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Abstract1

Social interactions are ubiquitous in groups of animals, including humans. These inter-2

actions might be of different nature, for example, competitive, mutualistic, or kinship;3

and their global structure is naturally studied with the tools of complex network theory.4

Traditionally, it has been challenging to examine social interactions in the marine envi-5

ronment given the difficulties associated with data collection, however, developments in6

acoustic telemetry technologies now present a novel way to remotely examine such be-7

haviour. Here, we propose a method to extract leader-follower networks from presence8

data collected by a single acoustic receiver at a specific location. The method is based9

on the Kolmogorov-Smirnov distance between the distribution of lag times between the10

consecutive presence of an individual followed by the presence of another and its con-11

jugate distribution. After characterising the method through controlled generated data,12

we apply it to detection data collected for acoustically tagged reef manta rays (Mobula13

alfredi) by a single acoustic receiver positioned at a frequently visited site. First, we14

show that the presence of reef manta rays in the vicinity of the cleaning station displays15

several temporal heterogeneities, such as a circadian rhythm, as well as burst-like be-16

havior, where the time between consecutive presences follows a power-law distribution.17

Second, we infer the leader-follower network of manta rays and characterize individ-18

uals in terms of their position on this network relative to their sex and size. We find,19

in agreement with biological and ecological insights, that (i) female reef mantas follow20

more males than expected; (ii) male reef manta rays follow fewer females than expected,21

but with a stronger association to certain individuals; (iii) reef manta rays follow each22

other with a weaker association than larger individuals do, while the rest of the reported23

interactions between individuals appear to be random.24

1 Introduction25

Social interactions among animals mediate many processes, such as the transmission of in-26

formation [1, 2] or diseases [3]; collective behavior [4–6] (flocking [7], social learning [8],27

predator avoidance [9], cooperative foraging [10]); selection of phenotypes [11]; mating [10];28

or the emergence and maintenance of cooperation [10,12]. The structure of these social inter-29

actions as a whole is typically studied with the methods from network theory [13], which have30
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recently and increasingly been applied to animal groups [1–10,14] and represent a promising31

tool in the field of movement ecology [15].32

The first step of studying these interactions involves finding or collecting the data that de-33

scribe them, before the underlying networks can be extracted in a meaningful and statistically34

significant way. For humans, the availability of large amount of digital traces (notably, call de-35

tail records and social media accounts [16]) and the ease at which they can be accessed, has36

facilitated the detailed statistical description of human interactions. Tracking animal social37

systems [17] in a similar manner, however, has remained a challenge, given the difficulties38

associated with collecting a sufficient amount of data from the network of interest. This is39

particularly true in the marine environment, where the large and three-dimensional nature of40

animal movements impose logistical, technological and financial constraints on data collection41

capacities.42

Traditionally, the collection of presence data in the marine environment relied on tech-43

niques that were applied within discrete sampling periods (e.g. photo-identification [18] or44

capture-mark-recapture [19, 20]). This temporal limitation restricted the extent to which so-45

cial interactions between sampled individuals could be considered. Recent advances in the46

field of acoustic telemetry, however, have since provided a means to overcome these issues,47

allowing the movement and residency patterns of marine fauna to be monitored continuously,48

and over long periods of time (up to ten years).49

In studies using passive acoustic telemetry, acoustic tags that emit a unique sound signal50

are externally attached to [21], or surgically implanted into [22], study animals. These tags51

are subsequently detected by acoustic receivers placed at specific locations within the study52

area (collectively, an acoustic array), and the timestamp of each detection is logged by the53

devices from which data can be downloaded at a later date. Acoustic arrays and tagging pro-54

grams have been established worldwide [23–25], and the frequency of their use is increasing55

as the affordability of the required equipment improves [23, 26]. While the primary motiva-56

tion of such studies is often to obtain spatial data to inform the development of conservation57

measures [21, 23, 27], the potential to use these presence data to examine leader-follower58

behavior in marine species is yet to be extensively explored.59

Leadership behavior has been reported in many animal groups, including insects (e.g. ants)60

and birds (e.g. migrating storks), and has been found to be of paramount importance in61

achieving coordination among individuals [28–30]. Should a population lack clear leaders or62

a hierarchical structure [31], individuals may have preferences on whom they should interact63

with, subsequently modifying the strength of the social interaction. Additionally, interactions64

within a social network may not be reciprocal, generating directionality in the flow of infor-65

mation. This allows for the introduction of focal individuals and their leading and following66

connections, such that the focal individuals’ dynamics are coupled with that of its leaders,67

while that of its followers are coupled with the focal individual’s.68

Within a typical social network, individuals are represented by nodes, and the interactions69

recorded between them are represented by connections (or edges). The power of networks to70

represent social interactions lies within the ability to characterize edges relative to the type of71

interaction that has occurred. Interactions can be symmetrical, representing exchanges from72

one peer to the other and vice versa, or directed, originating from a source towards a target.73

In this sense, leadership behavior can be examined with network tools, too, assuming that the74

sources are leaders and the targets are followers. However, appropriate methods for detecting75

these asymmetric relations are currently lacking.76

One can find several social network inference methods in the literature that are well suited77

for acoustic telemetry data [14, 32–38]. The majority of these rely on the co-occurrences of78

individuals, and thus have the problem of the Gambit of the group (GoG [14]). That is, every79

pair of animals observed in the same group is treated as having interacted with one another,80
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although this might appear due to coincidence in visitation patterns and not social affiliation.81

Early analytical methods also required an appropriate temporal window to be defined, within82

which co-occurrences were considered [36–39]. This restriction, and that of the GoG, was re-83

solved by the introduction of the ‘GMMevents’ method by Psorakis and collaborators [32,33].84

These methods allowed researchers to investigate the complex social structure of different ani-85

mal groups, uncovering their relation to individual characteristics, such as sex, size, personality86

or genetic traits [11,34,40,41].87

Here, we aim to develop an analytical method to provide evidence of leader-follower inter-88

actions from acoustic telemetry data, alongside estimates for the statistical significance of the89

observed interactions. We first describe a novel method for extracting leader-follower inter-90

actions from established social networks. We then apply this method to real-world, presence91

data collected for reef manta rays (Mobula alfredi) at a single location using passive acoustic92

telemetry. Reef manta rays present an ideal study species for work of this nature for a number93

of reasons: (1) they show repeated and prolonged visitation to key sites on coral reefs known94

as cleaning stations, where individual mantas socialize, and cleaner fishes remove parasites95

from their bodies [42]; (2) individuals are long-lived and can be accurately identified from96

unique pigmentation patterns displayed on their bodies throughout their lifetime [18,43]; (3)97

reef manta rays exhibit two distinct sexes and the size of an individual can be used as a proxy98

for its maturity status, allowing leader-follower behaviors to be considered relative to these99

biological traits. Finally, we discuss the applicability of this novel analysis procedure to ex-100

isting acoustic telemetry datasets, and the potential to expand these works to investigate the101

leader-follower behavior of populations across entire acoustic arrays.102

2 Materials and methods103

All the methods described here have been implemented computationally using Python 3 and104

are available through the page in Ref. [44].105

2.1 Leader-follower interactions from presence data106

We propose a measure for quantifying leadership in multiple individual time series. In par-107

ticular, our method is relevant for examining the collective movement patterns of entities,108

be it active matter, robots, humans or animals, where presence data of individuals has been109

recorded at a specific location.110

The data for each individual consists of an ordered set of timestamps at which the individ-111

ual is located in the vicinity of that particular location. In order to infer if individual i typically112

follows individual j, we hypothesize that the time delay, or lag time, between the consecutive113

detection of first i and then j will be longer than the reverse (i.e. the consecutive times of114

detecting j followed by i). We therefore extract the lag times for j followed by i, {t i j}, and115

i followed by j, {t ji}, and their corresponding distributions pi j(t) (p ji(t)), such that pi j(t)d t116

(p ji(t)d t) measures the probability that a randomly selected lag time of i after j ( j after i)117

lays in the interval (t, t + d t). We then compute the distance between the distributions of lag118

times as the Kolmogorov-Smirnof distance [45,46] (DKS) between them, where DKS is defined119

as the maximum distance between the two cumulative distribution functions P1 and P2 as120

DKS(P1, P2) =max
t
(|P1(t)− P2(t)|). (1)

We use a signed version of DKS to distinguish which of the two cumulative distributions is121

greater than the other. Since this quantity is no longer a metric, we now call it the Kolmogorov-122

Smirnof arrow AKS .123

AKS(P1, P2) = P1(τ)− P2(τ), (2)
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where τ = arg maxt(|P1(t)− P2(t)|). For measuring AKS , we find the time, τ, that maximizes124

the distance between the two compared cumulative distributions, and then draw an arrow125

from the second to the first distribution (first and second refers to their order in the arguments126

of AKS). If the arrow goes upwards, AKS = DKS and otherwise AKS = −DKS . For two interevent127

sequences 1 and 2, AKS(P1, P2) > 0 implies that times associated with process 1 are shorter128

than those associated with process 2. Thus, if individual j is following individual i, we will129

expect AKS(Pi j , Pji) > 0, while AKS(Pi j , Pji) < 0 reflects the opposite (i following j). The130

strength of the interaction will be given by the absolute value of the arrow. The value of the131

arrow is related to the excess of probability to have smaller values than τ of the cumulative132

distribution that lies above.133

2.2 Application to a presence toy model134

We create synthetic presence data for a pair of individuals (hereafter, Individual A and In-135

dividual B) proposing a model of temporal sequences. The first set of times, corresponding136

to Individual A, is given by a homogeneous Poisson process of rate λ1, i.e., Individual A ap-137

pears randomly at a constant rate. The temporal sequence for Individual B follows from a138

non-homogeneous Poisson process with rate λ2(t), which depends on time in such a way that139

it has a constant rate λ∗ plus an excess rate δ in the interval (−λ∗,∞) during an amount of140

time∆t immediately after the presence of Individual A is recorded. This is similar to a Hawkes141

process [47] and to the model for correspondence by Malmgren et al. [48], but in this case142

the excitations are given by an independent source and are not self-excitations. If ∆t = 0,143

we just have two independent homogeneous Poisson processes of rates λ1 and λ2(t) = λ∗,144

wheras for ∆t →∞, we have two independent homogeneous Poisson processes of rates λ1145

and λ2 = λ∗+δ. For an intermediate∆t, Individual B may attempt to actively be present at, or146

avoid, the location for a period of time ∆t, shortly after Individual A was there for a positive,147

or negative, value of δ, respectively. If δ = 0, we again have two independent Poisson pro-148

cesses of rates λ1 and λ2 = λ∗. In the following, we choose λ1 = 1 without loss of generality.149

From the time series for Individuals A and B we extract the sets of lag times {t12} and {t21}150

and compute the Kolmogorov-Smirnof arrow AKS({t12}, {t21}) so that if AKS > 0, Individual151

A is following Individual B, and if AKS < 0 Individual B is following Individual A. Several re-152

alizations of the process were completed, and the distribution of arrows compiled to examine153

whether the KS arrow is able to capture the aforementioned leader-follower behaviours (see154

Figures 1 and 2).155

For two independent Poisson processes of different rates (δ = 0,λ1 6= λ2), the distribution156

of KS arrows are always symmetric, with low values centered around, but not equal to, zero.157

This reflects the fact that the sequences are uncorrelated, and that it is not possible to discern158

if one individual is following the other. The absence of values around zero is related to the159

fact that the KS arrow will only be zero if the compared distributions are exactly equal. This160

equality will be only occur when the sampling is infinite, which was confirmed by drawing161

longer and longer time series sequences and observing that the distribution collapsed towards162

a single delta function at zero (not shown here). Regarding the correlated case, we checked163

how the distribution of arrows changes as we change the parameters δ and∆t, setting λ∗ = 1164

(not shown here). If δ = 0,∆t = 0 or∆t much bigger than 1/λ1 the distribution is symmetric165

around 0 with values close to it, reflecting again that there is no evidence of one individual166

following the other, as expected for independent presence sequences. For δ < 0, the distribu-167

tion is non-zero only for positive values of the arrow, indicating that the first individual follows168

the second (although the model is just assuming that the second one is avoiding the first one),169

while for δ > 0 the distribution is shifted to negative values of the arrow, showing that the170

second individual is following the first.171

Lastly, we examined the behavior of the distribution of KS arrows when the two time series172
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sequences were reshuffled in such a way that both individuals retained the same number of173

events, but without correlations, if there were any. For both the correlated and uncorrelated174

cases, the result was the same: the distribution of KS arrows for the reshuffled sequences is175

typical of a pair with no leader-follower interactions, i.e., with low arrow values, centered176

around but not equal to zero (see Fig. 3). Actually if the pair of sequences was coming from177

two independent random sequences, the distribution of arrows for the reshufflings is identical178

to the distribution of KS arrows for an ensemble of independent pairs of sequences (Fig. 3179

A); while for the case of correlated sequences both distributions differ (Fig. 3 B). This result180

opens the opportunity to discern whether a KS arrow AKS is significant, as one can compute181

the p-value of the KS arrow found for the real pair of sequences by calculating the amount of182

probability that is above |AKS| and below −|AKS| in the distribution of KS arrows coming from183

the reshufflings. This is the probability that a value higher than |AKS| or lower than −|AKS|184

comes from a pair of random sequences.185

2.3 A case study: reef manta rays (Mobula alfredi) at a cleaning station186

We applied the described leader-follower analysis methodology to presence data collected for187

acoustically-tagged reef manta rays (Mobula alfredi) at a cleaning station at a remote coral188

reef in Seychelles. The resulting social network and reported leader-followers behavior were189

then examined relative to the sex and size of tagged manta rays.190

2.3.1 Data collection191

Presence data for reef manta rays were collected using passive acoustic telemetry, whereby a192

single acoustic receiver (VR2W; VEMCO) was placed in close proximity to a known cleaning193

station at D’Arros Island, Seychelles [21]. Twenty-five acoustic tags (n = 4, V12; n = 21,194

V16-5H) were externally deployed on free-swimming reef manta rays using a using a modi-195

fied Hawaiian sling between April 2013 and March 2014. Tags anchors were made of either196

titanium (n = 4) or stainless steel (n = 21), and were positioned towards the posterior dorsal197

surface of each individual. Prior to tag deployment, a photograph was taken of the unique and198

consistent spot pattern present on the ventral surface of each manta ray [43, 49] to allow for199

individuals to be identified in future monitoring surveys. The sex of each individual was de-200

termined by the presence (male) or absence (female) of claspers, and size (i.e. wingspan) was201

visually estimated to the nearest 0.1 m. Individuals were classified into one of the following202

two size groups based on their estimated size: small (1 female, 9 males), and big (9 females,203

6 males).204

Detection data from the cleaning station receiver were downloaded every six months,205

and once a year the battery was replaced and the receiver inspected for damage or clock206

drift. Preliminary range testing indicated a detection radius of approximately 150m (mean =207

(165± 33)m [27]) at the cleaning station receiver. Upon import of the detection data into a208

Microsoft Access database, false positive detections were removed through filtration for active209

tags and any receiver clock-drift time corrections were calculated assuming linear drift [27].210

2.3.2 Leader-follower network211

To construct the leader-follower network, we analyzed the interactions occurring between212

pairs of tagged manta rays. Interactions were defined as the presence of one individual and a213

consecutive appearance of the other. For statistical purposes, we considered only the pairs with214

more than 50 interactions (n = 12 individuals). We then assessed value and direction of the215

KS arrows between the distribution of lag times for each pair, as described above. We used a216

global reshuffling scheme to compute the p value associated with each KS arrow, and discarded217

5



SciPost Physics Submission

those for which p > 0.002. This reshuffling scheme allowed for the number of detections for218

each individual to remain fixed, but for the timing of the events to be reshuffled from the pool219

of all detections. This differs from a local reshuffling scheme, which was also trialed and where220

only the two sequences involved in the calculation of the arrow are involved in the reshuffling,221

however, both schemes lead to similar results. In order to assess the correlation of sex and222

individual size with the topology of the network, we compared two basic quantities: (1) the223

number of edges present in the network of each type and (2) the average weight of the edges.224

Comparisons were drawn across 100,000 reshufflings of the sexes and sizes, respectively, but225

keeping the network structure fixed.226

3 Results227

3.1 Case study: reef manta rays at a cleaning station228

A total of 41,607 detections of acoustically-tagged reef manta rays were recorded at the clean-229

ing station receiver between April 2013 and January 2016.230

3.2 Temporal heterogeneities231

The manta detection data were not distributed evenly in time, but rather in a quite peculiar232

fashion. In Fig. 4A we show the distribution of events for mantas with more than 100 records233

(n = 18 individuals). Detections are most commonly recorded around noon, with an evident234

circadian pattern (Fig. 4 B). The timing between consecutive events of single individuals,235

hereafter ’interevent times’, are distributed following a heavy-tailed distribution, with a tail236

consistent with a power law of exponent 1.38 (Fig. 4 C). The exponent has been fitted using237

the ’powerlaw’ package available for python [50]. This implies that the temporal appearances238

of the manta rays at the cleaning station are burst-like, with periods of high activity followed239

by long times of inactivity and individual absences.240

3.3 Leader-follower network.241

The final network constructed for reef manta rays at the cleaning station consisted of 12 in-242

dividuals; five females (one small, four big) and seven males (3 small and 4 big). A total of243

33 edges, representative of calculated KS arrows, were included in the network to generate a244

single component (Fig. 5 A). Regarding the sexes, mixed edges are on average stronger than245

expected, much more so for males following females, although there are many fewer males246

following females than expected, in contrast to females following males, which are overrep-247

resented. For same sex edges, the results reflect a randomized scenario. That is, while the248

number of edges present is as expected, their strength is smaller than expected (see Fig. 5 B).249

As for the sizes, the most salient result is that the average weight of the interactions of small250

individuals following small individuals is much lower than expected. The other types of edges251

are only slightly off the values that are expected. So, small individuals following big individ-252

uals do so at a stronger frequency than expected and there is one link less than expected. For253

big reef manta rays following small ones, the strength is slightly weaker than expected and254

there is only one extra edge. For big individuals following other big conspecifics, the strength255

of the interaction is slightly higher than expected, and there are only a couple more edges256

than expected (see Fig. 5 C). In Fig. 6 we show the average appearance rate averaged over all257

pairs. The appearance rate is computed for one individual as a function of the time since the258

last presence event of the other individual, but restricting to pairs for which there is a connec-259

tion in the inferred network. One can see that the appearance rate for followers is bigger than260
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for leaders up to a certain time lag of around 200 minutes. This enhanced appearance rate261

of the following individuals after the appearance of the individual that they follow confirms262

our measurement of leader-follower behaviors and discards that we are not actually detecting263

avoidance situations.264

4 Conclusion265

Leadership analyses represent a source of behavioral information. For example, the presence266

or absence of leadership between adult and juvenile individuals provides insight into the learn-267

ing strategies of a species, which can be biased towards learning from adults (i.e., juveniles268

following them), or towards learning through trial and error (i.e., displaying independent be-269

havior) [8]. Additionally, leadership analyses can be used to reveal long-term hierarchies in270

animal groups and aid in characterizing the structure of populations [10].271

Here, we introduced a statistical method for the inference of leadership patterns recorded272

in presence data collected at a single location. The method relies on randomizations of the273

input data, which provide estimates for the p-values associated with the leader-follower inter-274

actions found. We have tested this methodology against intuitive models of leading behavior,275

and applied it to a real-world scenario involving presence data for reef manta rays at a clean-276

ing station recorded using passive acoustic telemetry. Our method allowed us to construct277

a directed network from the manta detection data, which represents leader-follower interac-278

tions within the tagged population, and examine whether covariates such as sex and size affect279

the position of the individuals in the network. Female manta rays were found to follow more280

males than expected, while males followed fewer females, but with a stronger association.281

With respect to size, smaller mantas followed other small mantas with a weaker interaction282

strength, whereas the rest of interactions within the network appeared with a similar pattern283

as that expected from the randomized case. Furthermore, we examined whether there is an284

enhanced probability of the appearance of a follower after the appearance of a leader at the285

cleaning station appeared at the location, and confirmed that the associations found within286

the study are of the a leader-follower nature.287

Comparison with other similar works. Ref. [34] examines the associations among reef manta288

rays based on sighting data recorded using photo-identification techniques at five locations in289

Indonesia for five years. This presents a unique opportunity to compare sampling, network290

analysis techniques, and findings between two populations of reef manta rays. While the291

photo-identification data set of Ref. [34] spans a longer temporal range than that of the present292

study, data collection was restricted to daylight hours only. In contrast, the automated data293

collection facilitated by the acoustic receivers and tags of this study allowed for presence data294

to be collected across the entire diel cycle. This allowed for a more detailed and dynamic295

approach to the examination of leader-follower interactions in reef manta rays to be developed,296

and made it possible to move beyond traditional associations defined using the “Gambit of the297

Group” (i.e. assuming that all individuals observed together are associated). Note that this298

difference is crucial, since in our framework, two individuals, even if observed always together,299

might not be related by a leader-follower interaction depending on the timing of the presence300

events.301

Nevertheless, it is interesting to compare results between populations and datasets in terms302

of the influence of sex and size on network position. Perryman et al. found that male reef303

manta rays tend not to associate with other males, and for them avoidance is common, whereas304

females may be associated significantly with other females. The highest percentage of pre-305

ferred dyadic associations was given between different sex pairs, however, there was partial306

sexual segregation. Regarding maturity status, Perryman et al. found that juveniles tend to307
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associate in the short term with other juveniles and mature adults. It is challenging to deter-308

mine whether the differences in findings between this, and the present study, are the result of309

natural behavioral differences or are artifacts of differing analysis procedures. Should acoustic310

data become available for reef manta rays at any of the five Indonesian field sites used by Per-311

ryman et al., future works should aim to replicate the leader-follower analyses outlined here312

and to compare the results with the findings of the photo-identification-based study.313

Ref. [32] describes a method for extracting social structure information from data similar314

to that of the present study, but again, relies on the Gambit of the Group theory. The ma-315

jor drawback of this method (available within the package GMMevents) is that it relies on316

clustering the observations of assocations into different event windows, as observations occur317

in bursts. In many situations, these events windows may be very difficult to define, as the318

inter-event times of the observations appear power-law distributed, without a clear cut for319

the clusters, and it may be that association data is lost in the process. Ref. [14] builds upon320

the methodology described in in Ref. [32], and allows for ‘leadership’ behavior to be inferred.321

This is achieved by investigating which animal appears first in the association events that the322

clustering method has identified, however, by doing so, eliminates all of the information about323

the dynamics contained in the timings of observations inside the event. Our method does not324

separate times into classes (such as being part of an event), and instead, considers the com-325

plete temporal range of the data, making the analysis procedure less prone to ambiguities and326

information loss while allowing for leadership behaviors to be examined.327

Limitations and future work. The analytical method proposed in this study allows only328

for the detection of paired (i.e. dyadic) interactions from presence data collected at a sin-329

gle location, however, cannot currently be used to detect more complex, collective behaviors.330

The expansion of these analysis to encompass data collected by multiple acoustic receivers331

placed at different locations (i.e. acoustic arrays; e.g [21]) will allow for leadership networks332

to be described using a multilayer approach [51],whereby each receiver is considered as a333

different layer. Such an approach may reveal if leadership patterns are coherent among differ-334

ent locations that may be significant for different ecological reasons (e.g. cleaning, feeding),335

if followers continue to follow their leader across wider spatial scales, or if interactions are336

more complex and followers in one location become leaders in another. For now, however,337

the present methodology can be applied to existing acoustic telemetry data sets around the338

globe, and may reveal previously unidentified leader-follower behaviors and patterns in ma-339

rine species across various ecosystem types.340
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Figure 1: (Color online) Two independent homogeneous Poisson processes of rate
λ = 1. The sequences were generated up to a maximum time of 100 time units. A
Raw event data. Individual A in blue and Individual B in red. B Cumulative distribu-
tion of lag times and Kolmogorov-Smirnof arrow, AKS , obtained from the sequences
shown above. In blue is the cumulative distribution of lag times of Individual A
following Individual B, while in red is its conjugate (lag times of B following A). C
Distribution of Kolmogorov-Smirnof arrows from 105 realizations of pairs generated
as in the sequences above. The distribution shows two peaks around 0, signature of
no leader-follower relation.

Figure 2: (Color online) Correlated time sequences. Individual A (blue) performs a
homogeneous Poisson process of rate λ1 = 1, while Individual B (red) follows the
correlated non-homogeneous Poisson process described in the text with parameters
λ∗ = 1,∆t = 0.2 and δ = 4, i.e., it performs a Poisson process of rate λ2 = 1
except for 0.2 units of time after an event of Individual A, when it performs a
Poisson process of rate λ2 = 5. The sequences were generated up to a maximum
time of 100 time units. A Raw event data. B Cumulative distribution of lag times
and Kolmogorov-Smirnof arrow for the sequences shown above. C Distribution of
Kolmogorov-Smirnof arrows from 105 realizations of pairs generated as in the se-
quences above.
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Figure 3: (Color online) Assessing significance of the leader-follower relation. A Ran-
dom uncorrelated sequences with λ1 = λ2 = 1 and tmax = 103. In dashed black lines
the distribution of KS arrows for the ensemble of those sequences (104 independent
realizations). In green is the distribution of KS arrows for 104 reshufflings of the pair
of sequences that gives rise to the arrow marked in red. B Correlated sequences with
∆t = 0.2,δ = 4 and a maximum time of 103 time units. The KS arrow distribution
for these ensemble of sequences is shown in black (104 independent realizations),
while in green is the distribution of arrows coming from 104 reshufflings of the se-
quence pair that gives rise originally to the value of the arrow signaled at the red
line.

Figure 4: (Color online) Temporal heterogeneities in the data. A Raw event data for
acoustically-tagged reef manta rays (Mobula alfredi) with more than 100 detection
events at a receiver located near a cleaning station in Seychelles. B Appearance
probability as a function of the hour in the day. The cyan lines correspond to different
males, while the pink lines correspond to different females. The red and blue lines
are the averages for females and males respectively. The black curve corresponds to
the appearance probability of all individuals pooled. We can see that the appearance
of reef manta rays at the cleaning station is concentrated around noon. C Interevent
times distribution, i.e., the distribution of times between consecutive presence events
of the same individual. The long tail, compatible with a power law of exponent 1.38
makes clear the burst-like presence of manta rays at the cleaning station. The peak in
the distribution is located at a time of one day, which is a reflection of the circadian
pattern (i.e. 24 hr) of the manta rays.
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Figure 5: (Color online) Leadership network for acoustically-tagged reef manta rays
(Mobula alfredi) detected by a single acoustic receiver placed at a cleaning station
at a remote coral reef in Seychelles relative to the sex (Female, pink; Male, blue)
and size (node size) of individuals. A Leader-follower network of manta rays at a
confidence value p = 0.002. B and C Types of edges depending on sex and size. An
edge of type xy stands for an individual of type x following an individual of type y,
where x and y can be f (female) or m (male) for the sexes, or s (small) and B (big)
for the sizes. The black symbols are the expected values from 104 reshuffling of the
sexes/sizes of the individuals. The x-axis shows the number of such edges, while the
y-axis shows the average strength of the edges. Deviation of the real data in the x
direction indicates a difference of the number of edges of that kind found in the real
network. Deviation in the y direction signals a difference with the expected strength
of the leader-follower relation. The arrows show how the results from the original
network differ from the results of randomizations.Results for the randomization of
sexes (B). Mixed edges are on average stronger than expected, and there are much
less males following females than expected, in contrast to females following males,
which are overrepresented. For same sex edges the results are similar, the number of
edges is approximately the one expected, while the strength is smaller than expected.
Results for the randomization of sizes (C). The most salient result is that the average
weight of the interactions of males following males is much lower than expected.
The other types of edges are only slightly off the values that are expected. So small
individuals following big ones follow a bit stronger than expected and there is one
link less than expected. For big ones following small ones, the strength is slightly
weaker than expected and there is only one extra edge. For big ones following big
ones the strength is slightly bigger than expected and there are only a couple more
edges than expected.
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Figure 6: (Color online) Appearance rate for the follower right after the appearance
of the leader (blue) or for the leader after the appearance of the follower (red). The
rates show that the follower actually has a higher rate of appearing right after an
event of the leader. The curves show the average for all the pairs present in the
network. The dashed lines show the standard errors.
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