribu-
tion, but instead adapting the constraints on monochromatic distributions. We find that using
this ‘adapted’ method, but with our correctly evolved distribution, agrees excellently with the
bounds computed numerically, by simulating an initial PBH distribution and computing the
γ-ray spectrum. In addition, the correctly evolved bounds are very similar to those derived in
Ref. [13] for isotropic γ-rays 2.

5 Black hole explosions

The end of life of an evaporating black hole is not entirely known. However, at least down to
extremely small masses, it should be the case that the black holes will get hotter and brighter,
emitting a huge spectrum of particles. For convenience, we call this end-of-life phenomenon
an explosion, although we will not comment on whether or not the black hole is completely
exhausted, or leaves behind some kind of remnant. The possibility of observing such an explo-
sion would be very exciting. Since all possible particle species are emitted, we could not only
probe the Standard Model more clearly, but we could possibly make statements about dark
matter and beyond-the-Standard Model physics [23,24].

We can straightforwardly convert the evolving PBH distribution to a plot of black hole
explosions, per volume per year, which we plot in Fig. 6. We can see that there are actually
quite a large quantity of explosions per year. However, and unfortunately, the distance between
these explosions is still probably too small for observation from Earth—see Fig. 7, where we
plot the average distance between these explosions as a function of the distribution parameters
and fpbh.

2We choose not to reproduce these particular bounds, however, since the extragalactic flux must be integrated
back in time—a slightly more complicated task when the evolution itself is evolving.
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Figure 5: Bounds on fpbh from galactic centre γ-ray observations. There are four
bounds plotted here (the thickness of the borders accounts for observational uncer-
tainty). The first ‘lognormal’ bound, is the spectrum computed produced today, if
we do not account for the evolution of the spectrum. The second ‘evolved’ bound is
numerically calculated from the γ-ray spectrum of black holes, distributed with our
evolved spectrum today Eq. 11. The ‘adapted’ bound refers to the bound obtained
using the method from Ref. [10], where the monochromatic constraints are inter-
polated to form the extended distribution bounds. The ‘adapted, evolved’ bound is
calculated using the same method, but with the correct evolved distribution Eq. 11.
In each case, the actual bound is placed by requiring that the signal be below the
HESS and Fermi-LAT sensitivities. We can see that the adapted method is perfectly
compatible with the numerical results, when using our evolved distribution. The
reason our bounds for the evolved distribution are loosened for small values of M∗
is that a large fraction of that population would have evaporated already, and thus
would have no impact on the γ-rays from the galactic centre. A different probe, such
as their impact on BBN or CMB would be needed to constrain this type of popula-
tions. The unevolved lognormal bounds must be arbitrarily cutoff at 1014 g, since
it would not be consistent to have a lognormal distribution today consisting of tiny,
rapidly-evaporating black holes (following the same logic as in Sec. 2).

10



SciPost Physics Submission

106

108

1010

1012

1014

1016

102

104

106

108

1010

1012 σ = 1.5

106

108

1010

1012

1014

1016σ = 1

106

108

1010

1012

1014

1016

10−4 102 108 1014 1020

102

104

106

108

1010

1012

E
x
p

lo
si

on
ra

te
in

1
M
�

of
P

B
H

m
at

te
r

[y
ea

r−
1

]

σ = 0.5

106

108

1010

1012

1014

1016

E
x
p

lo
si

on
ra

te
in

M
il

k
y

W
ay

fo
r
f p
bh

=
10
−

8
[y

ea
r−

1
]

10−4 102 108 1014 1020

σ = 0.1

M∗ = 5 · 1014

M∗ = 1015

M∗ = 5 · 1015

M∗ = 1016

Age of Universe

t [years]

Figure 6: Explosion rate of PBHs over time, for a few values of σ and central mass
M∗. The rate is given in terms of number of explosions per cumulative ‘solar mass’ of
PBHs. To escape the previously derived bounds, we have fPBH ≲ 10−8. On the second
vertical axis, then, we show what this explosion rate would imply in the Milky Way for
a PBH distribution satisfying this constraint. We can see that even at this relatively
low fraction, there is a significant quantity of explosions per year. For a different
fraction, the event rate would change proportionately.
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Figure 7: Average distance between black hole explosions, for the evolving lognormal
distribution as above. For demonstrative purposes, we also plot a line showing where
such a distance corresponds to a photon flux of 0.1 photons cm−2yr−1. We can see
that even this very low flux is only satisfied for very large fractions fpbh. As tantalizing
as the prospect of witnessing a black hole explosion would be, it appears to be unlikely
in this scenario. Of course, the Earth would be located somewhere in between these
explosions, but the expected distance to the nearest explosion would only be a factor
of few smaller than this distance—unless we were exceptionally lucky.

As a representative observation, we can examine the γ-ray flux from one of these transient
events. In the last year of the black hole’s life, at a distance of ∼0.01 parsec, we only expect
1 photon per square cm per year. In order to observe a single photon from an explosion with
Fermi3, the black hole would need to be within a distance of ∼ 100 AU. A single photon,
however, is hardly a positive detection. Ten detected photons requires a distance of ∼ 35 AU
(∼ 10−4 pc), placing it firmly inside our solar system. One such event, unless we happen to
be very lucky, corresponds to PBH fractions which are well excluded— in the monochromatic
case, it would be excluded by the argument in Sec. 2, whereas the extended distributions are
ruled out by the arguments in Secs. 3, 4. Perhaps there is some more creative way to observe
these explosions as transient events (or even, a background) which we have not considered—
after all, there is a lot of possibility when the entire particle spectrum is produced. However,
for the moment, it does not appear that we will be witnessing any black hole explosions any
time soon.

A different way of determining the presence of such explosions would be through investi-

3Assuming an effective area of 104 cm2 for the relevant energies [36].
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gating the energy injected into the interstellar medium. A conservative estimate of the energy
emitted from PBHs in a given year is ∼ 1011 g (1032 ergs) per explosion, neglecting the emis-
sion from PBHs with more than a year of life left. As shown in Fig. 6, the explosion rate in
a Milky Way-like galaxy can vary greatly over time, depending on the initial distribution. As-
suming a Milky Way explosion rate of 1010 per year, this is 1042 ergs emitted per year, of which
a large portion is in photons. In a similar naive analysis, a supernova will generally release
∼ 1051 ergs [37, 38]. If the supernova rate is one every 10 to 100 years in a MW-like galaxy,
this means that supernovae will inject ∼ 107 times more energy over that timespan compared
to the black hole explosions. However, there may be some morphological differences, as a
supernova will be very localised, whereas the energy injection from PBH explosions will be
distributed with the halo density profile, and with roughly ‘continuous’ emission. Additionally,
supernovae are often tied to star formation, since many supernova progenitors are short-lived
high-mass stars, whereas PBH explosions are completely independent of star formation, and
could even happen before stars are formed. A more thorough analysis of the energy injection
by PBH explosions would be interesting, but beyond our scope here.

6 Conclusions

Small black holes can lose a significant fraction of their mass via Hawking radiation. Distribu-
tions of small black holes therefore evolve over time, as some black holes explode and some
shrink considerably. We showed that for monochromatic distributions, it is extremely unlikely
to find a population today which is rapidly evaporating, since the initial mass would have to
be extremely fine-tuned to a small value above this critical mass. However, extended distri-
butions centered near the critical mass would source a population of evaporating black holes.
We demonstrated how to derive this distribution today, and that using the correctly evolved
distributions saves the method of Ref. [10], which recasts monochromatic constraints into ex-
tended constraints. We then calculated the rate of PBH explosions for a lognormal distribution
near the critical mass. Unfortunately, we found that although there are a significant quantity
of these explosions, they are on average sufficiently far from Earth that we do not expect to
see them.

Primordial black holes are seeing something of a Renaissance today, in large part due
to the exciting observations of black holes from experiments such as LIGO/Virgo. As our
understanding of their origins and astrophysics improves, the need to properly model extended
mass distributions becomes more pressing. There is a lot to learn from these black holes, both
cosmologically and astrophysically, as well as on the theoretical side—for gravity and particle
physics.

During the preparation of this paper, a similar treatment of the evolved mass distribution
was published in the context of PBH bubbles as cosmological standard timers [39]. We find
that our results agree well.
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