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Abstract

We consider a set of hard point particles distributed uniformly with a specified
density on the positive half-line and all initially at rest. The particle masses
alternate between two values, m and M . The particles interact via collisions
that conserve energy and momentum. We study the cascade of activity that
results when the left-most particle is given a positive velocity. At long times
we find that this leads to two fascinating features in the observed dynamics.
First, in the bulk of the gas, a shock front develops separating the cold gas
from a thermalized region. The shock-front travels sub-ballistically, with the
bulk described by self-similar solutions of Euler hydrodynamics. Second, there
is a splash region formed by the recoiled particles which move ballistically with
negative velocities. The splash region is completely non-hydrodynamic and we
propose two conjectures for the long time particle dynamics in this region. We
provide a detailed analytic understanding of these coexisting regimes. These
are supported by the results of molecular dynamics simulations.
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Introduction

Consider the infinite-space version of the billiard or carrom board problem: hard discs
are initially at rest and uniformly distributed in the half-space x ≥ 0, and the system is
perturbed by kicking a particle near the origin in the x direction. The moving particle
eventually hits a particle at rest creating further collisions and generating a cascade pen-
etrating the occupied half-space. Particles are also ejected back and a splash-like pattern
is formed [see Fig. (1)]. This splash problem can be thought of as a billiard with no walls
and an infinite number of particles. Despite a simple formulation, the splash problem
greatly differs from traditionally studied billiards systems [1, 2]. The splash problem was
mentioned in [3, 4]. Here we provide the first detailed treatment for the one-dimensional
version of the problem.

Figure 1: A splash in two dimensions: this shows a snapshot of a gas of hard
discs, initially at rest and uniformly distributed on the positive half plane, some
time after one disc near the origin is given a velocity in the positive x−direction.
Moving particles are shown by red disks; stationary ones are shown by blue disks
and their size is shrunk for visual convenience (the figure is adopted from Ref. [3]).

In one dimension collisions are inevitable, so it suffices to consider point particles.
The point particles make the system infinitely diluted and hence ideal with the well-
known equation of state. The case with equal masses is pathological — each collision
leads to the exchange of identities, with no relaxation. To avoid pathology, we consider
a hard point gas with binary mass distribution and assume that particles with dissimilar
masses alternate. This system is non-integrable, has good thermalization behavior, and
continues to have an ideal gas equation of state. The alternating hard particle (AHP)
gas has been extensively investigated in the context of studies on heat transport and
hydrodynamics in one dimension [5–15]. In recent work [16,17], the AHP model was used
for a numerical verification of the equivalence of the continuum hydrodynamics description
and the Newtonian description in the context of the so-called blast problem. The blast
problem is similar to the splash problem with the important difference that energy is
injected at the centre of a cold gas. The long time behavior of the blast is described by
hydrodynamics. The work in [16,17] find that the bulk of the excited gas is described by the
famous Taylor-von Neumann-Sedov (TvNS) self-similar solution of the Euler equations,
while Navier-Stokes corrections become important in the core region. The splash problem
is less tractable than the blast problem due to the lack of symmetry.
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Figure 2: The plot of the space-time trajectories of moving particles of a typical
realization of a splash in a one-dimensional gas at (a) long and (b) short times.
Notice that at the left end we see a fan of particles moving ballistically, while
the position of the right-most moving particle (the shock position) evolves sub-
ballistically. In (b) we zoom in to see that the left-most particle undergoes a
single collision, the next particle 4 collisions and the third particle 6 collisions
before their velocities get frozen.

Schematically our one-dimensional set-up of the splash problem is the following: we
consider the AHP gas of particles initially at rest and uniformly distributed on the positive
half-line x > 0. At the time t = 0, the left-most particle is given a unit positive velocity.
At long times we find that the system evolves to an intriguing state with a hydrody-
namic bulk phase coexisting with a non-hydrodynamic “splash” phase [see Fig. (2)]. The
hydrodynamic region grows as R(t) = αtδ, while the splash consists of particles moving
ballistically to the left. The exponent δ = 0.6279520544 . . . is computed analytically; it is
smaller than the exponent 2

3 characterizing the growth of the excited region in the blast
problem, equivalently the position of the shock waves on the left and right.

The new feature in the splash problem, as compared to the blast problem, is the
existence of this non-hydrodynamic splatter which significantly alters the form of the
hydrodynamic scaling, resulting in a self-similar solution of the second kind. Remarkably,
we find that a number of particles at the left end of the splash have their velocities
frozen, the number of such particles growing with time. Another surprising feature is
that asymptotically all energy is in the initially empty half-line x < 0. More precisely, the
energy of particles in the x > 0 half-line decays algebraically as t−(2−3δ).

The rest of the paper is organized as follows. In Sec. (2), we define the precise model
and present heuristic arguments which allow us to understand some of the important
features of the emergent dynamics. In Sec. (3) we present the hydrodynamic theory
and the method of determination of the self-similar solution. Numerical results from the
microscopic simulations of the hard-particle gas and their comparison with the analytic
results are contained in Sec. (4). In Sec. (5) we discuss results for the particles contained
in the splatter. We summarize our main findings in Sec. (6).

Microscopic model and heuristics

We consider particles labeled as j = 0,1,2, . . . ,∞ with positions {qj}, velocities {vj} and
masses {mi}. At time t = 0, the positions are chosen from a uniform distribution with
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0 < q0 < q1 < q2 . . ., with mean inter-particle distance 1/n, and velocities vj = v0δj,0 (v0 > 0).
The particles move ballistically between collisions and only nearest neighbors collide. The
collisions conserve energy and momentum so that particles j and j+1 have post-collisional
velocities

v′j =
(mj −mj+1)vj + 2mj+1vj+1

mj +mj+1
, (1a)

v′j+1 =
2mjvj − (mj −mj+1)vj+1

mj +mj+1
. (1b)

In the alternating mass setting, the light particles of mass m and heavy particles of mass
M can occur in one of the two possible arrangements

m0,m1,m2, . . . =mMmMmMmM . . . (2a)

=MmMmMmMm. . . (2b)

With v0 as the initial velocity of the left-most particle, the entire energy of the system
is E0 = mv20/2 for the first arrangement and E0 = Mv20/2 for the second. Without loss of
generality, we set v0 = 1; the dynamics for any other value of v0 could be obtained by a
simple scaling of time and velocities.

With time, an increasing number of particles become active (moving). We begin by
providing a heuristic discussion of how the initial energy input is dispersed in the system.
A typical evolution showing the space-time trajectories of the active particles is shown in
Fig. (2). We see that a small number of splatter particles that are ejected backward suffer
a small number of collisions and move ballistically while the major fraction of particles
on the right undergo repeated collisions and are confined within a sub-ballistic front.
The emerging behavior is in fact quite striking — in the long-time limit t ≫ n−1, a tiny
fraction of the energy is transmitted to the right while the splatter particles carry most
of the energy. More precisely, we now argue that the energy E(t) in the occupied half-line
x > 0 decays in an algebraic fashion

E ∼ t−β. (3)

This can be seen through the following heuristic arguments: let v be a typical velocity in
the cascade. It also gives a typical velocity with which particles are ejected. Therefore
the energy E in the cascade decays as

dE
dt

∼ −mv2 × nv, (4)

since mv2 is the typical energy of ejected particles and nv (n being the mean density
of particles) is the rate at which particles enter the initially empty half-line x < 0. Di-
mensional analysis, similar to that used in the blast wave problem (see [16]), allows one
to estimate the size of the cascade (equivalently the position of the right-most excited
particle). One finds again

R ∼ (Et
2

mn
)

1
3

(5)

bbut unlike the blast problem, E now decays with time. In the x > 0 half-line, the total
number of moving particles N+(t) ∼ nR ∼ (E/m)1/3(nt)2/3, and the energy E(t) ∼mv2N+.

Together they give v ∼ (E/(mnt))1/3 and inserting this in Eq. (4) gives dE/dt ∼ −E/t
leading finally to Eq. (3). The exponent β is the precise numerical factor in the equation
dE/dt = −βE/t. This heuristic argument supports an algebraic decay law, but it does not
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allow one to fix a numerical value of the exponent which we will do later. By putting
Eq. (3) into Eq. (5), and from dimensional considerations we obtain

R = An−1τ δ, δ ≡ 2 − β
3

, (6)

where we define the dimensionless time τ = nv0t, and A is a dimensionless constant de-
pending only on the mass ratio µ = m/M and the mass arrangement. We will later show
that, using our results in Sec. (5), one can argue for the form:

lim
t→∞

nR(t)
(nv0t)δ

=
⎧⎪⎪⎨⎪⎪⎩

A(µ) for arrangement (2a)

A(µ) ( 2µ
1+µ)

δ
for arrangement (2b).

(7)

This dependence on the detailed arrangement is a sign of the highly non-hydrodynamic
behavior of the system. Similarly, the dimensionally complete form of (3) is

E ∼ E0 τ−β. (8)

The total number of moving particles for x > 0 is N+ ∼ nR, so from (6) we see that it
scales algebraically, N+ ∼ τ δ. For the number, N−(t), of particles in the initially empty
half-line x < 0, we note that dN−

dt ∼ nv, from which we get

N− ∼ N+ ∼ τ δ. (9a)

Thus the total number N− of the particles in the initially empty half-line x < 0 and the
total number N+ of the moving particles in half-line x > 0 exhibit the same scaling. The
visual impression from the splash pattern (see Fig. 2) is that N− ≪ N+. In spite of their
significant disparity, we have verified numerically [see Sec. (4)] that both quantities exhibit
identical scaling and their ratio approaches a small positive value

lim
t→∞

N−(t)
N+(t)

= λ(µ), (9b)

that only depends on the mass ratio µ =m/M . We find a dependence of N± on the mass
arrangement similar to what is seen in Eq. (7) for R(t), however the above ratio does not
have this dependence at long times.

To estimate the total number of collisions C(t) we notice that it grows according to the

rate equation dC/dt ∼ N+/τ , where τ is the mean collision time. We have τ−1 ∼ nv ∼ nv0τ−
1+β
3 ,

hence dC/dτ ∼ τ 1−2β
3 leading finally to

C ∼ τ2δ. (10)

The heuristic arguments support an algebraic decay law for the energy and the time-
dependence of various other physical observables are all expressed in terms of a single
exponent β. We also gain physical understanding of the main features of the evolution.
To find the numerical value of the exponent, we will now proceed with a solution of the
Euler equations in the hydrodynamic region.

Scaling solution of the second kind

As seen from the discussion in the previous section, the hydrodynamic region consists
of a single shock front at the position R(t) ∼ n−1τ δ. We expect that the hydrodynamic
variables acquire the scaling form in the scaling region

t→∞, ∣x∣→∞, ξ = x/R(t) < 1. (11)
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The mass density ρ(x, t) = (m +M)n(x, t)/2 that generally depends on the two vari-
ables, x and t, becomes a function of a single scaling variable

ρ(x, t) = ρ∞G(ξ), (12)

where ρ∞ = (m +M)n/2 is the mean density of the initial undisturbed gas.
To determine the behavior of the hydrodynamic variables behind the shock we first

notice that the shock moves with velocity

U = dR
dt

= δ R
t
. (13)

Hence it is convenient to choose

v(x, t) = δ R
t
V (ξ) (14)

as the scaling form of the velocity of the flow field behind the shock wave, ξ < 1. In the
blast problem, it is customary [18,19] to use the square of the speed of sound, c2, instead of
pressure (or temperature). For our one-dimensional hard-point gas c2 = 3p/ρ = 3T which
gives us the scaling form:

p(x, t) = ρc
2

3
= ρδ

2

3

R2

t2
Z(ξ). (15)

For the one-dimensional ideal gas, the velocity v(x, t), mass density ρ(x, t) and pressure
p(x, t) satisfy the Euler equations [18,19]

∂tρ + ∂x(ρv) = 0, (16a)

(∂t + v∂x) ln(p/ρ3) = 0, (16b)

(∂t + v∂x)v = −ρ−1∂xp, (16c)

behind the shock wave, x < R(t). The Rankine-Hugoniot relations [18] describing the
jump between the hydrodynamic variables on both sides of the shock wave have a simple
form

p(R)
ρ∞U2

= 1

2
,

ρ(R)
ρ∞

= 2,
v(R)
U

= 1

2
, (17)

in our case when the pressure and temperature in front of the shock wave are equal to
zero. Using the scaling forms (12), (14), (15) we re-cast the Rankine-Hugoniot relations
(17) into the boundary conditions

V (1) = 1
2 , G(1) = 2, Z(1) = 3

4 . (18)

We substitute the scaling forms (12), (14), (15) into the Euler equations and arrive at
three coupled ODEs:

(GV )′ = ξG′, (19a)

(V − ξ)[ln(Z/G2)]′ = 2∆, (19b)

(V − ξ)V ′ + (GZ)′
3G

= ∆V, (19c)

where (⋯)′ = d(⋯)/dξ and we defined

∆ = 1 + β
3δ

= 1 + β
2 − β . (20)
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In addition to the boundary conditions on the shock, Eq. (18), we need boundary condi-
tions at ξ → −∞:

V (−∞) = −∞, G(−∞) = 0, Z(−∞) = 0. (21)

These boundary conditions are natural from the requirement that the hydrodynamic region
should smoothly connect, at the left end, with the non-hydrodynamic splatter region which
consist of a low-density gas on ballistically moving non-interacting particles.

The challenge now is to solve Eqs. (19) subject to Eqs. (18) and (21). For the blast
problem, the condition of conservation of energy allows us to determine exactly the expo-
nent δ and the constant α, and also a closed form solution for the scaling fields [16,18,19]
— this is an example of a self-similar solution of the first kind [20]. In the “one-sided”
splash problem, energy is not conserved in the full hydrodynamic regime as it is lost to
the splatter particles [3, 4]. In this case it turns out that one has to treat the system
Eqs. (19,18,21) as a non-linear eigenvalue equation. Only for a unique choice of ∆ (and
therefore δ) are the boundary conditions satisfied — this type of solutions are known in the
literature as self-similar solutions of the second kind [20], first discovered by Guderley [21].

In order to proceed further, a slightly different formulation is useful. Following Ref. [18],
we rewrite Eq. (19) as

G′(ξ) = −∆G (3V 2 − 3ξV − 2Z)
3(V − ξ)[(V − ξ)2 −Z] , (22a)

V ′(ξ) = ∆ (3V 2 − 3ξV − 2Z)
3[(V − ξ)2 −Z] , (22b)

Z ′(ξ) = 2∆Z (3ξV − 3ξ2 +Z)
3(V − ξ)[(V − ξ)2 −Z] . (22c)

We then define new scaling functions U, C through V = ξU, Z = ξ2C2 which leads to

ξG′(ξ) = ∆G (3U(U − 1) − 2C2)
3(U − 1)[C2 − (U − 1)2] , (23a)

ξU ′(ξ) = C
2(2∆ − 3U) − 3U(U − 1)(1 +∆ −U)

3[C2 − (U − 1)2] , (23b)

ξC ′(ξ) =
C [C2(3 +∆ − 3U) + 3(U − 1){∆ + (U − 1)2}]

3(U − 1)[C2 − (U − 1)2] . (23c)

From Eqs. (23b,23c) we get

dC

dU
=
C [C2(3 +∆ − 3U) + 3(U − 1){∆ + (U − 1)2}]
(U − 1) [C2(2∆ − 3U) − 3U(U − 1)(1 +∆ −U)] . (24)

At the shock we have C =
√

3/2 at U = 1/2. The condition that the numerators and
denominators in Eqs. (23b,23c) vanish at the same point (so that U,C are single valued
functions of ξ), we get C = 3 at U = −2. Numerically we find that the solution of Eq. (24)
satisfies the boundary conditions for a unique value of ∆ which gives

β = 0.11614383675... . (25)

As a self-consistency check we have verified that, with this value of ∆, the solution of
Eqs. (19) satisfies the boundary conditions in Eqs. (18) and Eqs. (21). Unlike the TvNS
solution of the blast problem, in the present case, we are not able to determine exactly
the dimensionless constant A in Eq. (6), and also we do not have an exact solution of the
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scaling functions. Instead, we obtain A numerically by choosing it in such a way that the
boundary conditions are satisfied. In Sec. (4) we will provide numerical evidence for the
above value of the exponent β and the numerically obtained scaling functions.

Comparisons with the vWZ problem: The macroscopic part, ξ = O(1), of the
splash problem in one dimension resembles the impulsive loading problem studied by von
Weizsäcker [22] and Zeldovich [23]; see [20, 24] for textbook accounts. We refer to this as
the vWZ problem. In the vWZ setting, the gas at zero pressure and temperature occupies
the half-space x ≥ 0; the pressure is suddenly created at x = 0 at time t = 0 and removed
at t = tr.

The advantage of the splash problem is that one does not need an extra parameter tr,
it suffices to suddenly hit the left-most particle. Even more significant virtue is the one-
dimensional nature of the splash problem allowing direct molecular dynamic simulations.
The emerging results can be compared with continuous predictions. We emphasize that
the intriguing aspects of the splash problem concerning the freezing [see Sec. 5] are non-
hydrodynamic, they cannot be accounted for by continuous treatment.

At first sight, our continuous treatment looks identical to the analysis [20, 22–24] of
the vWZ problem. There is a caveat, however, which we now demonstrate by computing
the total momentum and the energy of the system. The momentum P = ∫ dxρ(x, t)v(x, t)
reduces to

P = ρ∞δ
R2

t
∫

1

−∞

dξ G(ξ)V (ξ), (26)

while the energy E = ∫ dxρ[v
2

2 + T
2
] becomes

E = ρ∞δ2
R3

6t2
∫

1

−∞

dξ G(ξ)[3V 2(ξ) +Z(ξ)]. (27)

Since R2/t ∼ t(1−2β)/3 diverges as t → ∞, while the total momentum is finite, so Eq. (26)
seemingly gives

∫
1

−∞

dξ G(ξ)V (ξ) = 0. (28)

Similarly R3/t2 ∼ t−β vanishes as t→∞, while the total energy is finite, so Eq. (27) implies

∫
1

−∞

dξ G(ξ)[3V 2(ξ) +Z(ξ)] =∞. (29)

Integral relations (28)–(29) indeed appear in the analysis of the vWZ problem, see [20].
In the realm of the splash problem, however, Eqs. (26) and (27) give the momentum
and energy of the continuous part only, the full momentum and energy also contain the
contribution from the splatter particles. The energy of the continuous part indeed de-
cays, E ∼ t−β, so the integral in (29) remains finite. The unbounded growth of P is also
not a problem, it is compensated by the momentum of the splatter particles scaling as
Psplatter ∼ −t(1−2β)/3, see Eq. (38). Thus the integral in (28) also remains finite. Summa-
rizing

∫
1

−∞

dξ GV = I1, ∫
1

−∞

dξ G[3V 2 +Z] = I2, (30)

with 0 < I1 <∞ and 0 < I2 <∞.
The exponent is not determined by dimensional considerations in so-called self-similar

solutions of the second kind [20]. Such a solution was first discovered by Guderley [21]
who found that the spherical shock wave disappearing at time t = 0 shrinks as (−t)b with
exponent b not fixed by dimensional analysis. This problem (and its deformations) is still
explored [25, 26]. See [27–33] for other self-similar solutions of the second kind. Their
importance in physics is also clear [34].
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Figure 3: Comparison of microscopic simulation results (points) with analytic
predictions (solid lines) for the time-dependence of various observables: (a) The
shock position R(t), evaluated from simulations as the average position of the
rightmost moving particle at time t. The slope of the solid line R(t) = αtδ, was
found to be α = 2.08; (b) total energy of the particles E(t) in x > 0 region; (c) total
number of collisions C(t); (d) total momentum P−(t) in the x < 0 region. The
particles are distributed uniformly with density ρ∞ = 1, v0 = 1, and the results
are all shown for the mass arrangement (2a), with m = 2/3,M = 4/3. Averages
over 2 × 105 realizations were done. In all cases the value of β given by Eq. (25)
was used and δ = (2 − β)/3.
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Figure 4: Comparison of microscopic simulation results with analytic predictions
for the time-dependence of: (a) the total number of excited particles N−(t) in the
x < 0 region and the number N+(t) in the region x > 0 for the mass arrangement
(2a); (b) here we test a prediction [see Sec. (5)] that the ratio N+ values obtained
from the two arrangements (2a) and (2b) is given, at long times, by the µ-
dependent factor 2µ/(1+µ). The particles are distributed uniformly with density
ρ∞ = 1, v0 = 1, and m = 2/3,M = 4/3. Averages over 2 × 105 realizations were
done. In all cases the value of β given by Eq. (25) was used and δ = (2 − β)/3.

Numerical results

We now compare the analytic predictions obtained in Secs. (2,3), with the results ob-
tained from direct microscopic simulations of the AHP model described in Sec. (2). Since
the dynamics consists only of free evolution and elastic collisions, this can be simulated
very efficiently using an event-driven algorithm. We mostly present results for the mass
arrangement (2a), with mass density ρ∞ = 1, masses m = 2/3 and M = 4/3, and initial
velocity v0 = 1.

In Fig. (3) we show the comparisons of results from microscopic simulations and the
analytic predictions for the following quantities: (a) position R(t) of the right most moving
particle; (b) the total energy of the particles E(t) in x > 0 regime at different times; (c) the
total number of collisions C(t) experienced by all the particles; (d) the total momentum
P−(t) of the splatter particles. In all cases, we took averages over 2 × 105 realizations
chosen from a uniform distribution of particle positions, with mass density fixed ρ∞ = 1.
We chose configuration (2a) and v0 = 1. As can be seen, we find excellent agreement
with the analytic predictions with the value of β = 0.116143836.... In particular we find
agreement with Eq. (6) for α = 2.08. In Fig. (4)(a), we plot the total number of moving
particles, N−(t) and N+(t), in the regions x < 0 and x > 0 respectively, and verify the
asymptotic growth law predicted in Eq. (9a). The validity of Eq. (9b), in particular the
dependence of the ratio on the mass ratio µ, is also clear from the plots in Fig. (4)(b).

Next we consider the scaling form of the three conserved fields. The three fields for
density ρ(x, t), velocity v(x, t) and energy E(x, t) can be obtained from the microscopic
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Figure 5: Comparison of microscopic simulation results with analytic predictions
for the scaling functions corresponding to the hydrodynamic conserved fields:
(a),(b),(c) show plots of the profiles of density, velocity and temperature fields
calculated from molecular dynamic simulations, at different times. The simu-
lation parameters were ρ∞ = 1, v0(0) = 1, m = 2/3, M = 4/3, with the mass
arrangement (2a), and an ensemble average over 105 initial conditions were per-
formed. In (d),(e),(f) we see the scaling collapse of the simulation data and we
see an excellent agreement with the analytic scaling functions G(ξ), V (ξ) and
Z(ξ) (black dashed line). The scaling variable was taken as ξ = x/R(t) with
R(t) = 2.08tδ.
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simulations using the basic definitions:

ρ(x, t) =
∞

∑
j=0

⟨mj δ[qj(t) − x]⟩ , (31a)

ρ(x, t)v(x, t) =
∞

∑
j=0

⟨mjvj δ[qj(t) − x]⟩ , (31b)

E(x, t) =
∞

∑
j=0

1

2
⟨mjv

2
j δ[qj(t) − x]⟩ , (31c)

where ⟨...⟩ indicates an average over the uniform positional distribution. The temperature
field is then given by T (x, t) = (m +M)(E/ρ − v2)/2. In Figs. 5(a)(b)(c), we plot ρ(x, t),
v(x, t) and T (x, t) at different times. We clearly observe the shock front in all the fields. In
Figs. 5(d)(e)(f), we find that using the scaling variable ξ = x/R(t) with R = αtδ, α = 2.08
gives us a very good scaling collapse. The analytic scaling functions G,V,Z, obtained
numerically from Eqs. (22) are shown by black dashed lines in Figs. 5(d)(e)(f), and are
seen to agree remarkably well with the simulation results.

Extreme particles in the splatter

We now examine the structure of the splatter, which is a highly non-hydrodynamic region.
The right-most moving particle X+(t) = R(t) advances sub-ballistically, namely as τ δ. In
contrast, the left-most particle propagates ballistically into an initially empty half-line:

lim
t→∞

X−(t)
v0t

=
⎧⎪⎪⎨⎪⎪⎩

w0 for arrangement (2a)

W0 for arrangement (2b)
(32)

The reflection velocities w0 and W0 are dimensionless and depend only on the mass ratio
µ =m/M and the type of the initial arrangement, and in general on the details of particle
positions.

The particles are labeled 0,1,2, . . ., so the left-most particle has label 0. The initial
velocities are vj = δj,0; we set v0 = 1 without loss of generality. After a few collisions,
the left-most particle acquires a certain ultimate velocity and propagates into the half-
line x < 0 without experiencing further collisions. The same fate is shared by other
particles: Every particle eventually ceases to collide and propagates to the left with a
certain ultimate velocity. For the ith particle, we denote by v0wi [resp. v0Wi] the ultimate
velocity for arrangement (2a) [resp. (2b)]; the dependence on v0 is trivial, so we focus on
the dimensionless velocities wi and Wi. We also denote by ci [resp. Ci] the number of
collisions the ith particle has experienced. All ultimate velocities are negative: wi < 0 and
Wi < 0 for all i = 0,1,2, . . ..

The above description of the fate of the system is intuitively appealing, but not proven.
We now propose two conjectures about our infinite-particle billiard:

C1 For each particle, collisions eventually cease and the particle then moves forever with
a fixed ultimate velocity.

C2 The left-most particle experiences only one collision for arrangement (2a).

These conjectures seem reasonable and we can verify them in our numerical simulations, for
a large number of random initial configurations (of particle positions). A general rigorous
proof could be a very tough challenge. For a finite system of hard spheres in Rd, a similar

12
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freezing condition like C1 implies that the total number of elastic collisions is always finite.
This was guessed by Sinai [35] who proved it in one dimension. In an arbitrary dimension,
the proof was found in [36], see [37,38] for other proofs. The maximal number of collisions
between three identical hard spheres is four [39, 40]; for four or more spheres, the answer
is unknown. When the number of spheres is large, the total number of collisions can be
very large; finding a good upper bound is an active area of research [41–45]. The number
of spheres is infinite in the splash problem and hence the total number of collisions grows
without a bound, c.f. Eq. (10) in one dimension. Yet each sphere eventually escapes into
the half-space x < 0 and collisions cease. Thus C1 must be true in an arbitrary dimension.
The one-dimensional case is the simplest and proving C1 may be feasible. Finally, the
conjecture C2 is intuitively very plausible, but it also hasn’t been proved so far.

We now probe the ultimate characteristics of the extreme particles. We begin with ar-
rangement (2a) and consider a specific random configuration S = {q0 = z0, q1 = z1, q2 = z2, . . .}.
After the first collision involving the left-most particle and particle 1, the post-collision
velocities are

v
(1)
0 = µ − 1

µ + 1
, v

(1)
1 = 2µ

µ + 1
(33)

(The notation v
(j)
i refers to the velocity of the ith particle after it has experienced j

collisions.)
For arrangement (2a), C2 implies that

w0 = v(1)0 = µ − 1

µ + 1
, c0 = 1 (34a)

Particles labeled 1,2,3, . . . in arrangement (2a) constitute a specific configuration S′ = {q0
= z1, q1 = z2, q2 = z3, . . .}, with mass arrangement (2b). Now, according C2, the left-most
particle ceases to collide after the first collision that has led to (33); we should only keep

in mind that particle 1 initially moves with velocity v
(1)
1 = 2µ

µ+1 < 1 while other particles
are at rest. Hence it follows

w1(S) =
2µ

µ + 1
W0(S′), c1(S) = C0(S′) + 1, (34b)

where we have explicitly mentioned the arguments S and S′ to emphasize that the results
are true for these two specific random positional configurations. Similarly, for the following
particles, we get

wk+1(S) =
2µ

µ + 1
Wk(S′), ck+1(S) = Ck(S′) (34c)

for k ≥ 1. A little discrepancy between (34b) and (34c) is due to the fact that particle 1
has experienced the collision with the left-most particle and this distinguish it from the
left-most particle in arrangement (2b). The above equations are not true for wk and Wk

(or ck,Ck) evaluated for two independently chosen random position configurations. In
Fig. (6)(a-d) we verify that indeed Eq. (34c) is true only when S′ is chosen in a specific
way. However, if we now average over the uniform distribution of initial positions, then
we get

⟨wk+1⟩ =
2µ

µ + 1
⟨Wk⟩, ⟨ck+1⟩ = ⟨Ck⟩ + δk,0. (35)

Therefore it suffices to determine ⟨Wk⟩ and ⟨Ck⟩ characterizing arrangement (2b) for all
k ≥ 0; the corresponding quantities ⟨wk⟩ and ⟨ck⟩ characterizing arrangement (2a) are then
found from (35).
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Energy conservation for arrangement (2a) gives

µ∑
i≥0

w2
2i +∑

i≥0

w2
2i+1 = µ, (36a)

while energy conservation for arrangement (2b) leads to

∑
i≥0

W 2
2i + µ∑

i≥0

W 2
2i+1 = 1. (36b)

Only one of these sum rules is independent. Indeed, using Eqs. (34a)–(34c) one can recast
(36a) into (36b).

The quantities Wk and Ck exhibit simple behaviors

Wk ∼ −k−
1+β
2−β , Ck ∼ k, (37)

when k ≫ 1. Indeed, using the estimates for the typical velocity v ∼ τ−(1+β)/3 and the
typical number of collisions per particle C ∼ C/R ∼ τ (2−β)/3, and expressing the label
through time k ∼ R ∼ τ (2−β)/3, one gets (37). In Fig. (6)(e,f) we show the numerical
verification of Eqs. (35,37).

As a consistency check we note that the sums in (36b) converge since 1+β
2−β > 1

2 . Using

(37) we can estimate the momentum of the splatter

Psplatter =
k

∑
j=0

Wj ∼ −k
1−2β
2−β ∼ −τ

1−2β
3 , (38)

which agrees with our earlier estimate of the splatter momentum using the hydrodynamics
picture [see discussion before Eq. (30)].

Finally we note that, following arguments as those leading to Eq. (34b), lead us to
equations, such as Eq. (7), relating the long time asymptotic forms of R(t),N±(t) for the
two arrangements (2a) and (2b).

Conclusions

In the 1D blast problem studied in [16, 17], the spreading of an intense localized energy
burst in an infinite cold gas was investigated and it was shown that at long times, a self-
similar scaling solution emerges. This solution could be accurately described by continuum
hydrodynamics. Here we studied a related problem, namely the ‘one-sided’ blast problem,
viz. the splash problem, where a semi-infinite cold gas on the positive half line is excited
at the origin. The splash problem differs significantly from the blast problem and we
summarize here some of the striking results that we find:

• A shock front develops in the gas, with position given by R(t) = An−1(nv0t)δ. The
hydrodynamic fields behind the shock have a self-similar form at long times. The
exponent δ and the form of the scaling functions differ from the blast problem.
This difference is due to the fact that the energy of the gas in the hydrodynamic
region decays slowly with time. This leads us to self-similar solutions of the second
kind, where the exponent cannot be fixed from dimensional arguments alone. From a
numerical solution of a nonlinear eigenvalue equation we determine δ = (2−β)/3, with
β = 0.11161438.... Thus δ is reduced from its value 2/3 for the blast problem. We find
excellent agreement between our numerically evaluated analytic scaling functions and
results of direct molecular dynamics simulations.
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Figure 6: (a,b) Verification of Eqs. (34c) from microscopic simulations. We com-
puted the number of collisions experienced and the frozen velocities of different
splatter particles after a sufficiently long time. In all cases we checked that
increasing time by a factor of 10 did not lead to any more collisions for these par-
ticles. In this case, we considered a single random initial configuration S, while
S′ was obtained by deletion of the first particle coordinate. (c,d) In this case,
two completely independent and random realizations S and S′ are chosen and
in this case, we see that Eq. (34c) no longer holds. In (e,f) we show the results
where we average over 103 configurations drawn from a uniform distribution at
mean density n = 1. We again find that the equalities in Eq.(35) hold. The black
lines are the asymptotic estimates from Eq. (37).
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• Coexisting with the hydrodynamic region is the splatter, formed by recoiled particles
that are contained in the region x < 0. The splatter particles exhibit decisively non-
hydrodynamic behavior and travel ballistically with negative velocities. At long
times, most of the total injected energy is contained in the splatter. The total

negative momentum carried by the splatter increases with time as t
1−2β

3 .

• We conjecture that the velocities of an increasing number of particles at the left end
of the splatter get frozen after a finite number of collisions. The precise values of
the frozen velocities depend on the mass arrangement as well as the initial positions
of the particles. For the mass arrangement (2a) we further conjecture that the left
most particle suffers only one collision and always moves with an eventual velocity
w0 = (1 − µ)/(1 + µ). The remaining k frozen particles form a fan with velocities
w0 < w1 < w2.... for arrangement (2a) and W0 < W1 < W2.... for arrangement (2b).
We find exact relations between these two sets when they are averaged over the
random initial positional configurations.

• Using the results of the hydrodynamic regime, and using heuristic arguments we are
able to make several predictions for the long time properties in the splatter. For
example we predict that the mean number of collisions of the kth particle from the
left end, before it gets frozen, scales linearly with k while the mean frozen velocity

Wk ∼ −k
1+β
2−β .

Proving some of the above conjectures and an exact determination of the exponent β are
some interesting future problems. The study of the splash in higher dimensions would be
another interesting direction to explore.
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[2] S. Tabachnikov, Billiards, Société Mathématique de France; Amer. Math. Soc.,
Providence, R.I. (1995).

[3] T. Antal, P. L. Krapivsky and S. Redner, Exciting hard spheres, Phys. Rev. E 78,
030301 (2008), doi:10.1103/PhysRevE.78.030301.

[4] P. L. Krapivsky, S. Redner and E. Ben-Naim, A Kinetic View of Statistical Physics,
Cambridge University Press, Cambridge, UK (2010).

[5] P. L. Garrido, P. I. Hurtado and B. Nadrowski, Simple one-dimensional model of
heat conduction which obeys Fourier’s law, Phys. Rev. Lett. 86(24), 5486 (2001),
doi:10.1103/PhysRevLett.86.5486.

16

http://dx.doi.org/10.1103/PhysRevE.78.030301
http://dx.doi.org/10.1103/PhysRevLett.86.5486


SciPost Physics REFERENCES

[6] A. Dhar, Heat conduction in a one-dimensional gas of elastically colliding particles of
unequal masses, Phys. Rev. Lett. 86, 3554 (2001), doi:10.1103/PhysRevLett.86.3554.

[7] P. Grassberger, W. Nadler and L. Yang, Heat conduction and entropy produc-
tion in a one-dimensional hard-particle gas, Phys. Rev. Lett. 89, 180601 (2002),
doi:10.1103/PhysRevLett.89.180601.

[8] G. Casati and T. Prosen, Anomalous heat conduction in a one-dimensional ideal gas,
Phys. Rev. E 67(1), 015203 (2003), doi:10.1103/PhysRevE.67.015203.

[9] P. Cipriani, S. Denisov and A. Politi, From anomalous energy diffusion to Levy walks
and heat conductivity in one-dimensional systems, Phys. Rev. Lett. 94(24), 244301
(2005), doi:10.1103/PhysRevLett.94.244301.

[10] S. Chen, J. Wang, G. Casati and G. Benenti, Nonintegrability and
the Fourier heat conduction law, Phys. Rev. E 90(3), 032134 (2014),
doi:10.1103/PhysRevE.90.032134.

[11] P. I. Hurtado and P. L. Garrido, A violation of universality in anomalous Fourier’s
law, Sci. Rep. 6(1), 38823 (2016), doi:10.1038/srep38823.

[12] H. Zhao and W. Wang, Fourier heat conduction as a strong kinetic ef-
fect in one-dimensional hard-core gases, Phys. Rev. E 97, 010103 (2018),
doi:10.1103/PhysRevE.97.010103.

[13] S. Lepri, R. Livi and A. Politi, Too close to integrable: Crossover from
normal to anomalous heat diffusion, Phys. Rev. Lett. 125, 040604 (2020),
doi:10.1103/PhysRevLett.125.040604.

[14] P. I. Hurtado, Breakdown of hydrodynamics in a simple one-dimensional fluid, Phys.
Rev. Lett. 96(1), 010601 (2006), doi:10.1103/PhysRevLett.96.010601.

[15] C. B. Mendl and H. Spohn, Shocks, rarefaction waves, and current fluctuations for
anharmonic chains, J. Stat. Phys. 166(3-4), 841–875 (2017), doi:10.1007/s10955-
016-1626-5.

[16] S. Chakraborti, S. Ganapa, P. L. Krapivsky and A. Dhar, Blast in a one-dimensional
cold gas: From newtonian dynamics to hydrodynamics, Phys. Rev. Lett. 126, 244503
(2021), doi:10.1103/PhysRevLett.126.244503.

[17] S. Ganapa, S. Chakraborti, P. L. Krapivsky and A. Dhar, Blast in the one-
dimensional cold gas: Comparison of microscopic simulations with hydrodynamic
predictions, Phys. Fluids 33(8), 087113 (2021), doi:10.1063/5.0058152.

[18] L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, New York, ISBN
9781483161044 (1987).

[19] L. I. Sedov, Similarity and Dimensional Methods in Mechanics, Academic Press,
New York, ISBN 978-1-4832-0088-0, doi:10.1016/C2013-0-08173-X (1959).

[20] G. I. Barenblatt, Scaling, Self-similarity, and Intermediate Asymptotics: Dimensional
Analysis and Intermediate Asymptotics, Cambridge Texts in Applied Mathematics.
Cambridge University Press, ISBN 9781107050242, doi:10.1017/CBO9781107050242
(1996).

17

http://dx.doi.org/10.1103/PhysRevLett.86.3554
http://dx.doi.org/10.1103/PhysRevLett.89.180601
http://dx.doi.org/10.1103/PhysRevE.67.015203
http://dx.doi.org/10.1103/PhysRevLett.94.244301
http://dx.doi.org/10.1103/PhysRevE.90.032134
http://dx.doi.org/10.1038/srep38823
http://dx.doi.org/10.1103/PhysRevE.97.010103
http://dx.doi.org/10.1103/PhysRevLett.125.040604
http://dx.doi.org/10.1103/PhysRevLett.96.010601
http://dx.doi.org/10.1007/s10955-016-1626-5
http://dx.doi.org/10.1007/s10955-016-1626-5
http://dx.doi.org/10.1103/PhysRevLett.126.244503
http://dx.doi.org/10.1063/5.0058152
http://dx.doi.org/10.1016/C2013-0-08173-X
http://dx.doi.org/10.1017/CBO9781107050242


SciPost Physics REFERENCES

[21] K. G. Guderley, Starke kugelige und zylindrische verdichtungsstösse in der nähe des
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