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Transition metal dichalcogenides (TMDs) offer a unique platform to study unconventional super-
conductivity, owing to the presence of strong spin-orbit coupling and a remarkable stability to an
in-plane magnetic field. A recent study found that when an in-plane field applied to a supercon-
ducting monolayer TMD is increased beyond the Pauli critical limit, a quantum phase transition
occurs into a topological nodal superconducting phase which hosts Majorana flat bands. We study
the current-phase relation of this nodal superconductor in a Josephson junction geometry. We find
that the nodal superconductivity is associated with an energy-phase relation that depends on the
momentum transverse to the current direction, with a 4π periodicity in between pairs of nodal
points. We interpret this response as a result of a series of quantum phase transitions, driven by
the transverse momentum, which separate a topological trivial phase and two distinct topologically
non-trivial phases characterized by different winding invariants. This analysis sheds light on the
stability of the Majorana flat bands to symmetry-breaking perturbations.

I. INTRODUCTION

Recent advances in fabrications techniques have made it possible to engineer high-quality ultra-thin, multi-layer
systems based on transition metal dichalcogenides (TMDs), with individual layers held together by weak Van der
Waals forces [1, 2]. Some of these few-layered systems remain superconducting down to the monolayer limit [3–10].
Such TMD-based systems have been proposed as a platform for controlled studies of intrinsic or externally-induced
unconventional superconductivity [11–26].

Unlike bulk systems, many TMD monolayers such as 1H-NbSe2 lack an inversion center. This causes a spin-orbit
splitting of electron bands, which polarizes the spin in the out-of-plane direction. The superconducting properties
of such systems, termed Ising superconductors (SCs), [3, 5, 6, 11] are determined by the spin-orbit coupling (SOC),
∆SO typically exceeding the superconducting gap by few orders of magnitude. In particular, Ising superconductivity
is remarkably stable to the in-plane magnetic field, B ⊥ ẑ. The in-plane critical field, Bc greatly exceeds the Pauli
limit [3, 5, 6, 8–10, 27] and at zero temperature is limited by the disorder [28–31].

While the presence of an in-plane field explicitly breaks time-reversal (TR) symmetry Θ, the stability of the
superconducting state to the in-plane field can be understood as resulting from a modified TR symmetry T which is
a combination of the TR symmetry Θ and basal-plane mirror symmetry Mz and is given by T = MzΘτz, where τx,y,z
are the Pauli matrices in particle-hole Nambu space. This modified TR symmetry protects the superconducting state
[15] and gives rise to field-induced triplet correlations [32].

Recently it was predicted that as the applied in-plane magnetic field exceeds the superconducting gap, a monolayer
Ising SC transitions into a nodal topological SC [14]. The formation of nodal points is protected by the effective chiral
symmetry for the particles moving perpendicular to the ΓM line, which results from a combination of the modified
TR symmetry T and particle-hole symmetry. The nodal phase is expected to be accompanied by Majorana flat bands
along the armchair edges [33, 34], experimental indications of which have been reported in [22, 35].

In this work we study the Josephson response of the nodal SC phase. Such junctions are useful platforms to study
the superconducting states by analyzing the current-phase relation [36, 37]. We find that the nodal SC phase is
associated with an energy-phase relation dependent on the momentum transverse to the current direction with a
distinct 4π-periodic Josephson current for the transverse momenta in-between the nodal points. We interpret this
response as a consequence of a series of topological transitions resulting from the continuous change of the transverse
momentum considered as the control parameter. The nodal momenta define the boundaries between a trivial phase
and two topologically distinct non-trivial phases with different winding numbers. We further discuss the implications
of these results on the stability of the Majorana flat bands in the presence of a symmetry-breaking perturbation.

The plan of this paper is as follows. We begin in Sec. II with a discussion of the symmetries that dictate the
form of the low-energy Bogoliubov-deGennes (BdG) Hamiltonian of an Ising SC. In Sec. III we study the topological
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properties of the nodal SC phase and calculate the corresponding invariants. The current-phase relation in a Josephson
junction made of two such nodal SCs is analyzed in Sec. IV and the results are presented in Sec. V, followed by a
discussion of the underlying physical picture in Sec. VI. We accompany these qualitative arguments with a detailed
description of edge states of an effective one-dimensional theory in appendix B, while the effect of the magnetic field
on the transition is analyzed in appendix A. The dependence of the Josephson current response on the junction
barrier strength is briefly discussed in appendix C.

II. BDG HAMILTONIAN FOR A NODAL SUPERCONDUCTOR

The band structure of TMD monolayers is constrained by the underlying crystalline symmetry with the point
group D3h. The symmetry operations include basal mirror reflection, Mz which does not change the in-plane mo-

mentum and acts solely on the spin, Mz = −iσz. In addition, the rotation C3 =
{
e−i

π
3 σz |k→ R̂z(2π/3)k

}
around

the z−axis acts both on spin and the momentum, with R̂z(2π/3) being the spatial rotation by 2π/3 around the
z−axis. Finally, a vertical mirror passing via the high symmetry ΓM line, taken here to lie along the y−axis,
Mx = {−iσx|kx, ky → −kx, ky}.

Inversion is not included in D3h group causing a finite Ising SOC. Thanks to the Mz symmetry, the electron spins are
polarized out-of-plane. The vertical mirror symmetry operation, Mx makes the Ising SOC odd under the momentum
reflection kx → −kx. Correspondingly, the Ising SOC is even under ky → −ky.

For definiteness, we consider the band structure of NbSe2 monolayer with one band crossing the Fermi level.
Different crossings give rise to the hole pockets centered at the Γ, K and K ′ points. The strong SOC near the
K(K ′) points protects the superconductivity in these pockets which is nearly unaffected by an in-plane magnetic
field. Therefore, the analysis presented here relies solely on the presence of the Γ-point centered pocket(s) and applies
equally to other systems such as gated MoS2 [3, 5, 7], gated WS2 [38], and metallic TaS2 [9]. To understand the
interplay between the SOC, in-plane field and superconductivity, it is sufficient to focus on the low-energy Hamiltonian
as these energy scales are smaller than the typical Fermi energy.

To describe the spectrum of the Γ-pocket we expand the low energy single-band Hamiltonian,

H0 = ξ(k)σ0 + λ(k)σz. (1)

up to the third order in k. Here ξ(k) = (k2
x + k2

y)/2m− µ, where µ and m are the chemical potential and the mass,
respectively. The Ising SOC term is given by

λ(k) = λI(k
3
x − 3kxk

2
y), (2)

where λI is the strength of the Ising SOC. As is clear from Eq.(2), this form of SOC vanishes along the ΓM lines

kx = 0,±
√

3ky. Note that in the following ta2 = m−1 is set to one, where t is the tight binding hopping amplitude
and a is the lattice constant.

In order to study the interplay between an in-plane magnetic field B characterized by the Zeeman energy h =
gµBB/2 applied for definiteness along the x−direction and an s-wave spin-singlet superconducting pairing character-
ized by the gap, ∆, we consider the BdG Hamiltonian,

H(k) = ξ(k)τz + λ(k)σz + hτzσx + Re(∆)τyσy + Im(∆)τxσy. (3)

The imaginary part of ∆ can be gauged out in the case of an isolated system. The magnetic field explicitly breaks
TR symmetry Θ = {iσyK|k→ −k}, where K stands for complex conjugation. However, the combination of Θ and
Mz results in a modified TR symmetry, T = ΘMzτz = {σxτzK|k→ −k}, which squares to T 2 = 1. Moreover, thanks
to the Mx mirror symmetry, the Hamiltonian is even in ky. We, therefore have the symmetry TH(k)T−1 = H(−k) =
H(−kx, ky) for the motion along x−direction when ky parameter is fixed, as is elaborated below.

The dispersion relation of the Bogoliubov quasi-particles inferred from Eq. (3) forms the four bands as shown in
the Fig. 1 for selected values of the parameters (m = 1, µ = 0.25, λI = 0.15, h = 0.06 and ∆ = 0.02). Figure 2 shows
the lower positive-energy band (labelled 3 in Fig. 1) as a color plot.

Due to the modified TR symmetry, superconductivity survives [15] when the magnetic field exceeds far beyond
the Pauli limit. At h = |∆|, a quantum phase transition occurs, accompanied by the closing of the band gap at six
discrete nodal points as detailed in the App. A. At yet stronger magnetic field exceeding the superconducting gap,
h > |∆| each nodal point splits in two, as shown by the red dots in Fig.2. The resulting twelve nodal points lie along
high-symmetry ΓM lines, marked in white.

We show below that this nodal SC phase, which arises from the model’s non-trivial topological properties [14], is
accompanied by a distinctive signature in the Josephson current response, which can be used as a probe to experi-
mentally detect the topological phase.
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FIG. 1. The four band dispersion relation E vs k of the Bogoliubov quasi-particles from the BdG Hamiltonian in Eq.(3). In
this figure we have chosen m = 1, µ = 0.25, λI = 0.15, h = 0.06 and ∆ = 0.02. The four bands are labelled 1− 4 in increasing
order of energy. The surface plot of band 3 is shown in Fig. 2.

FIG. 2. Color plot of the lower positive energy band obtained (labelled 3 in Fig. 1). The spectral gap closes at twelve nodal
points in the Brillouin Zone. These are shown as red dots and lie on the λ(k) = 0 lines (white, dashed lines). The y−momenta

±k(j)y0 mark the boundaries between the topological and non-topological phases which we cross as we change ky continuously.

III. SYMMETRIES AND TOPOLOGICAL PROPERTIES

The origin of the nodal topological SC phase can be understood by considering the family of one-dimensional (1D)
Hamiltonians obtained by setting the momentum ky as a parameter in the BdG Hamiltonian of Eq. (3). We denote
this Hamiltonian as H1D

ky
(kx). While the magnetic field explicitly breaks TR symmetry, the family of 1D Hamiltonians

has an emergent TR symmetry Θ such that ΘH1D
ky

(kx)Θ−1 = H1D
ky

(−kx). In addition to the particle-hole symmetry

Ξ = τxK, the family of 1D Hamiltonians, H1D
ky

(kx) have a chiral symmetry C = σxτy and fall under symmetry class

BDI. As the parameter ky is varied, the gap closes and reopens at the spectral nodes. This closing and reopening of
the gap is accompanied by a transition from a topologically trivial to a topologically non-trivial phase. To study the
topological properties of this family of one-dimensional Hamiltonians, we rotate to the chiral basis H̃1D

ky
= UH1D

ky
U−1
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with U = e−iπ/4τye−iπ/4σxτz . The rotated Hamiltonian H̃1D
ky

can be written as

H̃1D
ky (kx) =

(
0 Qky (kx)

Q†ky (kx) 0

)
(4)

where:

Qky (kx) =

 ξky (kx) h+ iλky (kx)−∆

h− iλky (kx) + ∆ ξky (kx)


(5)

with ξky (kx) =
k2x
2m − µky , with µky = µ− k2y

2m and λky (kx) = λIkx(k2
x − 3k2

y) and h = 1
2gµBB.

The topologically non-trivial phase of H1D
ky

is associated with a winding of the phase of the determinant of the Q
matrix: [39–43]:

W =
1

2π

∫
BZ1D

∂kxIm log
det
(
Qky (kx)

)
|det

(
Qky (kx)

)
| ,

=
1

2π

∫
BZ1D

∂kxφ
(1)
ky

(kx) + ∂kxφ
(2)
ky

(kx),

= W1 +W2,

where we have used the fact that the winding of the determinant can be expressed as the sum of the winding of two
complex eigenvalues of the Q matrix:

q
(1,2)
ky

(kx) = |q(1,2)
ky

(kx)|eiφ
(1,2)
ky

(kx)
. (6)

The winding of the phase of the determinant given by Eq. (6) for different values of ky is shown in Fig. III.

For k
(1)
y0 < |ky| < k

(2)
y0 (region II) the phase winds by −4π and for k

(3)
y0 < |ky| < k

(4)
y0 (region IV) the phase of the

determinant winds by +2π.

FIG. 3. Phase diagram of the family of 1D chiral Hamiltonians as a function of the transverse momentum parameter ky. The

parameter range between the nodal points k
(1)
y0 < ky < k

(2)
y0 and k

(3)
y0 < ky < k

(4)
y0 corresponds to a topologically non-trivial

phase with a topological invariant of W = −2 and W = 1, respectively. The winding W of the phase of the determinant of the
Q matrix, Eq. (6) accumulated as kx is sweeped over the Brillouin Zone is presented for the different values of ky.
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IV. JOSEPHSON JUNCTION

The nodal topological SC phase is characterized by a flat band of Majorana modes that form on the armchair edges
of the sample [14]. Here we show that the non-trivial topology also results in a distinctive current-phase relation when
the system is patterned into a Josephson junction.

FIG. 4. Schematic showing the Josephson junction between two nodal SCs. The pairing ∆ is in general complex and differs
in phase between the two sides (L and R) of the junction as given by Eq. (7a). The two sides are separated by a δ−function
barrier given in Eq. (7b).

To study the current-phase relation we consider a junction between two nodal SCs as shown in Fig. 4. The SCs
on either side of the junction are described by a bulk Hamiltonian of the form given in Eq.(3). The superconducting
pairing has the same amplitude |∆|, but differs on either of the junction by a phase, i.e.

∆(x) =

{
|∆|, for x < 0

|∆|eiφ, for x > 0.
(7a)

In addition, there is a δ−function barrier at x = 0

U(x) = U0δ(x). (7b)

Since the translational invariance along the x−direction is broken, we replace kx → −i∂x. However, since the
translation symmetry along the y−direction is preserved, ky is still a good quantum number. Therefore, ky can be
treated as a parameter and the Josephson-junction problem can be solved independently for each ky. Written in this
form, Eq. (3) becomes,

Hky (x) =
(
− 1

2m
∂2
x − µky + U(x)

)
τz

+ iλ(∂3
x + 3k2

y∂x)σz +Hτzσx

+ Re(∆(x))τyσy + Im(∆(x))τxσy (7c)

The wave function Ψ(x) for a given value of ky satisfies the eigenvalue equation

Hky (x)Ψ(x) = EkyΨ(x), (8)

with the Hamiltonian given by Eq. (7a) - (7c). Here Ψ(x) = (u↑(x), u↓(x), v↑(x), v↓(x))T is a four-component spinor,
and we have suppressed the dependence of the wave function on the ky parameter for brevity. Let the wave function
to the left and right of the barrier (labelled as “L” and “R” in Fig. 4) be denoted by ΨL(x) and ΨR(x) respectively.
For the wave function to be continuous and differentiable at the junction, the following boundary conditions hold at
x = 0

ΨL(0) = ΨR(0) (9a)

∂ΨR(x)

∂x

∣∣∣∣
0

− ∂ΨL(x)

∂x

∣∣∣∣
0

= 2αΨ(0) (9b)
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where Ψ(0) = (ΨL(0) + ΨR(0))/2 and α = mU0. Also, we define the transparency D of the barrier as,

D =
1

α2 + 1
(9c)

such that a transparent junction corresponds to D = 1, while an opaque barrier is given by D → 0.
A particle with a given energy E and transverse momentum ky propagates with linear momentum kx(E, ky) which

is determined by inverting the dispersion relation. In the four-band model we consider, for every pair of E and ky,
there are four possible values of kx which in the presence of a superconducting gap are in general complex (i.e. have
an oscillatory as well as a decaying component).

At energies below the induced superconducting gap E < ∆gap, the wave function decays exponentially away from
the junction. Therefore, general solutions of Eq. (8) to the left/right of the barrier can be expressed as:

ΨL(x) =

4∑
j=1

Ajψkje
ikjx, (10a)

ΨR(x) =

4∑
j=1

Bjψ̄kje
ik̄jx, (10b)

with Im(kj) < 0 and Im(k̄j) > 0. Here each wave-function is a four-component spinor, i.e. ψkj = (ukj ,↑, ukj ,↓, vkj ,↑, vkj ,↓)
T .

Substituting the expression for the wave function in Eq. (10), the two boundary conditions Eq. (9a) and (9b) give
us the following matrix equation for the coefficients Aj and Bj ,

MX = 0, (11a)

where X is the column vector formed by Ajs and Bjs. The matrix M is constructed using the four kj momenta and
the corresponding four-spinors ψkj as follows,

M =

 ψ −ψ̄

−ψ(iK + αI4×4) ψ̄(iK̄ − αI4×4)

 (11b)

Here ψ and ψ̄ are the four matrices formed by the column vectors ψkj and ψ̄kj respectively. K is a 4 × 4 diagonal
matrix formed by the momenta kjs, K = diag(k1, k2, k3, k4). Solutions to Eq. (11a) exist provided the determinant of
M vanishes. From this requirement we obtain the equation for the energies of the Andreev bound states as a function
of the phase difference across the junction, i.e. EJ(φ).

To summarize, the Josephson energies are calculated using the following steps. Given an energy E and transverse
momentum ky, we invert the dispersion relation which results in four values of kx(E, ky). Using these we construct
the general wave function on either side of the barrier (Eqs. 10(a) and 10(b)) and match the boundary conditions at
the junction, x = 0 (Eqs. 9(a) and 9(b)). This results in a matrix equation given in Eq. 11(a), which has solutions
only when the determinant of M given by Eq. 11(b) vanishes. This condition gives us EJ(φ) for each ky.

The Josephson current IJ is then calculated from the energy of the Andreev states, EJ , as

IJ(φ) = 2e
∂EJ
∂φ

. (12)

The periodicity of the energy EJ and current IJ tells us about the topological character of the system. While the
non-topological regime shows a periodicity of 2π, in the topological phase both quantities follow a 4π periodicity.
This is explained in detail in the following section.

V. RESULTS

We work in a parameter regime where the in-plane field exceeds the Pauli limit. In particular, we fix hx = 0.06 and
|∆| = 0.02. The spectrum, as noted earlier, is gapless and nodal points appear along kx = 0,±

√
3ky, i.e. the lines

where the SOC vanishes. The dispersion relation for this set of parameters is shown in Fig. 2.
Figure 5((a)-(d)) shows plots of EJ vs φ along which the determinant of the matrix M in Eq. (11b) vanishes for

barrier transparency D = 0.2. This means that it is only along these curves that solutions for Eq. (11a) exist. The
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dark gray and light gray curves belong to the non-topological regions I and III respectively. In both these regions we
note that there is no zero-energy mode for any value of the phase φ. Moreover, the periodicity of these two E(φ) curves
is 2π as can be seen from the figure. On the other hand, the red and blue curves correspond to the two topological
regions II and IV respectively. In all the panels the solid and dotted lines correspond to the positive and negative
energies respectively at φ = 0. As is evident from the figure, these cross E = 0 at φ = π and 3π and have a periodicity
of 4π. Even though both these regions are topological, they differ in terms of the winding number as shown in Fig.

3. The blue curve has two branches since the winding number in the corresponding region II (k
(1)
y0 < ky < k

(2)
y0 ) is −2;

whereas the red curve has only one branch as the winding number in region IV (k
(3)
y0 < ky < k

(4)
y0 ) is +1.

From this, we can also infer the behavior of the Josephson current IJ using Eq. (12). This is shown in Fig.
5((e)-(h))as four panels for the four different regions. In the trivial regions I (dark gray) and III (light gray) the
current-phase relation has a period of 2π. The current corresponding to the positive-energy branches is shown as a
thick line whereas the negative-energy branch is shown as a thin line in both cases. On the other hand, both the
topological regions II (blue) and IV (red) show a 4π periodicity in the current response [44, 45] The difference between
these two phases is that while region II has two modes (corresponding to winding number W = −2), region IV has
only one branch (W = +1). The solid (dotted) curves in each panel correspond to the branches that have positive
(negative) energy at φ = 0.

FIG. 5. (a)-(d) Josephson Energy EJ(φ) and (e)-(h) Josephson Current IJ(φ) for the midgap states at representative points in
the four different regions labelled I− IV in Fig.2. The red and blue curves cross E = 0 at φ = π and 3π, and have a periodicity
of 4π. On the other hand, the dark gray and light-gray curves are far away from E = 0 for all values of φ. These lie in the
non-topological regions I and III respectively, where the zero-energy modes are not allowed. Here the periodicity is found to
be 2π. These observations are found to be true for various strengths/transparencies of the barrier separating the two sides of
the Josephson junction.

As the transparency D of the barrier is reduced, the mid-gap Andreev states in the trivial phase of the 1D Hamil-
tonian flatten and move to energies closer to the induced gap. On the other hand, for the set of transverse momenta
that correspond to the topological regime, the presence of a pair of zero-energy Majorana modes at the barrier result
in energy levels that stick to zero energy at a phase difference of φ = π. This dependence on the barrier transparency
is briefly explained in appendix C.

VI. DISCUSSION AND PHYSICAL PICTURE

The behavior of the Josephson current can be understood qualitatively by studying the nature of the mid-gap
states localized at each end of the junction in the weak-coupling limit. Here, the tunneling Hamiltonian between the
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two sides of the barrier can be treated in perturbation theory between otherwise decoupled half planes. Moreover,
following the discussion in Sec. III each decoupled half plane can be treated as a family of semi infinite 1D wires
governed by the Hamiltonian H1D

ky
(kx).
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FIG. 6. The spin texture of the two Fermi surfaces as a function of kx and ky. Line cuts at fixed ky show the dispersion of the
two spin channels of the effective 1D model, corresponding to Region I, lower panel, Region II, middle panel and Region IV,
upper panel.

The underlying physical picture is depicted in Fig. 6 which shows the spin texture in the normal state (∆ = 0) of
the two Fermi-surfaces split by in-plane field and SOC. Different cuts of fixed ky correspond to one/two populated
bands with normal/flipped spin orientation.

In the nodal superconducting phase, the condition of h � |∆| strongly suppresses inter-spin-channel pairing, and

the induced superconductivity is predominantly intra-channel type. In region I and III corresponding to |ky| < k
(1)
y0

and k
(2)
y0 < |ky| < k

(3)
y0 respectively, the chemical potential of the one-dimensional wire exceeds the Zeeman splitting

µky = µ − k2
y/2m � hx and the two spin channels acquire intra-band superconducting correlations with opposite

winding numbers W1,2 = ±1, corresponding to a topological trivial phase. The two spin channels which exist as
independent p-wave SCs in the bulk, are then coupled by the end of the wire. This coupling gaps out their midgap
Majorana-like excitations resulting in a finite energy Andreev bound state on either side of the junction. Tunneling
across the junction couples the Andreev states resulting in two modes with a 2π-periodic energy-phase relation.

While the qualitative picture of two p-wave channels remains true for region II (k
(1)
y0 < |ky| < k

(2)
y0 ), in this parameter

regime the spin orientation of the inner Fermi-surface is flipped with respect to region I, while the outer Fermi-surface
remains unchanged. As a result the two p-wave spin channels have the same winding number W1,2 = −1. The two
Majorana modes are protected by chiral symmetry and cannot be gapped by boundary. Consequently, in region II
each half wire hosts two Majorana zero modes at its end. Treating the tunneling across the junction in perturbation
theory would result in two mid-gap states with an energy-phase relation which is 4π periodic.

Finally, in region IV (k
(3)
y0 < |ky| < k

(4)
y0 ), the Zeeman splitting exceed the critical value h >

√
∆2 + µ2 and the 1D

wire is in the same topological class as that of the spin orbit nanowire [46, 47]. Here only one of the two spin-channels
is populated, leading to a single Majorana zero mode at either end of the junction. The tunneling across the junction
would then lead to a single midgap state with 4π periodicity. The different scenarios are discussed in detail in App.
B.

VII. CONCLUSION

We study the current-phase relation of a nodal topological SC in a Josephson-junction geometry. Despite the
presence of an in-plane field, the model retains an effective chiral symmetry which arises due to the particle-hole
symmetry and a modified TR symmetry T = MzΘτZ . We find that the Josephson current-phase relation depends on
the momentum transverse to the current direction and shows a distinctive 4π periodicity when the transverse momen-
tum, treated as a control parameter, lies in-between pairs of nodal points (regions II and IV). The nodal momenta
thus define the boundaries between a trivial phase and two topologically distinct non-trivial phases characterized by
different winding numbers W = 1 and W = −2.

The W = −2 phase is protected by the chiral symmetry and is therefore unstable with respect to symmetry-
breaking perturbations such as a Rashba SOC, which couple the two Majorana flat bands at the boundary. When such
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perturbations are present, the Josephson current-phase relation will exhibit a 2π periodicity in region II. Conversely,
the W = 1 phase in region IV is stable to weak perturbations that break the modified TR symmetry. We therefore
expect that the 4π periodicity associated with this region will persist in the presence of weak symmetry-breaking
perturbations.
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Appendix A: In-plane field and phase transition

A remarkable property of nodal SCs is that the superconducting properties survive even when h, the applied in-
plane magnetic field, is increased beyond the Pauli limit. At magnetic fields lower than the superconducting pairing,
i.e. when h < |∆| the spectrum is gapped at all momenta. As we increase the magnetic field, this energy gap reduces
linearly as shown in Fig.7 (inset). This trend holds true for all ∆s.

At h = |∆| the system undergoes a phase transition which is accompanied by a closing of the spectral gap at six
points in the Brillouin zone (B.Z.). These six gapless points or ‘nodes’ lie at the vertices of a regular hexagon. These
mark the points where the Fermi surface |kf | =

√
2mµ intersects the λ(k) = 0 lines.

FIG. 7. Magnetic field-driven phase transition. The separation between each pair of nodal points increases as we increase the
in-plane field beyond the superconducting pairing ∆. This is shown for a range of ∆s. The inset shows that the spectral gap
δE decreases linearly with increasing h. This is true for all ∆s. The spectrum becomes gapless at h = |∆| and continues to
remain so for h > |∆|.

As h is increased beyond the pairing |∆| the spectrum continues to remain gapless. However, with increasing h,
each of the six nodal points splits into two. This means that each B.Z. hosts a total of twelve nodal points which are
shown in Fig.2. Each of the six pairs of nodal points continues to spread as h is increased further. The separation of
the nodes as a function of h is shown in Fig.7 for a range of ∆s.

Appendix B: Edge states of the effective 1D Hamiltonian

We study the nature of the mid-gap states localized at each end of the junction in the weak-coupling limit, where, the
tunneling Hamiltonian between the two sides of the barrier can be treated in perturbation theory between otherwise
decoupled half wires. The underlying physical picture is depicted in Fig. 6 which shows the spin texture in the
normal state (∆ = 0) of the two Fermi surfaces split by in-plane field and SOC. Different cuts of fixed ky correspond
to one/two populated spin-channels with normal/flipped spin direction. Different scenarios are discussed in detail
below.
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1. Region I: |ky| < k
(1)
y0

This regime of parameters is characterized by two occupied spin-channels (see lower panel in Fig. 6). The condition,
µ = k2

F /2m� h, |∆| allows us to linearize the spectrum near the Fermi points. The general form of the wave function
is given by,

ψσ=↑,↓ = Rσ(x)eikF x + Lσ(x)e−ikF x (B1)

where Rσ(x)/Lσ(x) are slowly varying functions of x describing right/left moving electrons. In the basis of the slow
varying fields ψ+ = (R↑(x), R↓(x), L↑(x)†, L↓(x)†) and ψ− = (L↑(x), L↓(x), R↑(x)†, R↓(x)†), the BdG hamiltonian is:

H1D
ky,±(x) = ∓ivF∂xτz +±λk3

Fσz + hσxτz + ∆σyτy. (B2)

We perform a rotation in the spin space to diagonalize the particle-conserving terms by applying the unitary trans-
formation, H̃1D

ky,±(x) = U†H1D
ky,±(x)U , where U = exp [−iσyτz(π/4− θ/2)] with the rotation angle θ defined via

vF km cos θ = h

vF km sin θ = λk3
F . (B3)

We find H̃1D
ky,±(x) = H0

± + δH where

H0
± = ∓ivF∂xτz + vF kmσz ±∆ sin θσyτy

δH = ∆ cos θτx (B4)

and we have dropped the subscript ky for brevity. In the limit h � ∆ we can treat δH in perturbation theory. The
unperturbed Hamiltonian H0

± admits two zero energy solutions at the end of the wire:

ψ±↓(x) =
1

Ω


βei

π
4 +i

φ(x)
2

0
0

e−i
π
4−i

φ(x)
2

 e±i(kF−km)xeβx/ξ

ψ±↑(x) =
1

Ω


0

βe−i
π
4 +i

φ(x)
2

ei
π
4−i

φ(x)
2

0

 e±i(kF+km)xeβx/ξ (B5)

where ξ−1 = ∆ sin θ/vF and β = ± for the left/right side of the junction, respectively, and

φ(x) =

{
0 x < 0
φ x > 0.

(B6)

From these zero-energy solutions we can construct two zero-energy modes on each side of the barrier that satisfy the
boundary conditions ψM (x = 0) = 0 namely:

φ↓β(x) =
1

Ω


βei

π
4 +i

φ(x)
2

0
0

e−i
π
4−i

φ(x)
2

 sin[(kF − km)x]eβx/ξ

φ↑β(x) =
1

Ω


0

βe−i
π
4 +i

φ(x)
2

ei
π
4−i

φ(x)
2

0

 sin[(kF + km)x]eβx/ξ (B7)

Calculating the matrix element due to the local inter-band pairing term, δH between these states, we find that the
each semi-infinite wire on either side of the barrier hosts a single Andreev end state with energy:

β∆gap =

∫
dx〈φM↑β(x)|δH|φ↓β(x)〉

≈ 2β
∆3

k2
m

cos θ sin2 θ (B8)

Where we have used kF � km � ∆.
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2. Region II, k
(1)
y0 < |ky| < k

(2)
y0

Once more the condition µy = µ−k2
y/2m = k2

F /2m� h,∆ is satisfied, corresponding to two filled spin bands. The
situation in this regime is similar to that in region I with the spin orientation of the inner spin channel flipped while
the outer Fermi surface remains unchanged, see Fig. 6 middle panel. The reason for the flip is that for the parameter
range ky between the two nodal points ky = 1

2 (k1
y0 + k2

y0) ≈
√

mµ
2 , the spin orbit term vanishes:

λIkF (k2
F − 3k2

y) = 0 (B9)

The magnetic field splits the two Fermi points by an amount ∼ ±km. As a result of this splitting, the two spin
channels experience a finite SOC of opposite strength.

In the basis of the slow varying fields ψ+ = (R↑(x), R↓(x), L↑(x)†, L↓(x)†) and ψ− = (L↑(x), L↓(x), R↑(x)†, R↓(x)†)
the BdG Hamiltonan is:

H1D
ky±(x) = ∓ivF∂xτz − i2m2λvF∂xσz + hσxτz + ∆σyτy (B10)

Next we will assume the eigenvectors have an oscillatory part and a slowly varying part:

ψ±s(x) = e±sikmxeβx/ξ


R↑
R↓
L†↑
L†↓

 (B11)

where s = ± correspond to the two spin eigenvalues.
The Hamiltonian in the 4-spinor basis becomes:

H1D
ky±,s = (svF km ∓ iβvF /ξ)τzσ0 ± 2m2λvF skmτ0σz

+ hσxτz + ∆σyτy (B12)

performing a rotation in the spin basis U = exp [−iσyτz(π/4− sθ/2)] this gives rise to H̃1D
ky±,s = H0

±s + δH1:

H0
±s = (svF km ∓ iβvF /ξ)τz + vF kmσz ± s∆ sin θσyτy

δH1
s = ∆ cos θτx (B13)

where vF km cos θ = h and vF km sin θ = m2λvF km. We therefore identify two zero energy solutions of the form

φ↑β =
1

Ω


0

βe−i
π
4 +i

φ(x)
2

ei
π
4−i

φ(x)
2

0

 sin[(kF + km)x]eβx/ξ

φ↓β =
1

Ω


βe−i

π
4 +i

φ(x)
2

0
0

ei
π
4−i

φ(x)
2

 sin[(kF − km)x]eβx/ξ . (B14)

crucially, the inter band pairing term does not couple the two zero mode:

〈φ↑β |δH|φ↓β〉 = 0. (B15)

Consequently, for this regime of parameters, each wire’s end hosts two decoupled Majorana zero modes. Treating the
tunneling Hamiltonian in perturbation theory [48] would give rise to two Andreev bound states:

EJs = ∆
√
Ds sin θ cosφ/2. (B16)

We note that the presence of the two Majorana modes is protected by the modified TR symmetry T , and is unstable
to symmetry-breaking perturbation such as Rashba SOC, the presence of which would couple the two Majorana modes
resulting in a single Andreev state on either side of the barrier. Consequently, when this T symmetry is broken, this
phase is continuously connected to region I and the nodal points along the |kx| =

√
3ky line that separate the two

will be gapped out.
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3. Region IV, k
(3)
y0 < |ky| < k

(4)
y0

In this regime of parameters h >
√

∆2 + µ2
ky

and the effective 1D Hamiltonian is in the topological class of the case

of the spin-orbit coupled nanowire [46, 47]. Here µky = µ− k2
y/2m. In region IV only one of the two spin orbit bands

is populated and each semi-infinite half wire hosts a single Majorana zero mode at its end. Treating the tunneling
Hamiltonian in perturbation theory following ref. 48 would give rise to a single Andreev bound states:

EJ = ∆
√
D sin θ cosφ/2. (B17)

Unlike region II, the presence of a single Majorana mode at either end of the junction remains stable to a weak
symmetry-breaking perturbation.

Appendix C: Dependence on barrier transparency D

The behaviour of Josephson energy EJ(φ) and current IJ(φ) depend not only on the ky cut we choose, but also
on the transparency of the barrier that separates the two sides of the junction shown in Fig. 4. We see that for a
transparent barrier i.e. when D → 1 the Josephson energies are close to zero at φ = π, 3π in all the regions. However,
as we increase the strength of the barrier, i.e. as D is reduced, the modes in the non-topological regions i.e. I and III
are gapped out and move away from zero. However the modes in the topological regions II and IV continue to exist
close to zero energy at φ = π, 3π.

FIG. 8. (a)-(d) Josephson energy EJ(φ) and (e)-(f) Josephson current IJ(φ) with barrier transparency D = 0.6. The colors
correspond to the transverse momentum ky lying in the regions I− IV.
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[23] W. Wan, P. Dreher, D. Muñoz-Segovia, R. Harsh, F. Guinea, F. de Juan, and M. M. Ugeda, Observation of superconducting
leggett modes from competing pairing instabilities in single-layer nbse2 (2021), arXiv:2101.04050 [cond-mat.supr-con].
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