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3 Ikerbasque Foundation, 48013 Bilbao, Spain

* stepan.tsirkin@uzh.ch

April 14, 2022

Abstract

The symmetric and antisymmetric parts of the linear conductivity describe
the dissipative (Ohmic) and nondissipative (Hall) parts of the current. The
Hall current is always transverse to the applied electric field regardless of its
orientation; the Ohmic current is purely longitudinal in cubic crystals, but
in lower-symmetry crystals it has a transverse component whenever the field
is not aligned with a principal axis. In this work, we extend that analysis
beyond the linear regime. We consider all possible ways of partitioning the
current at any order in the electric field without taking symmetry into account,
and find that the Hall vs Ohmic decomposition is the only one that satisfies
certain basic requirements. A general prescription is given for achieving that
decomposition, and the case of the quadratic conductivity is analyzed in detail.
By performing a symmetry analysis we find that in five of the 122 magnetic
point groups the quadratic dc conductivity is purely Ohmic and even under
time reversal, a type of response that is entirely disorder mediated.
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1 Introduction

A static electric field applied to a conducting crystal generates a current density that may
be written to linear order as

j(1)α = σαβEβ , (1)

where a summation over Cartesian index β is implied, and σαβ is understood to be a
function of the externally applied magnetic field H. In general j(1) is not parallel to E,
but under certain conditions it may contain a part that is always perpendicular to E,
irrespective of how the field is oriented relative to the crystal axes. This Hall current is
described by the antisymmetric part of the linear conductivity tensor,

j
(1)
H,α = σHαβEβ, σHαβ =

1

2

(
σαβ − σβα

)
, (2)

and the remainder j
(1)
O = j(1) − j

(1)
H , given by the symmetric part of the conductivity, is

the Ohmic current that gives rise to energy dissipation via Joule heating,

j
(1)
O,α = σOαβEβ, σOαβ =

1

2

(
σαβ + σβα

)
. (3)

Building on seminal works from the 1970s [1–3], there is at present renewed interest
in nonlinear effects in solids arising from broken symmetries [4]. The nonlinear transport
effects that are being actively investigated include unidirectional magnetoresistance (both
induced by a magnetic field [5–7] and spontaneous [8–10]), and various nonlinear Hall
effects [11–24].

Despite the surge of interest in nonlinear currents, a clear discussion of how to extend
the Hall vs Ohmic decomposition to the nonlinear regime is lacking, and confusing or
even incorrect statements can be found in the recent literature. With the present work
we aim to clarify the phenomenology of the nonlinear Hall vs Ohmic decomposition, and
to place it in the broader context of how to partition the nonlinear current into physically
well-defined parts. Although we will focus on the conductivity tensor, our analysis applies
equally well to the resistivity. For simplicity, we will assume throughout that the applied
electric field is static (dc limit).

To motivate the problem, consider the second-order response

j(2)α = σαβγEβEγ , (4)

which requires broken inversion symmetry. Contrary to the linear conductivity, the
quadratic conductivity is not uniquely defined since adding to it a correction of the form

∆σαβγ = −∆σαγβ (5)

does not change the physically observable current. We will refer to this freedom in defining
nonlinear conductivities as a “gauge freedom,” and to the unique choice that satisfies
σαβγ = σαγβ as the “symmetric gauge.” Thus, the symmetric gauge is the one where the
conductivity tensor has intrinsic permutation symmetry [25].

By analogy with Eq. (2), one might attempt to define σHαβγ as the part of σαβγ that is
antisymmetric in either the first and second indices,

σ1,2αβγ =
1

2
(σαβγ − σβαγ) , (6)

or in the first and third,

σ1,3αβγ =
1

2
(σαβγ − σγβα) . (7)
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(Note that we need to choose between these two options, since imposing both conditions
would render σHαβγ totally antisymmetric, resulting in zero current.) Both choices yield
Hall-like transverse currents. However, not only do they give different currents, but those
currents depend on the initial gauge choice for σαβγ . Both problems can be fixed by
switching to the symmetric gauge, σαβγ = 1

2 (σαβγ + σαγβ), before applying the antisym-
metrization (6) or (7). Since the resulting Hall-like conductivities

σ1,2αβγ =
1

4
(σαβγ + σαγβ − σβαγ − σβγα) (8)

and

σ1,3αβγ =
1

4
(σαβγ + σαγβ − σγβα − σγαβ) (9)

satisfy σ1,3αβγ = σ1,2αγβ, they clearly yield the same current (they are related by the gauge

transformation ∆σαβγ = σ1,2αγβ − σ
1,2
αβγ). This modified prescription [15, 19] is nevertheless

still not quite correct.
As a concrete example, we take the expression for the quadratic conductivity obtained

by solving the Boltzmann equation at H = 0 in the constant relaxation-time approxima-
tion. Denoting the relaxation time as τ , there are contributions of order τ0, τ1, and τ2,
with those of even (odd) order in τ being odd (even) under time reversal T [26] . Neglecting
disorder-mediated contributions (skew-scattering and side jump) one finds [10,11,13,14,21]

σαβγ =
e3

~

∫
kn

f0(εn)
[(
∂αG

βγ
n − ∂βGαγn

)
+ (τ/~)∂γΩαβ

n − (τ/~)2∂3αβγεn

]
, (10)

where
∫
kn ≡ ddk/(2π)d

∑
n in d dimensions and we have dropped k from the integrand,

e > 0 is the elementary charge, εn is the band energy, f0 is the Fermi-Dirac distribution
function, and ∂γ ≡ ∂/∂kγ . Ωαβ

n is the Berry curvature, and Gαβn is sometimes called the
Berry curvature polarizability; these two quantities can be expressed in terms of the Berry
connection matrix Aαmn = i〈um|∂αun〉 as follows,

Ωαβ
n = ∂αA

β
nn − ∂βAαnn = −2Im〈∂αun|∂βun〉 , (11)

Gαβn = −2Re

εm 6=εn∑
m

AαnmA
β
mn

εn − εm
. (12)

The O(τ0) and O(τ1) terms in in Eq. (10) describe respectively T -odd and T -even

quadratic anomalous Hall responses whose net current we denote by j
(2)
H , and the O(τ2)

term is a T -odd Drude-like quadratic conductivity that has been identified as a mechanism
for spontaneous unidirectional magnetoresistance [10]. Applying to Eq. (10) each of the
prescriptions in Eqs. (6-9), we obtain(

j1,2, j1,3, j
1,2

= j
1,3
)

= (1, 1/2, 3/4) j
(2)
H (13)

for the quadratic Hall currents. Prescription (6) gives the full Hall current j
(2)
H , but that

is accidental: if we make the gauge transformation σαβγ → σαγβ in Eq. (10), the Hall

currents obtained from prescriptions (6) and (7) get swapped:
(
j1,2, j1,3

)
→ (1/2, 1) j

(2)
H .

We mentioned earlier that the prescriptions in Eqs. (8) and (9) are not quite correct, and
indeed they only recover three quarters of the full Hall current; we will see in Sec. 3 that
multiplying the right-hand sides of those equations by factors of 4/3 does lead to generally
valid expressions for the quadratic Hall conductivity.
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The strategies in Eqs. (6-9), which constitute attempts to generalize to third-rank ten-
sors the definition in Eq. (2) of an antisymmetric tensor of rank two, fail to yield a proper
decomposition of the quadratic current. On the other hand, higher-order generalizations
of the symmetrization procedure in Eq. (3) are straightforward, since one can symmetrize
over all indices. In the case of the quadratic conductivity one finds

σOαβγ =
1

6
(σαβγ + σαγβ + σβαγ + σβγα + σγαβ + σγβα) , (14)

and it can be readily checked that the power dissipation is fully accounted for by σOαβγ ,

j(2) ·E = σαβγEαEβEγ = σOαβγEαEβEγ , (15)

which justifies calling it the quadratic Ohmic conductivity. Accordingly,

σHαβγ = σαβγ − σOαβγ (16)

describes the dissipationless (Hall) part of the quadratic current response.
Surprisingly we could not find, in the growing literature on nonlinear currents in solids,

any explicit mention of the simple prescription in Eqs. (14) and (16) for separating the
nonlinear Hall and Ohmic conductivities. Let us apply it to the expression in Eq. (10) for
the quadratic conductivity. Since the O(τ0) and O(τ1) terms therein are antisymmetric in
two indices, they drops out from Eq. (14); and since theO(τ2) is already totally symmetric,
it becomes the full σOαβγ . Hence, the former terms are Hall-like and the latter is Ohmic.

It should be noted that we have not yet proven that Eqs. (14) and (16) give the only
valid decomposition of the quadratic current into Ohmic and Hall parts. For example, one
could define another partition

σ̃Hαβγ = (1− x)σHαβγ , σ̃Oαβγ = σOαβγ + xσHαβγ (x ∈ R) (17)

that is not related to that of Eqs. (14) and (16) by any gauge transformation (5), and
again σ̃Hαβγ would describe a dissipationless current, with all the Joule heating coming

from σ̃Oαβγ .
In this work, we consider the problem of defining nonlinear Hall and Ohmic conduc-

tivities from a more general perspective. Our starting point is the following question:

What are all the possible ways of partitioning the nonlinear current into physically
meaningful parts, without taking into account neither the symmetries of the system nor
specific microscopic mechanisms?

(We will refer to such partitions as “generic.”) To address this question, we start by
formulating in Sec. 2 the necessary criteria for a proper generic partition of the current at
arbitrary order in E. In Sec. 3 we find that there is a unique nontrivial decomposition of
the current at second order that fulfils those criteria, which corresponds precisely to the
Hall vs Ohmic decomposition. (Our criteria do not single out any particular gauges for
the partial nonlinear conductivities; instead, they take the form of necessary and sufficient
conditions satisfied by the partial conductivities in arbitrary gauges.) The Hall vs Ohmic
decomposition is generalized to arbitrary order in Sec. 4. In Sec. 5 we return to the
quadratic conductivity to carry out a systematic symmetry analysis of its Hall and Ohmic
parts, and in Sec. 6 we draw conclusions. In Appendix A we prove that the Hall vs Ohmic
partition of the current is the only generic partition possible at every order in E, and
in Appendix B we repackage the disorder-free quadratic conductivity (10) in the manner
described in Sec. 5.
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2 Criteria for a generic partition of the current

Our strategy for partitioning the nonlinear current will be as follows. We start from a
conductivity tensor σα0α1...αn describing the full n-th order response,

j(n)α0
= σα0α1...αnEα1 . . . Eαn , (18)

and search for an operator P̂ that selects part of this current. We want the operator P̂ to
act order by order in the electric field; this means that its action on the full conductivity
tensor should result in a linear combination of versions of that same tensor with different
sets of indices, (

P̂ σ
)
α0α1...αn

=
∑
p

apσαp(0)αp(1)...αp(n) . (19)

Here the summation is over all possible mappings

{0, 1, . . . , n} p−→ {p(0), p(1), . . . , p(n)} (20)

where p(n) ∈ {0, 1, . . . , n}, and ap are coefficients to be determined. The part of the
current selected by P̂ can be written symbolically as(

P̂j(n)
)
α0

=
(
P̂ σ
)
α0α1...αn

Eα1 . . . Eαn . (21)

We shall require three properties of P̂ . The first is that it acts on the current as a
projector, so that

P̂j(n) = P̂ 2j(n) ; (22)

the second is that the projected current is invariant under gauge transformations of the
full n-th order conductivity tensor, that is,

∆
(
P̂j(n)

)
= 0 (23)

whenever ∆j(n) = 0, which in turn holds if and only if ∆σα0α1...αn vanishes under sym-
metrization over the last n indices.

Finally, we require that the projected current transforms as a vector under rotations
of the coordinate system, so that P̂j(n) ·E remains invariant under such transformations.
This is justified by the intention to arrive at a generic prescription that is not bound to any
particular crystal symmetry, and not even to a specific number of spatial dimensions. This
third constraint will be satisfied if the summation in Eq. (19) is restricted to permutation
mappings p, for which p(i) 6= p(j) whenever i 6= j. Conversely, if mappings with p(i) = p(j)
for some i 6= j are included, scalar products will not be conserved under rotations.1 Thus,
from here on we shall restrict our attention to permutation mappings, and investigate
which operators P̂ can satisfy the two conditions expressed by Eqs. (22) and (23).

Before proceeding, we note that if we find some operator P̂ that satisfies the conditions
listed above, those conditions will also be satisfied by P̂ ′ = 1̂ − P̂ . Thus, any nontrivial
operator P̂ defines a decomposition of the current into two parts (by “nontrivial” we mean
an operator such that P̂j 6= 0 and P̂j 6= j). We will start by applying the above criteria
to the second-order response, and then we will generalize to higher orders.

1Take for example P̂Hσαβ = (σαα + σββ)/2. For an electric field lying on the xy plane this gives
P̂Hj

(1) ·E = E2
xσxx+E2

yσyy+ExEy(σxx+σyy), and the result should be the same in a different coordinate
system. However, in a coordinate system that differs by a two-fold rotation about the y axis we obtain
P̂Hj

(1) ·E = E2
xσxx + E2

yσyy − ExEy(σxx + σyy), which is a different result.
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3 Second-order response

Consider an operator P̂ acting on the quadratic conductivity according to Eq. (19),

P̂ σαβγ = a+0 σαβγ + a−0 σαγβ + a+1 σγαβ + a−1 σβαγ + a+2 σβγα + a−2 σγβα , (24)

and on the quadratic current according to Eq. (21),

P̂ j(2)α =
(
P̂ σαβγ

)
EβEγ = (A0σαβγ +A1σβαγ +A2σβγα)EβEγ . (25)

Here Ai = a+i + a−i , and the notation for the coefficients a±i is as follows: the subscript
denotes the position of α in the permutation of the indices αβγ, and the superscript gives
the parity of the permutation.

Our claim is that P̂ yields a proper generic partition of the current only if it satisfies
Eqs. (22) and (23). Let us start with the gauge-invariance condition (23). The projected
current (25) remains unchanged under the gauge transformation (5) if and only if

(A1 −A2)EβEγ∆σβαγ = 0 ; (26)

since this condition must be satisfied for arbitrary E, and since we did not set any rules
for permutations involving the first index of ∆σ, it follows that A1 = A2. To impose the
idempotency condition (22), we first apply Eq. (24) recursively to find

P̂ 2σαβγ = ã+0 σαβγ + ã−0 σαγβ + ã+1 σγαβ + ã−1 σβαγ + ã+2 σβγα + ã−2 σγβα , (27)

where

ã+0 = a+0 a
+
0 + a−0 a

−
0 + a−1 a

−
1 + 2a+2 a

+
1 + a−2 a

−
2 , (28a)

ã−0 = 2a+0 a
−
0 + a+1 a

−
1 + a+1 a

−
2 + a−1 a

+
2 + a+2 a

−
2 , (28b)

ã+1 = 2a+0 a
+
1 + a−0 a

−
1 + a−0 a

−
2 + a−1 a

−
2 + a+2 a

+
2 , (28c)

ã−1 = 2a+0 a
−
1 + a−0 a

+
1 + a−0 a

+
2 + a+1 a

−
2 + a+2 a

−
2 , (28d)

ã+2 = 2a+0 a
+
2 + a−0 a

−
1 + a−0 a

−
2 + a+1 a

+
1 + a−1 a

−
2 , (28e)

ã−2 = 2a+0 a
−
2 + a−0 a

+
1 + a−0 a

+
2 + a+1 a

−
1 + a−1 a

+
2 . (28f)

By analogy with Eq. (25) we have

P̂ 2j(2)α =
(
Ã0σαβγ + Ã1σβαγ + Ã2σβγα

)
EβEγ (29)

for the twice-projected current, where the coefficients Ãi = ã+i + ã−i are given by

Ã0 = A2
0 + (a−1 + a+2 )A1 + (a+1 + a−2 )A2 , (30a)

Ã1 = A0A1 + (a+0 + a−2 )A1 + (a−0 + a+2 )A2 , (30b)

Ã2 = A0A2 + (a−0 + a+1 )A1 + (a+0 + a−1 )A2 . (30c)

Equating (25) and (29), the idempotency condition becomes Ai = Ãi for i = 0, 1, 2.
Substituting Eq. (30) for Ãi and then invoking the gauge invariance condition A1 = A2,
we are left with two conditions only,

A0 = A2
0 + 2A2

1 , A1 = (2A0 +A1)A1 . (31)
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These equations have four solutions. There are two solutions with A1 = 0,{
P̂0 : (A0, A1 = A2) = (0, 0)

P̂1 : (A0, A1 = A2) = (1, 0)
⇒ j(2) = 0 + j(2) , (32)

which as indicated give the trivial “all or nothing” partition of the current. Then there
are two solutions with A1 6= 0,{

P̂H : (A0, A1 = A2) = (23 ,−
1
3)

P̂O : (A0, A1 = A2) = (13 ,
1
3)

⇒ j(2) = j
(2)
H + j

(2)
O , (33)

which give the desired Hall vs Ohmic partition. To show that this is the case, we turn to
the condition that defines a Hall-like projected current,

P̂j(2) ·E = 0 , ∀E . (34)

Using Eq. (25) that condition becomes A0 + A1 + A2 = 0, which is satisfied by P̂H but
not by P̂O. This conclude the proof that Eqs. (22) and (23) lead to a partition of the
quadratic current into Hall and Ohmic parts. Remarkably, we found that this is in fact
the only gauge-invariant and idempotent generic partition possible, apart from the trivial
one in Eq. (32).

Since we are still free to adjust the six coefficients a±i in Eq. (24) as long as Ai = a+i +a−i
maintain the values given in Eq. (33), the Hall and Ohmic quadratic conductivities are
highly nonunique. This nonuniqueness corresponds precisely to the gauge freedom (5) in

defining σHαβγ and σOαβγ , and it does not affect the physical currents j
(2)
H and j

(2)
O . One way

to fulfill the “Ohmic” conditions in Eq. (33) is by setting all six coefficients in Eq. (24) to
1/6, which leads to the fully symmetric form for σOαβγ in Eq. (14).

Let us now revisit the prescriptions proposed in Eqs. (8) and (9) for defining σHαβγ ,
which consist in first symmetrizing the full σαβγ in the last two indices, and then anti-
symmetrizing the first index with either the second or the third [15,19]. When applied to
a concrete example in Sec. 2, those prescriptions only recovered three quarters of the full
Hall current [see Eq. (13)]. This suggests it may be possible to fix them by multiplying
each of Eqs. (8) and (9) by a factor of 4/3,

σ
H(1,2)
αβγ =

4

3
σ1,2αβγ =

1

3
(σαβγ + σαγβ − σβαγ − σβγα) , (35)

σ
H(1,3)
αβγ =

4

3
σ1,3αβγ =

1

3
(σαβγ + σαγβ − σγβα − σγαβ) . (36)

Comparing with Eq. (24) we find

a+0 = a−0 = −a−1 = −a+2 =
1

3
, , a+1 = a−2 = 0 (37)

in the case of Eq. (35), and

a+0 = a−0 = −a+1 = −a−2 =
1

3
, , a−1 = a+2 = 0 (38)

in the case of Eq. (36). Since both sets of coefficients satisfy the Hall-like conditions
in Eq. (33), Eqs. (35) and (36) are generally valid expressions for the quadratic Hall
conductivity.

7
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4 Higher-order responses

At n-th order in the electric field, the Ohmic conductivity can be chosen as the fully
symmetrized conductivity tensor obtained by setting ap = 1/(n+ 1)! for all p in Eq. (19),

σOα0α1...αn ≡ P̂Oσα0α1...αn =
1

(n+ 1)!

∑
p

σαp(0)αp(1)...αp(n) . (39)

This generalizes to arbitrary n the symmetrization procedure of Eqs. (3) and (14) for
n = 1 and n = 2, respectively.

Let us now show that with the above choice of Ohmic projector, the Hall projector
P̂H = 1̂ − P̂O satisfies Eqs. (22) and (23). We start again with the gauge invariance
condition. Since the full n-th order current is by definition invariant under a gauge trans-
formation ∆σα0α1...αn , the Hall part is invariant if and only if the Ohmic part is invariant.
It is therefore sufficient to show that

∆
(
P̂Oj

(n)
α0

)
=
(
P̂O∆σα0α1...αn

)
Eα1 . . . Eαn (40)

vanishes for arbitrary E. But since ∆σα0α1...αn must vanish under symmetrization over the
last n indices to ensure that ∆j(n) = 0 (see Sec. 2), it also vanishes under full symmetriza-
tion by P̂O. Next, it is clear that P̂ 2

Oσα0α1...αn = P̂Oσα0α1...αn because symmetrization of
tensor that is already fully symmetric does not change it further. Therefore,

P̂ 2
Hj

(n) =
(

1− 2P̂O + P̂ 2
O

)
j(n) =

(
1− P̂O

)
j(n) = P̂Hj

(n) . (41)

Finally, from the n-th order generalization of Eq. (15) it follows that j
(n)
H = j(n) − j

(n)
O is

dissipationless. Thus we have obtained a solution that satisfies Eqs. (22) and (23) at any
order in E, and found that it corresponds to the Hall vs Ohmic partition of the current.

To recapitulate, one can always define the Ohmic part of the n-th order conductivity as
the totally symmetric part, and the Hall part as the remainder. For n = 1, this procedure
reduces to the standard partition of the linear conductivity according to Eqs. (2) and (3).
We demonstrated in Sec. 3 that for n = 2 the same procedure leads to the only well-
defined (idempotent and gauge-invariant) generic partition of the quadratic current, and
in Appendix A we generalize that proof to arbitrary n.

5 Symmetry analysis of the quadratic dc conductivity

At linear order in E, the Hall vs Ohmic decomposition is intimately related to time-reversal
symmetry T by virtue of the Onsager reciprocity relation

σαβ(H,M) = σβα(−H,−M) . (42)

It follows from this relation that the Ohmic part of the linear response is T -even, while
the Hall part is T -odd [27, 28]. In the nonlinear regime, both Hall and Ohmic responses
can have T -even and T -odd components; this gives four contributions in total, of which
only three are present in Eq. (10) for the disorder-free σαβγ . The reason why there is no
T -even Ohmic term in Eq. (10) is that in the semiclassical wavepacket formalism there
is no correction to the band energy at first order in the electric field [29]; the leading
correction is of second order, and it contributes to the T -even cubic conductivity [24].

We will see shortly that σαβγ is purely Ohmic and T -even in five of the 122 magnetic
point groups. Since for materials in those point groups the disorder-free part of σαβγ

8
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Quadratic Ohmic Quadratic Hall

T -even [V3] eV2 (traceless part)

T -odd a[V]3 aeV2 (traceless part)

Table 1: Decomposition of the quadratic conductivity into Ohmic vs Hall parts and T -
even vs T -odd parts. The Ohmic part is represented by a totally symmetric rank-3 polar
tensor [Eq. (14)], and the Hall part by a traceless rank-2 axial tensor [Eq. (44)]. Each
entry in the table denotes the corresponding Jahn symbol [33].

vanishes identically, their symmetry-allowed quadratic response must be entirely disorder-
mediated; this is consistent with the finding that a skew-scattering contribution to σαβγ
is present in all non-centrosymmetric materials [30]. Contributions from disorder to σHαβγ
have been studied recently [15, 31, 32], but similar contributions to σOαβγ have received
little attention so far. In this regard, we note that the expressions for σαβγ obtained in
Refs. [15, 30–32] contain not only Hall but also Ohmic parts, which can be separated out
using Eqs. (14) and (16).

In preparation for performing a symmetry analysis of σαβγ , let us count the number
of independent coefficients needed to describe the quadratic Ohmic and Hall responses in
two-dimensional (2D) and three-dimensional (3D) space. As σαβγ can be chosen to be
symmetric in the last two indices, it has 6 (18) independent components in 2D (3D). σOαβγ
can be chosen to be fully symmetric, and hence it has 4 (10) independent components in
2D (3D), leaving σHαβγ with 6− 4 = 2 (18− 10 = 8) independent components in 2D (3D).
Those Hall-like components can be repackaged as an axial vector in 2D, and as a traceless
rank-2 axial tensor in 3D. Choosing the latter as

χHγδ =
1

2
εαβγσ

H(1,2)
αβδ =

1

2
εαβγσ

H(1,3)
αδβ (43)

and using either Eq. (35) or Eq. (36), one finds

χHγδ =
1

3
εαβγ (σαβδ + σαδβ) . (44)

The tensor χH is traceless,2 and it remains invariant under gauge transformations of the
quadratic conductivity [Eq. (5)]. This gauge-invariant repackaging of the quadratic Hall
conductivity tensor is analogous to the repackaging χHγ = εγαβσαβ/2 of the linear Hall

conductivity as an axial vector. As an example, in Appendix B we evaluate χH for the
disorder-free quadratic conductivity (10).

According to the preceeding analysis, the quadratic conductivity can be divided quite
generally into an Ohmic part given by a totally symmetric rank-3 polar tensor [Eq. (14)]
and a Hall part expressible as a traceless rank-2 axial tensor [Eq. (44)]. Each of these
can be further decomposed into T -even and T -odd parts, resulting in a total of four
contributions whose Jahn symbols [33] are indicated in Table 1.

Taking the Jahn symbols in Table 1 as input, we have used the MTENSOR program [34]
hosted on the the Bilbao Crystallographic Server (http://www.cryst.ehu.es/cryst/
mtensor) to obtain the symmetry-adapted forms of the four contributions to the quadratic
conductivity in each magnetic point group. The results are summarized in Table 2, where
we indicate the existence or absence of each contribution in each point group. The rows

2The fact that χH is traceless went unnoticed in Ref. [15], where it is stated that χH has nine independent
components rather than eight.
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Quadratic Hall Quadratic Ohmic
Magnetic point groups T -odd T -even T -odd T -even

−1, −11′, 2/m, 2/m1′, 2′/m′, mmm, mmm1′,
m′m′m, 4/m, 4/m1′, 4′/m, 4/mmm, 4/mmm1′,
4′/mm′m, 4/mm′m′, −3, −31′, −3m, −3m1′,
−3m′, 6/m, 6/m1′, 6′/m′, 6/mmm, 6/mmm1′,
6′/m′mm′, 6/mm′m′, m−3, m−31′, 432, 4321′,
m−3m, m−3m1′, m−3m′, m′ − 3′m′

7 7 7 7

4/m′m′m′, 6/m′m′m′ 3 7 7 7

4221′, 6221′ 7 3 7 7

422, 622 3 3 7 7

6′/m, 6′/mmm′, m′ − 3′, 4′32′, m′ − 3′m 7 7 3 7

−61′, −6m21′, 231′, −43m1′, −4′3m′ 7 7 7 3

−6, −6m2, -6m′2′, 23, −43m 7 7 3 3

−6′m′2 3 7 7 3

6′22′ 7 3 3 7

−1′, 2′/m, 2/m′, m′mm, m′m′m′, 4/m′, 4′/m′,
4/m′mm, 4′/m′m′m, −3′, −3′m, −3′m′, 6/m′,
6/m′mm

3 7 3 7

11′, 21′, m1′, 2221′, mm21′, 41′, −41′, 4mm1′,
−42m1′, 31′, 321′, 3m1′, 61′, 6mm1′

7 3 7 3

4′22′, 42′2′, 62′2′ 3 3 3 7

4m′m′, −4′2m′, 6m′m′ 3 3 7 3

−6′, −6′m2′ 3 7 3 3

6′, 6′mm′ 7 3 3 3

1, 2, 2′, m, m′, 222, 2′2′2, mm2, m′m2′, m′m′2, 4,
4′,−4, −4′, 4mm, 4′m′m, −42m, −4′2′m, −42′m′,
3, 32, 32′, 3m, 3m′, 6, 6mm

3 3 3 3

Table 2: Magnetic point groups classified by the existence or absence of the four symmetry
types of quadratic conductivities in a vanishing external magnetic field.

of the table are organized into four blocks: in the first block the quadratic response is
entirely absent, in the second (third) it is purely Hall-like (Ohmic), and in the fourth both
Hall and Ohmic responses are present. Since we have not invoked specific microscopic
mechanisms in setting up Table 2, our symmetry analysis is purely phenomenological.
(If the last column is removed and the table is rearranged accordingly, it reduces to the
table given in Ref. [22], which pertains to the three terms in Eq. (10) for the disorder-free
σαβγ .) Interestingly, all 24 = 16 possibilities are realized in Table 2. In particular, there
are magnetic point groups for which only one of the four contributions is present; clearly,
materials belonging to those point groups should be ideally suited for studying one specific
type of quadratic current response. As already mentioned, in the point groups where that
response is purely Ohmic and T -even the quadratic current is purely disorder mediated.

10
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6 Discussion

In this work we have shown how, given a dc conductivity tensor of arbitrary order n in
the electric field, the current may be uniquely separated into Hall and Ohmic parts

j(n) = j
(n)
H + j

(n)
O (45)

by taking linear combinations of that tensor with permuted indices. This separation is
insensitive to the particular gauge choice for the conductivity, and applying it multiple
times gives the same result as applying it only once. No other generic order-by-order par-
tition of the induced current fulfills these two requirements. Thus, once we have separated
the Hall and Ohmic parts we cannot make any further subdivisions of the current into
physically meaningful parts without invoking either the symmetries of the system, or the
microscopic processes producing the nonlinear currents.

The nonlinear Hall effect has sometimes been associated with the transverse part of
the current [24], and spontaneous unidirectional magnetoresistence with a longitudinal
response [8, 9]. The present work provides sharper definitions of Hall and Ohmic non-
linear responses that are generally valid irrespective of crystal symmetry. For example,
spontaneous unidirectional magnetoresistence should be defined as the T -odd part of the
quadratic Ohmic response, which generally has both longitudinal and transverse compo-
nents. This is consistent with the analysis in Ref. [10], where the same conclusion was
reached on the basis of a particular mechanism, namely the nonlinear Drude term in
Eq. (10). We hope that the present work will be useful for identifying the Hall and Ohmic
parts of nonlinear responses, both experimentally and in the context microscopic theories.
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A Uniqueness of the partition at arbitrary order

In this Appendix we prove that the Hall vs Ohmic partition of the current described in
Sec. 4 is the only valid generic partition at arbitrary order n in the electric field. We start
with the general expression in Eq. (19) for the action of the operator P̂ on the conductivity,

P̂ σα0α1...αn =
∑
p

apσαp(0)αp(1)...αp(n) , (46)

where the sum is over all permutations {p(1), . . . , p(n)} of {0, 1, . . . , n}. The generalization
of Eq. (25) for the action of P̂ on the current reads

P̂ j(n)α0
=
(
A0σα0α1...αn +A1σα1α0...αn + . . .

+Aiσα1...αiα0αi+1...αn + . . .+Anσα1...αnα0

)
Eα1 . . . Eαn , (47)

11
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where

Ai =

p(i)=0∑∑∑∑∑∑∑∑∑∑∑∑
p

ap . (48)

Since they fully determine the projected current, the Ai are the only physically meaningful
parameters, and changes in the parameters ap that leave every Ai invariant amount to
gauge transformations.

Recall from Sec. 2 that a general gauge transformation ∆σα0...αn of the conductivity
tensor must satisfy the condition∑

q

∆σα0αq(1)...αq(n) = 0 , (49)

where the summation is over all permutations {q(1), . . . , q(n)} of {1, . . . , n}. As stated in
Eq. (23), we want the projected current to be invariant under all possible gauge transfor-
mations. To make progress, it is sufficient to require at this point invariance under the
subset of gauge transformations ∆σiα0α1...αn that are antisymmetric under permutation of
the indices at positions i and i+ 1,

∆σiα0...αi−1αiαi+1ai+2...αn = −∆σiα0...αi−1αi+1αiαi+2...αn , (50)

where 0 < i < n. For such transformations, the gauge invariance condition on the pro-
jected current (47) takes the form(

Ai −Ai+1

)
∆σiα1...αiα0αi+1αi+2...αnEα1 . . . Eαn = 0 . (51)

This condition can hold in general if and only if Ai = Ai+1, and by letting the index i run
from 1 to n− 1 we get

A1 = A2 = . . . = An . (52)

Therefore, the two parameters A0 and A1 fully determine the projected current.
Let us turn now to the idempotency condition (22). Acting with P̂ on both sides of

Eq. (46) we obtain the following generalization of Eq. (27),

P̂ 2σα0α1...αn =
∑
p

ãpσαp(0)αp(1)...αp(n) =

p2·p1=p∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p, p1, p2

ap1ap2σαp(0)αp(1)...αp(n) , (53)

and hence the idempotency condition becomes Ai = Ãi for i = 0, . . . , n where, by analogy
with Eq. (48),

Ãi ≡
p(i)=0∑∑∑∑∑∑∑∑∑∑∑∑
p

ãi =

p(i)=0∑∑∑∑∑∑∑∑∑∑∑∑
p

p2·p1=p∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p1, p2

ap1ap2 . (54)

Solving this equation for arbitrary n is not as easy as solving it for n = 2 [Eq. (30)]. But
having settled the gauge invariance conditions in Eq. (52), we can now pick a convenient
gauge for the coefficients ap. (This entails no loss of generality, because we study the
action of P̂ on the physical current, not on a particular form of the conductivity tensor.)
We choose the most symmetric gauge compatible with Eq. (52), namely, the gauge where
all terms in the summand of Eq. (48) are identical,

ap =

{
A0/n! , if p(0) = 0

A1/n! , if p(0) 6= 0
. (55)

12



SciPost Physics Submission

Substituting in Eq. (54), the idempotency condition Ai = Ãi becomes

Ai =
1

n!2

p(i)=0∑∑∑∑∑∑∑∑∑∑∑∑
p


p2 · p1 = p
p1(0) = 0
p2(0) = 0∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p1,p2

A2
0 +

p2 · p1 = p
p1(0) = 0
p2(0) 6= 0∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p1,p2

A0A1 +

p2 · p1 = p
p1(0) 6= 0
p2(0) = 0∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p1,p2

A1A0 +

p2 · p1 = p
p1(0) 6= 0
p2(0) 6= 0∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p1,p2

A1A1

 ,

(56)
with i running from 0 to n. Due to Eq. (52), the n equations with 1 ≤ i ≤ n are identical,
leaving two equations only. These can be written as

A0 =
1

n!2
(
aA2

0 + bA0A1 + cA2
1

)
, A1 =

1

n!2
(
dA2

0 + eA0A1 + fA2
1

)
, (57)

where the coefficients a to f are the numbers of pairs of permutations p1, p2 of the set
{0, 1, . . . n} that satisfy the conditions

a, d : p1(0) = p2(0) = 0 , (58a)

b, e : (p1(0) = 0 ∧ p2(0) 6= 0) ∨ (p1(0) 6= 0 ∧ p2(0) = 0) , (58b)

c, f : p1(0) 6= 0 ∧ p2(0) 6= 0 , (58c)

together with

a, b, c : p2(p1(0)) = 0 , (58d)

d, e, f : p2(p1(1)) = 0 . (58e)

It now becomes a straightforward combinatorial exercise to obtain

a = n!2, d = 0
b = 0, e = 2 · n!2

c = n · n!2, f = (n− 1) · n!2
, (59)

which leads to the following generalization of Eq. (31),

A0 = A2
0 + nA2

1 , A1 = 2A0A1 + (n− 1)A2
1 . (60)

Apart from the trivial solutions P̂0 and P̂1 of the same type as in Eq. (32), these equations
have the solutions P̂H : (A0, A1 = . . . = An) =

(
n
n+1 ,−

1
n+1

)
P̂O : (A0, A1 = . . . = An) =

(
1

n+1 ,
1

n+1

) , (61)

which generalize Eq. (33). It can be readily verified that the solution for P̂O is satisfied by
Eq. (39). And since P̂H fulfills the Hall condition (34) but P̂O does not, we have obtained
a unique partition of the n-th order current into Hall and Ohmic components.

B Repackaging of the disorder-free quadratic Hall conduc-
tivity

Inserting Eq. (10) for σαβγ in Eq. (44) for χHγδ and writing Ωαβ
n = εαβγΩγ

n one finds

χHαβ =
e3

~

∫
kn
f0(εn)εαγδ∂γG

δβ
n +

e3τ

~2

[
Dβα −

1

3
δαβTr(D)

]
, (62)
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where

Dβα =

∫
kn
f0(εn)∂βΩα

n (63)

is the Berry curvature dipole [14]. The first in Eq. (62) agrees with the expression obtained
in Ref. [23] starting from the gauge-dependent definition χHγδ = εαβγσαβδ/2. The second
term agrees with the expression in Eq. (8) of Ref. [15], once that expression is multiplied
by the factor of 4/3 that was discussed in connection with Eqs. (35) and (36). That second
term can be simplified by noting that Tr(D) = 0 for topological reasons [31,35], yielding

χHαβ =
e3

~

∫
kn
f0(εn)

[
εαγδ∂γG

δβ
n + (τ/~)∂βΩα

n

]
(64)

for the disorder-free quadratic Hall tensor. The first term is T odd and intrinsic (inde-
pendent of τ), and the second is T even and extrinsic.
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