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Abstract 

Confining two dimensional Dirac fermions on the surface of topological insulators has 
remained an outstanding conceptual challenge. Here we show that Dirac fermion 
confinement is achievable in topological crystalline insulators (TCI), which host multiple 
surface Dirac cones depending on the surface termination and the symmetries it preserves. 
This confinement is most dramatically reflected in the flux dependence of these Dirac states 
in the nanowire geometry, where different facets connect to form a closed surface. Using 
SnTe as a case study, we show how wires with all four facets of the < 100 > type display 
pronounced and unique Aharonov-Bohn oscillations, while nanowires with the four facets 
of the < 110 > type such oscillations are absent due to strong confinement of the Dirac 
states to each facet separately. Our results place TCI nanowires as a versatile platform for 
confining and manipulating Dirac surface states. 

 
Introduction 

The interplay between symmetry, geometry, and topology in quantum materials allows for 
novel states to be synthesized, and offers countless possibilities for engineering and manipulating 
quantum effects in mesoscopic systems and devices. These materials provide access to 
fundamental effects difficult to observe and study in other settings, and offer new functionalities 
by demonstrating unique transport, mechanical and optical properties. In parallel, tuning 
mechanisms such as controlled breaking of space or time reversal symmetry, make it possible to 
gain a high level of control over such effects. This potential has not been fully realized to date. In 
particular, the surfaces of three-dimensional topological insulators host Dirac fermion states 
responsible for most of their unique functionality. These typically are extended on the two-
dimensional surface. Tuning the properties of the surface has been an outstanding problem in the 
field, where different hetero-structures have been predicted to function as interferometers or 
switches based on their low energy surface excitations. Specifically, confining Dirac fermions has 
proven to be challenging.   

In this work, we explore topological crystalline insulator (TCI) materials in a mesoscopic 
geometry and show that depending on how TCIs grow and cleave, their surfaces can naturally host 
confined two dimensional anomalous Dirac fermions. Until now such a configuration of surface 
states has required complex hetero-structures, coupling strong topological insulator surfaces to 



magnetism (1) or a dimensional reduction, and hence not been realized in other topological phases. 
Here we show that these states emerge naturally in TCIs due to controlled symmetry breaking.  

TCIs (2-4) have their topological properties arising from the presence of certain crystal 
symmetries. This raises the question of how these can be used for innovative tuning mechanism, 
and what novel states will emerge when breaking and restoring such symmetries, combined with 
time reversal. Recent studies have shown that strain can induce higher-order topology in TCIs (5), 
and be used to engineer various electronic states (6,7). In parallel, topological insulator (TI) 
nanowires have been explored in recent years as promising candidates for applications such as 
quantum switching and quantum computing (8-16). For a strong TI nanowire, the band structure 
and transport properties of the surface states is tunable by flux: it features a gap which can be 
closed by applying a magnetic field parallel to the wire, resulting in a perfectly transmitted mode 
around half integer values of flux. Tuning the chemical potential or flux controls the number of 
modes at the fermi level and places TI nanowires as a promising platform for switching and 
controlling of current channels. When placed in proximity to an s-wave superconductor and with 
the application of flux, topological superconductivity is expected to emerge (11,12,17).  

We demonstrate the effect of geometry on confinement in TCIs by examining TCI 
nanowires with different lattice terminations and cross sections. We focus on the canonical 
example of SnTe and we show that different choices for lattice termination radically affect the 
response of the wires to magnetic flux. In particular, we show that for certain geometries, surface 
states are extended across the wire's surfaces and exhibit novel Aharonov-Bohm (AB) oscillations, 
while other geometries lead to confinement of the Dirac fermions on the wire's facets. This 
practically freezes the response to flux and eliminates the AB oscillations. The existence of 
confined vs. extended states depends on the arrangement of the surface Dirac cones, and on the 
particular spatial symmetries that are broken at the hinges connecting two surfaces. Such breaking 
of symmetries introduces mixing of the Dirac points which can introduce strong gaps at the corners 
and lead to confinement. While the effect is demonstrated for SnTe, we argue that it applies in a 
much more general setting, and can be explained using general symmetry considerations.  

Our findings are supported by a combination of analytical and numerical calculations. The 
Results section is organized as follows. In Section I we discuss a low-energy model for a TCI in a 
in a cylindrical geometry, and predict the AB response in these wires from the simplest 
considerations. In Section II we analyze the band structure of the SnTe nanowires for different 
sizes and geometries, via tight-binding calculations. We contrast between two types of lattice 
terminations, and show that one of them shows AB oscillations, while the other does not. In Section 
III we discuss the results from symmetry considerations relevant for SnTe. 
 
Results  

I. General considerations: multiple Dirac points in a compact geometry     
    The fate of AB oscillations and confinement vs. deconfinement of the Dirac surface 

states of TCIs can be understood by considering the basic building blocks of their low energy 
theory and how they are accommodated in a compact geometry. To demonstrate how 
compactification of multiple Dirac points is different from that of a single Dirac point positioned 
at a time reversal invariant momentum (TRIM) as in strong TI, we begin with a simplified low-
energy model of a TCI in a cylindrical wire geometry under flux.  We first account for the behavior 
of the finite size quasi-one-dimensional resolved energy bands of a single Dirac cone located 
around a generic point in the Brillouin zone (BZ) as a function of flux.  The only remaining crystal 



symmetry at this stage, unlike the case in ref. (18), is that we still assume that the surface respects 
the bulk symmetries despite being of cylindrical shape (an assumption we will relax later on).   

    We therefore begin with a low-energy model of the form H = ℏv!(k! − k!")σ! +
ℏv#(k# − k#")σ#.  Here, 𝑣$ , 𝑣% are the Fermi velocities in 𝑥 and 𝑧 directions, 𝑘$ , 𝑘% are the surface 
momenta, (𝑘$", 𝑘%") is the location of the Dirac cone, and 𝝈 are a set of Pauli matrices. Assuming 
that the wire is perfectly cylindrical with a radius 𝑅, we perform a coordinate transformation 
(17,19) and take the wire to be along 𝑧 axis, with 𝑥 coordinate going around the wire.  The magnetic 
flux enters the Hamiltonian as an Aharonov-Bohm phase, a shift to the angular momentum 𝑙, where 
Φ = &

&!
 is the total flux quanta through the wire's cross section. The spectrum of the transformed 

Hamiltonian is then given by  

                             𝐸 = ±ℏ 6𝑣$' 7
()*
+
− 𝑘$"8

'
+ 𝑣%'(𝑘% − 𝑘%")'9

,/'
              (1) 

where the quantum number 𝑙 takes values of the form 𝑙 = 𝑛 + ,
'
 with 𝑛 an integer, due to the anti-

periodic boundary conditions. Writing the momentum shift 𝑘$" =
.
/
 , with 𝑎 the lattice constant 

and 𝛼 a number, we note that a gapless point will appear in the one-dimensional spectrum, located 
at 𝑘% = 𝑘%" (momentum along the wire) at flux values given by  

                                                               Φ = 𝛼 +
/
− 𝑙                                                 (2) 

In strong TI wires, the Dirac cone is constrained to sit at a TRIM and therefore 𝛼 always vanishes. 
In contrast, in TCI wires 𝛼 is a material parameter determined by the crystal structure and the 
perturbations that shift the position of the cones from the high-symmetry points (20). The flux 
values that generate a gap closing therefore depend on the position of the cones in the surface BZ, 
as well as the wires' cross section. Hence, this low energy model predicts a different pattern of 
Aharonov Bohm oscillations as a function of flux. 

The model containing a single Dirac point on a cylinder oversimplifies the description of 
a TCI nanowire in several ways. First, a TCI wire is usually not cylindrical. In order to host gapless 
surface states, it must have a geometry in which the wire's surfaces respect some non-trivial 
crystalline symmetry of the material (2,18). The specific bulk symmetries that are preserved or 
broken on the facets of the wire determine the exact composition of the surface states on each 
facet, namely the number, chirality, and location of the surface Dirac cones. Second, a non-
cylindrical wire has hinges and corners, which break the full rotational symmetry of the cylindrical 
wire, but may also break the surface symmetries. This results in the angular momentum 𝑙 no longer 
being a good quantum number, but becomes rather conserved up to an integer number reflecting 
the discrete rotational symmetry should it exist. Additional symmetry breaking will introduce 
further mixing to the surface bands.  

The breaking of rotational symmetry exists also in strong TI wires where it does not 
crucially affect AB oscillations. This is not the case for a TCI wire. The crystalline symmetries 
impose additional Dirac cones in each surface's BZ, with positions related to the cone at (𝑘$", 𝑘%") 
by symmetry operations. A simplistic description of the low-energy model of the surface of a TCI 
wire as a superposition of these cones, results in a modified AB oscillation pattern that is a 
superposition of the one described above, with more gap closings. However, as we show next, due 
to the breaking of symmetries close to the corners of the wire, additional terms can be added to the 



surface Hamiltonian in the wire geometry. These terms can, in some cases, confine the Dirac 
surface states per surface, thereby effectively disconnecting them from one another. This 
confinement unlocks the possibility of studying the Dirac fermions on a bounded two-dimensional 
flat space.   

In the following section we study specifically the flux response of SnTe wires, and we 
show that the interplay between the number and location of the surface Dirac cones in different 
wire configurations lead to the behavior described above.  

II. Flux response in SnTe wires 

   To demonstrate the differences in flux response arising from confined vs. deconfined 
surface states in TCI, we now turn to consider two nanowire configurations of SnTe. SnTe was 
reported and confirmed to be a TCI (21,3,4), as well as a higher-order topological insulator (HOTI) 
(5), due to the non-trivial mirror Chern number 𝑛0 = −2 of the crystal {110} mirror planes. As a 
result, protected gapless states would exist on surfaces and hinges that are invariant under one or 
more of the bulk {110} planes. Such lattice terminations will host an even number of Dirac cones, 
that can be located off the TRIM (20,22). The diversity of the surface states of SnTe allows us to 
consider different configurations and surface state composition and demonstrate how those affect 
the physics discussed above.     

   We model a SnTe crystal which is infinitely long along the cubic crystal's 𝑧-axis ([001]  
direction), and finite in the two other directions, using a tight-binding model, as described in the 
Materials and Methods section. Since the system is periodic along 𝑧, 𝑘% remains a good quantum 
number. Next, we demonstrated how the spectrum of this quasi-one-dimensional system depends 
on the type of terminations, and the overall symmetries of the wire. 

A. SnTe nanowire in the (𝟏𝟎𝟎) configuration: Aharonov Bohm oscillations 

The first configuration considered is of an infinite wire in the 𝑧 direction, with two surfaces 
in the [100] direction and two in the [010]  direction. It will be referred to as the (100) wire, and 
is depicted in Fig.1(A). This configuration was recently shown to be experimentally accessible 
(23,24). In this case, each of the facets in the [100] direction and in the  [010]  direction respect 
two bulk mirror symmetries: (011), (011F) and (101), (101F), respectively. Therefore, each facet 
will host, in a slab geometry, four Dirac cones in the surface BZ, located at G𝑘$ 1⁄ , 𝑘%H =
(𝑘", 𝑘"), (−𝑘", 𝑘"), (𝑘", −𝑘"), (−𝑘", −𝑘"), see Fig.1(F). These mirror symmetries are preserved 
on the surfaces of a large wire, but would be broken close to the corners. Another important feature 
of the square (100)  wire is the existence of hinge states: the corners of the wire are in the [110] 
and , [11F0] directions, and are invariant under (11F0) and (110) mirror symmetries, respectively, 
see Fig.1(G). Therefore, they are expected to host four pairs of helical hinge modes (5).  

The crystalline symmetries of the (100) wire presented above raise two questions: what is 
the fate of the two-dimensional surface states at the corners of the wire, and how do they interplay 
with the hinge modes? In strong TI wires, the single Dirac cones are essentially unaffected by the 
corners of nanowires and nanoribbons due to the topological protection imposed by time reversal 
symmetry. This is not the case for TCI, which is different both in terms of locally lifting the 
protection as well as in terms of the number of Dirac cones per surface that may mix at the corners. 

We diagonalize the Hamiltonian in Eq.(5) for a square (100) wire with 46 atoms in each 
finite direction. A sketch of the cross section of the wire is shown in Fig.1(C). In the spectrum 



obtained at zero flux, shown in Fig.1(H), all bands are doubly degenerate. We identify the surface 
Dirac cones, which are gapped due to the finite geometry and, presumably, also by the breaking 
of mirror symmetry of each surface near the hinges. We also identify four pairs of hinge modes.  

When adding the magnetic flux, the double degeneracy of the bands is removed. The 
spectrum, which is symmetric around the point 𝑘% = 𝜋 at zero flux, remains symmetric for every 
flux value, see Fig.S2 in the supplementary material. This symmetry exists because the two surface 
Dirac cones located at (𝑘", 𝑘"), (−𝑘", 𝑘") are projected onto the same 𝑘% point along the axis of 
the wire. While according to the low energy model presented in Section I each Dirac cone will 
respond differently to the flux, there are two additional Dirac points with interchangeable roles 
located on the wire's axis on the other side of 𝑘% = 𝜋 such that the total spectrum remains 
symmetric.  

When increasing the flux, we observe a gap closing at a flux value which is neither zero 
nor half of a flux quantum, but around 𝜙 = 0.3 and 𝜙 = 0.7 (Fig.2). In addition, when calculating 
the spectrum for square wires with increasing size, a similar gap closing and re-opening is observed 
(Fig.2). This is the behavior expected from the effective model, in which the gap closing in the 
one-dimensional spectrum depends on the dimension of the wire (in the simple cylindrical case- 
the radius), the location of the Dirac cone on the surface and the number of flux quanta. 
Interestingly, the gap closing occurs between surface states and hinge state, and not at the gapped 
surface Dirac cones. We note, however, that in the vicinity of the surface gap, the wavefunctions 
belonging to bands identified as hinge modes are in fact spread over the entire two-dimensional 
surface of the wire and become essentially indistinguishable from those of the higher surface 
bands. This is unlike the situations of a strained wire where the 2D surface bands are gapped on 
the entire facet of the wire due to symmetry breaking rendering the wire to a HOTI. In a strained 
wire, the hinge modes are further isolated from the other surface bands and their one-dimensional 
nature is manifested also close to the gap. In our case, only when moving away from the small 
surface gap, these hinge modes regain their one-dimensional character, see Fig.3. This observation 
makes the gap closing between the surface bands and the hinge modes slightly less mysterious and 
compatible with the intuition gained by the effective modes described in Section I where hinge 
modes are absent. We note also that close to half of a flux quantum threaded through the wire, 
some, but not all of the bands restore a double degeneracy. The reason this degeneracy is restored 
close to, and not exactly at half flux quantum, is due to the finite penetration depth of the surface 
states into the bulk (11,17,25). 

Our analysis of the  (100) wire is compatible with predictions for AB as a sum of those 
arising from projections of several Dirac points with a finite size gap tunable by flux, as described 
in Section I. The physics is richer due to an interplay of the surface and hinge modes at the corners 
of the wire, clearly demonstrates that the surface is 2D in character, and sensitive to flux via 
modification of the boundary conditions. Next, we turn to explore a wire with a different lattice 
termination, where the behavior markedly different. 
 

B. SnTe nanowire in the (𝟏𝟏𝟎) configuration: surface state confinement 

The next configuration we examine is that of an infinite wire along the 𝑧 direction with two 
facets in the [110] direction and two in the [11F0] direction, as depicted in Fig.1(B), which will be 
referred to as the (110) wire. These facets are crystallographically equivalent and invariant under 
(11F0) and (110) mirror symmetries, respectively. In a slab geometry, each such surface is expected 



to host two Dirac cones in the surface BZ, located in (𝑘,, 𝑘%) = (0, 𝑘"), (0, −𝑘"), see Fig.1(G), 
where 𝑘, =

3")3#
√'

. The hinges of this wire do not respect any additional non-trivial symmetry of 
the bulk.  

We diagonalize the Hamiltonian in Eq.(5) for the (110) wire configuration, for a square 
wire with a size of 28x28 atoms in the outermost layer. A sketch of the cross section of the (110) 
wire is presented in Fig.1(D). We emphasize that the wire is periodic in 𝑧 direction, and due to the 
rock-salt structure of the lattice, the cross sections for consecutive layers will be of alternating 
atoms. For example, the cross section of the next atomic layer of the wire in Fig.1(D) will have Te 
atoms in the outermost layer. This implies that these wire terminations are not atom-type 
dependent.  

The spectrum at zero flux is shown in Fig.1(I). All bands are doubly degenerate. As with 
the (100) wire, the spectrum remains symmetric around 𝑘% = 𝜋, see Fig.2S in the supplementary 
material. Tuning the flux away from zero flux and up to one flux quantum, we note a clear 
distinction in the behavior of the low vs. high energy surface bands: while the low energy surface 
bands experience a weak response to the flux and appear to be hardly moving, the upper bands 
experience the conventional pair switching (see Fig.4) similar to the flux response observed both 
in the (100) wire as well as strong TI wires. Zooming in on the low energy bands (insets of Fig.4 
first row), we observe that the bands are arranged in groups of four nearly degenerate bands, which 
are pairwise degenerate at zero flux. At half flux quantum, two of the four bands restore this 
degeneracy, while the other two are left non-degenerate. Tuning away from these flux values, the 
bands do experience pair switching, but this switching is confined within the four-band subspace. 
This suggests a different picture from the one for the (100) wire.  

The conjecture, which will be supported by additional numerical calculations below, is that 
the in contrast with the (100) wire in which the surface states at all energies extend over the two-
dimensional surface of the wire and slightly perturbed by its corners, the surface of the (110) wire 
is characterized by having each of the wire's facets hosting a confined Dirac semi-metal. Namely, 
the (110) wire's surfaces represent four copies of the same surface that are slightly mixed at the 
corners of the wires. Indeed, when examining the  (110) spectrum, the twofold degenerate bands 
come in "pairs" of bands that are very close in energy. It can be observed that these partners, or a 
pair of pairs, result from fourfold degenerate bands that were mixed when projected on top of each 
other onto the one-dimensional axis of the wire- four "copies" of the same spectrum. The addition 
of flux through the wire removes the degeneracy associated with time-reversal, and as the flux 
approaches half flux quantum, pair switching occurs, and two of the four bands restore the twofold 
degeneracy. This behavior can be easily captured by a simple ``toy model" of four sites, each site 
representing a single surface, with a weak coupling between them, as detailed in the supplementary 
material.  

The observation of weak coupling between states that are localized on each surface can be 
supported first by examining the spectra of (110) wires with various sizes, shown in Fig.5. First, 
looking at spectra of square wires with different size, we observe that the overall features remain 
similar, while the bands move closer in energy for increasing wire's cross section. This is in 
contrast with the (100) wire where the change in cross-section can introduce gap closings, as 
discussed extensively in Section II.A.  



 Second, we consider rectangular wires. If the conjecture of effectively decoupled surfaces 
is correct, then we expect the bands to split into two sets, corresponding to opposite surfaces with 
gaps determined by the width of each surface. This is a result of the 𝐶5 symmetry being reduced 
to 𝐶'. Note that in a rectangular wire each face still holds the same properties in terms of cone 
arrangement and symmetry conservation, the only difference is in the width of the two faces. We 
fix the width of the wire in one direction and examine the bands structure as we increase the width 
of the perpendicular direction. The effect of this change is shown in Fig.5. Focusing on the low 
energy bands, half of the bands indeed remain unchanged, while half of the bands move closer in 
energy (similar to what occurs when increasing size of square wire). If two bands overlap, they 
mix and open a small gap. This behavior further supports the claim that the low bands in the 
spectrum of the (110) wire contains four spectra, resulting from the four facets, which are weakly 
coupled. 

To conclude this section, the spectrum of the (110) wire and its flux response is drastically 
different from that of the (100) wire. While in the (100) wire the flux induces a mixing and gap 
closing between surface and hinge states, a richer variation of the behavior of a strong TI wire, the 
(110)	wire shows completely different behavior and a much weaker flux response. The surface 
states on the (110) are "localized" on each of the faces, and are connected via weak coupling, 
similar to a system of four sites described by a tight binding model, in which hopping terms 
between the sites slightly lifts the degeneracy of the energies on each site. 

III. Understanding confinement from symmetry considerations 

To understand why certain geometries allow for surface states confinement while some do 
not, we now consider the differences between the two types of wires in terms of their symmetries. 
As we argue, the symmetries that break at the corners of the wires conspire with the number of 
cones projected onto a particular momentum along the translationally invariant direction (the axis 
of the wire) to allow for particular gaps at the corner to open, that in turn result in effective 
confinement only in one case but not the other. To solidify the simplified arguments of Section I 
we refer in particular to the two geometries of SnTe discussed in this text, though a generalization 
in straight forward.  

We start from the (110) wire. As previously stated, each of the wire's facets, when 
considered in the infinite size limit, hosts two Dirac cones, related by mirror symmetries, time 
reversal symmetry, and a 𝐶' rotation around the surface's normal. The surface theory of a surface 
in the [11F0]  crystallographic direction, in the infinite surface limit, is captured by the low energy 
Hamiltonian (20) 

                                     𝐻(𝑘,, 𝑘') = (𝑣,𝑘,𝜎' − 𝑣'𝑘'𝜎,) + 𝑚𝜏, + 𝛿𝜎,𝜏'                  (4) 

hosting two Dirac points sitting at 𝑘U⃗ = (0, ±𝑘'"). This is the low energy model of the surface 
spectrum depicted in figure Fig.1(G), with 𝑘, =

3")3#
√'

 and 𝑘' = 𝑘%. The Pauli matrices �⃗�, 𝜏 
represent the spin and flavor degrees of freedom, respectively. Given these definitions, the surface 
respects two mirror symmetries, represented by the operators 𝑀, = −𝑖𝜎, and 𝑀' = −𝑖𝜎'𝜏,, along 
with the operators representing twofold rotation around the surface's normal, 𝐶' = −𝑖𝜎6𝜏,, and 
time reversal𝑇 = 𝑖𝜎'𝐾 as usual, with 𝐾 standing for complex conjugation. Note the two Dirac 
cones have the same chirality, and are mapped into each other by 𝑀' and 𝐶'.  



Compactifying the wire in the 𝑘, direction is an action that breaks 𝑀, and 𝐶' locally near 
the corners. Each Dirac cone is broken into a set of energy bands, that are projected onto the one-
dimensional axis of the wire and disperse as a function of 𝑘'. The mirror symmetry 𝑀' that relates 
the two cones to one another is still preserved in the wire geometry. While the two terms 
𝑚𝜏,, 𝛿𝜎,𝜏'  are the only masses allowed to be added to the Hamiltonian Eq.(4) when all 
symmetries of the infinite surface are intact, the breaking of 𝑀, and 𝐶' allows for an additional 
mass term to be added, of the form 𝛾𝜎6𝜏', with 𝛾 a parameter determined by the details of the 
lattice and the corner. This term, when added to the low energy Hamiltonian Eq.(4), creates a gap 
for both Dirac cones. To respect mirror symmetry, the masses must be of opposite sign for the two 
cones.  

The additional gap in each Dirac cone introduced by breaking one of the mirror 
symmetries, is added to the gaps generated due to the finite-size effects, as described in the 
effective model in Section I, however, it does not depend on angular momentum or magnetic flux, 
and therefore is not affected or closed with the application of magnetic field along the wire. Such 
a gap, if large enough, confines the Dirac fermion states onto each surface. Note that these 
considerations are only compatible with the low energy theory, and therefore are not expected to 
hold for energies beyond the linear regime. Indeed, from the numerical calculations it is obvious 
that the confinement is manifested in the low energy bands (see Fig.4). The overall symmetries of 
the wire geometry, such as the bulk mirror symmetries combined with any rotation symmetry 
around the wire's axis, need to respected, allowing for a particular mass configuration to appear in 
terms of their spatial distribution. For details on the particular mass configurations see 
supplementary material.  

Now consider compactifying the low energy model in Eq.(4) in the orthogonal direction, 
namely in the direction of 𝑘' coordinate, thereby breaking 𝑀'. Since 𝑀' is now broken, but 𝑀, is 
preserved, only a term of the form 𝛾𝜎"𝜏6 can be added to the Hamiltonian. This term does not open 
a gap in the Dirac cones, but only shifts their location along 𝑘'. In this case, the gaps in the spectra 
of the cones due to finite-size effects are the dominant ones, and the usual flux response is expected 
with gap closures in flux values that are compatible with the momentum shift of the cones.   

The (100) wire is more complex, but encapsulates the two behaviors described above. 
When considered in the infinite size limit, it hosts four Dirac cones, located at (±𝑘", ±𝑘"),  related 
by four mirror symmetries and a fourfold rotation symmetry around the surface's normal.  In 
consistence with the axis of the two-dimensional BZ in Fig.1(F), compactifying the wire in the 𝑥 
direction is an action that breaks the mirror symmetries 𝑀$ , 𝑀$% , 𝑀$%̅ and 𝐶5 near the corners of 
the wire. The breaking of these symmetries may introduce additional terms that would mix and 
gap the Dirac cones when projected to the one-dimensional BZ of the wire and disperse around 
𝑘% = 𝑘" and around 𝑘% = −𝑘". The added mass terms may introduce shifts of the Dirac cones, 
that will result in two minima split around 𝑘% = ±𝑘", (which can indeed be observed in Fig.2), as 
well as open magnetic-like gaps. The magnitudes of these masses will be determined by the 
microscopic details of the material and the specific geometry of the nanowire. However, if the 
magnitude of the terms that shifts the Dirac cones is significant, they can eliminate the effect of 
the magnetic-like masses, and leave the surface theory sensitive to the flux threaded through the 
wire even at low energies.     

 
Discussion  



Our work suggests that TCI wires are a rich platform that supports confined or extended 
Dirac surface states, depending on the lattice termination and the associated symmetry breaking. 
As a result, TCI wires display different flux responses, including modified AB oscillations which 
are beyond a simple generalization of the flux response in strong TI, or absence of oscillations. To 
determine which of the scenarios applies, one must take into consideration the number of Dirac 
cones appearing at each facet, and how they mix due to the breaking of the spatial symmetry at the 
corners. This is translated into the mixing of cones projected onto one another in the quasi-one-
dimensional band structure of the wires, and manifested in the ability of the finite size resolved 
bands to respond to flux. Most of these features can be reproduced from effective low energy 
models, but the magnitude of the mixing terms at the corners strongly depends on the microscopic 
details of the wire. 

The mixing of Dirac cones has also been demonstrated to result in one-dimensional states 
at step edges on surfaces of the TCI 𝑃𝑏,8$	𝑆𝑛$𝑆𝑒 (26,27). A recently published work (28) also 
discussed SnTe nanowires. However, it considered a single wire geometry, and did not treat the 
behavior of surface states in the confined wire geometry, or the expected Aharonov-Bohm 
oscillations when applying a magnetic field parallel to the wire. Another recent publication (29) 
predicted Aharonov-Bohm oscillations in a different system, that of a chiral HOTI with one-
dimensional hinge channels. 

In this work we have considered for simplicity wires with four identical facets, with the 
same lattice termination and Dirac cone arrangement. This allowed us to single out cleanly the two 
extreme scenarios discussed above. It is possible to consider cases where the facets are different, 
that may introduce more novel features intermediate to the two extremes studied here.  

Confinement of Dirac fermions on the surfaces of three-dimensional strong TI can in 
principle be achieved by introducing magnetism which, as mentioned earlier on, has proven to be 
hard. Such confinement has been achieved in Graphene (30-32), by means of spatially limiting to 
small geometries or by creating electrostatic gating. The latter requires coupling to external 
materials such as superconductors, gates, or substrates. The alternative presented here based on 
TCIs and relying solely on the geometry of the wire represents a breakthrough and has the potential 
to affect their use as well as have implications for the fate of induced superconducting states in 
such wires. In addition, in contrast with Graphene, while the surface of a TCI also hosts multiple 
Dirac cones, they are non-degenerate and can be anomalous. 
 
Methods 

For the purpose of the simulation we use a tight binding model for SnTe (21): 

                                 	𝐻 = 𝑚∑ (−1):: ∑ 𝑐:.𝒓
< ⋅ 𝑐:.𝒓𝒓,.  

                                      +∑ 𝑡>,>$:,:$ ∑ 𝑐:.𝒓
< ⋅ 𝒅e𝒓,𝒓$𝒅e𝒓,𝒓$ ⋅ 𝑐:$.𝒓$ + ℎ. 𝑐.𝐫,𝐫$,.                (5) 

                                      +∑ 𝑖𝜆:: ∑ 𝑐:.𝒓
< × 𝑐:.𝒓 ⋅ 𝑠.@𝒓,.,@  

with the following parameters (5,33): 𝑚 = 1.65, 𝑡,, = −𝑡'' = 0.5, 𝑡,' = 0.9, 𝜆, = 𝜆' = 0.7. The 
model describes a rock-salt lattice with staggered on-site potential on the two atoms, spin orbit 
coupling, and hopping between three p-orbitals in each atom represented by three components of 
the 𝑐<, 𝑐 operators. The operator 𝑐:.𝒓

<  creates an electron on lattice site 𝒓, sublattice 𝑗 = 1,2 (for 
Sn, Te respectively) and spin 𝛼 =↑, ↓. The bulk spectrum is therefore described by a 12x12 𝑘-



space Hamiltonian. The vector 𝒅e𝒓,𝒓$ is a unit vector pointing in the direction of hopping between 
atoms in 𝒓 and 𝒓A .The matrices 𝒅e𝒓,𝒓$𝒅e𝒓,𝒓$ describe 𝜎-bond hopping between nearest (𝑡,', 𝑡',) and 
next nearest (𝑡,,, 𝑡'') neighbors, neglecting 𝜋-bond hopping.  

The magnetic field is added to the model as phases to the hopping terms: 𝑡 → 𝑡𝑒B%&. Using 
the Peierls substitution, a phase of the form  

𝜑>: =
𝑒
ℏs 𝑨 ⋅ 𝑑𝒍

𝒓%

𝒓&
 

will be added to the term describing hopping from site 𝒓> to site 𝒓:, with 𝑨 the vector potential and 
𝒅𝒍 an element in the direction of the hopping process. 
 
Data availability 
All data generated and analysed during this study are included in this published article (and its 
supplementary information files). 
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Figures and Tables 
 

 
Fig. 1. Wire configurations. Suggested configurations for a SnTe nanowire: (A) the (100) 
wire, and (B) the (110) wire. The non-trivial mirror symmetries of the surfaces and hinges 
in each wire are indicated and marked by dotted lines. A flux 𝜙 is inserted along the wire's 
𝑧-axis. (C) Cross sections of the (100) wire, shown with 7 atoms in height and 7 in width. 
Blue and purple dots correspond to Sn and Te atoms. (D) Cross sections of the (110) wire, 
shown with 4 atoms in height and 4 in width. We note that for the purpose of this 
calculation, the wire's cross section was chosen such the outermost layers are always the 
one atom longer, so that the hinges are a sharp step without a missing atom. For example, 
in order to make the 4x4 (110) wire depicted in Fig.1(D) into a 5x4 wire, a layer of three 
Te atoms and four Sn atoms should be added to one of the facets. In this method, the 
intersection between the facets remains the same for all wire sizes. (E) The bulk's crystal 
structure. Surface BZs and the existing Dirac cones of (F) a plane in the [010] direction, 
with four Dirac cones on the lines invariant under (101) and (101F) mirror symmetries, 
and (G) a plane in the [11F0]direction, with two Dirac cones on the (110) mirror invariant 
line. Band structures at zero flux of (H) a (100) wire with a size of 46 atoms in height and 
width, and of (I) a (110) wire with a size of 28 atoms in height and width. The spectra are 
symmetric around 𝑘% = 𝜋, with all bands doubly degenerate.  
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Fig. 2. Spectrum of (𝟏𝟎𝟎) wire. Zoom in on low energy bands in the (100) wire's spectra. 

First row: Gap closing and re-opening under flux, of a 46x46 atoms wire. At zero 
flux, there are gapes between the surface and hinge bands (although the hinge states 
are extended to 2D close to the gap, see text). When turning on the flux, the 
degeneracy is removed. At certain flux values, around 𝜙 = 0.3 and 𝜙 = 0.7 flux 
quantum, a gap closing is observed between the surface and hinge bands. Around 
half flux quantum, most but not all bands restore their double degeneracy. Around 
one flux quantum, the spectrum without flux is restored. These values are close to, 
and not precisely at half and one flux quantum due to finite size effects, see text. 
Second row: Spectra of square (100) wires with varying sizes, at zero flux. The 
numbers on each figure represent the number of atoms in height and width of each 
wire. The dimensions of the wire affect the gaps between the surface and hinge 
bands. 
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Fig. 3. Hinge wavefunctions of (𝟏𝟎𝟎) wire. Spread of wavefunctions of the hinge bands 

on the cross section of the 46x46 (100) wire, marked A-C. As can be seen, away 
from the surface gap, the wavefunctions are localized in the corners of the wire. 
Close the gapped Dirac cone, the wavefunction is spread across the two-
dimensional surfaces of the wire. 
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Fig. 4. Spectrum of (𝟏𝟏𝟎) wire with flux. Band structure of the (110) wire with flux. In 

all figures, the wire is square with 28 atoms in the outermost layer in both 
dimensions. Flux value is indicated on each figure. First row: Low energy bands, 
showing a very weak response the flux. Insets: Zoom-in on the lower bands reveal 
groups of four bands that change degenerate partners under flux sweep. Second 
row: High energy bands, showing a strong response to flux. 
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Fig. 5. Spectrum of (𝟏𝟏𝟎) wire with varying sizes. First row: Spectra of square wires 

with various sizes, the numbers indicate the number of atoms in the outermost 
layers in both finite directions. The spectra are similar in features, with the bands 
get denser for increasing sizes. Second row: Spectra of rectangular wires with a 
fixed width of 28 atoms and increasing height (blue), compared to the spectrum of 
a square wire with 28 atoms in width and height (red). Some of the bands do not 
change with size, and are located close to the four nearly degenerate bands of the 
28x28 wire bands, these bands originate from the two facets of width 28 atoms. 
Other bands get denser as the size of the rectangular wire increases, they originate 
from the facets with increasing width. When two doubly degenerate bands overlap, 
a small mixing occurs. 
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Supplementary Text 
``Toy model" of four sites in a circle 

To support this picture of slightly mixed copies of the same surface theory we first show 
that band mixing and pair switching can be captured by a simple ``toy model" of four sites, each 
site representing a single surface with an identical on-site energy 𝜀 and a coupling that gives rise 
to hopping terms between the sites, 𝑡, in a circle. To this system we also add a Berry phase of 𝜋, 
incorporating the effect of spin momentum locking which is reflected in such a phase that is 
acquired when completing a closed loop around the wire. Such a system is described by the simple 
Hamiltonian 

                                     𝐻 = x

𝜀 −𝑡
−𝑡 𝜀

0 −𝑡𝑒>C
−𝑡 0

0 −𝑡
−𝑡𝑒8>C 0

𝜀 −𝑡
−𝑡 𝜀

y                             (3) 

Solving for the energies of the system, we observe that the fourfold degenerate on-site energy is 
split to two twofold degenerate energy levels: 𝐸, '⁄ = 𝜀 − √2𝑡, 𝐸6 5⁄ = 𝜀 + √2𝑡. Adding a flux as 
an additional phase to the hopping parameters removes the degeneracy. At half flux quantum (an 
additional 𝜋 phase compensates for the Berry phase) there are three energy levels, with the middle 
one doubly degenerate: 𝐸, = 𝜀 − 2𝑡, 𝐸' 6⁄ = 𝜀, 𝐸5 = 𝜀 + 2𝑡. This is precisely the behavior a sub-
space of four bands in the surface spectrum of the (110) experiences under flux tuning. We 
therefore conclude that the lifted fourfold degeneracy in the spectrum results from four identical 
copies of the spectra of each face.  
 
Mass configurations 

The possible mass configurations at the surface of the two wires discussed in the main text 
must respect the symmetries of the full wires, and not just those of the surface theory. For the 
square (100) wire, these are additional two mirror planes that cut the wire diagonally (see 
Fig.S1). These mirror planes are those protecting hinge model in the HOTI phase (5). In the 
(110) wire, two mirror planes cross the middle of the two facets (see Fig.S1). In addition, in 
square or rectangular geometries there is a 𝐶5 and 𝐶' discrete rotation symmetry with respect to 
the wire's axis. 

For the purpose of the discussion here, we consider the quasi-one-dimensional low energy 
band structure of the surface bands with 𝑘 > 0, where 𝑘 is the momentum along the wire's axis. 
It is sufficient to consider positive 𝑘 only since we discuss the time-reversal invariant system.  

The (110) wire has a single Dirac cone. We now consider what mass configurations are 
possible following symmetry constraints. The mass term can break time-reversal as shown in the 
main text, since the cone at negative momentum will have a similar mass but opposite in sign. 
Considering a square wire, there is one mass configuration that respects both 𝐶5 and mirror 
symmetry, which is that of masses of alternating signs as depicted in the Fig.S1. In this 
configuration, masses have equal magnitude but opposite signs when approaching the corners on 
a single facet of the wire, and are also constrained to switch sign when traversing a corner.  

In the (100) square wire there are two Dirac cones at 𝑘 > 0, for which the mass profile is 
opposite in sign as constrained by mirror symmetry. The combination of 𝐶5 and the diagonal 
mirror symmetries enforces that per Dirac cones, the mass at each facet has either a positive or a 



negative sign, and switching sign on neighboring facets (see Fig.S1). This is because 𝐶5 
interchanges the two Dirac cones. 
 
Symmetry of spectra under flux 

As mentioned in the main text, the spectra of the (100) and the (110) wires are symmetric 
around the point 𝑘% = 𝜋  in the one-dimensional BZ at zero flux and remain symmetric for all 
flux values. For this reason, the spectral response to flux and to dimensional changes is presented 
in the main text for 𝑘% < 𝜋  values only. The Spectra of a square (100) wire of size 46x46 atoms 
and a square (110) wire of size 28x28 atoms at various flux values around 𝑘% = 𝜋 are presented 
in Fig.S2. 
  



 

Fig. S1. 
Two mass sign configurations respecting bulk and surface mirror symmetries as well as 𝐶5 
symmetry for the positive momentum surface cone of the (110) wire (left) and one of the two 
surface cones of the (100) wire (right). The second cone of the (100)  wire replaces all blue 
with red, red with blue. 
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Fig. S2. 
Spectra of the (100) wire (left column) and the (110) wire (right column), remain symmetric 
around 𝑘% = 𝜋 also for non-zero flux values: 𝜙 = 0, 0.25, 0.5, 0.75 for first, second, third and 
forth rows, respectively. 
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