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Abstract

Identifying and characterizing quantum phases in the presence of long range correla-
tions and/or spatial disorder is, generally, a challenging and relevant task. Here, we
study a generalization of the Kiteav chain with variable-range pairing and different site-
dependence of the chemical potential, addressing commensurable and incommensurable
modulations as well as Anderson disorder. In particular, we analyze multipartite entan-
glement (ME) in the ground state of dirty topological wires by studying the scaling of the
quantum Fisher information (QFI) with the system’s size. For nearest-neighbour pairing,
the Heisenberg scaling of the QFI is found in one-to-one correspondence with topological
phases hosting Majorana modes. For finite-range pairing, we overcome notable difficul-
ties in characterising the system: in particular, we recognize long-range phases by the
super-extensive scaling of the QFI and identify complex lobe-structured phase diagrams.
The present work contributes to establish ME as a central quantity to study intriguing as-
pects of topological systems and testifies its robustness against spatial inhomogeneities.
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1 Introduction

An essential property of topological phases of matter [1, 2] is their robustness against local
perturbations [3, 4]. For instance, noninteracting symmetry-protected topological phases [5]
are characterized by the presence of robust gapless boundary states. The number of such pro-
tected states is proportional to the topological invariant characterizing the system and plays
the role of a global order parameter. The invariant chances only through a quantum phase
transition closing and reopening an energy bulk gap and is thus immune to small but finite
local perturbations. One of the most important examples of symmetry-protected topologi-
cal systems is the Kitaev chain [6, 7]: a celebrated tight-binding model of one-dimensional
spinless fermions exhibiting p-wave superconductivity. This prototype hosts non-local Majo-
rana modes that are localized at the edges of an open chain and show non-Abelian exchange
statistics under braiding [8,9]. The intrinsic robustness of topological properties against local
perturbations holds the promise to realize resilient quantum information processing [10–12],
such as topologically-protected qubits and gate operations [13].

So far, the robustness of topological phases in the Kitaev chain has been mainly character-
ized by studying the fate of Majorana modes when including sufficiently strong local pertur-
bations such as spatial inhomogeneities [14–21], eventually also in the presence of interac-
tion [22–24] or long-range pairing [25–27]. However, besides the presence of edge states, the
Kitaev model is also characterized by non-trivial quantum entanglement properties [28–34]. Is
such entanglement robust against local perturbations? Is it as robust as the Majorana modes?

Generally speaking, the characterization of quantum phases and quantum phase transitions
by entanglement-based approaches is an intriguing problem, at the frontier between quantum
information [35, 36] and many-body physics [37–41]. The literature has mostly focused on
bipartite entanglement, with witnesses such as the Von Neumann entropy [28,29,42–44], the
entanglement spectrum [32,45–49] and pairwise entanglement [50,51], also in the presence
of disorder [52–54]. Instead, multipartite entanglement (ME) has been much less studied [55,
56], while it captures a more complex entanglement structure than than identified by bipartite
and pairwise entanglement. A prominent tool to analyze ME is the quantum Fisher information
(QFI) [57–59], which is also also central in quantum metrology [60, 61]. The QFI has been
investigated in topological [33,62–66] as well as spin [67–72] and lattice [73,74] systems, and
used to characterize interesting many-body phenomena such as quantum criticality [75–77],
quantum chaos [78,79], quantum quenches [80,81], scrambling [82] and thermalization [83,
84].

In this work, we investigate the stability of ME against spatial inhomogeneities in a general-
ization of the Kitaev chain where the superconducting pairing decays with distance as a power
law [31, 85]. We consider commensurate and incommensurate quasiperiodic modulations of
the chemical potential, as well as a uncorrelated on-site random disorder with Anderson dis-
tribution. These perturbations respect the Hamiltonian symmetries (charge conjugation and
Z2 number parity). We characterize various short-range (SR) and long-range (LR) phases by
different scaling of the QFI with the system’s size. We find that the super-extensive scaling of
QFI is robust against inhomogeneities and holds up to modulation strengths strong enough to
induce a quantum phase transition. In particular, inhomogeneities induce complex structure,
such as re-entrances and lobes in interesting phase diagrams, also extending the topological
phases in some cases. In the SR case, we observe a perfect agreement between the super-
extensive scaling of the QFI and non-trivial topology phases identified by topological invari-
ants [14–16]. Furthermore, tuning the pairing range can induce a transition from SR to LR
phases that occurs without closing the mass gap: the SR-to-LR transition is captured by the
change of scaling of the QFI, also in the presence of spatial inhomogeneities. In the LR case,
where topological invariants are generally difficult to be defined, especially in the absence
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of translational invariance, our methods are particularly relevant since they provide a clear
characterzation of the phase diagram and the unprecedented identification of LR phases. On
the general conceptual side, our study testifies, for the first time to the best of our knowledge,
the robustness of spatial multipartite entanglement against spatial inhomogeneities. The im-
pressive one-to-one correspondence between non-trivial topology and the scaling of the QFI
– as shown in this manuscript – calls for applying the QFI to characterize even more complex
topological systems.

2 Model and entanglement witnesses

We study a generalization of the Kitaev chain [6] with an inhomogeneous (site-dependent)
chemical potential µl and an algebraic decay of the superconductive pairing with exponent
α [31,85] :
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J
2
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Here, â†
l (âl) is the creation (annihilation) operator of a spinless fermion at site l, L is the

number of lattice sites, J > 0 is the hopping amplitude, ∆ is the pairing strength and dl = l
for an open chain, while dl = min(l, L − l) for a closed one. In the limit α →∞, we have
d−αl → δl,1, where δl,m is the Dirac delta function, recovering nearest-neighbour pairing. Fol-
lowing Ref. [86], it is possible to rewrite the Hamiltonian Eq. (1) in a quadratic form and
diagonalize the model exactly for any value of α and µ j , see footnote [87] for details.

The model (1) has been extensively studied in the literature, especially for a uniform chem-
ical potential µl = µ and in the limit α→∞. A quantum phase transition at |µ|/J = 1 sepa-
rates a topological phase (for |µ|/J < 1) from a topologically-trivial phase (for |µ|/J > 1) [6].
When open boundary conditions are assumed, the topological phase is characterized by Majo-
rana edge modes with anyonic statistics [6,88], related to a Z2 degeneracy of the ground state
in the thermodynamic limit. The system belongs belongs to the D class of topological insulators
and superconductors, characterized by particle-hole symmetry C [1,2]. The topological phase
and the related edge modes are topologically protected. Specifically, they are stable against
perturbations (such as chemical potential inhomogeneities) that are weak compared to the
mass gap and do not change the symmetry and the related symmetry-protected topology of
their quantum state [3] The main effect of spatial inhomogeneities is to narrow the spectral gap
of the lowest-energy excited state. Eventually, for sufficiently strong perturbations, the excita-
tion gap closes and the Majorana modes no longer exist. The inhomogeneity-induced quantum
phase transition associate to the fate of Majorana modes has been studied in Refs. [14–21] for
nearest-neighbour coupling and different distributions of µl .

Variable-range extensions (α <∞) of the Kitaev chain have also received relevant atten-
tion recently, especially in the case of a uniform chemical potential µl = µ [31–33,85,89]. In
this case, and for 1 ≤ α <∞, the system is known to be topologically equivalent to the SR
Kitaev chain [32] with a topological Majorana phase for |µ|/J < 1. For α < 1, the situation
changes completely. The corresponding diagram, for an homogenoeus chemical potential has
been studied in Ref. [31, 33]. Purely LR insulating phases – that means not included in the
classification of the SR topological insulators [90] – occur. A quantum phase transition is found
at µ/J = 1. The phase for µ/J < 1 hosts massive edge modes (derived from the hybridization
of the Majorana modes [85, 91], also indicated as Dirac modes), even in the thermodynamic
limit, and a related LR topology [32] is realized. For µ/J > 1 a LR phase, not hosting any edge
mode, is present. It is interesting that, changing α across α = 1, the transitions between SR
and LR phases occur without closing the mass gap. We recall that the above behavior holds
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for a uniform chemical potential. Less is known about the interplay of finite range pairing and
chemical-potential inhomogeneities as well as the robustness of LR phases [25–27].

Quantum Fisher information

The aim of this manuscript is to study the quantum Fisher information (QFI) of the ground state
of Eq. (1). The QFI can be generally defined as the susceptibility of the quantum (Uhlmann’s)
fidelity F(θ , dθ ) [92, 93] between a quantum state depending on a parameter θ and its
infinitesimally-varied neighbour at θ +dθ [94–96]. For pure states, as relevant for this work,

F(θ , dθ ) = |〈ψ(θ )|ψ(θ + dθ )〉|= 1+
(dθ )2

4
F[|ψ(θ )〉] +O(dθ )3, (2)

where F[|ψ(θ )〉] = 1
2d2F/dθ2 is the QFI. A convenient choice of parametric transformation is

the unitary evolution |ψ(θ + dθ )〉 = e−iĴ(θ+dθ )|ψ〉. Here, Ĵ =
∑L

l=1 ĵl is a collective operator,
l = 1, ...L labels L subsystems and ĵl is a Hermitian operator defined in the local Hilbert space
Hl (H =

⊗L
l=1 Hl being the total system’s Hilbert space). This choice of transformation leads

to

F[|ψ〉, Ĵ] = 4
∑

l,m

�

〈ψ| ĵl ĵm|ψ〉 − 〈ψ| ĵl |ψ〉〈ψ| ĵm|ψ〉
�

, (3)

the QFI being the sum of the two-points connected correlations [67]. The QFI in Eq. (3) is
an efficient witness of ME [57–59, 97]: the violation of the inequality F[|ψ〉, Ĵ]/(∆ ĵ)2 ≤ kL
signals at least k−partite entanglement (1 ≤ k ≤ L) between the L subsystems Hl [58, 59],
where (∆ ĵ)2 ≡ ( jmax− jmin)2 is the difference between the maximum and the minimum eigen-
value of the local operator ĵl . Here we are assuming that all operators ĵ1, ..., ĵL have the same
bounded spectrum. More in detail, separable states, e.g. pure states |ψ〉sep =

⊗L
l=1 |ψl〉, sat-

isfy F[|ψ〉sep, Ĵ]/(∆ ĵ)2 ≤ L [57]. In other words, for separable states, the QFI scales, at best,
extensively with the system’s size. A super-extensive scaling, namely F[|ψ〉, Ĵ]/(∆ ĵ)2 ∼ Lβ

with β > 1 is only possible if |ψ〉 is multipartite entangled, with k ∼ Lβ−1. Notice that ME is
not necessarily associated to a super-extensive scaling of the QFI. Finally, F[|ψ〉, Ĵ]/(∆ ĵ)2 ∼ L2

is the fastest possible scaling of the QFI (for the collective local operators considered here) and
it is called the Heisenberg scaling [57]: it implies that k ∼ L [58,59].

In the following, we study the optimized QFI,

Fx ,y[|ψgs〉] =max
s

F[|ψgs〉, Ĵx ,y(s)], (4)

where |ψgs〉 is the ground state of Eq. (1), and

Ĵx ,y(s) =
L
∑

l=1

sl

σ̂(l)x ,y

2
, (5)

is a family of collective pseudo-spin operators with s = {s1, ..., sL}, sl = ±1 being local sign
coefficients. The Pauli operators σ̂(l)x and σ̂(l)y are expressed in terms of spinless fermionic
operators via the Jordan-Wigner transformation [86,98,99]

σ̂(l)x ,y = â†
l eiπ

∑l−1
m=1 â†

m âm ± e−iπ
∑l−1

m=1 â†
m âm âl , (6)

and are highly nonlocal in the fermionic lattice modes. In practice, taking into account that
〈ψgs|σ̂(l)x ,yσ̂

(m)
x ,y |ψgs〉= 1 and 〈ψgs|σ̂(l)x ,y |ψgs〉= 0 for all l, we have

Fx ,y[|ψgs〉] = L + 2
L
∑

l,m=1
l<m

|ρ(l,m)x ,y |, (7)
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where the correlation functions can be calculated following Ref. [86] as

ρ(l,m)x = det





Gl,l+1 Gl,l+2 . . . Gl,m
...

...
...

Gm−1,l+1 Gm−1,l+2 . . . Gm−1,m



 , (8)

ρ(l,m)y = det





Gl+1,l Gl+1,l+1 . . . Gl+1,m−1
...

...
...

Gm,l Gm−1,l+2 . . . Gm,m−1



 , (9)

and G= −ΨTΦ, see footnote [87]. We are mostly interested in the scaling coefficients

βx ,y =
d log Fx ,y[|ψgs〉]

d log L
(10)

and, in particular,
β =max{βx ,βy}. (11)

Multipartite entanglement witnessed by the QFI Eq. (4) does not depend on the basis of
the multipartite decomposition but it depends on the choice of operator J considered. In
this respect, Eq. (5) is chosen as an educated guess, directly suggested by Jordan-Wigner
mapping [33,62].

Let us recall here previous results concerning the scaling of the QFI for the uniform chain
µl = µ and∆ 6= 0 [33]. For SR coupling, α≥ 1, it has been shown that, in the topological phase
at |µ|/J < 1, the scaling exponent in Eq. (11) is β = 2. In this phase, the QFI is maximized
by the operator

∑L
l=1 σ̂

(l)
x /2 [namely s = {1, 1, ..., 1} in Eq. (5)]. This operator is the order

parameter of the quantum Ising chain in a transverse field, corresponding, via Jordan-Wigner
transformation, to the standard (α→∞) Kitaev chain [98,99]. In the following, we indicate
this phase as xSR. Along the critical lines µ/J = ±1, the QFI scales as β = 3/2, while in the
trivial phase, |µ|/J > 1, the scaling is β = 1. For LR coupling, namely 0≤ α < 1, and µ/J < 1,
the QFI is still maximized by the operator

∑L
l=1 σ̂

(l)
x /2 and has a scaling β = 3/4. We indicate

this phase as xLR. Instead, for µ/J > 1 the QFI is maximized by the operator Ĵy with staggered
s = {−1,1,−1, ...}, reaching β = 3/4. We indicate this phase as yLR. The xLR (yLR) phase
is characterized by algebraically-decaying two-point correlations of the σ̂x (σ̂y) operator and
exponential decay of σ̂y (σ̂x) correlations [33]. Along the critical line µ/J = 1 we have again
β = 3/2.

2.1 Topological invariant in the α→∞ limit

In the limit α→∞, we will compare the predictions of the QFI with the topological phases
identified by a Z2 topological index ν. Assuming (anti-)periodic boundary conditions, ν can
be calculated in various equivalent ways [100]. For instance, a common approach is the Berry
phase [101]

ν=
i
π

∫

BZ

dk 〈uk|∂kuk〉, (12)

where |uk〉 is the positive (or, equivalently, the negative) eigenvector of Ĥ(k), the Fourier
transform of Eq. (1), and the integral extends on the Brillouin zone. Assuming instead open
boundary conditions, ν can be obtained from the transfer matrix equation [14–16]

�

ψ j+1
ψ j

�

= Dj

�

ψ j
ψ j−1

�

, Dj =

� µ j
∆+t

∆−t
∆+t

1 0

�

, (13)
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where ψi is the eigenfunction of the closest positive-energy eigenfunction above zero energy.
In the topological phase, this is associated with the Majorana edge modes For a system of L
lattice sites, one calculates the matrix D =

∏L
i=1 Di . The two eigenvalues λ1 and λ2 of D fulfill

the conditions |λ1λ2|< 1. For |λ1|< |λ2|, one can define the topological invariant [14–16]

ν=
1− sgn(ln |λ2|)

2
. (14)

This quantity assumes the values ν = 0 in the trivial superconducting phase and ν = 1 in the
topological phase respectively. ν is related to the Z2 parity number of the ground state and
counts the number of Majorana modes by a direct manifestation of the bulk-boundary corre-
spondence principle. We comment that, at least in homogeneous case µ j = µ, the topological
invariant in (12) and (14) can be equivalently calculated in terms of ζ = Pf[M̂]/|Pf[M̂]| [6,
102], where Pf[M̂] is the pfaffian of the Hamiltonian matrix Ĥ, recast in a skew-symmetric
form M̂ by adopting a Majorana site-operator basis [100]. The pfaffian can change sign when
the mass gap closes, as the various Hamiltonian parameter vary. Therefore, ζ can be taken as
a Z2 topological invariant (required by the D symmetry of the Hamiltonian in Eq. (1) [1]),
assuming values ±1. Physically, when open boundary conditions are assumed, ζ is also related
with the Z2 fermionic parity symmetry of the ground state of the Hamiltonian in Eq. (1), simi-
larly as the ν index. Operatively, ζ can be evaluated via a closed formula for even-dimensional
matrices, as in Ref. [103] . However, when perturbations breaking explicitly translational in-
variance are added, the pfaffian does not work in general as a topological index. This relevant
situation will be described in Appendix, also for finite α. Finally, other equivalent expressions
for ν are known in the spatially unpertubed regime, in the infinite size-limit [104] as well as
at finite sizes [105].

3 Commensurate quasiperiodic modulation (Harper potential)

We analyze here the following site-dependence of the chemical potential:

µl = µ+ V sin(2πlω+φ
�

, (15)

where µ is a constant offset, ω = p/q is the commensurate modulation frequency, p and
q are relative prime integer numbers, V quantifies the strength of the inhomogeneities and
φ ∈ [0, 2π) is a phase. The salient features of the topological phase diagrams discussed in this
section show only a minor qualitative dependence on φ.

For ∆ = 0, the Hamiltonian (1) with the Harper potential Eq. (15) and rational ω = p/q
[106] maps exactly into a square lattice tight-binding model with constant magnetic flux
cos(2πp/q) per plaquette (in units of ħh/e, e being the electric charge), where V is the rel-
ative hopping along a second (cyclic) coordinate m orthogonal to the linear direction l in
Eq. (1), and φ is the corresponding cyclic quantized momentum [107]. Depending on the
ratio p/q and on the filling, the present set-up hosts, beyond various metallic phases, many in-
sulating phases, also with possible edge excitations [17,107]. These phases occur following a
characteristic fractal butterfly-like structure in the plane reporting the single-particle energies,
as functions of the magnetic flux. If ∆ 6= 0, the same mapping as in Ref. [107] holds, with an
additional pairing along the l direction.

Limit α→∞

The upper row panels of Fig. 1 show the scaling exponent β of the QFI, Eq. (11), as a function
of µ/J and ω, and for different values of V/J . The bottom panels report the corresponding
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 : trivial phase,     
 : topological phase,

ν = 0
ν = 1topological invariant

(e) (f) (g) (h)

μ /J μ /J μ /J μ /J

ω β
scaling of the QFI

(a) (b) (c) (d)

μ /J μ /J μ /J μ /J

ω

Figure 1: Phase diagram of the model (1) with nearest neighbour coupling (α=∞)
and commensurate modulation frequency ω = p/q, Eq. (15). Upper panels: scaling
exponent β of the QFI, defined in Eq. (11). Lower panels: topological invariant ν,
defined in Eq. (14). Different panels correspond to different values of V/J : 0.25
(a,e); 0.5 (b,f); 1 (c,g); and 1.25 (d,h). Here, ∆/J = 0.25 and φ = 0. The scaling
β is extracted from the calculation of the QFI between L = 200 and L = 400 with
antiperiodic boundary conditions. Hereω is changed according to p = 0, 1,2, ..., 100
and q = 100.

topological index ν, calculated as in Eq. (14). We find a remarkable one-to-one correspondence
between non-trivial topology, ν= 1, and the Heisenberg-scaling, β = 2. Conversely, the trivial
phase is characterized by an extensive scaling, β = 1. Recalling that φ = 0 is assumed here,
for ω = 0, 1/2 and 1, the sinusoidal modulations in Eq. (15) vanish and we recover the
homogeneous chemical potential case µl = µ. Accordingly, the topological phase is found for
|µ|/J < 1 [6,33], irrespective of V , as seen in Fig. 1. The robustness of Majorana edge states
against the modulation strength V , for specific values of φ and ω, has been also noticed in
Ref. [108].

In the limit V/J → 0 [e.g. V/J = 0.25 in panels (a) and (e)], we recover the non-
trivial topological phase for |µ|/J ≤ 1 and any value of ω. Increasing V/J , we find a typical
Hofstadter-butterfly-like phase diagram. This characteristic structure was already noticed in
Ref. [15] when studying the topological invariant ν. For large values V/J [e.g. V/J = 1.25
in panels (d) and (h)], the width of the topological phases becomes thinner and thinner, and
eventually disappears for V/J � 1. It is worth pointing out that, in the phase diagrams of Fig.
1(a)-(d), the QFI is maximized by the operators

∑L
l=1 σ̂

(l)
x /2 (namely s = {1, 1, ..., 1} in Eq.

(5) and β = βx = 2] which is also the nonlocal order parameter for the case V/J = 0 [33].
Conversely, for all values of µ/J , ω and V/J , we find βy = 1.

Note that the rich butterfly structure shown in Fig. 1 disappears for ∆/J ≥ 1. In this case,
one obtains a single (connected) topological region for |µ|/J ® 1, irrespective of ω and for
every value of V/J ® 1. Conversely, for ∆/J ≥ 1 and V/J ¦ 1, the phase diagram assumes a
disperse multifractal structure.
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Finite-α regime

Figure 2 investigates how the butterfly-like phase diagram of Fig. 1 changes when decreasing
α. Figure 2(a) shows the scaling exponent β , as a function of µ/J and ω, in the SR case
α = 2. Here we focus on the set of parameters ∆/J = 0.25 and V/J = 0.5, which, in the
the limit α →∞, correspond to the phase diagram reported in Fig. 1(b). We find that the
results obtained for α→∞ hold qualitatively up α = 1. The butterfly structure is essentially
maintained for µ/J ≥ 0, while it is slightly distorted for negative values µ/J . For α > 1, the

(a)
α = 0

(d)

ω

1.75

2

1.5

1.25

1

α = 2

ω
ω

(a)

(b)

1/L

0.2

0.4

0.6

0.8

1

β
δℓ/L ω

ω

(e)

μ /J

ω

μ /J

ω

0

−1

−2

−3

0

−1

−2

−3

βx ,βy

log10 (δE/J)

log10 (δE/J)

(c) (f)

xSR trivial xLR

yLR

Figure 2: Phase diagram of the model (1) with finite-range coupling (α < ∞)
and commensurate modulation frequency, as a function of µ/J and ω = p/q.
Panel (a), (b) and (c) show the the scaling exponent β of the QFI, the ELW δ`/L
[see Eq. (16) and text], and the mass gap δE/J , respectively, in the SR case α = 2.
Panels (d) and (e) plot βx and βy , respectively, in the case α = 0. Panel (f) shows
the corresponding mass gap. Here, V/J = 0.5, ∆/J = 0.25 and φ = 0. The scaling
of the QFI is calculated between L = 200 and L = 400. The mass gap and the ELW
are calculated for L = 200. The QFI and the mass gap are calculated in the closed
chain with anti-periodic boundary conditions, while the ELW is calculated in the open
chain. δE/J is plotted with a lower cutoff at 10−3.
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QFI is still maximized by the operator
∑L

l=1 σ̂
(l)
x /2 and we identify a xSR phase when β = 2

[yellow region in Fig. 2(a)].
Probing the predictions of the QFI against a topological invariant is hindered by difficul-

ties in calculating the later quantity for finite α and in the presence of chemical potential
inhomogeneities (see Appendix). Instead, we have numerically checked that, in the open
chain, the xSR phase is characterized by the presence of Majorana modes localized at the
edges. To be more specific, in Fig. 2(b) we plot the edge localization width (ELW) defined as
δ`= `left + `right, where

`left
∑

l=1

|ψl |2 = C , and
L
∑

l=L−`right

|ψl |2 = C . (16)

Hereψl is the discrete normalized wavefunction of the first excited eigenstate (quasi-degenerate
at finite size with the lowest-energy one in the Majorana phase). In other words, `left and `right
count the number of lattice sites where ψl is spatially localized with probability C (in prac-
tice, we set 2C = 0.9), starting from the left and right edges, respectively. In the presence of
Majorana modes, we have `left ≈ `right� L/2 (such that δ`/L ≈ 1/L), while for an extended
wavefunction, `left ≈ `right ≈ L/2 (such that δ`/L ≈ 1). Furthermore, the borders of the xSR
phase are characterized by the closing of the mass gap δE/J , as shown in Fig. 1(c),

Let us now turn to the case α < 1. In Fig. 2(d) and (e), we plot βx and βy , respectively.
In each panel, the green region corresponds to a scaling coefficient βx ,y = 3/4, while the red
region to βx ,y = 1. As we see, we still recover a asymmetric butterfly-like structure, which
is qualitatively similar, especially for µ/J ≥ 0, to the one obtained for α > 1. Following the
uniform case, we thus identify xLR and yLR phases. Notably, the green and red regions in
Fig. 2(b) and (c) complement each other perfectly, such that β = max(βx ,βy) = 3/4 for all
value of µ/J , except at the transition between xLR and yLR, where βx = βy = 3/2. This
transition is marked by the closing of the mass gap, as shown in Fig. 1(f). We have also
observed that the presence of massive Dirac modes is not a characteristic feature of the xLR
phase: for instance, in the green region of 2(d) we observe localized as well as extended modes
with no distinctive distribution. In other words, differently from Majorana modes for α > 1,
massive Dirac modes for α < 1 are not robust against inhomogeneities.

Recently, Ref. [27] has reported the calculation of a real-space winding number (taken
from the BDI class [109] and here indicates as ν̃) for the inhomogeneous model considered
here. To allow for a direct comparison with the QFI, we investigate, in Fig. 3, the phase
diagram in the ∆/J -α plane and for different values of V/J (to be compared with Fig. 5 of
Ref. [27]). The top panels show the scaling exponent β , while the bottom panels show the
corresponding mass gap. The different column panels are obtained to different values of V/J :
0.5 (a,e); 1 (b,f); 1.5 (c,g) and 2 (d,h). The parameters considered here, µ = 0, φ = π/2
and ω= 72/117 are analogous to the one in Ref. [27]. For relatively small values of V/J and
sufficiently large∆/J , we observe a xSR phase for relatively large α and a xLR phase for small
α. The transition between the two phases occurs without closing the energy gap, see Fig. 3(e).
Instead, when increasing V/J , the phase diagram enriches substantially. A nested structure
of lobes, each hosting a yLR phase, appears at sufficiently small values of α and ∆/J . The
lobes are separated by massless lines. Furthermore, the yLR lobe observed at small∆/J is not
separated by the trivial phases by a closing mass gap. Overall, our results concur well with
those of Ref. [27]: the xSR region agrees with ν̃= 1, while the xLR and yLR phases agree with
ν̃ = 0.5 and ν̃ = −0.5, respectively. However, the study of the QFI addresses regions of the
phase diagram where the calculation of ν̃ in Ref. [27] is hindered by small values of the mass
gap. This unveils a richer structure of phases than that shown in Ref. [27] and promotes the QFI
as a relevant tool to study the phase diagram of topological systems, beyond the cumbersome
analysis of topological invariants.
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Figure 3: Phase diagram of the model in Eq. (1) with commensurate chemical po-
tential, as a function of ∆/J and α. Top panels: scaling exponent β . Bottom panels:
energy mass gap δE/J (plotted with a lower cutoff at 10−3). Different panels cor-
respond to different values of V/J : 0.5 (a,e); 1 (b,f); 1.5 (c,g) and 2 (d,h). Here,
µ/J = 0, φ = π/2 and ω = 72/117. The scaling of the QFI is calculated between
L = 234 and L = 468.

We finally comment that the structure of lobes shown in Fig. 3 can be linked to the butterfly
structure observed in Figs. 1 and 2, as well to the fact that, also below α= 2, only two phases
are possible, not breaking (explicitly or spontaneously) the Z2 parity and charge conjugation.
Furthermore, the diagrams recovers, for large values of ∆/J , the qualitative structure as in
the limit V → 0, dominated by the topological Majorana phase and by the xLR phases, as
expected. The increase of ∆/J favours topology at every α, while the increase of V/J disad-
vantages it. This trend can be qualitatively understood considering the Hofstadter mapping
discussed above [107]: the increase of V/J , that is mapped on the relative hopping along the
second (orthogonal to l) direction, tends to disadvantage the effect of the∆ pairing, therefore
destroying topology, for every α.

4 Incommensurate quasiperiodic modulation (Aubry-Andre poten-
tial)

In this Section, we analyze the model in Eq. (1) as an onsite disorder is added. In particular, we
consider the non-uniform chemical potential Eq. (15), where ω is now an irrational number,
here set as the inverse golden ratio

ω=
p

5− 1
2

. (17)

In the case ∆ = 0, Eq. (1) reduces to the famous Aubry-André model [110, 111]. This
model features a metal-insulator (localization-delocalization) transition, at the critical value
Vc/J = 1, which can be determined exactly by a self-duality mapping [110]. For V < Vc ,
all eigenfunctions are extended, while for V > Vc they are all localized. This transition has
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Figure 4: Phase diagram of the model (1) with SR coupling (α→∞) and an incom-
mensurate modulation frequency given by Eq. (17). (a) Power scaling β of the QFI in
the V -∆ plane, at µ/J = 0. The black line is Eq. (18). (b) Cuts of the phase diagram
in (a) for∆/J = 0 (red circles) and∆/J = 1 (blue circles). Panels (c) and (d) report
the scaling coefficient β in the µ−V plane for∆/J = 0.5, and∆/J = 1, respectively.
The black line indicates the transition from a topological phase (ν = 1) to a trivial
one (ν= 0), where ν is the Z2 topological invariant calculated in Eq. (14). Here the
QFI is calculated between L = 100 and L = 200 with open boundary conditions. The
topological invariant is calculated for L = 200.

been observed experimentally with a non-interacting Bose-Einstein condensate trapped in a
bichromatic lattice potential [112], see also Ref. [113], and with photons in optical waveg-
uides [114,115]. In the following, we set φ = π/2 in Eq. (15) and study the system with open
boundary conditions.

Limit α→∞

For ∆ 6= 0, the model in Eq. (15) has been studied in Refs. [15, 18–20] in the limit α→∞.
For µ = 0, a quantum phase transition takes place at a critical value of the disorder strength
[15,19]

|Vc|
J
= 1+

∆

J
. (18)

When V < Vc , the Z2 topological invariant (14) is ν = 1 and the system thus hosts Majo-
rana modes. Instead, for V > Vc , ν = 0 holds and the system is in the topologically trivial
superconductive phase.

Figure 4(a) shows β in the V -∆ plane, for µ= 0. The scaling of the QFI changes abruptly
from super-extensive, β = 2, in the topological region (V < Vc), to extensive, β = 1, in the
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Figure 5: Phase diagram of the model in Eq. (1) with finite-range coupling (α <∞)
and an incommensurate chemical potential frequency. Panels (a), (b) and (c) show,
respectively, the scaling exponent β of the QFI, the ELW and the mass gap, in the
µ-V/J plane and for α = 2. Panels (d), (e) and (f) corresponds instead to the case
α = 0. We plot βx and βy , in panels (d) and (e) respectively, and the mass gap in
panel (f). In all panels ∆/J = 1.

trivial superconductive region (V > Vc). The sharp change occurs exactly along the critical line
Eq. (18). Figure 4(b) shows cuts of the phase diagram of panel (a) for ∆/J = 0 (red squares)
and ∆/J = 1 (blues circles). The metallic phase at ∆/J = 0 and V/J = 0 is characterized by
β = 3/2, which is intermediate between the topological Majorana phase and the trivial one.
Then, the Aubri-Andrè localization transition, again at ∆/J = 0, is signaled by the abrupt
change of scaling of the QFI, jumping to β = 1 at V/J = 1, in agreement with Ref. [110].

We further study the case µ 6= 0. The lower panels of Fig. 4 show the phase diagram for the
scaling parameter β in the V -µ plane, for∆/J = 0.5 (c) and∆/J = 1 (d). We clarify here that
the phase diagrams of Fig. 4(c) and (d) are mirror-symmetric for µ < 0. For |µ|/J ≤ 1, disorder
competes with the Majorana phase, that disappears for sufficiently large value of V . The critical
value of V signaling the quantum phase transition point is essentially the same as µ/J = 0
when ∆/J ≥ 1, while for ∆/J < 1 there are characteristic re-entrances, already noticed in
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Ref. [20]. For |µ|/J > 1, disorder may even enlarge the topological phase: for instance in
Fig. 4(d), e.g. at µ/J = 1.5, we see that the phase is topologically trivial for 0 ≤ V/J ® 1.5,
while it becomes nontrivial for a sufficiently large disorder, specifically for 1.5® V/J < 2. The
disorder-induced quantum phase transition predicted by the QFI is found in perfect agreement
with the one obtained by calculating the Z2 topological invariant [15, 19, 20], shown by the
black line in Figs. 4(c) and (d).

Finite-α regime

Figure 5 clarifies how the µ-V phase diagram changes with α. Here ∆/J = 1, therefore, the
corresponding diagram in the limit α → ∞ is the one reported in Fig. 4(d). In Fig. 5(a)
we report the case α = 2. Although the diagram still shows the characteristic transition from
β = 2 (xSR) to β = 1 (in the trivial superconductive phase), we find qualitative changes with
respect to the SR case. First, the diagram is not symmetric any longer with the respect to the
change of sign of µ. Furthermore, for µ > 0, there appear again characteristic re-entrances,
similarly as discussed in the previous subsection. We further compare the prediction of the
QFI with the ELW, as calculated in Eq. (16), see Fig. 5(b), and the mass gap, see Fig. 5(c).
Overall, we find a perfect agreement between the xSR region and that hosting Majorana edge
modes. As shown in Fig. 5(c), the characteristic structures of the phase diagram prolong, for
V larger than a critical value, into regions where the mass gap is small but finite: as a revealed
by a finite-size scaling that shows a saturation of δE as a function of the system’s size. Instead,
the characteristic re-entrances prolong into regions of much larger mass gap. In Ref. [20] (for
the case α→∞), the latter feature was associated to a band gap region, while the former to
an Anderson insulator regime. The scaling of the QFI does not reveal the difference between
these two different kind of regions since both correspond to a trivial topological phase.

For α < 1 the diagram changes abruptly. In Fig. 5(d) and (e), we plot βx and βy , re-
spectively, for α = 0. The different, xLR and the yRL regions (with βx ,y = 3/4, respectively)
complement each others, except in extended regions where β = 3/2 (which appears in blue
in the figures) that are associated to a small mass gap, see Fig. 5 (f). It should be noticed
that β = 3/2 is also found along the line of vanishing energy gap that separates the xLR and
the yRL regions. In the same panels (d) and (e), extended quasi-critical regions, denoted in
blue, are observed. The analysis of the mass gap in the quasi-critical regions is unclear: the
gap is typically small but a finite-size analysis shows a clear decrease for some values of the
parameters and a saturation for nearby values. No localized Dirac modes are observed for
parameter values in this region.

5 Uncorrelated random disorder (Anderson potential)

In this Section, we consider a genuine random disorder á la Anderson [116], that means

µl = µ+ µ̃l , (19)

with µ̃l ∈ [−V, V ] distributed randomly. Again, we assume closed (antiperiodic) boundary
conditions. For ∆/J = 0, a perturbatively small amount of disorder is sufficient to induce
localization in one dimension, for a sufficiently large system [117,118].

Limit α→∞

This case is qualitatively similar to the incommensurate quasiperiodic case discussed in the
previous section: by varying V/J , we observe a disorder-induced quantum phase transition
from a Majorana phase, with ν̄ = 1, to a superconducting trivial one, where ν̄ = 0. Here, we
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indicate as ν̄ as the average of the Z2 topological invariant Eq. (14) over independent realiza-
tions of the disorder. The disorder-induced quantum phase transition has been characterized
by probing the disappearance of the Majorana modes [15, 19, 21], also studying the decay
of the entanglement entropy, as well as the degeneracies of the entanglement spectrum [54].
Instead, in Ref. [23], the systems has been studied by looking at the presence of LR order in
the correlation functions of the operator σ(l)x .
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Figure 6: Phase diagram of the model (1) with SR coupling (α → ∞) and and
Anderson disorder, Eq. (19). (a) β in the V -∆ plane, at µ/J = 0. The black line
is ν̄ = 0.5, where ν̄ is the disordered-averaged topological invariant. (b) Cuts of
the phase diagram in (a) for ∆/J = 0 (red squares) and ∆/J = 1 (blue circles).
Panels (c) and (d) show β in the V -µ plane, for ∆/J = 0.5 and 1, respectively.
The black line is ν̄ = 0.5. Notice that the obtained phase diagram is symmetric
under the transformation V → −V and µ → −µ (therefore, here we show the first
quadrant only). Here the QFI is calculated between L = 100 and L = 200 with open
boundary conditions. The topological invariant is calculated for L = 200. Averaging
is performed over 500 disorder realizations.

Here, we calculate the QFI of the ground state of Eq. (1) for several independent realiza-
tions of the disordered potential in Eq. (19). We then calculate the disorder-average QFI and
extract the scaling coefficient β by varying the system’s size. Figure 6 reports the obtained
results. In the panel (a), we show the scaling β in the V -∆ plane and for µ/J = 0. Similarly as
in Fig. 4, we observe a transition from a regime where the scaling β = 2 is not affected by the
disorder, to a region at larger V , where β = 1. The black line in the figure indicates the values
of µ/J and V/J for which ν̄ = 0.5 [15]: it separates sharply a topological phase with ν̄ = 1
(for small V/J) from a trivial phase with ν̄ = 0. In particular, at ∆/J = 1, the QPT occurs at
V/J = e [15]. In Fig. 6(b), we show β as a function of V/J , for ∆/J = 0 (red squares) and
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Figure 7: The upper row panels show β , as a function of µ/J and α, and for different
values of V/J : 0.5 (a), 1 (b) and 2 (c). The bottom panels show the corresponding
(disorder-averaged) mass gap. Here ∆/J = 1 and other parameters are as in Fig. 6.

∆/J = 1 (blue circles). For ∆/J = 0, the metallic phase is not robust against disorder and the
scaling coefficient β decays quickly from β = 1.5 (at V = 0) to β = 1. In general, for ∆ 6= 0,
the transition between β = 2 and β = 0 is much smoother than the one observed in Fig. 4 due
to disorder fluctuations.

Finally, in Fig. 6(c) and (d), we plot the exponent β in the V -µ plane, for ∆/J = 0.5 (c)
and ∆/J = 1 (d), respectively. Again, the transition from the Majorana phase to the super-
conductive trivial one (along the black line identified by ν̄ = 0.5) is marked by a change
of the scaling coefficient β . The phase diagram is qualitatively similar to the one obtained
for the incommensurate Aubry-Andre potential in Fig. 4. In particular, disorder enlarges the
Majorana phase [23, 54]: this effect is due to the fact that here disorder is such that µl in
Eq. (19) is symmetrically distributed around µ. Therefore, starting for instance from the not
topological phase and close to the phase transition, for small-enough V , disorder selects some
Hamiltonian configurations (which we mediate on) lying in the topological phase [119,120],
eventually favouring it.

Finite-α regime

For Anderson disorder, the phase diagram in the V -µ plane is very similar as in the incom-
mensurate case of Fig. 5 and we do not show it explicitly here. Instead, in the various panels
of Fig. 7, we plot β in the µ/J -α plane, for ∆/J = 1 and different values of V/J : 0.5 (a), 1
(b) and 2 (c). The corresponding diagram for V = 0 (namely µl = µ) has been studied in
Ref. [33]. The phase diagram for sufficiently small values of V [e.g. V/J = 0.5 in panel (a)]
shows features very similar to the case V = 0. In particular, we recognize a xSR phase for
α > 1 and |µ|/J ≤ 1, a xLR phase for µ/J ® 1 and α < 1, where β = βx = 3/4, and a yLR
phase for µ/J ¦ 1 and α < 1, where β = βy = 3/4. The transition between the xLR and yLR
phases, as well as between the xSR and the trivial phases, is marked by a closing mass gap
around µ/J = 1, where β = 3/2. Increasing V , the critical region shifts and enlarges following
closely the behaviour of the mass gap, see Figs. 7(b), (d) and (f). The topological xSR shrinks
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while the xLR and yLR phases appear quite robust against disorder, especially for large values
of |µ|/J .

6 Discussion

Finally, it is interesting to make a direct comparison between commensurate, incommensurate
and Anderson inhomogeneities. In the upper panels of Fig. 8 we plot β in the V/J -α plane.
The commensurate case is calculated for ω = 72/117 ≈ 0.61, which is very close to Eq. (17)
for the incomemnsurate case. The phase diagrams are similar in the three cases. Yet, the yLR
phase found in the commensurate case for large values of V and small α is strongly affected
by disorder, turning into an extended “critical region” with β = 3/2 and a small mass gap.
Furthermore, the lobe structure shown for commensurate and incommensurate potentials for
relatively small values of V/J and α is washed out for Anderson disorder. The border between
the xSR and the trivial regions, as well as between the xLR and yLR regions, agree well with
the closing of the mass gap, as shown in bottom panels of Fig. 8
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log10 (δE/J)
β

(b)

α

commensurate incommensurate Anderson disorder 
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xSR trivial

xLR yLR
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Figure 8: Phase diagrams showing the scaling of the QFI in the V/J -α plane for
commensurate (a), incommensurate bichromatic (b) and Anderson (c) potentials for
µ = 0. The lower panels show the corresponding mass gap. The commensurate
bichromatic case is calculated for ω = 72/117 and anti-periodic boundary condi-
tions. In this case, the scaling coefficient β is calculated within L = 234 and L = 468,
while the mass gap for L = 234. The incommensurate bichromatic case is shown for
ω given by Eq. (17) and open boundary conditions. In this case, the scaling coeffi-
cient β is calculated within L = 100 and L = 200, while the mass gap for L = 200. For
the disordered Anderson potential case, β is calculated within L = 100 and L = 200
and anti-periodic boundary conditions, while the mass gap is calculated for L = 200.
In this case, we considered averaging over 500 realizations of the disorder. In all
panels, we set ∆/J = 1.
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7 Conclusions

To summarize, in this work, we have discussed the stability of the ME against inhomogenities
in paradigmatic gapped fermionic wires, also hosting symmetry-protected topological phases.
In particular, we have calculated the QFI of the ground state of a generalization of the cele-
brated Kitaev chain with variable-range pairing and in the presence of periodic, quasiperiodic,
as well as genuinely random offsets. Our analysis conveys two key messages. First, the scaling
of the QFI allows to identify clearly topological and long-range regions. Conversely, topolog-
ical invariants are difficult to define and/or calculate in the presence of inhomogeneities and
long-range pairing. Similarly, the analysis of correlation functions is notoriously difficult for
inhomogeneous systems, as they can show complicated staggered structure, while the QFI is
characterized by clear power-law scalings. In particular, in the limit α → ∞, the topologi-
cal regions identified by the QFI agrees perfectly with that singled out by the Z2 topological
invariant [14–16]. For α < ∞ the border of the different phases agree well with the be-
haviour of the mass gap when the latter is relevant to determine a transition between trivial
and topological phases. In the LR case, our methods go beyond the current literature [20,27],
where a characterisation of the phase diagram was hindered by difficulties associated to the
identification of topological invariants. Second, the ME identified by the QFI appears robust
against inhomogeneities. In some cases, the QFI is even favoured by the disorder. In particular,
the super-extensive scaling of the QFI is as robust as the non-trivial phases themselves: the
stability of ME holds at least until (SR and LR) topologies are preserved by the Hamiltonian
symmetries, not broken by the added inhomogeneities, and by the mass gap. This work pro-
motes the QFI as a valuable tool to analyze systems hosting symmetry-protected topological
phases and opens toward the study of even more interesting topological systems, even in the
presence of inhomogeneities and disorder. The study of the QFI presented here can be also
extended to analyze the dynamical evolution of entanglement, e.g. under braiding [121].
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8 Appendix

Along the main text, the calculation of the QFI is sometimes compared to the calculation of
topological invariants, as in Section 2, signaling different quantum phases. For this reason, in
this Appendix, we recall them further, also for finite α. Importantly, we also discuss important
limitations of these indices occurring for some cases that we have dealt with.

If 1< α <∞, the topological index ν can be evaluated both as in Eq. (12), if antiperiodic
conditions are assumed, and via the pfaffian. Instead, the transfer matrix method, leading to
Eq. (14), looks quite cumbersome.

Instead, if α < 1, the topological index cannot be calculated as meantioned in the main text
and above. There, a counterpart of Eq. (12), can be calculated by assuming close boundary
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conditions [32]:

1
2
+

i
π

∫

BZ
dk 〈uk|∂kuk〉=

1
2
+ ν . (20)

This assumes the value 1 if µ/J < 1, counting the massive edge modes, while it is equal to 0
if µ/J > 1, where no protected edge states are present at all. Instead, ν, Eq. (12), is badly
defined for α < 1, assuming semi-integer values [27, 32]. Notably, the critical line α = 1,
although locating a beyond-first-order phase transition, is characterized by a nonvanishing
mass gap in the thermodynamic limit. Consequently, the Z2 parity number symmetry is re-
stored, also with open boundary conditions, as also clear in the structure of the entanglement
spectrum [32]. All these fact are direct consequences of the algebraic tails of the two-points
correlations of the model, still in massive regimes. Finally, around the critical and massless
line µ/J = 1, conformal invariance breaks down below α = 1. Most of the described features
can be linked with the dynamics of states, called "singular", at the border of the Brillouin zone
of the model, with diverging energy [89].

Furthermore, a suitable quantity, distinguishing the LR phases among each others, as well
as from the SR one, is still the pfaffian. To this aim, let us recall that, in momentum space, the
sign of the pfaffian can be reduced to [6]

ζ= sign
�

Pf
�

M̂(k = 0)
�

Pf
�

M̂(k = π)
�

�

. (21)

Indeed, the charge conjugation proper of the D class implies that mass gap of the Hamiltonian
operator, Ĥ(k), in momentum space and of the corresponding antisymmetric operator M̂(k),
can vanish at opposite sign pairs of momenta ±k. However, these pairs does not contribute
to the change of sign on the pfaffian. Instead, the change of sign can occur at the momenta
k = 0,π, auto-conjugated under C . These momenta are precisely those where the mass-gap
closes at the quantum transition points for the LR extensions of Kitaev chain in Eq. (1). We
notice that the pfaffian is ill-defined at k = 0, where M̂(k = 0) (Ĥ(k = 0)) becomes singular
if α < 1, and limk→0− M̂(k) 6= limk→0+ M̂(k) (similarly as for Ĥ(k)). Such a type of is called
a "second-type singularity" in Ref. [32], and leads to long-range phases, contrary to the "first-
type singularities", where the two limits above coincide. Instead, the long-range phase are
still distinguished by the change of sign Pf

�

M̂(k = π)
�

, also assuming values ζ̃ = ±1, as the
various Hamiltonian parameter vary. ffFWe notice finally that the pfaffian is not related to the
fermionic number parity of the ground-state, here always positive, due to the fact that the edge
modes are massive. Therefore, although still useful, as it changes sign at a second-order phase
transition, it is not a genuine topological invariant, being not related to the number of edge
modes. However, here the possibility of a change of ζwithout any change of topology (then say
between topologically trivial long-range phases) is eventually ruled out in the absence of other
mechanism inducing quantum phase transitions, as the breakdown (explicit or spontaneous)
of the Z2 symmetry oh the Hamiltonian in Eq. (1), or the introduction of further singularities,
as due to other long-range Hamiltonian couplings in Eq. (1).

When spatial inhomogeneities are added, the sign of the pfaffian is unreliabile to signal SR
ans/or LR phases. We encountered the described situations for instance in Fig. (2): there the
pfaffian can rapidly oscillate, also in the absence of energy gap closings, or not to change where
closing arise. Indeed, in presence of inhomogeneities, the pfaffian, evaluated as in can be ex-
tremely small (compared with the typical Hamiltonian energy scale,J in our case) in modulus
in certain ranges of the Hamiltonian parameters, and already at limited space sizes. Therefor,
due to the limited numerical precision, the sign of the pfaffian can be not sufficiently stable,
instead oscillating also in the absence of energy gap closings. Moreover, mass gap closings,
related with certain quantum phase transitions, can involve pairs of degenerate lowest-energy
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levels (as pairs of momenta different from k = (0,π), connected by the charge-conjugation
symmetry [6]). In this condition, the pfaffian does not change as a similar transition occurs,
also between different topologies.
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i Ai j â j+
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