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Abstract

We use massive spinor helicity formalism to study scattering amplitudes in N = 2∗ super-

Yang-Mills theory in four dimensions. We compute the amplitudes at an arbitrary point in

the Coulomb branch of this theory. We compute amplitudes using projection from N = 4

theory and write three point amplitudes in a convenient form using special kinematics. We

then compute four point amplitudes by carrying out massive BCFW shifts of the amplitudes.

We find some of the shifted amplitudes have a pole at z = ∞. Taking the residue at z = ∞

into account ensures little group covariance of the final result.
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1 Introduction

The on-shell formulation of scattering amplitudes in quantum field theories has developed rapidly

in the last couple of decades thanks to the clever use of the spinor helicity formalism for massless

theories, see [1–11] and references therein. In particular, it has become a powerful tool in studying

amplitudes in N = 4 super-Yang-Mills(SYM) theories. It has also aided (super)gravity compu-

tations using the double copy formalism [12]. This formalism has also been extended to theories

with lower supersymmetry, some of the early works in this direction can be found in, e.g., [13]

and [14]. The spinor helicity formalism is well suited to study amplitudes in theories involving

massless fields. However, for obvious reasons, it is important to extend this formalism to theories

with massive fields, and there have been several steps taken in this direction already [15–22].

A natural extension is to do an excursion in the Coulomb branch of the N = 4 SYM theory

[23–25]. This is equivalent to studying amplitudes involving BPS states. Although BPS states

are massless states from the higher dimensional point of view, they are massive states in four

dimensions, and to accommodate them in the spinor helicity formalism one needs to double the

number of spinor helicity variables. As mentioned earlier original spinor helicity variables are ideal

for describing null momenta. The idea of doubling stems from the simple fact that any time-like

momentum can be described in terms of two null momenta. Since each null momentum needs a

pair of spinor helicity variables, we need a doubling of the variables to describe the momenta of the

massive fields. A related idea has also been explored earlier where one utilises the fact that the long

multiplets of N /2-extended supersymmetry(SUSY) have the same number of states as the short

multiplet of N -extended SUSY algebra [17,18].

Another place where this generalised spinor helicity formalism can be used is in studying am-

plitudes in the N = 2∗ theory. In this paper, we address this problem by setting up an appropriate

formalism for computing amplitudes in N = 2∗ theory at an arbitrary point in the Coulomb branch.

We explicitly compute three and four point amplitudes in N = 2∗ theory. The N = 2∗ theory is
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obtained by writing N = 4 SYM multiplet in terms of N = 2 vector multiplet and N = 2 adjoint

hypermultiplet. If the adjoint hypermultiplet is massless then we get N = 4 theory, but if the

adjoint hypermultiplet is massive then it breaks N = 4 SUSY down to N = 2. The resulting

theory with a N = 2 vector multiplet coupled to massive adjoint hypermultiplet is referred to as

the N = 2∗ theory. This theory is in some sense a close relative of the N = 4 Coulomb branch

theory, in the sense that the techniques required to study the massive theory amplitudes are similar

to those of the N = 4 theory in the Coulomb branch. However, there is a crucial difference that

in the classical theory at the origin of the Coulomb branch of the N = 2∗ theory we have massless

vector multiplet coupled to a massive adjoint hypermultiplet, whereas in the Coulomb branch of

the N = 4 theory we recover massless N = 4 SYM theory at the origin. We employ two different

techniques to compute the amplitudes in the N = 2∗ theory. In section 2 we begin with the char-

acterisation of N = 2 multiplets, both massless and massive. We describe the massive multiplets

in the N -extended SUSY in terms of ‘long’ multiplets of N /2 extended SUSY. We put long in

quotes because, we employ the same technique when N = 2 so that N /2 = 1 SUSY, which does

not possess long multiplets, but it does possess multiplets with respect to SU(2) little group which

helps organise the massive multiplets of N = 2 SUSY. We also obtain N = 2 massive multiplets

by the projection of N = 4 multiplets, a method we use in the computation of three and four point

amplitudes.

In section 3, we embark on the computation of three point amplitudes. After discussing the

special kinematics for three point amplitudes of BPS states [7], we derive three point amplitudes

using the method of projection from the N = 4 theory. However, we find it convenient to write the

expressions in terms of the u-spinor variable, because this representation turns out to be suitable

for carrying out the BCFW shift which is done in section 5. In the N = 2∗ theory, we have only two

types of three point amplitudes, one that involves three vectors or the other that involves one vector

and two hypers. We derive both using the projection from N = 4 theory. At the end of this section,

we discuss the band structure of the scattering amplitudes. We note that, in three point amplitudes,

besides the MHV and MHV bands that appear in the massless theory, the massive theory also has

an MHV×MHV band. In section 4 we compute four point function using the method of projection.

In the N = 2∗ theory, there are only 3 types of four point amplitudes involving the massive vector

as well as massive hyper, namely, a four massive vectors amplitude, four massive hypers amplitude,

and the one with two massive vectors and two massive hypers. We derive these amplitudes by

taking appropriate projections.

The BCFW shift in section 5 for the N = 2∗ theory does not follow from the N = 4 theory
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by projection in a straightforward way because the shifts involved in the N = 4 theory and those

required to implement BCFW in the N = 2∗ theory are different. In particular, the Grassmann

variable η2I which is shifted in the N = 4 theory is projected out in the N = 2∗ theory. As a

result, the BCFW shifts are different in the two cases. In general, the massive BCFW shifts are

not little group covariant. It is worth pointing out that this does not jeopardise the little group

covariance of the final amplitude. This situation, in some sense, is analogous to the light cone

gauge computations which do not maintain Lorentz covariance at every step but the final result

is Lorentz covariant. The little group non-covariance manifests itself in the form of the integrand,

as a function of the shift parameter z. One can therefore think of z parametrising the little group

non-covariance. In the N = 2∗ case, we find that the amplitude containing gauge fields in the

external legs do have a pole at z = ∞, and incorporating the residue from this pole is essential in

getting the little group covariant answer for the amplitudes. We, in fact, find that the little group

non-covariance is a blessing in disguise in the sense that the z dependence of the integrand induced

by it makes the non-covariant terms conspicuous. By accounting for the contribution of all the poles

it is easy to see that the little group non-covariant contributions to the amplitude cancel pairwise

and the final result is little group covariant. We turn this observation on its head to propose that

the covariant amplitude can be obtained by simply ignoring the z dependent parts of the integrand

and hence ignoring the resulting pole at z =∞. We believe this may be an efficient way of pulling

out covariant expressions for amplitudes by leveraging the little group non-covariance. We end with

concluding remarks in section 6 where we summarise our main results and speculate about the wider

applicability of our procedure. Our notation and conventions as well as other technical details of

some computations are relegated to appendices.

2 On-shell supermultiplets

In this section, we will discuss the on-shell supermultiplets for N = 4 and N = 2 BPS multiplets.

The BPS condition is defined in (A.16) in Appendix-A where we have listed the spinor helicity

conventions relevant for this paper. Here we first recall the notation used for the representation of

BPS multiplets in N = 4 super-Yang-Mills [18]. We then generalise it to construct BPS multiplets

in N = 2 theory. In the end, we show that this same multiplet can be obtained by projection of

the N = 4 multiplet. We will use this method of projection in later sections.
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2.1 N = 4 SYM 1/2-BPS multiplet

To set the stage for N = 2 massive on-shell supermultiplets, let us first discuss the construction

of N = 4 SYM 1/2-BPS multiplet [18]. We will utilise the supersymmetric massive spinor helicity

formalism in four dimensions developed in [17]. The basic idea behind this construction is to

capitalise the fact that the dimension of a short multiplet in the N extended supersymmetry is the

same as that of the long multiplet in the N /2 extended supersymmetry. Therefore, to construct a

1/2-BPS representation in N -extended supersymmetry, one can use the long massive multiplets of

N /2 supersymmetry.

In the original N -extended supersymmetry, a 1/2-BPS representation has the same number of

degrees of freedom as a massless representation. Therefore, when we take the massless limit of the

1/2-BPS representation, it is merely a rearrangement of the components of the on-shell superfield for

the massless representation. This rearrangement can be understood from the fact when we consider

supersymmetry representations with the same maximum spin or helicity, the Clifford vacua for

the massive and for the massless theories are different. For instance, the helicity of the Clifford

vacuum for the massless hypermultiplet is h0 = +1/2 whereas the Clifford vacuum for massive

hypermultiplet has spin s0 = 0. We will see that this basis change is implemented by a half Fourier

transform in the Grassmann variables that organise the on-shell supermultiplets.

The mapping between massless multiplets and massive 1/2-BPS multiplets can be implemented

by using the following steps.

• Represent the massive 1/2-BPS multiplet in N -extended SUSY by using the massive long

multiplet in the N /2 SUSY.

• Take the massless limit of the superfield, by replacing the Grassmann variable ηaI (where a is

the N /2 SUSY index and I = ± is the SU(2) little group index) for massive fields by a new

set variables ηa, η̃†a using the rule ηa− → ηa and ηa+ → η̃†a.

• The massless N SUSY multiplet is then obtained by performing the half Fourier transform

from η̃†a to η′a.

The set (ηA = ηa, η′a), are the appropriate Grassmann variables for the masslessN SUSY superfield,

and the half Fourier transform carried above achieves the necessary rearrangement of fields to change

from the Clifford vacuum with helicity s0 to Clifford vacuum with helicity h0.

Let us now consider N = 4 1/2-BPS SYM multiplet. In [18], this was represented as a long
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massive vector multiplet1 in N = 2 supersymmetry which is given as,

W = φ+ ηaIψ
I
a −

1

2
ηaI η

b
J(εIJφ(ab) + εabW

(IJ)) +
1

3
ηbIηJbη

Jaψ̃Ia + η1+η
2
+η

1
−η

2
−φ̃. (2.1)

To understand how one obtains the massless SYM multiplet in the massless limit of above, let us

carry out the steps outlined earlier. By taking ηa− → ηa and ηa+ → η̃†a, we obtain,

G̃ =W ηa−→ηa,ηa+→η̃†a

= φ+ ηaψ−a + η̃†aψ+
a − η̃†aηbφ(ab) − η̃†aηbεabW (+−) − 1

2
ηaηbεabW

(−−) − 1

2
η̃†aη̃†bεabW

(++)

+
2

3
η̃†bη̃†bη

aψ̃+
a −

2

3
ηbηbη̃

†aψ̃−a + η̃†1η̃†2η1η2φ̃. (2.2)

This representation is known as the non-chiral representation of the N = 4 SYM multiplet [26]. To

see this note that the helicity of the Clifford vacuum in the above superfield is s0 = 0. However,

we know that for the massless N = 4 SYM representation theory, in the chiral representation, the

helicity of the Clifford vacuum is h0 = 1. To achieve this rearrangement of fields, let us implement

a half Fourier transform of the Grassmann variables such that η̃†a to η′a. We get,

G =

∫ 2∏
a=1

(
dη̃†aeη̃

†aη′a
)
G̃

= η′1η′2φ+ ηaη′1η′2ψ−a + η′1ψ+
2 − η′2ψ+

1 + η1η′1(φ(12) +W (+−))− η2η′2(φ(12) −W (+−))

+ η2η′1φ(22) − η1η′2φ(11) + η1η2η′1η′2W (−−) −W (++) +
2

3
ηaψ̃+

a −
2

3
ηbηbη

′1ψ̃−2 +
2

3
ηbηbη

′2ψ̃−1 − η1η2φ̃,

(2.3)

where we used ε12 = −1. The above superfield has helicity h0 = 1 as expected. We can now rewrite

the above by using (ηA = ηa, η′a) to obtain,

G = g+ + ηAλA −
1

2
ηAηBSAB −

1

6
ηAηBηCλ−ABC − η

1η2η3η4g− (2.4)

where,

g+ = −W (++), g− = −W (−−), S12 = −φ̃, S34 = −φ,

S13 = −W (+−) − φ(12), S24 = φ(12) −W (+−), S14 = −φ(11), S23 = −φ(22),

λ−123 = −4

3
ψ̃−2 , λ−234 = −ψ−2 , λ−134 = −ψ−1 , λ−124 = −4

3
ψ̃−1 ,

λ1 =
2

3
ψ̃+
1 , λ2 =

2

3
ψ̃+
2 , λ3 = ψ+

2 , λ4 = −ψ+
1 .

(2.5)

1We will interchangeably refer to the vector multiplet as the SYM multiplet in this paper.
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From the above, it becomes clear that the longitudinal mode of the massive W boson arises from

the scalar fields of the massless SYM multiplet. Thus (2.1), describes the Coulomb branch of

N = 4 SYM. Note that even though the central charge structure is different for N = 4 and N = 2

supersymmetry, this is not relevant when considering on-shell representations. In this spirit, we will

call massive multiplets in N = 1 supersymmetry as long multiplets even though the central charge

term is absent in N = 1 supersymmetry. This nomenclature is helpful as massive N = 1 multiplets

can be used to describe 1/2-BPS N = 2 multiplets analogous to how long N = 2 multiplet can be

used to represent 1/2-BPS N = 4 SYM.

Before we proceed to construct N = 2 supermultiplets using N = 1 long multiplets, let us ask

what is the massless limit of the N = 2 SYM multiplet (2.1) within N = 2 supersymmetry. To

perform this massless limit, we need to take ηa+ → ηa and ηa− → η̂a, where η̂a organises the massless

limit of the long massive supermultiplet in terms of distinct massless supermultiplets. This leads

to,

W ηa+→ηa,ηa−→η̂a = φ+ ηaψ−a −
1

2
ηaηbεabW

(−−) + η̂aψ+
a − η̂aηbφ(ab) − η̂aηbεabW (+−) − 2

3
η̂aηbηbψ̃

−
a

− 1

2
η̂aη̂aW

(++) +
2

3
η̂aη̂aη

bψ̃+
b −

1

2
η̂aη̂aη

1η2φ̃. (2.6)

Therefore, we can write the above massless limit in terms of three massless superfields as,

W ηa+→ηa,ηa−→η̂a = Φ + η̂aΨ+
a −

1

2
η̂aη̂aW++, (2.7)

where the massless superfields are given as,

Φ = φ+ ηaψ−a −
1

2
ηaηbεabW

(−−),

Ψ+
a = ψ+

a − ηbφ(ab) − ηbεabW (+−) − 2

3
ηbηbψ̃

−
a ,

W++ = W (++) − 4

3
ηbψ̃+

b −
1

2
ηaηaφ̃. (2.8)

It is clear from the above that Φ and W(++) superfields describe an N = 2 SYM multiplet con-

structed in [13,14], and Ψ+
a describes a massless hypermultiplet. Notice that the longitudinal mode

of the W boson in the long N = 2 multiplet originates from the massless hypermultiplet. Therefore

if we use (2.1) to describe a massive N = 2 theory, then we are likely to obtain the Higgs branch of

N = 2 SYM. Notice that the on-shell hypermultiplet here occurs as a superfield which is a doublet

under R-symmetry with Clifford vacuum of helicity h0 = 1/2 being a doublet of fermions. This

choice is appropriate as this organises the scalars in the hypermultiplet into a triplet and a singlet

under R-symmetry. This singlet is in fact the longitudinal mode of the W boson in the massive

theory. Therefore, the organisation of R-symmetry is consistent with the Higgs branch. However,
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in this paper, we are interested in Coulomb branch amplitudes as we are considering N = 2∗ theory

where the absence of massless hypermultiplets implies there is no Higgs branch.

2.2 N = 2 Supersymmetry 1/2-BPS multiplets

To study the amplitudes in the Coulomb branch of N = 2∗ theory, we need the 1/2-BPS on-shell

superfields for SYM as well as hypermultiplets. These representations are obtained by using N = 1

long massive multiplets as we show below. As before, the fact that central charge structures are

different for N -extended and N /2-extended supersymmetry is not relevant for studying the on-shell

representations. In our case, the N = 1 long multiplets are those that were introduced in [17]. Here,

we will show that these reproduce the right massless limit when they are used to describe N = 2

1/2-BPS multiplets.

2.2.1 N = 2 hypermultiplet

We can now try to construct the N = 2 1/2-BPS hypermultiplet by using the long N = 1 chiral

multiplet which is given as,

Φ = φ+ ηIχ
I − 1

2
ηIη

I φ̃. (2.9)

Let us first implement η− → η and η+ → η̃†. We then get,

Φ = φ+ ηχ− + η̃†χ+ + η̃†ηφ̃. (2.10)

Half Fourier transform from η̃† to η′ leads to,

Φ̃ =

∫
dη̃†(1 + η̃†η′)(φ+ ηχ− + η̃†χ+ + η̃†ηφ̃)

= η′φ− ηη′χ− + χ+ + ηφ̃. (2.11)

We can now relabel the Grassmann variables as, η1 = η, η2 = η′. We then obtain,

Φ̃ = χ+ + ηAφA − η1η2χ−. (2.12)

where φA = (φ̃, φ). This clearly the N = 2 massless hypermultiplet.

There is one subtlety here, which is that, unlike the N = 4 SYM multiplet, the N = 2 hyper-

multiplet is not self conjugate due to SU(2) representation theory. This is complemented by the

fact in the original N = 1 theory, if the fermion is Dirac then one needs an anti-superfield. There-

fore Φ̃ and its anti-superfield provide the massless N = 2 hypermultiplet. Thus N = 2 massive

hypermultiplet is represented by Φ from (2.9) as well as an anti-chiral superfield Φ̄ with the same

structure.
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2.2.2 N = 2 SYM 1/2-BPS multiplet

To construct the 1/2-BPS N = 2 SYM multiplet, consider the N = 1 massive SYM multiplet,

WI = λI + ηIH + ηJW
(IJ) − 1

2
ηJη

J λ̃I (2.13)

We now have a doublet of on-shell superfields under the little group. Let us first consider the case

of W+ superfield. In η, η̃† variables it reads,

W+ = λ+ + η(W (+−) +H) + η̃†W (++) − ηη̃†λ̃+. (2.14)

Half Fourier transform yields,

W̃+ =

∫
dη̃†(1 + η̃†η′)(λ+ + η(W (+−) +H) + η̃†W (++) − ηη̃†λ̃+)

= η′λ+ − ηη′(W (+−) +H) +W (++) + ηλ̃+. (2.15)

Finally in the ηA = (η, η′) variables,

W̃+ = g+ + ηAλA − η1η2ϕ, (2.16)

where λA = (λ̃+, λ+), g+ = W (++) and ϕ = (W (+−) + H). This is nothing but one of the on-shell

superfields that represent massless N = 2 SYM. Similarly, by considering the high energy limit of

W−, we can recover the full N = 2 massless SYM. We can see that the longitudinal component

for the massive W boson comes from the scalar in massless SYM. Therefore (2.13) is the 1/2−BPS

N = 2 SYM on-shell superfield appropriate to describe the Coulomb branch of N = 2 (as well as

N = 2∗) SYM.

2.3 Projection from N = 4 supermultiplets to N = 2 supersymmetry

We will now discuss a very useful connection between the N = 4 SYM theory and a theory with

N = 2 SYM coupled to an adjoint N = 2 hypermultiplet. For massless case, this connection has

been discussed and utilised to present amplitudes for the N = 2 theory in [27,28]. For the massive

case, the relationship at the level of multiplets was discussed in the appendix of [18]. However, it

was not utilised to write the amplitudes for N = 2∗ theory. We will discuss the massless and the

massive case below at the level of multiplets, which will help us write the amplitudes for N = 2∗

theory in future sections.
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2.3.1 Massless supermultiplet projection

Let us first consider the massless case. The massless on-shell superfield for N = 4 SYM is given as,

G = g+ + ηAλA −
1

2
ηAηBSAB −

1

6
ηAηBηCλ−ABC − η

1η2η3η4g−, (2.17)

If we expand the above on-shell superfield in the Grassmann variables η3 and η4, we obtain,

GN=4 = G+
N=2 + η3ΦN=2 + η4Φ̄N=2 − η3η4G−N=2, (2.18)

where,

G+
N=2 = g+ + ηaλa − η1η2S12,

ΦN=2 = λ3 − ηaS3a −
1

2
ηaηbλ−3ab,

Φ̄N=2 = λ4 − ηaS4a −
1

2
ηaηbλ−4ab,

G−N=2 = S34 + ηaλ−34a − η1η2g−. (2.19)

These are the on-shell superfields for the N = 2 SYM and N = 2 hypermultiplet. To read off the

amplitudes in the N = 2 theory, begin with the N = 4 SYM amplitude and expand in terms of

η3 and η4 variables. If there is no η3 or η4 corresponding to a particular external leg then that leg

corresponds to the superfield G+
N=2. Similarly, ΦN=2 if there is only η3, Φ̄N=2 if there is only η4

and G−N=2 if there is both η3, η4 corresponding to a particular external leg. Conversely, if one has

the N = 2 superamplitudes, one can appropriately add them with factors of η3 and η4 to obtain

the N = 4 superamplitude.

2.3.2 Massive supermultiplet projection

Since the massless projection discussed above proved useful in writing down the tree level amplitudes

for N = 2 SYM coupled to a massless N = 2 hypermultiplet, it is natural to ask if such a connection

exists between the massive 1/2-BPS multiplets. Let us now see how this can be done.

We had represented N = 4 SYM amplitude by using the N = 2 long multiplet given as,

W = φ+ ηaIψ
I
a −

1

2
ηaI η

b
J(εIJφ(ab) + εabW

(IJ)) +
1

3
ηbIηJbη

Jaψ̃Ia + η11η
2
1η

1
2η

2
2φ̃. (2.20)

Here, a = 1, 2. We can expand the above supermultiplet in terms of the Grassmann variables η2I to

obtain,

W = Φ + η2IWI − 1

2
η2Iη

2
Jε
IJΦ̄, (2.21)
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where,

Φ = φ+ η1Iψ
I
1 −

1

2
η1Iη

1
Jε
IJφ11,

WI = ψI2 − η1Iφ12 + η1JW
(IJ) − 2

3
η1Jη

J1ψ̃I1 ,

Φ̄ = φ22 −
2

3
η1Kψ̃

K
2 −

1

2
η1Kη

1
Lε
KLφ̃, (2.22)

Clearly, the above decomposition yielded long massive N = 1 chiral and anti-chiral as well as long-

massive N = 1 SYM multiplet, which represent N = 2 massive hypermultiplet and N = 2 half-BPS

SYM multiplet respectively.

Therefore, we propose that amplitude for N = 2 SYM in the Coulomb branch with a massive

hypermultiplet can be obtained in non-chiral superspace by expanding the N = 4 SYM Coulomb

branch amplitude in powers of η2I . No η2I for a particular leg puts it in ΦN=2, a single η2I for a

particular leg puts it in WI and two η2I for a particular leg puts it in Φ̄N=2.

3 Three point amplitudes

In this section, we will present the three point amplitudes for N = 2∗ theory. We will first review

massless and massive three point special kinematics. We will then review the computation of mass-

less three point amplitudes for N = 2 SYM coupled to an adjoint N = 2 hypermultiplet. Further,

we will consider the three point amplitudes of N = 4 SYM to Coulomb branch to obtain three

point amplitudes for N = 2∗ theory by projection. We will also elucidate the equivalence between

different forms of results obtained from the projection and we give the three point amplitudes in

terms of special u spinors that will prove particularly useful for BCFW analysis in the next section.

3.1 Three point special kinematics

Let us first review the well known massless three point special kinematics [7]. Consider three parti-

cles with momentum p1, p2, p3 respectively. We will consider all external momenta to be outgoing.

Therefore, momentum conservation reads,

pµ1 + pµ2 + pµ3 = 0. (3.1)

This leads us to,

p21 = (−p2 − p3)2 = 2p2 · p3 = 0,

p22 = (−p1 − p3)2 = 2p1 · p3 = 0,
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p23 = (−p1 − p2)2 = 2p1 · p2 = 0. (3.2)

From massless spinor helicity formalism, we have,

2pi · pj = 〈ij〉[ij]. (3.3)

By using (3.2) and momentum conservation, we can see that we can have two consistent limits for

three particle special kinematics. Either,

[12] = [23] = [31] = 0, (3.4)

or

〈12〉 = 〈23〉 = 〈31〉 = 0. (3.5)

This is of course made possible by considering momenta to be complex, as for real momenta angle

and square spinors are related by conjugation. When (3.4) is imposed, one obtains amplitudes

written only in terms of angle spinors and vice versa for (3.5).

For massive particles, of interest to us is the three point special kinematics involving amplitudes

for BPS and anti-BPS multiplets. The BPS condition along with central charge conservation for the

amplitude will lead to a condition on the masses of the external legs. If we consider a three particle

amplitude with two BPS and one anti-BPS multiplet then this condition will read m1 + m3 = m2

where the second leg is taken to be anti-BPS. When this condition is satisfied, the following relation

is satisfied.

−2p1 · p2 + 2m1m2 = −p23 −m2
3 = 0,

−2p2 · p3 + 2m2m3 = −p21 −m2
1 = 0,

2p3 · p1 + 2m3m1 = p22 +m2
2 = 0. (3.6)

From massive spinor helicity formalism, we have,

−2p1 · p2 + 2m1m2 =
1

2
([1I2J ]− 〈1I2J〉)([1I2J ]− 〈1I2J〉)

= det([1I2J ]− 〈1I2J〉),

−2p2 · p3 + 2m2m3 = det([2J3K ]− 〈2J3K〉),

2p3 · p1 + 2m3m1 = det([3K1I ] + 〈3K1I〉). (3.7)

Therefore, from (3.6), one obtains,

det([iIjJ ]± 〈iIjJ〉) = 0, (3.8)
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where the relative minus sign occurs when one of the legs is BPS and the other is anti-BPS.

From (3.8), we see that the matrix [iIjJ ]± 〈iIjJ〉 is of rank 1. Therefore we can write,

[iIjJ ]± 〈iIjJ〉 = uIi v
J
j , (3.9)

where i < j in cyclic ordering. Not all of these equations are independent. For instance,

([1I2J ]− 〈1I2J〉)([2J3K ]− 〈2J3K〉) = uI1v
J
2 u2Jv

K
3 . (3.10)

The left hand side can be shown to vanish by using spin sums (A.8) and the expression for massive

momenta in terms of massive spinors. This gives us,

vI2 ∝ uI2. (3.11)

Similarly, we can see that all the v spinors are proportional to the corresponding u spinors. This

leaves a scaling freedom, which we can use to set vIi = uIi so that,

[iIjJ ]± 〈iIjJ〉 = uIiu
J
j , (3.12)

where i < j in cyclic ordering and the relative sign is as explained before. By contracting the above

with uiI and ujJ , we see that the above equations are solved by,

u1I |1I〉 = u2J |2J〉 = u3K |3K〉 ≡ |u〉,

u1I |1I ] = −u2J |2J ] = u3K |3K ] ≡ |u]. (3.13)

The above equations capture the three point special BPS kinematics for massive particles. Recall

that we have,

pi = |iI〉[iI |. (3.14)

It will be useful to see how to decompose this to manifest three point special BPS kinematics.

For uiI , consider dual variables wiJ such that uiIwIi = εIJuiIwiJ = 1. We can insert this in the

expression for momentum to obtain,

pi = uiJw
J
i |iI〉[iI |

= uiIw
J
i |iI〉[iJ |+ wJi |iI〉(uiJ [iI | − uiI [iJ |)

= −|u〉[iJ |wiJ + wiI |iI〉[iJ |uiJ

= −|u〉[iJ |wiJ ± wiI |iI〉[u|, (3.15)

where the relative sign is minus for anti-BPS leg due to the definition of |u] spinor in (3.13). Further,

variables ŵiI = |ui|wiI will be useful for some manipulations. The u and v variables defined above
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have been considered before in the context of four and higher dimensional three particle special

kinematics in [3,11,18]. We will see that these u-spinors will be useful to represent the three point

amplitudes in a convenient way to simplify BCFW computations. We will note a few relations that

we will use later. From (3.13), we have,

pi|u〉 = ±mi|u], (3.16)

where the minus sign applies for anti-BPS legs. The multiplicative super-charges for three point

amplitude are,

1√
2
Q†a = −ηa1I |1I〉 − ηa2I |2I〉 − ηa3I |3I〉,

1√
2
Qa+2 = ηa1I |1I ]− ηa2I |2I ] + ηa3I |3I ]. (3.17)

From (3.16), we see that,

[uQa+2] = 〈uQ†a〉. (3.18)

This shows that in the three particle super amplitude the delta functions in the two multiplicative

supercharges are not independent and one has to account for the above relation to obtain the right

supercharge conserving delta function as discussed in [18].

3.2 Three point massless amplitudes by projection

In the previous section, we discussed how the massless N = 4 SYM on-shell superfield can be

decomposed in terms of Grassmann variables η3, η4 to yield on-shell superfields for massless N = 2

SYM and N = 2 adjoint hypermultiplet. We can perform the same expansion of the N = 4 SYM

tree level amplitude to obtain the scattering amplitude for N = 2 SYM coupled with an adjoint

hypermultiplet. We will now perform this for three point amplitudes. Let us compute the 3-point

amplitudes. We know that the 3-point MHV amplitude in N = 4 SYM is given as,

AMHV
3 (GN=4, GN=4, GN=4) =

iδ(8)(Q)

〈12〉〈23〉〈31〉
, (3.19)

where,

δ2N(Q) =
N∏
A=1

∑
i<j

ηAi η
A
j 〈ij〉. (3.20)

We get the desired massless N = 2 amplitudes to be,

A3(G
−
N=2, G

−
N=2, G

+
N=2) =

−i〈12〉
〈23〉〈31〉

δ(4)(Q), A3(G
−
N=2, G

+
N=2, G

−
N=2) =

−i〈31〉
〈12〉〈23〉

δ(4)(Q),
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A3(G
+
N=2, G

−
N=2, G

−
N=2) =

−i〈23〉
〈12〉〈31〉

δ(4)(Q), A3(G
−
N=2,Φ, Φ̄) =

i

〈23〉
δ(4)(Q),

A3(G
−
N=2, Φ̄,Φ) =

−i
〈23〉

δ(4)(Q), A3(Φ, G
−
N=2, Φ̄) =

i

〈31〉
δ(4)(Q),

A3(Φ̄, G
−
N=2,Φ) =

−i
〈31〉

δ(4)(Q), A3(Φ, Φ̄, G
−
N=2) =

i

〈12〉
δ(4)(Q),

A3(Φ̄,Φ, G
−
N=2) =

−i
〈12〉

δ(4)(Q). (3.21)

Amplitudes for hypermultiplets interacting withG+
N=2 come from the anti-MHV amplitude inN = 4

SYM.

Aanti-MHV
3 (GN=4, GN=4, GN=4) =

iδ(4)([12]η3 + [23]η1 + [31]η2)

[12][23][31]
. (3.22)

We get the desired massless N = 2 amplitudes to be,

A3(G
+
N=2, G

+
N=2, G

−
N=2) =

−i[12]

[23][31]
δ(2)([12]η3 + [23]η1 + [31]η2),

A3(G
+
N=2, G

−
N=2, G

+
N=2) =

−i[31]

[12][23]
δ(2)([12]η3 + [23]η1 + [31]η2),

A3(G
−
N=2, G

+
N=2, G

+
N=2) =

−i[23]

[12][31]
δ(2)([12]η3 + [23]η1 + [31]η2),

A3(G
+
N=2,Φ, Φ̄) =

i

[23]
δ(2)([12]η3 + [23]η1 + [31]η2),

A3(G
+
N=2, Φ̄,Φ) =

−i
[23]

δ(2)([12]η3 + [23]η1 + [31]η2),

A3(Φ, G
+
N=2, Φ̄) =

i

[31]
δ(2)([12]η3 + [23]η1 + [31]η2),

A3(Φ̄, G
+
N=2,Φ) =

−i
[31]

δ(2)([12]η3 + [23]η1 + [31]η2),

A3(Φ, Φ̄, G
+
N=2) =

i

[12]
δ(2)([12]η3 + [23]η1 + [31]η2),

A3(Φ̄,Φ, G
+
N=2) =

−i
[12]

δ(2)([12]η3 + [23]η1 + [31]η2). (3.23)

Four point and higher point amplitudes can also be obtained in a similar fashion as explained

in [27, 28]. We will see how an analogous projection can be used to write three and higher point

amplitudes in the Coulomb branch of N = 2∗ theory. The three point amplitudes considered here

will be obtained as high energy limits of three point amplitudes in N = 2∗ theory.
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3.3 Massive three point amplitudes of N = 2∗ theory by projection from

N = 4 SYM

In this section, we will discuss how to get the massive three point amplitudes for the Coulomb

branch of N = 2∗ theory from the N = 4 Coulomb branch amplitude by using projection. Central

charge conservation for the superamplitude dictates that in a three point amplitude one should take

at most two BPS (anti-BPS) multiplets and the other one to be anti-BPS (BPS). The expression of

massive three point N = 4 SYM amplitude where the second leg is taken to be anti-BPS and the

other two legs to be BPS is given as [18],

A3[W1, W̄2,W3] =
1

m2
3〈q|p1p3|q〉

δ(4)(Q†a)δ(2)(〈q|p3|Qa+2]),

=
1

〈q|p1p3|q〉
δ(4)(Qa+2)δ

(2)(〈qQ†a〉), (3.24)

where, the R-symmetry index a = {1, 2}, and the central charge conservation condition translates

to m1 +m3 = m2. Even though momenta corresponding to the first and the third leg are manifestly

present in the overall factor for the above expression, using momentum conservation p1 + p2 + p3 =

0, we can replace these momenta with other pairs of momenta. As we had discussed earlier,

three particle special kinematics renders the supercharges along the special u spinor directions

dependent. Therefore the reference spinor |q〉 is introduced such that 〈qu〉 6= 0. This helps us

extract the component of the supercharge in the direction orthogonal to |u〉. It can be shown that

any component amplitude is independent of the reference spinor. Thus the reference spinor is useful

to organise the component amplitudes into superamplitudes. The supercharges for N = 4 massive

theory are,

Qa+2 = |1I ]ηa1,I − |2I ]ηa2,I + |3I ]ηa3,I ,

Q†a = −|1I〉ηa1,I − |2I〉ηa2,I − |3I〉ηa3,I . (3.25)

We will substitute this in (3.24) and expand in terms of η2I variables to obtain,

δ(4)
(
Q†a
)

= δ(2)
(
Q†
) (
〈1I2J〉η21,Iη22,J + 〈1I3J〉η21,Iη23,J + 〈2I3J〉η22,Iη23,J

+
1

2
m1ε

IJη21,Iη
2
1,J +

1

2
m2ε

IJη22,Iη
2
2,J +

1

2
m3ε

IJη23,Iη
2
3,J

)
,

δ(4) (Qa+2) = δ(2) (Q)
(
−[1I2J ]η21,Iη

2
2,J + [1I3J ]η21,Iη

2
3,J − [2I3J ]η22,Iη

2
3,J

−1

2
m1ε

IJη21,Iη
2
1,J −

1

2
m2ε

IJη22,Iη
2
2,J −

1

2
m3ε

IJη23,Iη
2
3,J

)
,

δ(2) (〈q|p3|Qa+2]) = δ (〈q|p3|Q])
(
〈q|p3|1N ]η21,N − 〈q|p3|2N ]η22,N + 〈q|p3|3N ]η23,N

)
,

δ(2)
(
〈qQ†a〉

)
= δ

(
〈qQ†〉

) (
−〈q1N〉η21,N − 〈q2N〉η22,N − 〈q3N〉η23,N

)
, (3.26)
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where we have defined the super charges, Q†1 ≡ Q† and Q3 ≡ Q for N = 2 supersymmetry. As

discussed earlier, due to three point special BPS kinematics these supercharges are not independent

but satisfy the relation〈uQ†〉 = [uQ]. Thus, analogous to the N = 4 case, we can write the

three point supercharge conserving delta functions in two equivalent forms, δ(2)
(
Q†
)
δ (〈q|pi|Q]) =

miδ
(2) (Q) δ

(
〈qQ†〉

)
, ∀i = {1, 2, 3}.

Equipped with the above decomposition of N = 4 supercharge conserving delta functions, we

can calculate different three point amplitudes in N = 2∗ by using projection. These three point

amplitudes will play the role of the seed amplitudes in the BCFW computations in the later sections.

Analogous to the massless N = 2 SYM coupled with adjoint hypermultiplet, in the N = 2∗ theory

we have two types of three point amplitudes, one with all massive N = 2 SYM vector multiplets

A3

[
WI

1 , W̄J
2 ,WK

3

]
and another is the N = 2 SYM vector multiplet interacting with one BPS-anti-

BPS pair of the N = 2 hypermultiplet, A3

[
WI

1 , Φ̄2,Φ3

]
.

3.3.1 Amplitudes with one N = 2 vector multiplet and two hypermultiplets

The three point amplitude which reflects the coupling between N = 2 SYM and N = 2 hyper-

multiplet involves one massive SYM multiplet with one BPS anti-BPS pair of hypermultiplets. To

obtain this amplitude let us project out either expression of (3.24) with respect to the appropriate

η2I variables following (2.21),

A3

[
WI

1 , Φ̄2,Φ3

]
=

(
∂

∂η21,I

)(
1

2

∂

∂η23,J

∂

∂η2,J3

)
A3[W1, W̄2,W3]

∣∣∣∣
η2i,I→0

= −
(
〈q|p3|1I ] +m3〈q1I〉

〈q|p1p3|q〉

)
δ(2)(Q)δ(〈qQ†〉). (3.27)

Since the above answer seems to prefer the external momentum p3 we can try to see if there is any

symmetry when it is replace with the momentum p2 for the anti-BPS multiplet. We can replace

p3 = −(p1 + p2) and m3 = m2 −m1 to get,

A3

[
WI

1 , Φ̄2,Φ3

]
= −

(
〈q|p2|1I ]−m2〈q1I〉

〈q|p1p2|q〉

)
δ(2)(Q)δ(〈qQ†〉). (3.28)

Thus the three point amplitude is symmetric under the replacement p3 → p2, m3 → −m2. The

minus sign (−) before the factor with mass term m2 reflects the fact that the second hypermultiplet

is anti-BPS. One of the key observations in this paper is that there is a way to represent this

amplitude which will make the BCFW computations significantly simpler.

The amplitude(3.27) in terms of the u-spinors can be represented as follows,

A3

[
WI

1 , Φ̄2,Φ3

]
= −

(
〈uq〉〈u1I〉
m1〈q|p1p3|q〉

)
δ(2)(Q)δ(〈qQ†〉). (3.29)
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We have shown in Appendix-B.1 how this can be derived. In BCFW analysis, we will use this form

for the three point amplitude.

Massless limits: In the origin of the moduli space for N = 2∗ theory, a massless N = 2 SYM

multiplet is coupled to the massive adjoint hypermultiplet. We will also be concerned with the

amplitude at the origin of the moduli space. Therefore we take the high energy limit of the above

three point amplitude where the N = 2 SYM multiplet is made massless. As discussed in the

previous section, the supermultiplet WI goes to two on-shell superfields G+ and G− in the high

energy limit corresponding to the choices I = +,− for the supermultiplet. We have the following

three point amplitude with one positive helicity massless SYM multiplet and one pair of massive

hypermultiplets,

A3

(
G+

1 , Φ̄2,Φ3

)
=

1

〈q1〉
δ(2) (Q) δ

(
〈qQ†〉

)
. (3.30)

Central charge conservation equation implies m2 = m3 = m with m1 = 0. By applying special

kinematic conditions one can verify the identity, 〈q|p2|Q] = −m〈qQ†〉, which you have used to

express delta functions. Similarly, with one negative helicity massless SYM, we obtain,

A3

(
G−1 , Φ̄2,Φ3

)
= − 1

〈q|p3|1]
δ(2)

(
Q†
)
δ (〈q|p3|Q]) . (3.31)

The above amplitudes will be useful to construct massive four-point amplitudes with massless

interchange which we have given in Appendix-D.

3.3.2 Amplitudes involving only N = 2 vector multiplet

We will now calculate the following three point massive SYM amplitude in the concerning N = 2∗

theory. Starting from the first expression of the amplitude (3.24), and taking the projections with

respect to the η2I variables, we get,

A3

[
WI

1 , W̄J
2 ,WK

3

]
=

(
∂

∂η21,I

∂

∂η22,J

∂

∂η23,K

)
A3[W1, W̄2,W3]

∣∣∣∣
η2i,I→0

= −
(
〈1I2J〉〈q|p3|3K ] + 〈1I3K〉〈q|p3|2J ] + 〈2J3K〉〈q|p3|1I ]

m3〈q|p1p3|q〉

)
δ(2)(Q)δ(〈qQ†〉).

(3.32)

Similarly, if we start from the second expression of (3.24) and by taking similar projections we get,

A3

[
WI

1 , W̄J
2 ,WK

3

]
= −

(
[1I2J ]〈q3K〉+ [1I3K ]〈q2J〉+ [2J3K ]〈q1I〉

〈q|p1p3|q〉

)
δ(2)(Q)δ(〈qQ†〉). (3.33)
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Here we have used the relations between the delta functions, δ(2)
(
Q†
)
δ (〈q|p3|Q]) = m3δ

(2) (Q) δ
(
〈qQ†〉

)
that arises from three particle special kinematics. The expressions obtained above by using two

different forms for the N = 4 SYM amplitude appear to be different even though they describe the

same amplitude. However, they are indeed equal and it can be shown if we multiply and divide the

second expression with [ρu], where |ρ] = p3
m3
|q〉 and use Schouten identity we will obtain the first

form. The use of |u] spinor here is to convert square spinors into angle spinors after the Schouten

identity has been used. i.e., we use [uiI ] = ±〈uiI〉, where the minus sign applies to the anti-BPS

leg.

We can further express this amplitude in terms of the u-spinors, in the following way,

A3

[
WI

1 , W̄J
2 ,WK

3

]
= −

(
〈uq〉〈u1I〉〈2J3K〉

m1m3

+
〈uq〉〈u2J〉〈1I3K〉

m2m3

)
δ(2)(Q)δ(〈qQ†〉)
〈q|p1p3|q〉

. (3.34)

In the next section, we will see how this will simplify the BCFW computation.

Massless limit: If we take the first multiplet to be massless where W+ → G+, the amplitude

(3.32) becomes,

A3

[
G+

1 , W̄J
2 ,WK

3

]
= −〈2

J3K〉〈q|p3|1]

〈q|p1p3|q〉
δ(2)(Q)δ(〈qQ†〉). (3.35)

Similarly, with W− → G−, we have from (3.33),

A3

[
G−1 , W̄J

2 ,WK
3

]
= − [2J3K ]

[1|p3|q〉
δ(2)(Q)δ(〈qQ†〉). (3.36)

The above amplitudes play the role of the seed amplitudes while calculating BCFW recursions with

massless exchanges in Appendix-D.

3.4 Band structure

Band structures of N = 4 SYM amplitudes in the Coulomb branch have been studied in [24]. It

is well known that massless N = 4 SYM amplitude has MHV and MHV configurations, however,

in the case of massive theory, there is an additional MHV× MHV band which vanishes in the high

energy limit. In general, various helicity sectors of massless amplitudes combine into single little

group covariant forms and band structures are useful in understanding this phenomenon.

Here we show the band structures of three-point massive vector amplitude in N = 2∗ SYM

theory. Let us consider three-point amplitude with the third state being massless. Therefore the

BPS constraint implies m1 = m2 = m. The supercharges are given by,

Q†1 = −|1I〉η11,I − |2I〉η12,I + |3〉η13,
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Q2 = |1I ]η11,I − |2I ]η12,I + |3]η̃†13 . (3.37)

Using three-point kinematics we find,

〈3Q†1〉 = 〈3|p1
m
|Q2]. (3.38)

Three-point amplitude has supercharge conserving delta functions given by,

δ(2)
(
Q†1
)
δ (〈q|p1|Q2])

=
1

〈q3〉
δ
(
〈qQ†1〉

)
δ
(
〈3Q†1〉

)
δ (〈q|p1|Q2])

=
1

〈q3〉
δ
(
〈qQ†1〉

)
δ (〈q|p1|Q2])

(
〈31+〉ζ+ + 〈31−〉ζ−

)
, (3.39)

where we define ζI := 1
m
〈1IQ†1〉. In the high energy limit for MHV amplitude we have the scaling

[i+j+] ∼ O
(
m2

E

)
, whereas for MHV amplitude the scaling is 〈i−j−〉 ∼ O

(
m2

E

)
[17]. Therefore

in the above equation, either of the two terms survives in the high energy limit depending on the

helicity configuration.

〈31+〉 = −〈3| p1
m1

|1+]

= −x[31+], ∵
p1
m
|3〉 = x|3]. (3.40)

So the first term gives rise to MHV amplitude in the massless limit.

〈31+〉ζ+ = 〈31+〉 1

m

(
−〈1−1+〉η1+ − 〈1−2+〉η2+ +O

(
m2
))

= −
(
〈31+〉η1+ + 〈32+〉η2+ +O (m)

)
= 〈3|p1|Q2], as m→ 0. (3.41)

In the second equality we have used the Schouten identity,

〈31+〉〈1−2+〉 = −
(
〈1−3〉〈1+2+〉+ 〈1+1−〉〈32+〉

)
.

The term 〈1+2+〉 ∼ O
(
m2

E

)
and hence is subleading.

Similarly for the MHV case, second term in Eq.(3.39) can be expressed as,

〈31−〉ζ− = 〈31−〉 1

m

(
〈1+1−〉η1− + 〈1+2−〉η2− +O

(
m2
))

= −
(
〈31−〉η1− + 〈32−〉η2− +O (m)

)
= 〈3Q†1〉, as m→ 0. (3.42)

To be consistent with notations in the previous sections we will ignore superscript and subscript on

the super-charges when taking the massless limit. The full three-point massless amplitudes are ob-

tained by taking into account the prefactors multiplying the delta functions along with appropriate

limits of the band structures as discussed above.
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4 Four point N = 2∗ amplitudes projected from N = 4 SYM

amplitudes

In this section, we will calculate the tree level massive four-point amplitudes of the N = 2∗ theory

by using projection, similar to how we obtained three point amplitudes in the previous section. The

four-point massive N = 4 SYM amplitude with two BPS multiplet (W) and two anti-BPS multiplet

(W̄) is given by,

A4[W1, W̄2,W3, , W̄4] =
δ(4)(Q†a)δ(4)(Qa+2)

s12s41
, (4.1)

where, the masses for the external legs satisfy central charge conservation relation m1 + m3 =

m2 +m4. The generalized Mandelstam variables are defined as sij = −(pi + pj)
2− (mi±mj)

2, and

the four particle supercharges of the N = 4 theory with a = {1, 2} are given by,

Q†a = −|1I〉ηa1,I − |2I〉ηa2,I − |3I〉ηa3,I − |4I〉ηa4,I ,

Qa+2 = |1I ]ηa1,I − |2I ]ηa2,I + |3I ]ηa3,I − |4I ]ηa4,I , (4.2)

As evident from the notation above, the legs 1 and 3 are BPS and the rest are anti-BPS. We now

decompose the above supercharges in terms of η2I variables to get,

δ(4)(Q†a) = δ(2)(Q†)

(
〈1I2J〉η21,Iη22,J + 〈1I3J〉η21,Iη23,J + 〈1I4J〉η21,Iη24,J + 〈2I3J〉η22,Iη23,J + 〈2I4J〉η22,Iη24,J

+〈3I4J〉η23,Iη24,J +
1

2
εIJ
[
m1η

2
1,Iη

2
1,J +m2η

2
2,Iη

2
2,J +m3η

2
3,Iη

2
3,J +m4η

2
4,Iη

2
4,J

])
δ(4) (Qa+2) = δ(2) (Q)

(
−[1I2J ]η21,Iη

2
2,J + [1I3J ]η21,Iη

2
3,J − [1I4J ]η21,Iη

2
4,J − [2I3J ]η22,Iη

2
3,J + [2I4J ]η22,Iη

2
4,J

−[3I4J ]η23,Iη
2
4,J −

1

2
εIJ
[
m1η

2
1,Iη

2
1,J +m2η

2
2,Iη

2
2,J +m3η

2
3,Iη

2
3,J +m4η

2
4,Iη

2
4,J

])
, (4.3)

where Q† and Q are the super charges for the N = 2∗ theory as introduced in the previous section.

a) Let us first calculate the massive 4-point amplitude in the N = 2∗ theory with two BPS

hypermultiplets (ΦN=2∗) and two anti-BPS hypermultiplets (Φ̄N=2∗) external legs, by taking the

projection from Eq.(4.1) as,

A4[Φ1, Φ̄2,Φ3, Φ̄4] =

(
1

2

∂

∂η21,K

∂

∂η2K1

)(
1

2

∂

∂η2K3

∂

∂η23,N

)
A4[W1, W̄2,W3, , W̄4]

∣∣∣∣
η2i,I→0

=
(
−〈1I3J〉[1I3J ]− 2m1m3

) δ(2)(Q†)δ(2)(Q)

s12s41

=
s13
s12s41

δ(2)(Q†)δ(2)(Q), (4.4)

where we have used s13 = −(p1 + p3)
2− (m1 +m3)

2 = −2p1 · p3− 2m1m3 = −〈1I3J〉[1I3J ]− 2m1m3

which can be deduced with the help of relations given in Appendix-A.
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b) Similarly, we can calculate the 4-point N = 2∗ massive SYM amplitude with two BPS and

anti-BPS combinations by projection,

A4[WI
1 , W̄J

2 ,WK
3 , W̄L

4 ] =

(
∂

∂η21,I

∂

∂η22,J

∂

∂η23,K

∂

∂η24,L

)
A4[W1, W̄2,W3, , W̄4]

∣∣∣∣
η2i,I→0

= −
(
〈1I2J〉[3K4L] + 〈1I3K〉[2J4L] + 〈1I4L〉[2J3K ]

+ 〈2J3K〉[1I4L] + 〈2J4L〉[1I3K ] + 〈3K4L〉[1I2J ]

)
δ(2)(Q†)δ(2)(Q)

s12s41
. (4.5)

c) Finally, by a similar procedure, we can calculate the 4-point amplitude with two massiveN = 2∗

SYM and two massive hypermultiplets,

A4[WI
1 , W̄J

2 ,Φ3, Φ̄4] =

(
∂

∂η21,I

∂

∂η22,J

)(
−1

2
εKL

∂

∂η23,K

∂

∂η23,L

)
A4[W1, W̄2,W3, , W̄4]

∣∣∣∣
η2i,I→0

=

(
〈1I |p3|2J ] + 〈2J |p3|1I ]−m3〈1I2J〉 −m3[1

I2J ]

s12s41

)
δ(2)(Q†)δ(2)(Q)

= −
(
〈1I |p4|2J ] + 〈2J |p4|1I ] +m4〈1I2J〉+m4[1

I2J ]

s12s41

)
δ(2)(Q†)δ(2)(Q). (4.6)

From the second last equality to the last one of the above calculation, we have shown that the final

expression is symmetry under the interchange p3 → p4 and m3 → −m4. The negative signs indicate

that the one hypermultiplet is BPS and the other is anti-BPS.

It is easy to show that the other 4-point massive N = 2∗ amplitudes with different combinations

of multiplets (for example, three hyper with one SYM) do not exist by counting the number of

Grassmann variables.

The results obtained in the previous section and this section for three and four point amplitudes

using projection is one of the main results of this paper as well as convenient expressions for three

particle amplitudes in terms of u-spinors. In the next section, using these results as an anchor,

we attempt to compute the four point amplitudes in N = 2∗ amplitude by using supersymmetric

massive BCFW. Even though the seed three point amplitudes and the final four point amplitudes

are related to the N = 4 results by projection, BCFW computation for N = 2∗ are significantly

different. This is because, when we carried out the projection, we factored out the Grassmann

variables η2I from both the three point as well as four point amplitudes. However, these variables

also played a role in the BCFW analysis in N = 4 theory. Due to this subtlety, we will see that

unlike N = 4, in N = 2∗ we will encounter poles at infinity in the BCFW analysis. We will

further see some nice features which are highlighted since the answer is known from the projection

independently.
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5 Four point amplitudes for N = 2∗ theory from BCFW

In this section, we will construct the four point amplitudes from three point amplitudes obtained

in section-3. Even though we obtained the four point amplitudes using projection in the previous

section, BCFW analysis to obtain these amplitudes with the results from projection as anchor

could give us insights on massive super BCFW in N = 2 theories. This is precisely one of the main

motivations to study N = 2∗ theory as we can utilise its intimate connection with N = 4 SYM to

obtain general insights on N = 2 theories.

5.1 Massive BCFW shifts

Massive BCFW has been discussed in [18, 21, 22, 29]. We will review the massive super-BCFW

analysis from [18] and point out subtleties in N = 2∗ Coulomb branch BCFW as compared to the

Coulomb branch of N = 4 SYM.

The massive BCFW shifts are necessarily little group non-covariant as the SU(2) little group

structure makes it impossible to write a covariant shift for two legs. The shift can be defined as

follows. Consider a shift in i and j legs. The shift in momentum is,

p̂i = pi + zr, p̂j = pj − zr, (5.1)

where pi ·r = pj ·r = r ·r = 0. We will use Mandelstam variables appropriate for massive scattering.

i.e., skl = −(pk + pl)
2 − (mk ±ml)

2, where the relative sign occurs if one leg is BPS and another is

anti-BPS. Under the above shift a Mandelstam variable sik where k 6= i, j will be shifted as,

ŝik = −sik
(z − zI)
zI

, zI =
sik

2pk · r
. (5.2)

To obtain r which satisfies the required properties, it is useful to write momenta pi and pj in terms

of two null momenta. This defines a special frame. The detailed properties of this special frame

are not important for this paper. In this special frame, one can solve for the null momentum r and

it breaks the little group covariance. One can further supersymmetrise the above shift by finding

shifts for the supercharges that respect the BPS condition. These shifts in supercharges also break

little group covariance. However, since the final amplitude will be covariant, the little group non-

covariance must cancel. In N = 4 SYM Coulomb branch, it was found that the z dependence of the

four point amplitude drops out before performing the contour integral in z. Therefore, the precise

forms of the shift were found to be irrelevant.

In N = 2∗ theory Coulomb branch, even though the amplitudes are related to that of N = 4

theory by projection as discussed in previous sections, the BCFW analysis is not identical. This
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happens because while applying projection we project out the η2I Grassmann variables which were

also shifted in the case of N = 4 theory. This subtlety leads to the appearance of a pole at

infinity (z → ∞) in the BCFW analysis for four point amplitudes in N = 2∗. However, we find

that in the contour integral the integrand, obtained by gluing three-point amplitudes, furnishes

the covariant expression of the desired four-point amplitude provided we ignore the z-dependent

terms. z-dependent terms are non-covariant and there are mutual cancellations of the little group

non-covariant terms coming from all the residues including the boundary term. This property may

have validity beyond N = 2∗ theory as we show in appendix-D.1, where we consider scattering

amplitude with massless N = 2 hypermultiplet interchange. Even though the amplitude matches

that of N = 2∗ theory, this particular channel is absent in N = 2∗ due to the absence of massless

hypermultiplets.

5.2 Amplitude with two massive hypers and two massive vector multi-

plets

Let us consider the four-point amplitude A4

[
WI

1 , W̄J
2 ,Φ3, Φ̄4

]
with two massive hyper and two

massive SYM multiplet in the N = 2∗ theory. Here, we take legs 1 and 3 to be BPS and the rest

are anti-BPS, and all external states are taken to be outgoing. With these conventions, momentum

conservation reads p1 + p2 + p3 + p4 = 0, and the central charge conservation relation is given as

m1 +m3 = m2 +m4. We consider BCFW shifts in legs 3 and 4 with the complex parameter z as,

p̂3 = p3 + zr,

p̂4 = p4 − zr, (5.3)

where the null momentum r breaks little group covariance and satisfies orthogonality properties

as discussed earlier. With this choice of shift only the s14-channel diagram will contribute to the

massive amplitude.
1 2̄

3̂ˆ̄4

L R
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The incoming arrows indicate the outgoing anti-BPS states to show the central charge flow. After

contour deformation away from z = 0 , we can write,

A4

[
WI

1 , W̄J
2 ,Φ3, Φ̄4

]
=

∮
z 6=0

dz

z

zI
z − zI

∫
d2ηP̂AL

[
WI

1 ,
ˆ̄Φ4,ΦP̂

] −1

s14
AR

[
Φ̄−P̂ , Φ̂3, W̄J

2

]
, (5.4)

where, the massive exchange momentum P̂ = −(p1 + p̂4). The generalized Mandelstam variable

appeared in this diagram s14 = − (p1 + p4)
2 − (m1 −m4)

2 and the value of the simple pole zI =

− s14
2r·p1 . The left and right three-point amplitudes can be expressed in terms of the u-spinors as,

AL

[
WI

1 ,
ˆ̄Φ4,ΦP̂

]
=
〈u(L)q〉〈u(L)1I〉
m2

1〈q|P̂ p1|q〉
δ(2)

(
Q̂†L

)
δ
(
〈q|p1|Q̂L]

)
,

AR

[
Φ̄−P̂ , Φ̂3, W̄J

2

]
= −〈u

(R)q〉〈u(R)2J〉
m2

2〈q|P̂ p2|q〉
δ(2)

(
Q̂†R

)
δ
(
〈q|p2|Q̂R]

)
. (5.5)

For the left amplitude, we take the hypermultiplet with P̂ momentum to be outgoing BPS state

with mass mP . For the right amplitude the hypermultiplet with momentum −P̂ to be an outgoing

anti-BPS state with mass mP . Throughout the calculation, we have used the following analytic

continuations of the massive spinors and the Grassmann variables.

| − P I ] = i|P I ], | − P I〉 = i|P I〉, u
(R)
−P,I = iu

(R)
P,I , ηI−P = iηIP . (5.6)

Clubbing the delta functions in left and right amplitudes, and performing the ηP̂ integration, we

obtain,∫
d2ηP̂ δ

(2)
(
Q̂†L

)
δ
(
〈q|p1|Q̂L]

)
δ(2)

(
Q̂†R

)
δ
(
〈q|p2|Q̂R]

)
= m1m2

〈u(R)q〉〈u(L)q〉
(u

(R)

P̂ ,M
u
(L)M

P̂
)
δ(2)(Q†)δ(2)(Q).

(5.7)

The detailed calculations are presented in Appendix-B.2 and we finally get,

A4

[
WI

1 , W̄J
2 ,Φ3, Φ̄4

]
=

1

s14

∮
z 6=0

dz

z

zI
z − zI

u
(L)
1,K〈1K1I〉u(R)

2,L〈2L2J〉
m1m2

(
u
(R)

P̂M
u
(L)M

P̂

)
(
u
(R)

P̂M
u
(L)M

P̂

)2 δ(2) (Q†) δ(2) (Q)

= −
∮
z 6=0

dz

z

zI
z − zI

(
〈1I |p̂4|2J ] + 〈2J |p̂4|1I ] +m4〈1I2J〉+m4[1

I2J ]

s12s41

)
δ(2)(Q†)δ(2)(Q)

= −
(
〈1I |p4|2J ] + [1I |p4|2J〉+m4[1

I2J ] +m4〈1I2J〉+ zI〈1I |r|2J ] + zI [1
I |r|2J〉+ B

s12s14

)
δ(2)(Q†)δ(2)(Q).

(5.8)

Here we have used,
(
u
(R)

P̂M
u
(L)M

P̂

)2
= −s12 which is explained in the appendix of [18], and we know,

〈q|P̂ p1|q〉 = 〈u(L)q〉2, also, 〈q|P̂ p2|q〉 = 〈u(R)q〉2. We emphasize that in the penultimate step of
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the above equation the integrand is nothing but the four-point amplitude that we obtained using

projection from N = 4 SYM amplitude, but with deformed momenta. This is consistent with the

fact that
∮
z=0

dzA(z)
z

= A and one can simply read off the four-point amplitude from the integrand

by ignoring the z-dependent terms.

To evaluate the boundary term, B, we substitute z = 1
u
and calculate the residue around u = 0,

B = −
∮
u=0

du

u

zI
1− zIu

(
〈1I |r|2J ] + [1I |r|2J〉

)
= −zI

(
〈1I |r|2J ] + [1I |r|2J〉

)
. (5.9)

We see that the little group non-covariant boundary term cancels precisely with the little group

non-covariant part of the residue at z = zI . The final amplitude,

A4

[
WI

1 , W̄J
2 ,Φ3, Φ̄4

]
= −

(
〈1I |p4|2J ] + [1I |p4|2J〉+m4[1

I2J ] +m4〈1I2J〉
s12s14

)
δ(2)(Q†)δ(2)(Q), (5.10)

which is in full agreement with (4) calculated by projection.

5.3 Amplitude with four massive hypermultiplets

In this section we want to compute four-point hypermultiplet amplitude A4

[
Φ1, Φ̄2,Φ3, Φ̄4

]
in N =

2∗ theory. Similar to the previous section, we will take legs 1 and 3 to be BPS and the rest of them

to be anti-BPS, and all external states to be outgoing. Consider BCFW shifts in legs 1 and 3 in

terms of the complex parameter z as,

p̂1 = p1 + zr,

p̂3 = p3 − zr, (5.11)

the conditions on the null momentum r remain the same.

1̂

2̄ 3̂

4̄

L R

1̂ 2̄

3̂4̄

L R

Here both the s12-channel and the s14-channel will contribute with massiveW-boson exchange such

that,

A4

[
Φ1, Φ̄2,Φ3, Φ̄4

]
=

∮
z 6=0

dz

z

zI,1
z − zI,1

∫
d2ηP̂AL

[
Φ̄4, Φ̂1,WM

P̂

] −εMN

s14
AR

[
W̄N
−P̂ , Φ̄2, Φ̂3

]
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+

∮
z 6=0

dz

z

zI,2
z − zI,2

∫
d2ηP̂AL

[
Φ̂1, Φ̄2,WM

P̂

] −εMN

s12
AR

[
W̄N
−P̂ , Φ̂3, Φ̄4,

]
, (5.12)

with the pole contributions at, zI,1 = s14
2r·p4 and zI,2 = s12

2r·p2 . Let us study factorisation in s14-channel

first. After contour deformation away from z = 0 we can write,

As144

[
Φ1, Φ̄2,Φ3, Φ̄4

]
=

∮
z 6=0

dz

z

zI,1
z − zI,1

∫
d2ηP̂AL

[
Φ̄4, Φ̂1,WM

P̂

] −εMN

s14
AR

[
W̄N
−P̂ , Φ̄2, Φ̂3

]
, (5.13)

where the generalized Mandelstam variable s14 = − (p1 + p4)
2 − (m1 −m4)

2. The left and right

amplitudes can be expressed as,

AL

[
Φ̄4, Φ̂1,WM

P̂

]
=
〈u(L)q〉〈u(L)P̂M〉
m1mP 〈q|P̂ p̂1|q〉

δ(2)
(
Q̂†L

)
δ
(
〈q|p̂1|Q̂L]

)
,

AR

[
W̄N
−P̂ , Φ̄2, Φ̂3

]
= −〈u

(R)q〉〈u(R)P̂N〉
m3mP 〈q|P̂ p̂3|q〉

δ(2)
(
Q̂†R

)
δ
(
〈q|p̂3|Q̂R]

)
. (5.14)

Similar delta function manipulation and ηP̂ integration gives,

As144

[
Φ1, Φ̄2,Φ3, Φ̄4

]
=

1

s14

∮
z 6=0

dz

z

zI,1
z − zI,1

〈u(R)q〉〈u(L)q〉〈u(L)P̂K〉〈u(R)P̂K〉
m2
P 〈q|P̂ p̂1|q〉〈q|P̂ p̂3|q〉

〈u(R)q〉〈u(L)q〉(
u
(R)

P̂M
u
(L)M

P̂

) δ(2) (Q†) δ(2) (Q)

=
1

s14
δ(2)

(
Q†
)
δ(2) (Q) . (5.15)

In the penultimate step we have used the spin sum (A.8) to write, 〈u(L)P̂K〉〈u(R)P̂K〉 = m2
p

(
u
(R)

P̂M
u
(L)M

P̂

)
and, 〈q|P̂ p̂1|q〉 = 〈u(L)q〉2, also, 〈q|P̂ p̂3|q〉 = 〈u(R)q〉2 as discussed earlier. It is to be noted that un-

like the analysis of amplitudes involving vector multiplets where residue over one channel always

contains a pole in another channel, in this case, this does not occur. Therefore we have to consider

contributions from both the diagrams given above in the BCFW analysis.

Similarly, from the s12-channel computation we get,

As124

[
Φ1, Φ̄2,Φ3, Φ̄4

]
=

1

s12
δ(2)

(
Q†
)
δ(2) (Q) , (5.16)

and the total amplitude,

A4

[
Φ1, Φ̄2,Φ3, Φ̄4

]
= As144

[
Φ1, Φ̄2,Φ3, Φ̄4

]
+ As124

[
Φ1, Φ̄2,Φ3, Φ̄4

]
= − s13

s12s14
δ(2)

(
Q†
)
δ(2) (Q) . (5.17)

From the definition of generalized Mandelstam variables and applying momentum conservation,

p1 + p2 + p3 + p4 = 0 and central charge conservation m1 +m3 = m2 +m4 we get, s12 + s14 = −s13.
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5.4 Amplitude with four massive vector multiplets

To calculate the four-point massive SYM amplitude A4

[
WI

1 , W̄J
2 ,WK

3 , W̄L
4

]
in N = 2∗ theory, we

take deformations in legs labeled by 1 and 2 in terms of the complex parameter z,

p̂µ1 = pµ1 + zrµ,

p̂µ2 = pµ2 − zrµ, (5.18)

where the complex null vector rµ is orthogonal to both the momenta p1 and p2. For this BCFW

shift only the s14-channel diagram will contribute.

1̂ ˆ̄2

34̄

L R

After contour deformation away from z = 0, we can write,

A4

[
WI

1 , W̄J
2 ,WK

3 , W̄L
4

]
=

∮
z 6=0

dz

z

zI
z − zI

∫
d2ηP̂AL

[
W̄L

4 , ŴI
1 ,WM

P̂

] −1

s14
AR

[
W̄−P̂M , ˆ̄WJ

2 ,WK
3

]
,

(5.19)

where, the generalised Mandelstam variable is s14 = − (p1 + p4)
2 − (m1 −m4)

2 and the location of

the pole zI = s14
2r·p4 . The left and right amplitudes can be expressed as,

AL

[
W̄L

4 , ŴI
1 ,WM

P̂

]
=

NL
m1〈q|p̂1p4|q〉

δ(2)
(
Q̂†L

)
δ
(
〈q|p̂1|Q̂L]

)
,

AR

[
W̄−P̂M , ˆ̄WJ

2 ,WK
3

]
=

NR
m2〈q|p̂2p3|q〉

δ(2)
(
Q̂†R

)
δ
(
〈q|p̂2|Q̂R]

)
, (5.20)

where the full expressions of the numerators in terms of the u-spinors,

NL = −〈u
(L)q〉
mP

(
〈u(L)4L〉〈1̂IP̂M〉

m4

+
〈u(L)1̂I〉〈4LP̂M〉

m1

)
=
〈u(L)q〉
mP

(
u
(L)L
4 〈1̂IP̂M〉+ u

(L)I

1̂
〈4LP̂M〉

)
,

NR = −〈u
(R)q〉
mP

(
〈u(R)2̂J〉〈3KP̂M〉

m2

+
〈u(R)3K〉〈2̂J P̂M〉

m3

)
=
〈u(R)q〉
mP

(
u
(R)J

2̂
〈3KP̂M〉+ u

(R)K
3 〈2̂J P̂M〉

)
.

(5.21)

After combining the delta functions and integrating over the ηP̂ variables we get,

A4

[
WI

1 , W̄J
2 ,WK

3 , W̄L
4

]
=

∮
z 6=0

dz

z

zI
z − zI

[(
u
(L)L
4 〈1̂IP̂M〉+ u

(L)I

1̂
〈4LP̂M〉

)(
u
(R)J

2̂
〈3KP̂M〉+ u

(R)K
3 〈2̂J P̂M〉

)(
u
(L)

P̂N
u
(R)N

P̂

)]
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×
δ(2)

(
Q†
)
δ(2) (Q)

s12s14m2
P

. (5.22)

Using multiple Schouten identities, and after nice cancellations between various terms, finally, we

have,

A4

[
WI

1 , W̄J
2 ,WK

3 , W̄L
4

]
= −

∮
z 6=0

dz

z

zI
z − zI

(
〈1̂I 2̂J〉[3K4L] + 〈1̂I3K〉[2̂J4L] + 〈1̂I4L〉[2̂J3K ]

+ 〈2̂J3K〉[1̂I4L] + 〈2̂J4L〉[1̂I3K ] + 〈3K4L〉[1̂I 2̂J ]

)
δ(2)(Q†)δ(2)(Q)

s12s41
. (5.23)

Here we see again that before performing the z integral, the expression inside the integral is the

shifted version of the answer we obtained from projection. This suggests that the little group

non-covariant part of the residue at z = zI cancels precisely with the little group non-covariant

contribution from the pole at infinity. Thus little group non-covariance is useful to deduce the

amplitude here before performing the explicit z integration.

6 Conclusions

Massless spinor helicity formalism has been playing a central role in the computation of on-shell

amplitudes in massless field theories. The extension of this formalism for massive field theories is

an essential and obvious step. There has been some progress in this direction already. We have

explored the application of the massive spinor helicity formalism to four dimensional N = 2∗ theory

at an arbitrary point in the Coulomb branch moduli space. We used two different techniques to

compute three and four point amplitudes in this theory. The first method is to write the amplitude

in terms of the u-spinor which is amenable to setting up the BCFW formulation. Another method

is to use the projection method to compute N = 2∗ amplitudes from N = 4 SYM amplitudes. The

four point amplitudes involving four massive hypermultiplets (4.4), four massive vector multiplets

(4.5), and two massive vector multiplets and two massive hypermultiplets (4.6) are computed using

the projection method. We then proceeded with the BCFW shift for four point amplitudes. One

would have naively thought that like the amplitudes, the BCFW analysis could also follow trivially

by projection. However, that is not the case because in the N = 4 theory the usual BCFW shift

involves the Grassmann variable η2I . However, in the projection method, this variable is projected

out. As a result the BCFW rules for N = 2∗ do not descend down in a trivial way from N = 4

theory. In fact, this difference also shows up in the integrand, which has a pole at infinity in the

case of N = 2∗. Our BCFW shift is not little group covariant but of course, the final amplitudes

are. While this is expected, the contribution of the pole at infinity is instrumental in restoring the
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little group covariance of the amplitude. We believe this feature may be generic for theories for

which BCFW shifts are not little group covariant. It appears that the non-covariant shifts generate

good tests for the covariance of the integrated amplitudes. For example, in (5.8), the integrand

of the contour integral already has the correct little group covariant form of the amplitude, if we

replace shifted variables with unshifted ones. We believe that this feature may extend beyond the

N = 2∗ theory and may suggest the utility of the little group non-covariant shifts. Also, because

the pole at infinity recursive structure of the amplitudes is nontrivial, it will be interesting to study

higher point amplitudes with these massive BCFW shifts.

It would be interesting to extend this analysis to loop amplitudes. Additionally, it would be

worthwhile to derive these results from higher dimensional spinor helicity formalism [4,11] so that a

unified structure could be uncovered in the computations of scattering amplitudes of massless and

massive fields. It would be also interesting to see if the amplitudes of N = 2∗ theory can be put in

a CHY-like [9] formulation.
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A Notations and conventions

A.1 Spinor helicity variables for massive particles

We use the “mostly positive” signature for the metric ηµν = diag(−1,+1,+1,+1) in 4-spacetime

dimension and the momentum bi-spinor for the massive particle for mass m is given by,

pαβ̇ = pµσµ,αβ̇ = −
∑
I

|pI ]α〈pI |β̇ =
∑
I

|pI ]α〈pI |β̇, (A.1)

we can also write,

pα̇β = pµσ̄α̇βµ = −
∑
I

|pI〉α̇[pI |β =
∑
I

|pI〉α̇[pI |β. (A.2)

Here, I = {1, 2} is the SU(2) little group index for the massive particle and {α, β̇} are the usual

SL(2,C) spinor indices. The SU(2) little group indices can be raised and lowered through,

εIJ = −εIJ =

 0 1

−1 0

 , (A.3)
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as follows,

|pI ]α = εIJ |pJ ]α 〈pI |β̇ = εIJ〈pJ |β̇. (A.4)

The determinant of the momentum bi-spinor gives,

det p = −pµpµ = m2. (A.5)

The bi-linear product of the spinors is given as,

〈pIpJ〉 = mεIJ , [pIpJ ] = −mεIJ . (A.6)

These spinors also satisfy the Weyl equation,

p|pI ] = −m|pI〉, p|pI〉 = −m|pI ]

[pI |p = m〈pI |, 〈pI |p = m[pI |, (A.7)

and spin sums,

|pI ]α[pI |β = −|pI ]α[pI |β = mδβα

|pI〉α̇〈pI |β̇ = −|pI〉α̇〈pI |β̇ = −mδα̇
β̇
. (A.8)

Some useful identities are listed below,

2p.q = 〈pIqJ〉[pIqJ ], 2mpmq = 〈pIqJ〉〈pIqJ〉 = [pIqJ ][pIqJ ], (A.9)

〈qI |pp|kJ〉 = −p2〈qIkJ〉, [qI |pp|kJ ] = −p2[qIkJ ], (A.10)

〈qI |p|kJ ] = [kJ |p|qI〉. (A.11)

The high energy limit of the massive spinors and the Grassmann variables give,

|p+]→ |p], |p−]→ 0, |p+〉 → 0, |p−〉 → −|p〉, η− → η, η+ → η̂. (A.12)

We have used the following analytic continuation for the massive spinors and the corresponding

variable,

| − P I ] = i|P I ] | − P I〉 = i|P I〉 ηI−P = iηIP , (A.13)

similarly in the massless case,

| − p] = i|p] | − p〉 = i|p〉 η−p = iηp η†−p = iη†p. (A.14)

The generalized Mandelstam variables are defined as,

sij = −(pi + pj)
2 − (mi ±mj)

2, (A.15)
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where the masses are added if the states are both BPS/anti-BPS and subtracted if they are different.

The BPS condition reads,

PiQ
†a
i = ±miQia+2, (A.16)

for N = 4 supersymmetry and a+2→ a+1 on the right hand side for N = 2 supersymmetry. Plus

sign here holds for BPS legs whereas the minus sign holds for anti-BPS legs. The supercharges Q†ai
and Qia+2 are defined for each leg and throughout the paper we have considered total supercharges.

Our convention for the total supercharges follows that of [18] where,

1√
2
Q†a = −

∑
i

ηaiI |iI〉 −
∑
j

ηajI |jI〉+
∑
k

ηak |k〉,

1√
2
Qa+2 =

∑
i

ηiI |iI ]−
∑
j

ηjI |jI ] +
∑
k

η̃†a, (A.17)

where i runs over all the BPS legs, j runs over all the anti-BPS legs and k runs over the massless

legs and a+ 2→ a+ 1 on the left hand side for N = 2 supersymmetry

B Useful calculations

B.1 Three point amplitudes in terms of u-spinors

In this section, we illustrate how to express the massive three-point amplitudes of the N = 2∗

theory in a simpler form using the u-spinors. We can use (A.6) to write,

m3 = −1

2
εJK〈3J3K〉. (B.1)

Let us start with the expression of the amplitude, A3

[
WI

1 , Φ̄2,Φ3

]
, for which the numerator can be

simplified by using the Schouten identity and the u-spinors,

〈q|p3|1I ] +m3〈q1I〉 = −〈q3J〉[3J1I ] +
1

2
εJK(〈q3J〉〈3K1I〉+ 〈q3K〉〈1I3J〉)

=
〈qu〉〈1Iu〉

m1

. (B.2)

Following the three particle special kinematics, we have used the identity, [3J1I ] + 〈3J1I〉 = uJ3u
I
1

to get,

A3

[
WI

1 , Φ̄2,Φ3

]
= −

(
〈uq〉〈u1I〉
m1〈q|p1p3|q〉

)
δ(2)(Q)δ(〈qQ†〉), (B.3)

Now to represent the amplitude, A3

[
WI

1 , W̄J
2 ,WK

3

]
, in terms of the u-spinor, we need to do a few

manipulations. By multiplying (B.2) with 〈2
J3K〉
m3

and using the Schouten identity we can write,

〈q|p3|1I ]〈2J3K〉
m3

+
〈q|p3|3K ]〈1I2J〉

m3

=
〈uq〉〈u1I〉〈2J3K〉

m1m3

− 〈q2J〉〈1I3K〉. (B.4)
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We can then express the term 〈q|p3|2J ]−m3〈q2J〉, as follows,

〈q|p3|2J ]〈1I3K〉
m3

=
〈uq〉〈u2J〉〈1I3K〉

m2m3

+ 〈q2J〉〈1I3K〉. (B.5)

Now clubbing the above terms together we have,

A3

[
WI

1 , W̄J
2 ,WK

3

]
= −

(
〈uq〉〈u1I〉〈2J3K〉

m1m3

+
〈uq〉〈u2J〉〈1I3K〉

m2m3

)
δ(2)(Q)δ(〈qQ†〉)
〈q|p1p3|q〉

. (B.6)

We note that while in the original form of the three point amplitudes the BCFW manipulations

are not obvious, these representations of three point amplitudes in terms of u-spinor simplify the

manipulations significantly.

B.2 Some detailed BCFW calculations

In this section, we will explain some calculations used in section 5. For example, using the u-spinor

as shown in (3.15), we can write,

p̂1 =
1

|u1|
(|1̂w〉[u(L)|+ |u(L)〉[1̂w|), (B.7)

p4 =
1

|u4|
(|4w〉[u(L)| − |u(L)〉[4w|), (B.8)

where |iw〉 = ŵiI |iI〉. With the above representations of the momenta corresponding to the left

amplitude and using the Schouten identity, we have,

〈q|p̂1p4|q〉 =
〈qu(L)〉〈qu(L)〉
|u1||u4|

(〈1̂w4w〉+ [1̂w4w])

= 〈u(L)q〉2. (B.9)

Similarly, one can show, 〈q|p̂2p3|q〉 = 〈u(R)q〉2.

Another crucial calculation in (5.7) of combining the delta functions involves,

δ
(
u4,K〈4K |p̂1|Q̂R]

)
=

(
α

βγ

)
δ
(
u4,K〈4K |p̂1|Q]

)
. (B.10)

The definitions of α and β come from the Schouten identity,

〈u(L)q〉〈u(R)|+ 〈qu(R)〉〈u(L)|+ 〈u(R)u(L)〉〈q| = 0, (B.11)

such that the relation, u(R)

P̂M
= αu

(R)

P̂M
+ βq holds with,

α =
u
(R)
3,K〈3Kq〉

u
(L)
4,M〈4Mq〉

, β =
u
(R)
3,K〈3K4M〉u(L)4,M

〈q4M〉u(L)4,M

. (B.12)
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In a similar procedure, starting with the expression 〈q|p̂1|u(L)]〈q|P̂ , and using the Schouten identity,

we can write,

〈q| P̂
mP

= γu
(L)
4,M〈4

M | p̂1
m1

+ λ〈q| p̂1
m1

, (B.13)

where, the coefficient λ is not relevant for our purpose, and

γ =
〈q|p̂1p4|q〉

m1mPu
(L)
4,M〈4Mq〉

. (B.14)

With these definitions of α, β, and γ one can obtain (5.7).

C N = 4

BCFW recursion relations for N = 4 SYM amplitudes in chiral superspace are very well developed

[7]. Here we present some BCFW analysis for four-point amplitudes in N = 4 SYM theory in

non-chiral superspace.

C.1 Massless amplitude

We choose deformations in external states 1 and 2 which are given by,

p̂1 = p1 + zr, p̂2 = p2 − zr, (C.1)

with the conditions that p1 · r = p2 · r = r2 = 0.

Motivated by the conservation of momenta and supercharges, we consider the following shifts

in the spinor and Grassmann variables,

|1̂] = |1] + z|2],

|2̂〉 = |2〉 − z|1〉,

η̂a1 = ηa1 + zηa2 ,

ˆ̃η† a2 = η̃† a2 − zη̃
† a
1 , a = 1, 2. (C.2)

It can be checked that under the above shifts supersymmetric charges, Q† =
∏
a=1,2

∑
i

|i〉ηai , and

Q =
∏
a=1,2

∑
i

|i]η̃† ai remain invariant.
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Let us consider the u-channel factorization.

1̂ 2̂

34

L R

In this case, the four-point amplitude can be obtained by,

A4 [G1, G2, G3, G4] =

∮
{z=0}

dz

z
A (z)

=

∮
{z=0}

dz

z

∫
d2ηP̂AL (z)

1

ŝ14
AR (z)

= −
∮
{z=0}

dz

z

zI
z − zI

∫
d2ηP̂AL (z)

1

s14
AR (z)

=

∫
d2ηP̂AL (zI)

1

s14
AR (zI) , (C.3)

where zI = s14
2r·p4 . Here we have assumed there is no pole at infinity and this assumption is justified

from the large z behavior of the amplitude.

Three-point sub-amplitudes are given by,

AMHV
L

[
G4, Ĝ1, GP̂

]
=

1

〈41〉〈1P̂ 〉〈P̂4〉
δ(4)

(
Q̂†L
)
δ(2)

(
〈41〉η̃†a

P̂
+ 〈1P̂ 〉η̃†a4 + 〈P̂4〉η̃†a1

)
,

Aanti-MHV
R

[
G−P̂ , Ĝ2, G3

]
=

1

[P̂2][23][3P̂ ]
δ(4)

(
Q̂R
)
δ(2)

(
[P̂2]ηa3 + [23]ηa

P̂
+ [3P̂ ]ηa2

)
. (C.4)

First we perform the ηP̂ integration. Solutions to ηP̂ and η̃†
P̂
are available from the delta functions.

On the support of δ(2)
(

[P̂2]ηa3 + [23]ηa
P̂

+ [3P̂ ]ηa2

)
we get,

δ(4)
(
Q̂†L
)

= δ(4)

(∏
a=1,2

(
|4〉ηa4 + |1〉η̂a1 + |P̂ 〉ηa

P̂

))

= δ(4)

(∏
a=1,2

(
|4〉ηa4 + |1〉η̂a1 − |P̂ 〉

1

[23]

(
[P̂2]ηa3 + [3P̂ ]ηa2

)))

= δ(4)

(∏
a=1,2

4∑
i=1

|i〉ηai

)
. (C.5)

To go from second equality to the last one we have used momentum conservation. Similar manip-

ulations holds for δ(4)
(
Q̂R
)
on the support of the other delta function,∫

d2ηP̂d2η̃†
P̂
δ(4)

(
Q̂†L
)
δ(2)

(
〈41〉η̃†a

P̂
+ 〈1P̂ 〉η̃†a4 + 〈P̂4〉η̃†a1

)
δ(4)

(
Q̂R
)
δ(2)

(
[P̂2]ηa3 + [23]ηa

P̂
+ [3P̂ ]ηa2

)
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=〈41〉2[23]2δ(4)
(
Q†
)
δ(4) (Q) . (C.6)

Therefore, ∫
d2ηP̂AL (zI)AR (zI) =

〈41〉[23]

〈1P̂ 〉〈P̂4〉[P̂2][3P̂ ]
δ(4)

(
Q†
)
δ(4) (Q)

=
1

s12
δ(2)

(
Q†
)
δ(2) (Q) . (C.7)

The four point amplitude is then,

A4 [G1, G2, G3, G4] =
1

s12s14
δ(4)

(
Q†
)
δ(4) (Q) . (C.8)

C.2 Massive amplitude with massless exchange

Here we consider the external states to be massiveW-bosons and in the intermediate channel mass-

less vector multiplet is exchanged. We want to find out the four-point amplitudeA4

(
W1, W̄2,W3, W̄4

)
.

We consider shifts in legs 1 and 2 as before.

1̂ ˆ̄2

34̄

L R

The left and right three-point amplitudes are,

AL
(
W̄4, Ŵ1, GP̂

)
=
−x̂14

m3
1〈qP̂ 〉2

δ(4)
(
Q̂†L
)
δ(2)

(
〈q|p̂1|Q̂L]

)
=
−x̂14

m1〈qP̂ 〉2
δ(4)

(
Q̂L
)
δ(2)

(
〈qQ̂†〉L

)
,

AR
(
G−P̂ ,

ˆ̄W2,W3

)
=
−x̂23

m3
2〈qP̂ 〉2

δ(4)
(
Q̂†R
)
δ(2)

(
〈q|p̂2|Q̂R]

)
=
−x̂23

m3〈qP̂ 〉2
δ(4)

(
Q̂R
)
δ(2)

(
〈qQ̂†R〉

)
.

(C.9)

Central charge conservation in the half-BPS limit implies that,

m1 = m4, m2 = m3. (C.10)

Using the above relations we can determine x factors,

p̂1
m1

|P̂ 〉 = x̂14|P̂ ] ⇒ x̂14 =
m1〈qP̂ 〉
〈q|p̂1|P̂ ]

=
[ρ|p̂1|P̂ 〉
m1[ρP̂ ]

,

p̂2
m2

|P̂ 〉 = x̂23|P̂ ] ⇒ x̂23 =
m2〈qP̂ 〉
〈q|p̂2|P̂ ]

=
[ρ|p̂2|P̂ 〉
m2[ρP̂ ]

. (C.11)
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Product of the two three-point amplitudes gives,∫
d2ηP̂AL

(
W̄4, Ŵ1, GP̂

)
AR
(
G−P̂ ,

ˆ̄W2,W3

)
=

∫
d2ηP̂

x̂14x̂23

m3
1m

3
2〈qP̂ 〉4

δ(4)
(
Q̂†L
)
δ(2)

(
〈q|p̂1|Q̂L]

)
δ(4)

(
Q̂†R
)
δ(2)

(
〈q|p̂2|Q̂R]

)
=

∫
d2ηP̂

x̂14x̂23

m3
1m2〈qP̂ 〉4

δ(4)
(
Q†
)
δ(2) (〈q|p̂1|Q])

1

m2
1〈qP̂ 〉2

δ(2)
(
〈P̂ |p̂1|Q̂R]

)
δ(2)

(
〈q|p̂1|Q̂R]

)
δ(2)

(
〈qQ̂†R

)
.

(C.12)

Now, on the support of δ(2)
(
Q†
)
we have,

〈P̂ Q̂†L〉+ 〈P̂ Q̂†R〉 = 0

⇒ 1

m1

〈P̂ |p̂1|Q̂L]− 1

m2

〈P̂ |p̂2|Q̂R] = 0. (C.13)

Using Eq.(C.11) we get,

〈P̂ |p̂1|Q̂R] =
m1x̂14
m2x̂23

〈P̂ |p̂2|Q̂R]. (C.14)

From the above two equations, we then obtain,

〈P̂ |p̂1|Q] =

(
1 +

x̂23
x̂14

)
〈P̂ |p̂1|Q̂R]. (C.15)

Therefore,

AL
(
W̄4, Ŵ1, GP̂

)
AR
(
G−P̂ ,

ˆ̄W2,W3

)
=

−x̂14x̂23
m3

1m2〈qP̂ 〉4

(
1 +

x̂23
x̂14

)−2
δ(4)

(
Q†
)
δ(4) (Q)

∫
d2ηP̂ δ

(2)
(
〈q|p̂1|Q̂R]

)
δ(2)

(
〈qQ̂†R

)
. (C.16)

Performing the ηP̂ integral we get,∫
d4ηP̂ δ

(2)
(
〈q|p̂1|Q̂R]

)
δ(2)

(
〈qQ̂†R

)
=
(
〈q|p̂1P̂ |q〉

)2
= m2

1

〈qP̂ 〉4

x̂214
. (C.17)

Then the integration in the complex plane is given by,

A4

(
W1, W̄2,W3, W̄4

)
= −

∮
{z=0}

dz

z

zI
z − zI

1

m1m2

1

s14

x̂23
x̂14

(
1 +

x̂23
x̂14

)−2
δ(4)

(
Q†
)
δ(4) (Q)

= −
∮
{z=0}

dz

z

zI
z − zI

1

m1m2

1

s14

[
x̂14
x̂23

(
1 +

x̂23
x̂14

)2
]−1

δ(4)
(
Q†
)
δ(4) (Q) . (C.18)

The expression inside the box brackets can be manipulated as follows,

x̂14
x̂23

(
1 +

x̂23
x̂14

)2

=
x̂14
x̂23

+
x̂23
x̂14

+ 2
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=
[ρ|p̂1|P̂ 〉[P̂ |p̂2|q〉
m1m2[ρP̂ ]〈qP̂ 〉

+
[ρ|p̂2|P̂ 〉[P̂ |p̂1|q〉
m1m2[ρP̂ ]〈qP̂ 〉

+ 2

=
−2p1 · p2
m1m2

+ 2

=
s12

m1m2

. (C.19)

To go from the second equality to the third, we have used the fact that P̂ · p̂1 = 0 and P̂ · p̂2 = 0 on

z = zI which implies the momenta bispinors anticommute. Then the four-point amplitude is given

by,

A4

(
W1, W̄2,W3, W̄4

)
=

1

s12s14
δ(4)

(
Q†
)
δ(4) (Q) . (C.20)

D Amplitudes with massless exchange

In this section, we show the evaluation of some four-point amplitudes with massive external states

where the intermediate propagators are massless.

D.1 2 vector and 2 hypermultiplet amplitude

We consider the four-point amplitude A4

[
WI

1 , W̄J
2 ,Φ3, Φ̄4

]
. For simplicity we apply shifts in the

hypermultiplet legs 3 and 4, such that,

p̂3 = p3 − zr, p̂4 = p4 + zr. (D.1)

From the on-shell condition we have zI = s14
2r·p1 .

1 2̄

3̂ˆ̄4

L R

The three-point sub-amplitudes can be expressed as,

AL

[
ˆ̄Φ4,WI

1 ,ΦP̂

]
=

[P̂1I ]

〈q|p1|P̂ ]
δ(2)

(
Q̂L

)
δ
(
〈qQ̂†L〉

)
=
x̂14[P̂1I ]

m1〈qP̂ 〉
δ(2)

(
Q̂L

)
δ
(
〈qQ̂†L〉

)
,

AR

[
Φ−P̂ , W̄

J
2 , Φ̂3

]
=

[P̂2J ]

〈q|p2|P̂ ]
δ(2)

(
Q̂R

)
δ
(
〈qQ̂†R〉

)
=
x̂23[P̂2J ]

m2〈qP̂ 〉
δ(2)

(
Q̂R

)
δ
(
〈qQ̂†R〉

)
, (D.2)
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where x̂14 and x̂23 are given by,

x̂14 =
[ρ|p1|P̂ 〉
m1[ρP̂ ]

=
m1〈qP̂ 〉
〈q|p1|P̂ ]

, x̂23 =
[ρ|p2|P̂ 〉
m2[ρP̂ ]

=
m2〈qP̂ 〉
〈q|p2|P̂ ]

. (D.3)

Using BCFW analysis we can write,

A4

[
WI

1 , W̄J
2 ,Φ3, Φ̄4

]
= −

∮
{z=0}

dz

z

zI
z − zI

AL

[
ˆ̄Φ4,WI

1 ,ΦP̂

] 1

s14
AR

[
Φ−P̂ , W̄

J
2 , Φ̂3

]
= −

∮
{z=0}

dz

z

zI
z − zI

x̂14x̂23[P̂1I ][P̂2J ]

m1m2〈qP̂ 〉2
1

s14

∫
d2ηP̂ δ

(2)
(
Q̂L

)
δ
(
〈qQ̂†L〉

)
δ(2)

(
Q̂R

)
δ
(
〈qQ̂†R〉

)
= −

∮
{z=0}

dz

z

zI
z − zI

x̂23[P̂1I ][P̂2J ]

m1m2

1

s14

(
1 +

x̂23
x̂14

)−1
δ(2)

(
Q†
)
δ(2) (Q)

= −
∮
{z=0}

dz

z

zI
z − zI

1

s12s14
[P̂1I ][P̂2J ] (x̂14 + x̂23) δ

(2)
(
Q†
)
δ(2) (Q)

= −
∮
{z=0}

dz

z

zI
z − zI

1

s12s14

[P̂1I ][P̂2J ]

[ρP̂ ]

(
[ρ|p1|P̂ 〉
m1

+
[ρ|p2|P̂ 〉
m2

)
δ(2)

(
Q†
)
δ(2) (Q)

= −
∮
{z=0}

dz

z

zI
z − zI

1

s12s14

(
〈1I |P̂ |2J ] + [1̂I |P̂ |2J〉

)
δ(2)

(
Q†
)
δ(2) (Q)

= −
∮
{z=0}

dz

z

zI
z − zI

1

s12s14

(
〈1I |p̂4|2J ] + [1I |p̂4|2J〉+m4[1

I2J ] +m4〈1I2J〉
)
δ(2)

(
Q†
)
δ(2) (Q)

=
[
〈1I |p4|2J ] + [1I |p4|2J〉+m4[1

I2J ] +m4〈1I2J〉+ zI〈1I |r|2J ] + zI [1
I |r|2J〉+ B

] δ(2) (Q†) δ(2) (Q)

s12s14
.

(D.4)

To obtain the fourth equality from the third we have used Eq.(C.19). In the last equality we have

computed residue at z = zI and along with the pole at infinity. To evaluate the boundary term, B,

we substitute z = 1
u
and calculate the residue around u = 0,

B = −
∮
u=0

du

u

zI
1− zIu

(
〈1I |r|2J ] + [1I |r|2J〉

)
= −zI

(
〈1I |r|2J ] + [1I |r|2J〉

)
. (D.5)

Therefore the required four-point amplitude is,

A4

[
WI

1 , W̄J
2 ,Φ3, Φ̄4

]
=
[
〈1I |p4|2J ] + [1I |p4|2J〉+m4[1

I2J ] +m4〈1I2J〉
] δ(2) (Q†) δ(2) (Q)

s12s14
. (D.6)

We note that even though the amplitude matches with the N = 2∗ amplitude, the channel we

have considered here does not exist for N = 2∗ theory since we have used massless hypermultiplet

exchange. However, it would exist in a theory where massless hypermultiplets are coupled to massive

N = 2 SYM and hypermultiplets. Therefore the above calculation applies to such a theory.
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D.2 4-point hypermultiplet

We want to evaluate the four-point amplitude A4

(
Φ1, Φ̄2,Φ3, Φ̄4

)
with massless spin-1 exchange.

We consider shifts in legs 1 and 3, given by,

p̂1 = p1zr, p̂3 = p3 − zr. (D.7)

The amplitude is then obtained by summing over factorization channels, u = − (p1 + p4)
2 and

s = − (p1 + p2)
2.

1̂

2̄ 3̂

4̄

L R

1̂ 2̄

3̂4̄

L R

BCFW analysis yields,

A4

(
Φ1, Φ̄2,Φ3, Φ̄4

)
= −

∮
{z=0}

dz

z

zI,1
z − zI,1

∑
h=±

∫
d2ηP̂AL

(
Φ̄4, Φ̂1, G

h
P̂

) −1

s14
AR

(
G−h−P̂ , Φ̄2, Φ̂3

)
−
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{z=0}

dz

z

zI,2
z − zI,2
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h=±

∫
d2ηP̂AL

(
Φ̂1, Φ̄2, G

h
P̂

) −1

s12
AR

(
G−h−P̂ , Φ̂3, Φ̄4,

)
, (D.8)

with zI,1 = s14
2r·(p1+p4) and zI,2 = s12

2r·(p1+p2) are the location of simple poles when the two propagators

go on-shell respectively.

Let us first consider the factorization on u-channel. We have,

AL

(
Φ̄4, Φ̂1, G

+

P̂

)
AR

(
G−−P̂ , Φ̄2, Φ̂3

)
=

1

〈qP̂ 〉〈q|p2|P̂ ]
δ(2)

(
Q̂L

)
δ
(
〈qQ̂†L〉

)
δ(2)

(
Q̂†R

)
δ
(
〈q|p2|Q̂R]

)
=

x̂23

m2〈qP̂ 〉2
δ(2)

(
Q̂L

)
δ
(
〈qQ̂†L〉

)
δ(2)

(
Q̂†R

)
δ
(
〈q|p2|Q̂R]

)
,

AL

(
Φ̄4, Φ̂1, G

−
P̂

)
AR

(
G+

−P̂ , Φ̄2, Φ̂3

)
=

1

〈q|p̂1|P̂ ]〈qP̂ 〉
δ(2)

(
Q̂†L

)
δ
(
〈q|p̂1|Q̂L]

)
δ(2)

(
Q̂R

)
δ
(
〈qQ̂†R

)
=

x̂14

m1〈qP̂ 〉2
δ(2)

(
Q̂†L

)
δ
(
〈q|p̂1|Q̂L]

)
δ(2)

(
Q̂R

)
δ
(
〈qQ̂†R

)
,

(D.9)

where,

x̂14 =
[ρ|p̂1|P̂ 〉
m1[ρP̂ ]

=
m1〈qP̂ 〉
〈q|p̂1|P̂ ]

, x̂23 =
[ρ|p2|P̂ 〉
m2[ρP̂ ]

=
m2〈qP̂ 〉
〈q|p2|P̂ ]

. (D.10)

Supersymmetric charges are expressed as,

Q̂L = |1̂I ]η1̂,I − |4I ]η4,I + |P̂ ]η̃†
P̂
,
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Q̂†L = −|1̂I〉η1̂,I − |4I〉η4,I + |P̂ 〉ηP̂ ,

Q̂R = −|P̂ ]η̃†
P̂
− |2I ]η2,I + |3̂I ]η3̂,I ,

Q̂†R = −|P̂ 〉ηP̂ − |2
I〉η2,I − |3̂I〉η3̂,I . (D.11)

It can be checked that,

〈P̂ |p̂1|Q̂L] = m1〈P̂ Q̂†L〉,

〈P̂ |p2|Q̂R] = −m2〈P̂ Q̂†R〉. (D.12)

We also note that,

δ(2)
(
Q̂L

)
δ
(
〈qQ̂†L〉

)
=

1

m1

δ(2)
(
Q̂†L

)
δ
(
〈q|p̂1|Q̂L]

)
. (D.13)

and similarly for the right delta function.

Now, using Eq.(D.9) and summing over both helicities in the exchange we get,∑
h=±

AL

(
Φ̄4, Φ̂1, G

h
P̂

)
AR

(
G−h−P̂ , Φ̄2, Φ̂3

)
=

(x̂23 + x̂14)

m1m2〈qP̂ 〉2
δ(2)

(
Q̂†L

)
δ
(
〈q|p̂1|Q̂L]

)
δ(2)

(
Q̂†R

)
δ
(
〈q|p2|Q̂R]

)
=

(x̂23 + x̂14)

m1m2〈qP̂ 〉2
m2

(
1 +

x̂23
x̂14

)−1
δ(2)

(
Q†
)
δ(2) (Q) δ

(
〈q|p̂1|Q̂R]

)
δ
(
〈qQ̂†R〉

)
. (D.14)

Performing the ηP̂ integral we get,∫
d2ηP̂ δ

(
〈q|p̂1|Q̂R]

)
δ
(
〈qQ̂†R

)
= 〈q|p̂1P̂ |q〉 = m1

〈qP̂ 〉2

x̂14
. (D.15)

Therefore contribution from the u-channel is,

1

s14
δ(2)

(
Q†
)
δ(2) (Q) . (D.16)

Similar contribution comes from s-channel where s14 is replaced by s12.

Using s12 + s14 = s13, the four-point amplitude is determined to be,

A4

(
Φ1, Φ̄2,Φ3, Φ̄4

)
=

s13
s14s12

δ(2)
(
Q†
)
δ(2) (Q) . (D.17)

We note that since we have used the massless N = 2 SYM here in the intermediate leg, this

amplitude is appropriate for the origin of the moduli space of N = 2∗ theory.
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