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Abstract

We found that Bidirectional LSTM and Transformer can classify different phases of con-
densed matter models and determine the phase transition points by learning features in
the Monte Carlo raw data before equilibrium. Our method can significantly reduce the
time and computational resources required for probing phase transitions as compared
to the conventional Monte Carlo simulation. We also provide evidence that the method is
robust and the performance of the deep learning model is insensitive to the type of input
data (we tested spin configurations of classical models and green functions of a quantum
model), and it also performs well in detecting Kosterlitz–Thouless phase transitions.
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1 Introduction

The study of phase transitions in many-body systems is one of the hottest research topics in
condensed matter physics. Microscopic constituents can couple and interact with each other
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in many different ways, giving rise to various phases of matter having intriguing macroscopic
physical properties. Studying the transitions between different phases can give us deeper un-
derstandings of condensed matter physics especially in some non-trivial phases like topological
phases where the order parameter is not readily available [1]. Monte Carlo(MC) simulation
has been one of the most popular numerical techniques adapted to explore the physical prop-
erties of different phases in condensed matter models by the established Markov chain process.
In addition, the large amount of data generated by MC simulations can be used for data-driven
physics research, such as using machine learning to discover new physics from the data.

In the past few years, the classification of phases of matter using machine learning emerged
as a prosperous research field in physics [2, 3]. Recent studies have shown that data-driven
machine learning models can classify different phases by finding unknown features of con-
densed matter models, and further locate the phase transition points using both supervised
and unsupervised learning techniques. Unsupervised learning does not require prior labelling
of the data. This is particular suitable for the task of determining the number of phases in
the phase diagram of new models. Examples of common unsupervised learning techniques in-
clude principal component analysis [4–6], meta-heuristic optimization [7], machine learning
clustering [8] and deep autoencoder [6, 8, 9]. On the other hand, although supervised learn-
ing requires prior knowledge to label the training data, it can locate the transition points with
high accuracy. Previous work has demonstrated the success of empolying supervised learn-
ing in determining the phase transition points of, for examples, the Ising models [10], the XY
model [11] and the Hubbard model [12].

However, when using MC simulation, in some cases, it requires to consume extensive com-
puting resource to generate converged set of equilibrium data. For examples, near the phase
transition where critical slowing down occurs and thermal fluctuation diverges, or when we
do quantum MC Simulation, a longer time is also required for the simulation to reach equi-
librium due to the computational complexity of the algorithm, which sometimes accompanied
with the thorny sign problem [13]. To obtain the result in the thermodynamic limit, larger sys-
tems size is needed to locate the phase transition point accurately [14]. However, when the
system size increases, the time required for simulation to reach equilibrium will also increase
sharply, which results in a great increase in the time cost and computing resources for gener-
ating the training data. Our method being discuss here provides a novel approach to locate
the phase transition points using the input data before equilibrium, thus saving the lengthy
computational time.

In this article, we tested some of the most up-to-date deep learning models, namely the
Bidirectional LSTM and Transformer, which focus on analysing the time-domain data. The
fact that deep learning has become a hot research area in recent years has a lot to do with its
success in image classification. AlexNet proposed by Alex Krizhevsky et. al. won the champi-
onship in an image classification competition in 2012, and its performance far outperformed
other non-deep learning algorithms [15]. Later, it was found that deep learning algorithms
are also outstanding in many tasks such as image generation, image segmentation and ob-
ject detection. At the same time, people began to explore the application of deep learning
on tasks involving time-series data, such as text translation and speech recognition and have
proposed models such as Recurrent Neural Network (RNN) [16] and Long short-term memory
(LSTM) [17]. Transformer has shown great potential in the field of natural language process-
ing in recent years, and many improved deep learning models based on Transformer prove it
to be more suitable for extracting features from very long sequences than LSTM [18].
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Unlike previous approaches which used a large amount of spin configurations generated
from MC simulations after equilibrium is reached as the training data, here we used MC sim-
ulated spin configurations of the first m steps that are far away from the phase transition tem-
perature Tc . We labelled the data as 0 or 1 according to the first phase or the second phase,
e.g. above or below Tc . The deep learning models are then trained to classify the labelled
data by learning the features of different phases. When we feed the unlabeled spin configu-
ration near the phase transition into the well-trained machine, the machine is confused and
outputs 0.5 as the classification result, from which we could determine the phase transition
temperature Tc . As a benchmark, we first employed our scheme to locate the phase transition
in the two-dimensional (2D) Ising model on a square lattice. We then further extend the scope
of data source and the condensed matter model with non-trivial phases like the topological
phase in the XY model for the deep learning analysis. Surprisingly, we find our method not
only works using spin configurations from classical MC, but also the Green function obtained
with quantum MC process.

In addition, we also compared the performance of the Bidirectional LSTM and Transformer
with other commonly used deep learning models, namely the Fully Connected Neural Net-
work (FCN) and Convolutional Neural Network (CNN). We found that Bidirectional LSTM
and Transformer performed far better than FCN and CNN in classifying the phases with the m
steps MC data. We also find that the Bidirectional LSTM and Transformer can correctly classify
the phases with smaller m as compared to FCN and CNN.

The paper is organised as the followings. In Section 2, we introduce our proposed method
and the deep learning models in detail. We applied our scheme to detect the phase transi-
tion in the Ising model and compare the performance using different deep learning models in
Sec. 3. Section 4 presents the results when employing our method to other condensed matter
models with non-trivial type of phase transitions and to the quantum Hubbard model where
inputs with the Green functions generated from quantum MC is used to determine the phase
transition point. A conclusion is given in Sec. 5.

2 Deep learning models for time domain analysis

Figure 1 shows a schematic illustration of our proposed learning model. We use MC method
to simulate the sequential data before reaching the equilibrium state and when the system is
far away from the phase transition point as the training input for the deep learning models.
Taking a classical spin model as an example, the sequence is formed by randomly select a site
in the system and take its spin configuration in the first m steps in the MC simulation. The deep
learning model extracts features from the sequential data through LSTM block or Transformer
block and performs binary classification of the phases. The trained deep learning model is
then fed with data near the phase transition point to predict which phase the data belongs
to. When the deep learning output a probability value of 0.5, the corresponding value of the
driving parameter is the phase transition point of the system.

When one uses equilibrium spin configurations as the training data for the deep learning
model, CNN can easily capture the spatial information of the configuration, such as vortexes
in the XY model. However, in our task, the deep learning model needs to extract information
from long sequences, and LSTM and Transformer are just suitable for such tasks [17, 18], so
our deep learning model is followed by a Bidirectional LSTM Block or Transformer Block after
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Figure 1: (a) Overall architecture of the deep learning model we used. (b) and (c)
are the sub-architectures of the LSTM block and the Transformer block, respectively.
The input to the model is 20 sequences obtained from MC simulation before reaching
equilibrium, followed by 20 LSTM blocks or Transformer blocks to extract features
from each sequence data, and finally fully connected layers are used to map the
obtained features of the sequences into binary output to predict which phase the
input data belongs to.

the input layer, then use FCN to process the extracted sequence information and output the
probability of binary classification. The structure of the deep learning model is shown in Fig.1
(a).

Despite RNN is often used to process sequence data, its simple internal structure makes
it impossible to extract long-range correlated features in the data. On the other hand, LSTM
has a more complex internal structure, therefore it can capture long-range correlated features
better. The architecture of LSTM is shown in Fig.1 (b). The internal structure of LSTM mainly
consists of memory cells, forgetting gates, memory gates and output gates [17]. The function
of memory cells (cT ) is to store important information in the input sequence (xT ) from t = 0
to t = T , the T here is the time we feed the latest data into LSTM blocks. The forget gate then
judge whether there is invalid information in the memory cell according to the input sequence
(xT ) at time t = T and the LSTM output (hT−1) at time t = T − 1, and set the vector value of
invalid information to be 0. The memory gate will judge what information needs to be added
to the memory cell according to hT−1 and xT . The output gate then combines the information
of cT , hT−1 and xT to determine the output of LSTM at time t = T .

Sometimes LSTM may fail in extracting long-range related features of the sequence be-
cause the sequence’s elements has to be read one by one. This will overflow the memory
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cell information if the sequence is too long or leads to zeros in the gradient during backward
propagation in the learning process. On the other hand, Transformer can extract all ranges
of correlations in the sequence since it reads the elements of the entire sequence at one time.
The correlation between all the elements of the sequence is then learnt through a self-attention
layer and more advanced features can be extracted. The architecture of Transformer is shown
in Fig.1(c) [18]. The self-attention layer is a key part of the Transformer. In principle, it can
extract infinitely long-range correlated features.

It is worth noting that before the sequence data is fed into the Transformer Block, each
element of the sequence needs to be mapped to a higher or lower dimension through the em-
bedding layer, and the positional information of each element in the sequence is also added
to the mapped information. However, we found that position embedding is not necessary for
our task. The details are discussed in Appendix A.

In the following, we applied the above machine learning scheme to the classical and quan-
tum many-body systems. For classical spin models with L × L sites, we used the spin config-
urations of each MC step as input data, which are L × L matrices. For the Hubbard model
with N sites, we used the Green functions as input, which are N ×N matrices. To let the deep
learning model only focus on the information of the input data in the time dimension instead
of the pattern in the space, we did not use the entire matrix as input. For each input sample,
we randomly choose 20 elements in the matrix and pick the simulation result of these matrix
elements in m MC steps to form a tensor with of the shape (20, m), as shown in Fig. 1(a). We
only selected 20 elements because we found that selecting more elements did not improve the
performance of the deep learning model.

3 Machine performance in phase transition detection from data
before equilibrium

The Ising model on a square lattice is a pedagogical model capturing the physics of a classical
phase transition in condensed matter. The model describes spin-1/2 particles in a lattice system
where each spin interacts with its nearest neighbours. The Hamiltonian of the Ising model is
given by

H = −J
∑

〈i, j〉

σiσ j , (1)

where σi ∈ {-1,1} denotes spin-down and spin-up and the sum is over all the nearest neigh-
bouring spins. J characterises the coupling strength between two nearest spins and is taken
to be J = 1 in the following.

In an infinite size square lattice, the system exhibits a phase transition between the para-
magnetic phase and the ferromagnetic phase at a temperature of Tc = 2/ log(1+

p
2)≈ 2.269

[19]. When the temperature is close to zero, the interactions between the spins dominates
and all the spins tend to align in the same direction. The system is in the ferromagnetic phase
with an average magnetization M ∈ {-1,1}. When the temperature is much higher than Tc , the
direction of the spins becomes random due to the strong thermal perturbation. The average
magnetization of the system is approximately equal to zero and the system is in the paramag-
netic phase. Given a randomly initialized spin configuration, one can simulate how this spin
configuration reaches one of the two phases at different temperatures in equilibrium step by
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step using MC method.

Spin configurations of the Ising model at equilibrium have very obvious difference between
ferromagnetic phase and paramagnetic phase. Previous work has shown that after supervised
training of a convolutional neural network using such equilibrium data, the neural network
can easily locate the phase transition temperature of the Ising model [10]. However, for the
Ising model, a randomly initialized spin configuration typically requires 1000 MC steps to
reach its equilibrium configuration at a given temperature. In more complex models, the time
and computational resources required for the MC simulation to reach equilibrium will even be
more. In the following, we explored whether the neural network can also accurately deter-
mine the phase transition temperature if it is trained with spin configurations from only the
first few MC steps that are far before equilibrium is reached.

We used MC simulated data in the temperature range T ∈ ([0,1]∪ [4,5]) as the training
set. The system size of the Ising model is L = 256. Five hundreds raw samples were generated
in each temperature range, therefore we have a total of 1000 raw samples. As mentioned in
Sec. 2, each input data of our deep learning model comes from the spin configurations of 20
randomly selected sites. For each raw sample, we can repeatedly select 20 sites randomly to
obtain multiple training samples. Altogether, we obtained 10000 training samples from the
MC raw samples.

Figure 2 shows the output of the trained neural networks when fed with testing data from
full temperature range. We tested the performance of FCN, CNN, Bi-LSTM and Transformer
with different MC steps m ∈ {10,20, 30,40}. From Fig. 2 (a) and (b) respectively, we found
that Bi-LSTM and Transformer can accurately predict the transition temperature of model to
be Tc ≈ 2.269 as determined by an output value of 0.5 (indicated by the horizontal dashed line
in the figures) from the machine. On the other hand, CNN can only predict that Tc is around
2.269 and the results are also more sensitive to the number of MC steps (Fig. 2(c)). The
performance of FCN is even worse. The predicted Tc is significantly larger than the expected
value (Fig. 2(c)). Besides, FCN is also less confident in classifying the two phases as one can
see for test samples far away from Tc , its outputs do not reach 0 or 1. It is worth noting that
in order to fairly evaluate the performance of each deep learning model, we controlled the
number of parameters of the model to be in the same order of magnitude.

Figure 3 shows the predicted transition temperature by the four deep learning models us-
ing various number of MC steps m as the input training data. Specifically, for each value of m,
we trained the model 10 times. After each training, in order to find the predicted value of Tc ,
we took the data whose model output value is in the range [0.1, 0.9] and performed a linear
regression on those data. The temperature corresponds to a fitted value of 0.5 from the linear
regression is taken as the Tc predicted by the model. From the figure, we find that except
for FCN, the predicted value of Tc from all the models converges to the expected value 2.269
within a MC step of 20. Although the prediction of CNN is close to 2.269, the convergence
with respect to the MC steps is relatively slower than Bi-LSTM and Transformer. The error in
Tc predicted by CNN is also much larger than that of Bi-LSTM and Transformer, which shows
CNN is less stable than the other two models on this task, while Bi-LSTM and Transformer
performs similarly well.

We are not surprised by the poor performance of FCN as FCN has a natural disadvantage
when dealing with sequence data. Suppose there is an FCN model with sequential element
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Figure 2: Testing result for Ising model on square lattice using (a) transformer, (b)
Bi-LSTM, (c) CNN, (d) FCN. The light blue area represents the temperature range
of our training data. Vertical black dashed line indicates the theoretically predicted
transition temperature. The machine predicted transition temperature is given by
the intersect of the horizontal dashed line and the curves. Transformer and Bi-LSTM
accurately predicted the phase transition temperature Tc ≈ 2.269. The performance
of CNN is relatively unstable. Even if the input data contains more MC steps, the
predicted Tc by CNN still has a relatively large error. FCN performed the worst, not
only failed to predict the phase transition point, but also for the test samples within
the training temperature range. FCN was unable to correctly classify the samples
with high confidence.
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Figure 3: Machine predicted value of the phase transition temperature Tc in the
classical Ising model on a square lattice using different MC steps. The lines joining the
data points are just guides for the eyes. Transformer and Bi-LSTM accurately predict
the phase transition point in fewer MC steps, while CNN predict the phase transition
point in 20 steps but with a larger error. The Tc predicted by FCN is sufficiently larger
than the theoretical value (horizontal black dashed line).

input, the output z of the first neuron in the first hidden layer is given by

z =
∑

i

wi x i , (2)

where wi is the weight of each input element x i . After the FCN model is trained, its weights
wi will be fixed, and these weights will only depend on the position of the elements in the
sequence. In other words, the weight of the first element of all input sequences will be the
same. However, in our training data, the information contained in the elements at the same
position in different sequences as well as their importance can be different in general.

The CNN model can solve the above problems by increasing the kernel number, while
LSTM and Transformer convert the weight into an input-related function through a complex
model architecture. Specifically, the hidden layer outputs of LSTM and Transforemr become

z =
∑

i

f (x i)x i , (3)

where f (x i) is different for different deep learning models. In our task, f (x i) can help the deep
learning model to better locate the key input data, and extract features from this key infor-
mation to better complete the binary classification. In fact, the Transformer and Bi-LSTM has
very similar performance as we observed above. This is because the input sequences’ length,
which is m ∈ [2, 40], is within the storing capacity of the memory cell in Bi-LSTM and thus the
full sequential information can be retained, making the advantage of Transformer not obvious.
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4 Generalizability to other models and raw data source in time
domain

We also applied our scheme to more complicated condensed matter models to test the robust-
ness of our method. The models are the Ising model on a honeycomb lattice and on a triangle
lattice, the XY model on a square lattice and the quantum Hubbard model on a honeycomb
lattice. The system size of all classical models is N = 256 × 256, while that of the Hubbard
model is N = 12× 12.

The Hamiltonian of the XY model is given by

H = −J
∑

〈i, j〉

cos(σi −σ j), (4)

where J is the interaction strength between two nearest spins, σi ∈ (0,2π] represents the spin
angle on the lattice’s plane at the site i. Unlike the Ising model discussed in the previous sec-
tion, the phase transition occurring at Tc = 0.89 in the XY model is Kosterlitz–Thouless (KT)
type [20]. Above Tc , the spin correlation decays exponentially while it shows a power-law de-
caying behavior at temperatures below Tc . Vortexes and antivortexes with winding numbers
equal to 1 and −1 respectively are formed in the system [21]. At low temperatures, the vortex
and antivortex are tight to each other and tend to annihilate to minimize system’s energy. The
phase transition is associated with the unbinding of the vortex-antivortex pairs at the criti-
cal temperatures when the temperature increases. Intuitively, we shall expect these non-local
spatial feature needs to be obtained through CNN using the entire spin configuration of the
system. However, as discussed in Sec. 2, the input data used in our method is element level
series in the simulation time domain. It will be interesting to test whether the deep learning
model can still extract relevant information about the phases and accurately determine the
phase transition that is of a topological character.

The Hubbard model, on the other hand, is a quantum model whose Hamiltonian is given
by

H = −t
∑

〈i, j〉

(c†
i↑c j↑ + c†

i↓c j↓ + h.c.) + U
∑

i

ni↑ni↓ −µ
∑

i

(ni↑ + ni↓), (5)

where c†
iσ(c jσ)is the creation (annihilation) fermion operator of spin σ = {↑,↓} at site i,

ni↑ = c†
i↑ci↑ is the number operator, t is the nearest neighbor hopping amplitude, U charac-

terises the Coulomb interaction strength between two electrons of opposite spins at the same
site, µ is the chemical potential. In this article, we considered µ = 0, which corresponds to
the case of half-filling. For U > 0, the system exhibit a quantum phase transitions from para-
magnetic phase to anti-ferromagnetic phase at Uc ≈ 3.9 [22]. Since the model is quantum
in nature, input data is generated from quantum MC in which the raw output are the Green
functions. We would like to investigate whether our method can be applied to this type of
source data. Existing work has proven that Green functions after the equilibrium is reached in
the quantum MC simulation are suitable input data for deep learning models to learn about
the phase transition point [12]. As a data source for the deep learning model, the physical
interpretation of Green function is very different from the spin configuration. For example,
the spin configuration represents the spatial feature of the system in the real space, while the
Green function represents the correlation between the creation and annihilation of the elec-
tron from different sites in the Hubbard model. During the training, we use the time-series
of randomly picked element from the data source. In the case of the spin configuration, the
transnational symmetries in the model helps preserve the universality of the training data. But
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Figure 4: Figure (a1)-(a2), (b1)-(b2) and (c1)-(c2) are the spin configurations at the
tenth MC steps in the Ising model on honeycomb lattice, Ising model on triangle lat-
tice and XY model, respectively, away from the phase transition temperature. Figure
(d1)-(d2) are Green functions of the Hubbard model away from the quantum phase
transition point. In the Ising models, the blue dots represent up spin and the red dots
represent down spin. In the XY model, arrows represent spin orientation and color
scale represents the magnitude of the local winding number. In the Hubbard model,
the color scale represents magnitude of Green function matrix element. Figure (a3),
(b3), (c3) and (d3) shows the output of the Transformer and Bi-LSTM in the cor-
responding condensed matter models respectively. Transformer and Bi-LSTM in the
three classical models perform similarly to the Ising model on a square lattice. How-
ever, their performance in the Hubbard model is significantly different. The output
value of the deep learning model is unstable and it shows a step-like abrupt change
in the close vicinity of the transition point.
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this is not the case for the Green function, the time variation of correlator highly depends on
the which element in the Green function we picked. This may be an adverse factor when we
train the model using the Green function.

Figure 4 shows the results of the above mentioned models using Bi-LSTM and Transformer.
Our deep learning model performs well on all the three classical spin models (Fig. 4(a)-(c)).
In the region far from the phase transition point, the deep learning model can distinguish the
two phases with a high level of confidence, while near the phase transition point, the deep
learning model has a very smooth change due to confusion. When the output of the deep
learning model is equal to 0.5, its corresponding temperature T is approximately consistent
with those obtained in the literature. The performance of our proposed deep learning model
in the Ising models are in line with our expectations. Since the only difference among these
models is in the geometry of their lattice and only the nearest-neighbor ferromagnetic interac-
tions are presence in the models, one shall expect the same type of phase transition between
the FM and PM to take place. However, to our surprise, the deep learning model also per-
forms well on the XY model where the input data we used to train the model contains no
spatial information. Even the model cannot capture any information about topological quan-
tities in the data, the model can still classify the two phases well. This suggests the sequence
information present in the MC steps before equilibrium may be related to the topological char-
acter of the XY model at equilibrium. Unfortunately, it is hard to interpret what features has
the deep learning models learnt from the sequences due to the complexity of the network itself.

In the case of the Hubbard model (Fig. 4(d)), the input data to the deep learning model
is a sequence of length 100, which is about 0.01% of the quantum Monte Carlo(QMC) steps
required to reach equilibrium. We found that the probability values output by the deep learn-
ing models do not change gradually as in the classical models near the phase transition point,
but exhibit a significant increase from 0 to 1 as temperature increases, as shown in Fig. 4
(d3). Moreover, the probability values output by the deep learning model is unstable in the
vicinity of the quantum phase transition. For example, samples in the paramagnetic phase are
sometimes classified as an anti-ferromagnetic phase with high confidence. We can be sure that
this difference is not because each matrix element in the Green function contains much less
information than the spin configuration of the classical models. As we can see from the fig-
ure, most samples near the transition are correctly classified with very high confidence. If the
information in the input data is not enough, the deep learning model will output a probability
that is much greater than 0 and much less than 1 due to confusion. Instead, the large fluctu-
ation of the output in the close vicinity of the transition point may attribute to the fact that
the Green functions fluctuate a lot (as compared to the classical model) due to the quantum
fluctuations when they are far from equilibrium, resulting in the misclassification of some test
samples [23,24].

5 Conclusion

In this work, we show that deep learning models can rapidly classify phases in various con-
densed matter models using MC data before equilibrium and locate the critical points with
high accuracy. Among the deep learning models we have investigated, the performance of
Bi-LSTM and Transformer are found to be the best in probing phase transition points. Both
models are mainly constructed to extract feature of time-domain data. Unlike the CNN coun-
terparts, their success relies on the efficient features extraction from the long sequential input
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data, which have not been explored in the mission of phase transition detection in previous
studies.

We also investigated the generalizability of our method to the Ising model on a honey-
comb lattice and a triangle lattice, the XY model, which undergoes a KT transition, and the
Hubbard model where the input training data comes from the Green function generated by
quantum MC. Bi-LSTM and Transformer can determine the critical points of these condensed
matter models accurately. The results evidence that our proposed method is robust in detect-
ing various types of phase transitions in condensed matter models and in using different types
of source data.

We would like to remark that the data generated by the Markov Chain Monte Carlo simu-
lation in this study contains no time order. Bi-LSTM and Transformer do not extract features
in time order, but only information on the sequence elements. For future works, it will be
worthwhile to apply the method we proposed here to real time-ordered simulation data, such
as studying the dynamics of disordered systems or glass transitions using molecular dynamics
simulation data.
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A Analysis of model performance

A.1 Shuffle time dimension input data

We experimented that not using positional embedding or shuffling the data in the time dimen-
sion will not change the performance of the deep learning model. This is because the data is
real time independent. MC simulation is a hidden Markov chain process, the action of each
step during simulation is independent of previous steps. Thus, there is no time-related feature
in the input sequence.

Figure 5 shows the outputs of the deep learning models for the Ising model on a square
lattice if we shuffle the input data in the simulation time dimension randomly. We can see that
the performance of Transformer and Bi-LSTM are not affected by the shuffling.
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Figure 5: (a) and (b) show the performance of Transformer and Bi-LSTM on Ising
model on square lattice, respectively. Here MC steps m = 10 is used. The light blue
area represents the temperature range of our training data. Shuffling the data in
the simulation time dimension does not affect the performance of Transformer and
Bi-LSTM.

A.2 Variation of training range

We also tested whether our method is sensitive to the range of the training data. We used the
first 10 Monte Carlo steps of the Ising model to feed the Bi-LSTM and Tranaformer. As shown
in Fig. 6, Bi-LSTM and Tranaformer perform very similarly in the four different sets of training
ranges.
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Figure 6: (a) and (b) show the output of Transformer and Bi-LSTM on Ising model on
square lattice, respectively. The legend indicates the range of temperatures in which
the training samples are taken from. It can been seen that the performance of the
machine is not sensitive to the training range.
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