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Abstract

These notes summarize the zoom-course on Strongly Interacting Massive Particle (SIMP)
dark matter given at the Les Houches Summer School in the summer of 2021. An alterna-
tive title for this course would be ‘SIMPS, Cannibals and ELDERs’, where our focus is on
high-point interactions amongst dark matter particles. The spirit of the course is to give
students a taste of these exciting developments in dark matter, while primarily teaching
tricks and methods that are tough to captivate when reading textbooks or papers. These
notes are written in similar spirit: I will put emphasis on how quantities scale and how
to perform back of the envelope estimates, which should serve to help you when you
develop the next great dark matter idea.
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1 Setting the Stage

Since first being postulated in the 1930’s, we have accumulating indirect evidence for the
existence of dark matter (DM). What we have learned thus far is the following:
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• Our universe is dark: nearly 27% of the energy content of the universe is in the form
of DM. In particle physics language, DM has five times the mass density of baryons:
ρDM ≃ 5ρbaryons.

• We know that DM is massive, but we have no idea what its mass is. It can be as heavy
as ∼ 1050 GeV or as light as ∼ 10−30 GeV, spanning some 80 (!) orders of magnitude of
possibilities.

• DM shouldn’t interact too strongly with the known forces of quantum electrodynam-
ics (QED) and quantum chromodynamics (QCD), or else we would have detected it
already.

• DM shouldn’t interact too strongly with itself, as that would distort dynamics in DM
halos. (⇔ though could this be a possible signal?)

• DM plays an important role in our cosmological history; we wouldn’t be here without it!

We want to understand: What is DM? What are mechanisms in the early universe that set
its relic abundance? Which models can realize these mechanisms? What are the existing
constraints, and how can we detect it?

2 Early Universe Cheat Sheet

To develop out tool kit for answering these questions, here is a crash course on ‘Early Universe
101’. (A great place for full details is e.g. [1]). Our universe is expanding. A length ℓ gets
scaled to ℓ̃= aℓ, with a the scale factor (which is time t dependent), and volume expands like
a3. We then have

ds2 = d t2 − a(t)2d x2 , (1)

and define Hubble H to be

H ≡ ȧ
a
=

1
a
∂ a
∂ t

. (2)

From the first Friedman equation we have H2 = ρ

3M2
Pl

, and since ρ∝ T4 for blackbody radia-

tion, we have the important scaling

H ∼ T2

MPl
. (3)

The early universe is a thermal environment, and particles have phase space distributions
which we can integrate over to obtain number density and energy density of different species.
For relativistic (R) cases, when the mass is smaller than the temperature m≪ T , we have

n∼ T3, ρ ∼ T4 for relativistic particles (R), (4)

while for non-relativistic (NR) cases m≫ T ,

n∼ (mT )3/2e−(m−µ)/T , ρ ∼ mn for non− relativistic particles (NR). (5)

In particular, when number-changing processes are fast, the chemical potential µ vanishes,
the number density is exponentially suppressed, n∝ e−m/T . Finally, the entropy density s is
governed by the relativistic degrees of freedom (dof) and scales as

s ∼ T3 . (6)
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Figure 1: Some examples of the 2 → 2 zoo: WIMP annihilations, forbidden channels [2, 3], semi-
annihilations [4], co-annihilations [2], co-scattering [5], zombies [6] and ELDERs [7]. Time flows from
left to right.

We can now write the Boltzmann equation (BE) that governs the evolution of the system
over time. If we first consider a system with no collisions (namely free particles), the total
number of particles in the system experiences no change, and so ∂ N/∂ d t = 0. Writing the
number of particles as density times volume N = nV , we then have

∂ (NV )
∂ t

= V
∂ n
∂ t
+ n
∂ V
∂ t
= 0 . (7)

Recalling that V ∝ a3 and that H = ∂ a/a, we arrive at

∂ n
∂ t
+ 3nH = 0 . (8)

If the particles are not free and interactions are present, the right hand side contains the
collision terms C[n]:

∂ n
∂ t
+ 3nH = −C[n] . (9)

3 WIMPs

We are now ready to discuss different mechanisms for DM, namely various types of processes
in the early universe that can set the relic abundance of DM. Some 2 → 2 processes which
can do this, what we call the 2→ 2 zoo, are shown in Fig. 1. Throughout these notes, χ will
denote the DM candidate, and time will always flow from left to right in diagrams. We begin
by working through the well-known WIMP case, to phrase it in a way that will be very useful
as we move beyond the WIMP.

It is no secret that the star of the show for the last ∼ 40 years has been the WIMP. Here,
two DM particles annihilate into two other particles, χχ → φφ. If this processes is fast, it sets
the chemical potentials to be equal, and since we will assume φ has zero chemical potential,
µχ = µφ = 0. We further assume φ shares a temperature with the bath. What is the collision
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term for the BE of this system? Roughly, the rate for annihilation is equal to the thermally
average cross section times the number density (more accurately, the flux) of the particle you
have to meet, and we take into account both the forward annihilation process as well as the
backwards process of production:

∂ nχ
∂ t
+ 3nχH = −〈σv〉


n2
χ − (neq

χ )
2


, (10)

where 〈σv〉 ≡ 〈σv〉χχ→φφ for the annihilation process. The first term on the RHS is the
forward annihilation process, while the second term is the backreaction. In writing it this way,
we have used the extremely useful trick of detailed balance: The statement that in thermal
equilibrium, forward and backward processes are both rapid and should cancel out.

What happens? Instead of thinking of particle densities in a box, let’s think about particle
densities in a box that’s expanding with the universe. The
resulting evolution of this yield Y = n/s ∼ na3 over time,
or conveniently as a function of x ≡ m/T , is shown here.
At early times, both processes are rapidly occurring, and
the yield is constant. As the temperature drops beneath
the mass of the particle, the backward production processes
becomes suppressed, and DM is rapidly annihilating away.
As the universe continues to cool and expand, the particles
are becoming more and more dilute, until at some point
the DM particles are so dilute that they no longer find each,
the annihilation processes can no longer occur, and the DM
abundance is ‘frozen out’, leaving us with a constant amount of DM. How much DM is left is
of course a function of the strength of the interaction, namely of the thermally averaged cross
section. This is the standard picture for DM freeze out.

To understand when this happens, let’s perform a back-of-the-envelope estimate. Freeze-
out roughly occurs when the rate for the 2→ 2 annihilation Γ2→2 is of order Hubble H. The
rate of annihilation has two factors in it – it is proportional to the number density of the particle
the DM has to meet, and to the strength of the interaction, and this should be comparable to
the expansion of the universe

Γ2→2 = nχ〈σv〉 ∼ H ∼ T2

MPl
. (11)

To obtain understanding at the mechanism level, we parameterize the 2→ 2 process by

〈σv〉 ≡
α2

eff

m2
χ

. (12)

The trick we will use is to relate nχ to measured quantities. In this way we will incorporate
in our estimate automatically the fact that we are interested in accounting for the observed
amount of DM in our universe today. To do this, we will play with redshifts. We will use
entropy conservation, which means that S ≡ sa3 is constant⇒ s ∼ 1/a3 ∼ T3. We will choose
to redshift to the time of matter-radiation equality, Teq ∼ 0.8 eV. At matter-radiation equality,
the energy density in photons equals that in DM and baryons combined,

ρ
eq
matter = ρ

eq
χ +ρ

eq
baryons = ρ

eq
γ . (13)

We will use the fact that ρχ ≃ 5ρbaryons and drop the O(1) factors from here on to use
ρ

eq
χ ≃ ρeq

baryons at equality. Denoting quantities at freezeout by subscript ‘F’, we then can redshift
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from freezeout to equality, assuming the DM is NR:

nχ(TF )∼ nχ(Teq)


TF

Teq

3
∼
ρχ(Teq)

mχ

T3
F

T3
eq
∼
ργ(Teq)

mχ

T3
F

T3
eq
∼

T3
F Teq

mχ
, (14)

where we have used that ργ ∼ T4. Moving to xF = mχ/TF , we arrive at the very useful
relationship:

nχ(TF )∼
Teqm2

χ

x3
F

. (15)

We can now insert this along with the parametrization Eq. (12) into our freezeout condition
Eq. (11):

Γ2→2 = nχ(TF ) ·
α2

eff

m2
χ

∼
α2

effTeq

x3
F

∼ HF ∼
T2

F

MPl
∼

m2
χ

x2
F MPl

. (16)

Solving for mχ , we arrive at

mχ ∼ αeff


TeqMPl ∼ αeff × (30 TeV) . (17)

This is the mass-coupling relationship in order for the 2→ 2 process we studied to explain
the observed relic abundance. It happens to be the case that if we plug in a coupling of
order the electroweak coupling, αeff ∼ 10−2, then the weak scale emerges. Smaller coupling
results in smaller masses; larger coupling give larger masses. Importantly, this is a complete
coincidence of scales! We have two unrelated scales, Teq and MPl, which contrive together to
give a geometric mean, which if we plug in a weak coupling, gives us the weak scale. This is
the famous Weakly Interacting Massive Particle (WIMP), or in short, the WIMP miracle, which
has been guiding the community for nearly four decades.

An alternative way to state this is to write Eq. (17) as

〈σv〉=
α2

eff

m2
χ

∼ 1
TeqMPl

. (18)

(See also Josh Ruderman’s lecture notes from this school.)

4 SIMPs

In the process we just considered, what was important was how DM interacted with other
particles. What if what is most important is how DM talks to itself? In this case we will find a
very different kind of DM candidate [8].

Imagine that DM is the lightest state in a nearly secluded sector.
We are interested in asking whether the self-interactions of DM
can set its abundance. The first process one might think of is
a 2 → 2 self-scattering process, except that won’t change the
number density of χ particles. The first process that can change
the number of χ particles is a 3→ 2 process, where 3 DM par-
ticles annihilate into 2 DM particles, χχχ → χχ . (Note that if
such a 3→ 2 processes exists between χ particles, DM must be a boson rather than a fermion.)
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If such a 3→ 2 process is responsible for the DM abundance we observe in our universe
today, what kind of masses and couplings would it point to? We can write down the BE for the
system,

∂t n+ 3Hn= −〈σv2〉3→2


n3
χ − n2

χneq
χ


, (19)

where we have taken into account both the forward 3 → 2 process and the backreaction of
2→ 3 and used detailed balance (see shortly more details). Here we have parameterized the
collision term by the thermally averaged 3 → 2 cross section, 〈σv2〉3→2. One can of course
solve this equation in full, but to gain understanding, here we will use our estimating tools.

Freezeout roughly happens when the rate for the 3→ 2 annihilation is of order Hubble,

Γ3→2 ∼ H . (20)

The 3→ 2 rate takes into account two factors,

Γ3→2 ∼ n2
χ〈σv2〉3→2 . (21)

The first factor accounts for the fact that in order for the 3→ 2 process to occur, the DM par-
ticles must meet another two DM particles. The second factor takes into account the strength
of the interaction, with the v2 notation inside a reminder that the collision term cares about
the flux of the DM particles you need to meet, which would be (nv)2 with v the DM velocity.
Of course, this is only notation; what really enters the BE is the collision term, call its parts as
you wish.

We parameterize the 3→ 2 cross section at the mechanism level as

〈σv2〉3→2 ≡
α3

eff

m5
χ

, (22)

which carries the correct mass dimensions (see below), and use the number density of DM at
freezeout from our redshift trick Eq. (15), which already accounts for the observed DM relic
abundance. Inserting these into our freezeout condition Eq. (20), we have

T2
eqm4

χ

x6
F

·
α3

eff

m5
χ

∼ HF ∼
T2

F

MPl
. (23)

Solving for the DM mass, we find

mχ ∼ αeff


T2

eqMPl

1/3
∼ αeff · (100 MeV) (24)

The mass-coupling relationship is then very different from the previous case, involving a gen-
eralized geometric mean between the two unrelated scales of Teq and MPl. Now it happens to
be the case that if the self-coupling of DM is αeff ∼ O(1), of order the strong coupling, then
the strong scale emerges. Instead of a Weakly Interacting Massive Particle, we have arrived at
a Strongly Interacting Massive Particle. Said another way, instead of a WIMP, we now have a
SIMP. In analogy to the WIMP miracle, this is then dubbed ‘the SIMP miracle’.

This DM candidate is much lighter than is typical for WIMPs, typically in the MeV to GeV
mass range, with very different interactions. The freezeout picture remains the same as in the
case of the WIMP. At what temperature does the SIMP freezeout? Even this remains similar
to the case of the WIMP—it is freezing out when it is NR, at temperatures a factor of ∼ 20
beneath its mass. Let’s see this. We will use the instantaneous freezeout approximation, where
we take the number density of DM to be that of equilibrium at the time of freezeout. This is
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a good proxy for the process at hand, and will give us good intuition. Since the equilibrium
number density of DM in the NR regime is exponentially suppressed as in Eq. (5), the freezeout
condition Eq. (20) reads

n2
χ〈σv2〉3→2 ∼ (mχT )3e−2xF

α3
eff

m5
χ

∼ HF ∼
T2

F

MPl
∼

m2
χ

x2
F MPl

. (25)

All we have to know is that xF = mχ/TF is sitting in the exponent, and so solving for it we find
that just as is the case for the WIMP, it is logarithmic in the parameters, xF ∼ −1

2(parameters),
resulting in xF ∼ 20 over a broad range of parameters. Indeed this feature holds for many DM
mechanisms following similar logic.

More generally, we can think of an n → 2 process of χ self-interactions.
Such a process would be relevant if for instance DM is a fermion
or if there is a Z2 symmetry prohibiting the 3→ 2 process from
occurring. Consider the n → 2 process as depicted here. We
parameterize the thermally averaged cross section which enters
the collision term by

〈σvn−1〉n→2 ≡
αn

m3n−4
χ

. (26)

The dimensions can be understood from detailed balance as follows. In thermal equilibrium,
detailed balance tells us that the rate for the forward process equals that of the backwards
process. Considering the collision terms in the BE, this means that


neq
χ


〈σvn−1〉n→2 −

neq
χ

2
〈σv〉2→n = 0 (27)

⇒ 〈σvn−1〉n→2 =

neq
χ

2−n
〈σv〉2→n .

Now, 〈σv〉2→n is an ordinary cross section with mass dimensions -2, and each power of number
density carries mass dimension 3. Combined, we then find that the mass dimension of the
n→ 2 thermally averaged object is 3n−4, justifying our parametrization of the dimensions in
Eq. (26).

The freezeout condition in this case is

Γn→2 ∼ nn−1
χ 〈σvn−1〉n→2 ∼ HF , (28)

and using the tricks we developed previously leads to the mass-coupling relationship

mχ ∼ αeff


T n−1

eq MPl

1/n
, (29)

a truly generalized geometric mean, with each power of nχ in the freezeout condition carrying
one power of Teq as in Eq. (15). For n = 3, we have the case studied in Eq. (24). For n = 4,
we have mχ ∼ αeff × (100 keV).

Of course, n→ 2 processes are less familiar than 2→ 2 processes. To illustrate how easily
the former can happen, we can construct a simple toy model for 3→ 2 annihilations. Later,
we will see how 3→ 2 processes can arise generically in dark sectors. Consider a single scalar
field χ that is charged under a Z3 symmetry. The Lagrangian then contains renormalizable
interaction terms of the form χ3 and |χ|4. From these, we can construct two topologies of
5-point interactions which yield 3→ 2 annihilations, using either three 3-point interactions,
or one 3-point and one 4-point interaction, as depicted in the left panel of Fig. 2. Indeed, the
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Figure 2: Left: Topologies for 3 → 2 interactions in the toy Z3 scalar model. Right: Cooling versus
annihilating.

use of three 3-point interactions was the inspiration for parameterizing the 3→ 2 cross section
in Eq. (22) with a (coupling-strength)3.

If you’ve kept up so far, great! But I have been cheating you. In the derivation of the mass-
coupling relationship for the SIMP, we have implicitly assumed that there was one temperature
that described the entire system. However, if all that was occurring was simply the 3→ 2 self-
annihilation of χ , this process would pump heat into the dark sector, raising its temperature.
(More on this soon.) The dark matter cannot be completely secluded; there must be a way to
shed the heat, namely to dump entropy. This can be done via interacting with other light states
or with the Standard Model (SM), for instance through elastic scattering with SM particles
(see right panel of Fig. 2). We want the elastic scattering to be active during the time of
3 → 2 freezeout, but on the other hand, if we turn the diagram on its side (see right panel
of Fig. 2), we arrive at the ordinary WIMP annihilation process, which we do not want to be
active. In other words, we want to cool but not annihilate. Can this be done? Apriori it would
seem hard, since the cross sections between the processes are typically of similar magnitude,
〈σv〉cool ∼ 〈σv〉ann = 〈σv〉 . Fortunately, rates are also proportional to number densities. In
the cooling case, a DM particle has to meet a SM particle in order for the process to proceed,
while in the annihilation case, a DM particle has to meet another DM particle:

Γcool ∼ nSM〈σv〉 , Γann ∼ nχ〈σv〉 . (30)

If the DM scatters off of abundant particles that are relativistic, such as electrons, photons or
neutrinos, then the rate for annihilation is suppressed by the NR number density of DM, while
the cooling rate is unsuppressed, and so

Γann

Γcool
∼

nχ
nSM
∼ e−mχ/T ∼ 10−8≪ 1 . (31)

As a result, we can easily cool but not annihilate by scattering off of light SM species.
We can now arrive at a set of conditions that must hold in order for the SIMP mechanism

to work. On the one hand, we want cooling to be active at the time of 3→ 2 freezeout, and
on the other had, we want the related 2→ 2 annihilations to be suppressed:

Γcool

Γ3→2


TF

≳ 1 ,
Γann

Γ3→2


TF

≲ 1 . (32)

Parameterizing the SIMP-SM interactions by 〈σv〉 ≡ ε2/m2
χ , with ε indicating the size of the

portal between the two sectors, we find a range of the interaction strength ε such that every-
thing works, εmin ≲ ε≲ εmax, with

εmin ∼ α
1/2
eff

 Teq

MPl

1/3
,

εmax ∼ αeff

 Teq

MPl

1/6
. (33)
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Figure 3: Left: Range of couplings between the DM and the SM where SIMP DM emerges. Right:
Reproduced from [7], the DM yield as a function of SM temperature for ELDER DM, for DM mass
10 MeV, ε∼ 10−9 and strong αeff (solid purple).

The resulting range in the ε-mχ plane is depicted in the left panel of Fig. 3. When ε is too
small, kinetic equilibrium is not maintained between the DM and the SM; when ε is too large,
ordinary 2 → 2 annihilations take over; but for ε values in the broad available range, the
precise value of ε plays no meaningful role, and SIMP dark matter emerges.

In summary, in the SIMP mechanism there are two important knobs. Strong 3 → 2 self-
annihilations freeze out and control the DM relic abundance, while at the same time entropy-
dumping processes such as elastic scattering off of light SM particles are active during the time
of freezeout. The 3→ 2 process decouples first, while the elastic scattering process decouples
second. What would happen if the order was reversed? To answer this, we will first delve into
cannibals.

5 Cannibalism

Consider the 3→ 2 self-annihilations of DM; what if there were no light abundant species to
dump entropy into? In this case, there is no reason for the DM to have the same temperature
as the SM. We denote the temperature of the DM by Tχ , to differentiate from T the SM bath
temperature. Once the DM becomes NR, Tχ < mχ , the 3 → 2 process heats up the dark
matter, raising its temperature Tχ . By how much does it heat up? Since the χ particles do not
speak with other particles, amongst themselves their comoving entropy is conserved, and so
sχa3 =constant. Now, we can write the entropy of the DM as

sχ =
ρχ + Pχ

Tχ
≈
ρχ

Tχ
=

mχnχ
Tχ
∼

mχ
Tχ


mχTχ
3/2

e−mχ/Tχ , (34)

where we have used that the DM is in the NR regime and has vanishing chemical potential.
Since a ∼ 1/T , conservation of entropy thus implies

Tχ∝
1

loga
∼ 1

log(1/T )
. (35)

Namely, the temperature of χ is growing exponentially compared to the temperature of the
SM bath! This is dubbed ‘cannibalism’ – the χ ’s are eating themselves up to stay warm [9].

We can estimate the abundance of DM in this case. Denoting quantities today by ‘0’, we
can redshift to freezeout:

ρ0
χ

s0
=

mχn0
χ

s0
=

mχnF
χ

sF
=

TχsF
χ

sF
. (36)
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And the abundance of DM is then found to be (plugging in numbers and all factors)

Ωχ =
ρ0
χ

ρc
=

TχsF
χ

ρc

s0

sF
≃ 0.6

mχ/eV

xχF


sF
χ

sF


, (37)

with ρc the critical density and xχ = mχ/Tχ . We learn that this scenario predicts very light
DM unless there is a large entropy ratio between the dark and visible sectors (e.g. through
large temperature differences or large ratio between the number of dofs in each).

6 From Cannibals to ELDERs

We just saw that a secluded bath of particles χ undergoing χχχ → χχ self-annihilations
experiences cannibalisation. Suppose at some time before the 3 → 2 process shuts off, the
dark bath was in thermal equilibrium with the SM, and the two sectors decoupled at some
temperature Td = Tχd

. Since the two sectors redshift the same, one has sχF
/sF = sχd

/sd , and
so Eq. (37) can be written in terms of the entropy ratios at the time the sectors decoupled,

Ωχ ≃ 0.6
mχ/eV

xχF


sd
χ

sd


. (38)

This entropy ratio scales as

sd
χ

sd
∼


O(1) (more accurately, ratio of dof) if Td ≫ mχ (R)mχ
Td

5/2
e−mχ/Td if Td ≪ mχ (NR)

(39)

When do the two sectors decouple? Roughly speaking, decoupling occurs when elastic scat-
tering between the sectors, such as χγ → χγ, is of order Hubble. We can then estimate the
decoupling temperature by

Γel ∼ nγ〈σv〉el ∼ Hd ∼
T2

d

MPl
. (40)

Solving for the elastic scattering cross section, we find it is inversely proportional to the de-
coupling temperature,

〈σv〉el ∼
1

Td MPl
∼

mχ
Td


1

mχMPl


. (41)

Putting all the pieces together, we arrive at the DM relic abundance

Ω∝ e−〈σv〉el·stuff , (42)

namely a candidate where the abundance of DM is exponentially dependent on the elastic
scattering cross section. This candidate is dubbed an ‘ELastically DEcoupling Relic’, or in short,
an ELDER [7,10].

In ELDER DM, much as in the SIMP mechanism, there are two knobs: 3→ 2 self-annihilations
of DM, and 2→ 2 elastic scattering off of SM particles. For a SIMP, the former decouples first,
and the latter decouples second, while for an ELDER, the latter decouples first, and the former
decouples second. The evolution of the number density for ELDER DM is shown in the right
panel of Fig. 3. At early times, the elastic scattering between the SM and the dark matter is
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Figure 4: Left: SIMPs versus ELDERs. Right: The phase diagram of DM mechanisms in the plane of
DM-SM couplings versus 3→ 2 self-couplings of DM, at fixed DM mass.

active, and both sectors share a common temperature. The sectors decouple when elastic scat-
tering stops, at which point the DM is cannibalizing away through the 3→ 2 annihilations. At
a later point, the 3→ 2 process freezes out, and we are left with a constant relic abundance.

We can establish a phase diagram depending on the relative strength of the self-interactions
compared to the DM-SM interactions, as shown in Fig. 4. As we change the relative size of
these couplings, the theory flows from a regime where it is WIMP-like to a regime where it is
SIMP-like, to a regime where it is an ELDER. We learn that these different mechanisms for DM
candidates are simply different phases in the phase-space of interactions.

7 Dark Sectors

Thus far, we have developed several mechansims for DM and understood their behavior in
terms of mass and couplings. We now move to discuss models—theories that realize these
mechanisms. [Supersymmetry is the poster child for WIMPs, and we already say a toy Z3
model for SIMPs (see left panel of Fig. 2).] As we will see, the mechanisms we described are
generic in theoryland.

Consider the SM that we all know and love. It is a whole zoo of particles, governed by a
beautiful symmetry structure of gauge symmetries, SU(3)c × SU(2)W × U(1)Y .

Why couldn’t the dark sector similarly have
many new particles, perhaps governed simi-
larly by its own gauge symmetries? Inspired
by the SM, maybe the dark sector has a dark
version of QCD, SU(3)D. In fact, it doesn’t
even have to be so QCD-like, it could be any
SU(Nc), SO(Nc) or Sp(Nc) dark gauge sym-

metry. Perhaps there is also a dark version of QED, a dark U(1)D? This would give a dark
photon V that could kinetically mix with the ordinary photon, yielding a portal of interac-
tion between the dark and SM sectors. The theories we will be talking about are thus strongly
coupled gauge theories, which I will collectively call QCD-like theories, or in short, ‘dark QCD’.

A minimal and simple dark sector could be just a dark U(1)D—a dark version of QED,
with dark particles charged under it. There would be
kinetic mixing, L ⊃ − ε2 FµνF ′µν (with prime indicating
the dark photon field strength) and a dark gauge cou-
pling eD (or dark coupling strength αD), which would
allow the SM and the DM to communicate through ex-
change of photon-dark photon. There could be non-abelian symmetries too; QCD-like dark
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Figure 5: Examples of 2→ 2 processes that can occur in QCD-like dark sectors, with π,ρ indicating
dark mesons, and the dark pions are the DM.

sectors. These are rich theories, and so present a rich playground for many DM mechanisms
and processes to occur.

QCD-like theories have many mesons, similarly to the SM (π, K , ρ...). The Pseudo Nambu
Goldstone Bosons (PNGBs) of these theories, which we will collectively call dark pions, can
play the role of DM. Consider for instance 2 → 2 processes that can occur in these theories,
as shown in Fig. 5. Forbidden channels, WIMP-like annihilations, elastic scattering and semi-
annihilations are all possible. In each case, one can compute from the Lagrangian of the
theory (written in terms of the parameters of the model—αd , mπ, fπ, mV , etc.) the cross
section needed to explain the relic abundance of DM, e.g. 〈σv〉 = f (parameters). Then one
can translate the cross section we previously developed at the mechanism level into the the
theory at hand, to understand what parameters are needed.

For instance, consider the 3 → 2 process of the SIMP. While such a process might seem
the most ‘exotic’ as it is less familiar than 2→ 2 processes, such interactions do occur in the
SM itself! To see this, here is a quick reminder of QCD. QCD is an SU(3) gauge theory with 3
light flavors, u, d, s. The theory has an approximate SU(3)L×SU(3)R global symmetry. At low
energy, the theory confines and chiral symmetry breaking occurs, breaking the global symmetry
down to its diagonal component: SU(3)L × SU(3)R→ SU(3)diag. (Of course, in the SM these
global symmetries are only approximate because the quark masses are not degenerate.) As
a result, there are 8 PNGBs corresponding to the 8 broken generators – these are the kaons,
the pions and the eta. This theory has 5-point interactions: two kaons can annihilate into 3
pions, K+K−→ π+π−π0. This occurs through a topological term in the Lagrangian called the
Wess-Zumino-Witten (WZW) term [11–13]. If you calculate the rate, you find its just right to
be a SIMP if the mass of the particles is of order ∼ 100 MeV!

Inspired by this, let’s examine QCD-like theories. Consider for instance an SU(Nc) gauge
theory with N f flavors with degenerate mass. (This degenerate mass for the dark quarks will
ensure the residual symmetry is exact and will thus stabilize the DM.) The theory has an (exact)
SU(N f )R × SU(N f )L global symmetry, which after chiral symmetry breaking occurs breaks to
SU(N f )diag which is now exact. There are Nπ PNGBs from the broken generators — these are
the dark pions, which can be the DM. The theory has 5-point interactions through the WZW
term, which take a particular form:

LWZW =
Nc

15π2 f 5
π

εµνρσTr

π∂µπ∂νπ∂ρπ∂σπ


, (43)

with π = πaT a, with T a the broken generators and a = 1...Nπ. The coefficient of this 5-point
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Figure 6: Reproduced from [14]. Solid curves: the solution to the Boltzmann equation of the 3→ 2
system, yielding the measured dark matter relic abundance for the pions, mπ/ fπ as a function of the pion
mass (left axis). Dashed curves: the self-scattering cross section along the solution to the Boltzmann
equation, σscatter/mπ as a function of pion mass (right axis). All curves are for selected values of Nc and
Nf , shown here for an SU(Nc) gauge group with broken SU(Nf ) flavor symmetry. The solid horizontal
line depicts the perturbative limit of mπ/ fπ ≲ 2π, providing a rough upper limit on the pion mass; the
dashed horizontal line depicts the bullet-cluster and halo shape constraints on the self-scattering cross
section, placing a lower limit on the pion mass. Each shaded region depicts the resulting approximate
range for mπ for the corresponding symmetry structure.

interaction term is written in terms of the pion decay constant. One can similarly do this
for the other gauge groups SO(Nc) and Sp(Nc). In all cases, provided that there are enough
flavors (N f ≥ 3 for SU(Nc) and SO(Nc), and N f ≥ 2 for Sp(Nc)), the topological condition is
met and the WZW term exists as in Eq. (43), giving 5-pion interactions. We have thus found
that 3→ 2 processes are generic in QCD-like theories [14]. Since in a sense, these dark pion
constructions are the simplest version in generic theories for SIMP DM, these scenarios are
dubbed ‘the SIMPlest miracle’.

We can compute the thermally averaged cross section for the 3→ 2 process in these theo-
ries, written now in terms of the parameters of the theory—the mass mπ and decay constant
fπ of the pions—and find:

〈σv2〉3→2 =
5


5
2π5

N2
c

x2
F

m5
π

f 10
π


t2

N3
π


, (44)

where the last factor is a combinatorical factor that depends on the gauge group and on N f
(see [14]). In other words, we are able to translate the mechanism-level parameterization
of αeff in Eq. (22) into the parameters of the theory, with αeff ∼ #(mπ/ fπ)10/3 in this case.
Producing the correct relic abundance of DM translates to the solid curves in the mπ/ fπ−mπ
plane shown in Fig. 6. Since perturbativity breaks down around mπ/ fπ ∼ 2π (solid hori-
zontal curve), the maximal dark pion mass is of order ∼GeV before non-perturbative effects
contribute.

What about self-scattering? One would expect that in strongly coupled theories with strong
3 → 2 self-annihilations, there will be unsuppressed contributions to 2 → 2 self-scattering
processes as well. Self-scattering amongst DM particles can distort dynamics in dark matter
halos, and typically limits

σscatter

mχ
≲ 1

cm2

g
. (45)
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Figure 7: Reproduced from [16]. Left: Dark photon parameter space for fixed gauge group, dark
coupling and dark pion mass, showing how different regions realize different DM mechanisms. Right:
Constraints on the parameter space (shaded gray) and future probes (solid colored curves).

There are also long-standing puzzles in structure formation such as core-vs-cusp and the too-
big-to-fail puzzles. While it is possible that these are addressed by unaccounted-for baryonic
effects, it is also possible to accommodate these by self-interactions of DM of order the limit in
Eq. (45), which corresponds to roughly ∼barn/MeV—namely interactions of order the strong
force interactions. (See [15] for a nice review on this subject.)

In the context of the QCD-like theories we have been discussing, self-scattering is thus an
important constraint on the parameter space, and possibly an unavoidable signal as well. The
Lagrangian of these theories after chiral symmetry breaking contains several pieces that give
rise to 4-point pion interactions, and thus to self-scatterings:

L ⊃
m2
π

12 f 2
π

Trπ4 − 1
6π2

Tr

π2∂µπ∂

µπ−π∂µππ∂ µπ


. (46)

From this, one finds

σscatter =
m2
π

32π2 f 4
π


a2

N2
π


, (47)

with the last factor again a combinatorical one that depends on the gauge group and the
number of flavors N f . Since for a given DM mass, mπ/ fπ is dictated by the relic abundance,
the self-scattering cross-section is then determined as well. The dashed curves in Fig. 6 show
the self-scattering cross-section along the relic abundance solution with the corresponding
constraint, yielding a lower limit on the dark pion mass. Combined, we learn that SIMP dark
pions in QCD-like theories point to the strongly interacting regime of the theory, with DM
masses in the MeV-GeV mass range, typically of O(few 100 MeV).

(One can also use other degrees of freedom in QCD-like theories, such as glueballs, to
study 3→ 2 processes, see e.g. [9,17,18]. Regarding the interaction portal between the dark
pions and the SM, as neccessary for the SIMP mechanism, the dark photon and axion portals
have been studied in [16] and [19], respectively.)

The QCD-like theories we described not only give us generic realizations of various DM
mechanisms—they are predictive as well. Consider for instance QCD-like theories with a dark
U(1)D as well. (Indeed, one can embed this gauged U(1)D into the residual flavor symmetry
of the QCD-like theories, see [16] for further details.) The dark photon V can kinetically
mix with the ordinary photon, giving interactions between the sectors. Fig. 7 shows for a
fixed gauge group and dark pion mass, how different regions of this very simple setup realize
various types of DM mechanims, be it WIMPs, SIMPs, ELDERs, semi-annihilations and more.
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Figure 8: Reproduced from [20]. Left: Mono-photon production at a lepton collider. Right: The
cross section for e+e− → γ + inv at


s = 10 GeV for an SU(2)d × U(1)d gauge theory with 4 Weyl

fermions, dark photon mass mV = 12 GeV, DM mass mπ = 1 GeV, lightest dark ρ meson mρ1
= 4 GeV,

kinetic mixing ε = 10−2 and dark coupling αD = 0.1, with 1% energy resolution. The SM background
e+e−→ γνν is shown in green.

The parameter space is constrained by many experiments and importantly can be probed by
many other planned future experiments, from high-energy collider to low-energy colliders,
through fixed-target and beam dump experiments, as well as direct detection.

One can go even further than this: we can hope to perform spectroscopy of the dark sector
states themselves. To see this, we again draw an analogy from QCD. How do we know the
beautiful resonance structure of QCD? We smash e+e− on each other, which goes to lots of
‘stuff’. By scanning the center of mass energy of the collision, we scan the resulting ‘stuff’ of
the final products. You could ask yourself: how could we see this at a fixed energy machine?
The answer is: tack on a photon! The photon in the final state is a tracer for the system it
recoils against. For that, one doesn’t have to be able to see the system it recoils against—it
could be dark ‘stuff’ too, as in the left panel of Fig. 8. Mono-photon events at fixed energy
machines thus allow us to measure the spectrum of the invisible system it recoils against,

Eγ =


s
2


1−

M2
inv

s


. (48)

Performing spectroscopy of dark sectors via mono-photon searches would be possible at low-
energy colliders, such as the Belle-II experiment at KEK. An example of a SIMP-like spectrum
that could be observed at Belle-II is shown in the right panel of Fig. 8, demonstrating the power
of this approach.

8 Conclusion

Focusing on high-point interactions, we have developed SIMP, cannibal and ELDER dark matter,
and shown that these novel dark matter candidates are generic and predictive in theoryland.
The emphasis has been on giving you the tool kit to quickly estimate and understand the
expected behavior and characteristics of new dark matter ideas. Most of all, I hope I have
provided you with tools for when you come up with the next amazing dark matter candidate,
which I look forward to learning about.
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Figure 9: The crocodile challenge.
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A Crocodile Challenge

If you ever met me, you know I love crocodiles (more accurately, all things crocodilian). At
the beginning of this school I posed the crocodile challenge: to have a reason for a crocodile
Feynamnn diagram to appear in a physics paper. The closest I have ever been to succeeding in
this challenge is shown in Fig. 9, which came up while working on the axion portal for SIMPs.
Unfortunately in the particular case we studied the diagram vanished and so did not make it
to the final paper draft. I am grateful to Eric Kuflik who discovered this diagram, and to the
Les Houches Summer School Lecture Notes Series who enabled this crocodile to be seen in the
(e)printed world.
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