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Abstract

We present the first steps in the development of a new class of hadronization models
utilizing machine learning techniques. We successfully implement, validate, and train a
conditional sliced-Wasserstein autoencoder to replicate the PYTHIA generated kinematic
distributions of first-hadron emissions, when the Lund string model of hadronization im-
plemented in PYTHIA is restricted to the emissions of pions only. The trained models are
then used to generate the full hadronization chains, with an IR cutoff energy imposed
externally. The hadron multiplicities and cumulative kinematic distributions are shown
to match the PYTHIA generated ones. We also discuss possible future generalizations of
our results.
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1 Introduction

A typical particle physics Monte Carlo event generator factorizes into three distinct steps
or blocks of code: (i) the generation of the hard process, (ii) parton shower, and (iii)
hadronization (including color reconnections). The first two steps are perturbative in their
nature, and thus under good theoretical control, with significant efforts devoted to improv-
ing the precision even further [1-4]. The algorithmic challenges are efficient sampling of
final state particle configurations, and taming the factorial growth of the calculations with
the increasing number of particles. The simulation of the hard matrix element is performed
either by a specialized code, e.g., MADGRAPH [5], which only calculates the hard process,
or is directly included in complete event generators, such as PYTHIA [6], HERWIG [7], or
SHERPA [8], that also perform the parton showering.

In contradistinction, the hadronization step is inherently non-perturbative. One is
therefore forced to resort to phenomenological models inspired by non-perturbative dis-
criptions such as lattice QCD. The two main models used in simulating hadronization are
the Lund string model [9-11] and cluster model [12-14]. In the string model, quark—anti-
quark pairs are thought of being connected by a string, a flux tube of the strong force
confined in the lateral direction. As the quark—anti-quark pair moves apart, the string
breaks, creating new quark—anti-quark pairs in the process, resulting in the emission of
hadrons. These emissions are performed iteratively, breaking the string either from the
left or the right side, with the final step modified post hoc in order to provide an emis-
sion similar to the previous steps. This model requires extra parameters to describe the
hadrons’ transverse momenta and heavy particle suppression, and has some challenges
describing baryon production. Over O(20) parameters are required by the string model
to describe the hadronization.

In the cluster model, gluons are forced to split into quark—anti-quark pairs at longer
distances (lower energy). All quark—anti-quark pairs are grouped into color singlet com-
binations with a distance scale that depends only on the evolution step, and not the hard
process step of the Monte Carlo even generation. Hadrons are emitted from these uni-
versally pre-confined clusters via a series of two-body decays until only physical hadrons
remain. The model has fewer parameters and naturally generates hadron transverse mo-
menta. However, the decays of massive clusters lead to phenomenological problems such
as predicting heavy baryon distributions which do not match data well.

Machine Learning (ML) techniques offer the possibility to build alternatives to the
above two models of hadronization. Such ML models could be directly built from data
and provide insights into the current phenomenological models. While ML techniques
have recently entered into the development of event generators, through adaptive integra-
tion [15-20], parton showers [21-29], ML based fast detector or event simulations [30-57],
and model parameter tuning [58,59], the application of ML to the problem of hadronization
as the final step in the Monte Carlo pipeline is entirely new, to the best of our knowledge.
The present manuscript represents the first step toward building a full-fledged ML based
hadronization framework.

In principle, Generative Adversarial Networks (GANs) [60], Variational Auto-Encoders
(VAEs) [61] and Normalizing Flows (NF) [62] have demonstrated the ability for ML to gen-
erate convincing physical observables. In addition, conditional generative models give more
flexibility and control of the output [63,64] Extending the ML techniques for hadronization
faces three challenges: (i) producing sets of physical observables that vary in size (unlike
a fixed number of pixels), ranging from O(1) to O(10%); (ii) strictly conserving certain
physical quantities, e.g., momentum and energy; and (iii) learning from limited train-
ing sets which only provide coarse-grain detail. In this paper we present an architecture
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based on conditional sliced-Wasserstein autoencoders (cSWAE) [65, 66], that overcomes
the above challenges. The resulting code, MLHAD, is publicly available, see Appendix A.
We demonstrate the capabilities of MLHAD by training it on specially prepared PYTHIA
hadronization outputs with an explicit IR cut-off. To speed up the training we perform a
transformation that captures the bulk of the energy dependence of the PYTHIA hadroniza-
tion output. However, we also show that, if this transformation is not performed, the
c¢cSWAE can still reproduce the energy dependence and thus should be able to reproduce
any additional energy dependence that may be present in the hadronization process real-
ized in nature. We expect that the first version of the cSWAE architecture presented here
can be upgraded to eventually be trained directly on data (details about further steps to
achieve this can be found in section 4).

The paper is structured as follows. In Section 2 we introduce conditional sliced-
Wasserstein autoencoders and describe how these can be used to reproduce the Lund
string model of hadronization. In Section 3 we then compare the trained MLHAD models
to the results of a simplified PYTHIA hadronization model. Section 4 contains our con-
clusions and a brief discussion of future directions. Appendix A contains details about
the publicly accessible MLHAD code, while Appendix B gives further details on the sliced-
Wasserstein distance.

2 Conditional SWAEs and hadronization

2.1 The simplified Lund string hadronization model

As the first step toward building a machine learning (ML) based simulator of hadroniza-
tion, we create a ML architecture that is able to reproduce a somewhat simplified Lund
string model for hadronization. Hadronization is the last step in the Monte Carlo simula-
tion of the particle collision, and describes the creation of hadrons from quarks and gluons,
a process that occurs at the nonperturbative scale of a few 100 MeV. The distributions
of quarks and gluons at low scales is obtained using a parton shower simulation, which
describes the emission of particles between the hard scale of the collisions, typically a few
100 GeV, down to low energies. In a Lund string model the quarks and gluons are thought
of being connected by QCD color flux tubes, or strings, that carry significant amounts of
energy, and shed it in the process of hadron creation. While there were already attempts
to use ML to improve parton shower simulations [27,67-73], this manuscript represents
the first attempt to use ML for hadronization. In both cases the physics is described by
a Markov chain, however, for different reasons. The semi-classical evolution of a parton
shower, where gluons and quarks are radiated in a Markov chain, can be justified in the
small angle emission limit. The hadronization, on the other hand, can be represented
as a Markov chain process because string fragmentations occur at causally disconnected
points.

The physical process we want to describe is depicted in Fig. 1. It shows a ¢;g; frag-
mentation event in the center-of-mass frame in which the individual partons, each with
flavor index 4 and initial energy F, travel with equal and opposite momenta and are con-
nected via a QCD string. String breaking produces a composite hadron h ~ ¢;q; and
a new q;g;-string system depicted in the lower part of Fig. 1.! The hadron h is ejected
with some energy and momentum (FE}, pp,), while the new string system has the energy
and momentum (2E — Ep,, —pp), so that the total energy and momentum are conserved.

!The depiction in Fig. 1 is for a string breaking occurring on the quark side. The string breaking on
the anti-quark side produces similarly a hadron with quark composition h ~ g;¢;, and the new ¢;g;-string.
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Figure 1: Schematic of a single fragmentation event, for an initial quark—anti-quark
pair, ¢;q;, into a hadron with quarks ¢;q; and new endpoints g;q;.

The goal of our ML framework will be to properly describe the probabilities of emitting a
hadron of given energy and momentum.

After boosting to the center-of-mass frame of the new string, one has essentially the
same initial state, a quark—anti-quark pair going back to back connected by a string, but
with reduced energy E’ and a different quark flavor composition. Such fragmentation
events stack one after the other and form a fragmentation chain, one hadron emission
at a time, until the entire energy of the initial two-parton system (2F) is converted into
hadrons. The end of the string used for each splitting is chosen at random. Until relatively
low string energies of a few GeV, the selection of flavor and the kinematics of the hadron
emission are taken to be independent processes. In the final stages of hadronization, when
the string energy is close to the nonperturbative scale, the two processes, on the other hand,
become intertwined. To simplify the problem, we therefore terminate fragmentation events
at a center-of-mass string energy E.t = 5 GeV. We also consider a simplified string system
which allows for u and d quarks as string ends, as well as their respective anti-quarks, and
pions as final states.

Note that each step in the above hadronization chain is independent from the previous
one. A successful hadronization simulator therefore takes as the input the string energy
E (i.e., the energy of one of the endpoint quarks in the center-of-mass frame) as well
as its flavor composition, and gives the flavor and kinematics of the hadron after first
emission, (Ej,pp). Repeating the first emission generates the full hadronization chain.
Since E,% = 13,21 + mi, where my, is the hadron mass, the kinematics of the emission are fully
described by specifying pj, and flavor of the created hadron h. We orient the coordinate
system such that the z axis is along the direction of the initial string, while the x and y
coordinates are perpendicular to it. The transverse components of the pj, vector are given
by

Pz =Pprcosy, py =prsing, (1)

where pr = /p2 + pg and ¢ is the polar angle. The string breaking and hadron emission

are assumed to be axially symmetric in PYTHIA, i.e., independent of ¢, and thus the prob-
lem of simulating the hadronization event reduces to a two variable problem of generating
the p, and pr distributions for the first emission.

A special feature of the hadronization event and the chosen kinematic variables is the
ability to render the p, kinematic distributions independent of the initial parton energy,
E, through a simple rescaling transformation

p; = Eref%v (2)

where F is the energy of the quark in the center of mass for the initial string, and F,ef
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Figure 2: The p, distributions (left) and the rescaled p,, Eq. (2), distributions
(right) from PyTHIA hadronization events for the first-hadron emission with ini-
tial parton energies £ = 10,100, 1000 GeV shown with blue, red, and green solid
lines, respectively.

is a conveniently chosen reference energy that renders p’ dimensionful. In the rest of the
paper we set E.of = 50 GeV. The transformation of the p, distribution with respect to the
initial parton energy E can be seen in Fig. 2.

The fragmentation process implemented in PYTHIA is constructed in momentum space
as an iterative walk through production vertices. To do so a stochastic variable termed
the longitudinal momentum fraction z is defined, describing the fraction of longitudinal
momentum taken away by the emitted hadron.? Given the longitudinal momentum frac-
tion, p, can straight-forwardly be obtained via the relation z = (p, + E})/2E where 2E is
the total energy of the initial fragmenting system. The probability distribution f(z) from
which z is sampled is called the Lund left-right symmetric scaling function (also Lund
sampling or fragmentation function) and is given by

a m2
7)o T e (—bf) , 0

z

where m,zl = m,% + p% is the transverse mass, and the normalization prefactor is omitted
for clarity’. The phenomenological parameters a, b are chosen to match experimental data.
The p% term in the transverse mass squared, m,zl’T, captures the tunneling probability for
a string breaking to occur away from the classical position of the string end, such that
the additional energy required for the transverse momentum kick can be released from
the string. It leads to a correlation between transverse and longitudinal distributions of
hadron momenta (in the center-of-mass frame of the initial string), i.e., the average value
of z increases with increasing pr. In the default implementation of the Lund model in
PyTHIA, the hadron pr distribution is assumed to be Gaussian distributed, with average
(pr) = 0, and a width og ~ O(300 MeV), reflecting that its origin is an inherently quantum
process occurring at the nonperturbative QCD scale.?

The above basic setup of the Lund model becomes more involved when full complexity
of the experimental data needs to be explained. Most of the O(20) parameters that give
more flexibility to the PYTHIA implementation of the Lund string model are related to

2In Section 2.2, z; denote the latent-space variables. Despite similarity in notation there is no relation
between the two variables.
3The configurable PYTHIA parameter name is StringPT:sigma.
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the differences in hadronizations of the light quarks compared to the strange, ¢ and b
quarks. For instance, each quark flavor can in principle have a different a; in PYTHIA
strange quarks are allowed to have different values of a than for v and d quarks, while
for heavier ¢ and b quarks the Lund fragmentation is also allowed to be multiplied by
an extra z-dependent factor with new flavor-dependent parameters. Similarly, the pr
distributions can deviate from the Gaussian form. While this gives quite some flexibility
to the hadronization model, it does have its own drawbacks. On one hand, the number
of parameters to be tuned to data is already quite large. On the other hand, one may
worry that the analytic form of the scaling function in Eq. (3), while well motivated, is
not flexible enough, with higher order corrections in z potentially becoming important,
e.g., at low string energies. Generative ML models, such as the architecture that we
introduce in the next section, can be used as effective tools to address both of these issues.
For the purposes of this paper we will not yet train our ML architecture on the physics
data, but rather on the synthetic data generated by PYTHIA. However, we anticipate
that the expressibility of the ML framework, which we demonstrate below, will allow for a
better description of the physics data sensitive to hadronization than the Lund left-right
symmetric scaling function in Eq. (3) does right now.

2.2 The cSWAE architecture

The ML model of hadronization used here is based on the conditional sliced-Wasserstein
Autoencoder (cSWAE) [65,66] (for an example of a use of SWAE architecture in particle
physics simulations see [40]). The motivation for using cSWAE is two-fold, i) the flexibility
of being able to use a wide variety of latent-space distributions and thus optimize the
performance of the hadronization model, and 4i) the ability to incorporate the energy
dependence of hadronization through a two dimensional condition vector ¢. We expect the
second feature to become most relevant once MLHAD is trained on experimental data, for
which small breakings of the energy independence exhibited by the Monte Carlo generated
p,, data, Fig. 2, may be anticipated. The main advantage of SWAEs over VAEs is the
flexibility in the choice of the latent space distribution, which allows the user to chose any
sampleable distribution as latent space distribution. This is achieved by introducing a
sliced Wasserstein distance (i.e. an approximate of the real Wasserstein distance between
the desired and the obtained latent space distributions) in the cost function, see Eq. (6)
below. This is then added to the usual reconstruction loss estimate term in the cost
function, see Eq. (5) below.

The schematic of the cSWAE architecture is given in Fig. 3. It has two parts, the
encoder and the decoder:

The encoder ¢ takes as inputs the data vectors x; and labels ¢; and returns a latent-
space vector Z; = ¢(x;, ¢;). Depending on the value of ¢; the encoder will transform x;
to different regions in the latent space, as shown in the graphical representation of Fig. 4.
The dimension of the latent space, d,, needed for the application to hadronization is any-
where from d, = 2 to d, = 30, see also Table 1. The latent-space vectors z; are trained
to be distributed according to the target latent-space distribution, 2; ~ I(2;, ¢;), which
is ensured through the use of sliced-Wasserstein distance, SW,,, in the loss function. In
particular, the latent-space variable 2Z; need not be normally distributed. We found that
this feature translated to significant improvements in the performance of MLHAD. With
cSWAE one can choose a custom probability distribution such that the encoding of the
information about the first emission hadron kinematics leads to optimal results. This is
the main practical difference between cSWAE and the conditional Variational Autoen-
coder (cVAE). The ¢VAE use KL-divergence in the loss function, which typically require
that the latent-space variables follow simple distributions, such as a normal distribution.
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Figure 3: The ¢SWAE architecture for simulating hadronization. Inputs x;
have condition ¢;, which parametrizes the string energy. The decoder takes z; as

‘CI‘SC

inputs and generates the predicted hadron kinematics &; = {ﬁSL} The sliced-
Wasserstein-distance loss function, Lgy, constrains the latent-space vectors z;
to the target distribution 2; ~ I(Z;,¢;). The reconstruction loss function, Lyec,
minimizes the difference between x; and ;.

C;

Z;—| Encoder

Figure 4: Illustration of the conditional vector ¢; = ¢(E;) mapping the input
data «; into different regions of the latent space, z.

The cSWAE uses instead the sliced-Wasserstein distance, SW),, see Appendix B for more
details. This gives the architecture significantly more flexibility, as one can choose the
latent-space distributions to follow almost any distribution, as long as it is sampleable (in
particular, the analytic form of I(z, ¢;) is not required to exist).

The decoder 3 takes as inputs the condition vector ¢; and the latent-space vector Z;.
It returns the reconstructed hadron kinematics &; = ¥(¢(x;, ¢;)), where &; is the N,

dimensional vector consisting of sorted kinematic variables, either plz(z,z or pgﬁ)k. Through
the minimization of the loss function [65]

5(1/17 ¢) - Erec + ESW: (4)
where
1 (1,
Loe =5 2 | Bl b6 @i, + i, (i) o)
T =1

\ L N
Lsw ~IN DN dsw(0e - 2,00 - Dy, i), (6)

T oe=1i=1

with z; ~ I(z;,¢;), the training attempts to reproduce the training data distribution
x; with the generated data distribution &;, while the latent-space vectors z; follow the
desired target distribution 2; ~ I(Z;,¢;). The reconstruction loss Lyec is a measure of the
differences between the input, x;, and generated kinematic vectors, &;. It is the sum of
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Figure 5: Ilustration of MLHAD generating hadronization chains. Random
variables z; are passed through the decoder D with condition vector ¢; to generate
the hadron momentum, given the string energy E;. A modified PYTHIA flavor
selector 'S, generates the new string flavor, s;41, and emitted hadron species,
h;. Before each emission, the string is boosted to its center-of-mass frame using
a Lorentz transformation A.

two terms for each of the 1D distributions that we consider,
. . 2
2ok (P/Z(Z;z - ]3;(2) , for p/, distributions,

di (@i, (p(wi, 1)) = o \2
Dok <ka —Dp k:) , for pp distributions,

(7)

2k ‘p/z(zlz - ]5/2(2’, for p/, distributions,
() _ A0)
>k |pT,k — Prg

di(zi, p(d(zi, ¢i))) = { (8)

, for pp distributions,

where p;(z,z and pg)k are the components of the training-dataset vectors x;, while ]5;(2 and
ﬁgf)k are the components of the output vectors &;. For the relative weight between the
two terms in Lec we take @Q = 1 GeV. The two contributions of L. are sensitive to dis-
tinct scales allowing for fast convergence (dp) and continual improvement (da) throughout
training while also heavily penalizing outliers.

The second term in Eq. (4), Lsw, is the implementation of the sliced-Wasserstein
distance SW; between the distribution of latent-space vectors Z; created by the encoder,
and the target latent-space distribution I(z;,¢;). The sliced-Wasserstein distance is the
approximation of the true Wasserstein distance between the two distributions, and is
smaller the closer the latent space distribution is to the desired one. The sliced-Wasserstein
distance approximation becomes better and better the higher the number of 1D slices
(or probes) of the distributions one uses. The advantage is that the computation of
Wasserstein distances for 1D slices can be done very efficiently, leading to a significant
speed up of the algorithm.

The computation of SW; is done as follows. The vectors z; in Eq. (6) are randomly
drawn from this target distribution, z; ~ I(z,¢;). The scalar products with the unit
vectors 0, defining the L slices, give the one dimensional projections of the latent-space
distributions, for which the Wasserstein distances, W7, are straightforward to compute.
They are given simply by the average sum of the distances between the sorted data points,
see Appendix B for further details. Note that for one dimensional latent space SW7 = Wh,
and in the sum in Eq. (4) one can set L = 1.
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2.3 Training

The input data to the encoder are N, PYTHIA generated first-hadron emissions for a fixed
initial string energy F; = 50 GeV. In all of the numerical examples below we take N, = 100,
so that the input is an N, dimensional vector x; of either p, iy ,3 or p(T)k, k=1,...,N.. That
is, in this manuscript we apply ¢SWAE to the case where the pz and pr dlstrlbutlons
are uncorrelated and treat each of them separately. However, the architecture is flexible
enough that correlated 2D or higher dimensional distributions could also be used as inputs

The elements of the input vectors x; are sorted, i.e., p<,) < p() < ... pz(])Ve
(and similarly for p%)k).4 The training dataset consists of Ny such x; input vectors,
i =1,..., N, and Ny, y; validation vectors, j = 1,..., Ny, where typically IV, is taken
to be Ny = O(4000) and Ny, an order of magnitude smaller. To summarize, the training
and validation datasets are created by generating N = N¢(Ny; + Nyal) = 4 x 105 PYTHIA
first hadron emission events. The emission data (p, or pr) is then partitioned randomly
into Ni; + Nya) vectors of length N, = 100. Finally, the elements in each vector are sorted
from least to greatest.

The string energy Fj;, or equivalently mass in the center-of-mass frame, is converted to
a unit condition vector ¢; = (¢;,1 — ¢;) with ¢; € [0, 1] a floating point number such that

Emax - E’L

E; = EninG; + Emax(1 — Ei)a and thus C; = o — B’ 9)

where Eni, and Enax are the reference minimal and maximal energies. A good choice for
Fax is the maximal partonic collision energy in the simulation, while E,;, can be taken
to be the IR cutoff E.y.

In general, the cSWAE allows for the initial string energy E; of each x; to be different
(but the same for all the N, components of x;). For the PYTHIA generated events the
kinematic variable p, can be made E independent through the transformation in Eq. (2)
and thus F; can be set to a constant value, F/; = 50 GeV. As a proof of principle we also
show in Section 3.2 that cSWAE models can be trained on E-dependent ;.

The algorithm for training the ¢cSWAE is as follows. Applying the encoder to the
input data sample {x1,..,xp, } gives the latent-space vectors {21, .., Zn,, }. To compute
the sliced-Wasserstein distance term, Eq. (6), the unit vectors {6, ..,01} are randomly
sampled from the (d,—1)-dimensional unit sphere & d==1 while the Ny, latent-space vectors
{z1,...,2nN,} are sampled from the target distribution, z; ~ I(z;,¢;). For each 6y, the
scalar products 6;-2; = 6;-¢(x;) and ;- z; are sorted in the following way. First the energy
labels ¢; (and the corresponding Z;, z;) are sorted into N, bins of increasing ¢; intervals
with boundaries ¢;) < ¢y < -+ < ¢y,. That is, the latent-space data are binned
according to their energies, F;, where the bins are chosen such that the distributions
I(z;,¢;) do not have large dependence on ¢; within the bin. The generated and target
I(z;, c;) distributions are then compared within each energy bin. This is achieved by first
sorting the scalar products of Z; and z; with 8, within each ¢; bin, and then combined into
the lists {0 - Zp11,, - - -, 00~ 2y, } and {00 - 21),, - - -, 00 2N, }, respectively. The SW loss
function Lgw in Eq. (6) is then the average over the latent space distances between the
two sorted lists,

dsw(0¢ - 2[3,, 00 - p(y,) = |00 - 2, — 00 - D)), (10)

averaged also over all the L slices and multiplied by the relative weight prefactor A\. The
final step in the algorithm is applying the decoder to Z;, which gives {Zi,...,Zn,, }.

4For 2D or higher dimensional problems the data would first be clustered in predefined 1D bins and
then sorted within each bin.
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Figure 6: Illustration of Lorentz boosting (A) from the lab frame to the string
center-of-mass frame. Red and blue lines are the string system’s longitudinal
momentum with the total area equal string system’s longitudinal momentum
E + p,. Each box is a new string.

The distances between input dataset, {x1, .., zn,, }, and the generated sets {Z1,...,Zn,, }
are then calculated using Eqs. (7) and (8), giving the reconstruction loss function Lyec,
Eq. (5). The decoder and encoder are updated in steps, trying to minimize the combined
loss function, Eq. (4). Overfitting is avoided by monitoring the value of loss function when
applied to the validation dataset, i.e., the loss function (4) with x; — y;, Niy — Nyal.
Fig. 5 illustrates how the trained MLHAD decoder is used, along with the PyTHIA
flavor selector, to generate the hadronization chain. Note, the full PYTHIA flavor selector
is not needed here, but included to allow for subsequent development. The flavor selector
takes as input the initial string flavor 1D, s;, and gives as the output the flavor ID of the
emitted hadron, h;, which also defines the flavor of the new string fragment, s;;1. The
MLHAD decoder takes as input the latent-space vector z; ~ I(z;,¢;) sampled from the
target distribution I(z;,¢;), where ¢; is the label encoding the center-of-mass energy of
the string s;, see Eq. (9). The MLHAD decoder returns the N-dimensional vector with a

list of possible momenta for the emitted hadron, ﬁlz(l) (or ﬁgf)k). We randomly choose one
of these as the actual hadron kinematics, and mocfify accofdingly the kinematics of the
remaining string fragment, s;11 , such that the energy and momentum are conserved. The
emitted hadron is boosted to the lab frame, and added to the list of emitted hadrons, while
the new string is boosted to its rest frame, see Fig. 6. Its center-of-mass energy defines
the label ¢;11 used as the input in the decoder for the next hadron emission. These steps
are repeated until the string energy in its rest frame reaches the IR cutoff energy Feyt.
We have implemented the cSWAE architecture described above using PYTORCH [74].

The code can be accessed via a public repository, see Appendix A for details.

3 Reproducing the simplified Pythia fragmentation model

To demonstrate the viability and capability of the ¢cSWAE based machine learning al-
gorithm implemented in MLHAD, we reproduce the PYTHIA hadronization outputs. We
analyze a ¢;¢; hadronization event in the center-of-mass frame in which the individual
partons, each with flavor index ¢ and initial energy E, travel with equal and opposite
momenta producing a string between them. After the string breaks this produces a new
string and the first emission hadron, see Section 2.1 for more details.

While MLHAD treats all the hadron emissions on an equal footing, PYTHIA treats
the first emission slightly differently; in the first emission myy, in Eq. (3) is set to my
(i.e., pr = 0), while for all subsequent emissions p, and p, are sampled from a normal

10
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Variable | Target z ‘t (epochs) d, A L

PyTHIA 150 35 35 15

P, Trapezoidal 300 2 20 30
Triangular 150 2 30 25

PyTHIA 100 20 30 30

pr Skew-norm 120 4 20 25
Triangular 120 4 15 25

Table 1: The cSWAE training configurations, where x is the input data, z the
target latent-space distribution, ¢ the number of epochs, d, the dimension of the
latent space, A the regularization parameter of the sliced-Wasserstein loss, and L
the number of latent space projections (slices).

distribution with a width oo (we set this tunable PYTHIA parameter to g = 0.335 GeV).
Therefore, in training MLHAD we only aim to reproduce the PYTHIA output on average,
which is in line with the physical limitations of the problem, since one cannot trace in
nature each individual emission in the hadronization event.

Our model is trained on kinematic distributions for transformed variables, p., pr,
Eq. (2), obtained from the PYTHIA first emission events. With a uniformly sampled polar
angle ¢ in the transverse plane, these kinematic variables then completely define the phase
space of the system through Egs. (1), (2). The MLHAD decoder is then used with a fixed
shifted value transverse mass m2, = mj + o2, with 0 = 0¢/ /2. This accounts for using
only PYTHIA produced first emission data where pr = 0 GeV. For flavor selection we rely
on PYTHIA’s probabilistic model, and limit ourselves to light quarks, u, d and only pions
as the final state hadrons.

The independence of the distributions from the initial parton energy, see Fig. 2, allows
the cSWAE model to be trained on a dataset using an arbitrary initial parton energy, Eyf,
while the outputs of cSWAE hadronization generator can be transformed accordingly to
obtain the distributions for any desired initial energy, F, using Eq. 2. While in the PyTHIA
output the complete energy dependence is already captured with the simple rescaling in
Eq. (2) we do not expect this to be entirely true for actual physical hadronization events
realized in nature, for which subleading deviations from the scaling law in Eq. (2) may be
anticipated. In Section 3.2 we demonstrate that such corrections to the scaling law can
be captured by the cSWAE architecture.

3.1 First emission trained models

The ¢cSWAE trained models differ according to the target latent-space distribution, I(z, ¢),
the dimension of the latent space d,, training time ¢ (epochs), the value of the sliced-
Wasserstein regularization parameter A\, and the number of slices L, as shown in Table 1.
In all the cases we fix the string energy to be F = 50 GeV. The first emissions for other
string energies can be obtained by inverting the rescaling of the p/, distributions in Eq. (2),
while pp distributions do not scale with E, although this is an assumption of the PYTHIA
model. For PYTHIA generated p, data we use the transverse pion mass m%ﬂ =m2 + o2,
instead of the actual pion mass. Because of the different treatment of first and subsequent
hadron emissions in PYTHIA, this choice for a pion mass will then reproduce the average
PyTHIA hadronization results for full hadronization chains, as discussed in the beginning
of Section 3 and shown explicitly in Section 3.3 below.

A key feature of the SWAE algorithm and the sliced-Wasserstein loss is the ability
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Figure 7: Three choices for latent-space target distributions I(z, ¢) for p/, inputs
(left) and for pp inputs (right). See Appendix C for more details.

to ‘push’ the encoded latent space towards a target latent-space distribution. The choice
of target distribution affects the total training time and the speed of kinematic data
generation. Choosing a target latent-space distribution which is similar to the training
data set distribution generally requires a fewer number of epochs to train the model to a
specified accuracy compared to a target latent space which is dissimilar. This may come
at a cost during the generation of kinematic data for hadronization events due to the
generation of a large number of random variables obeying potentially complex probability
distributions.

We demonstrate this flexibility by training with multiple target latent-space distribu-
tions, see Fig. 7. A total of six models are trained, three for each kinematic variable p,
and pp, with the results shown in Figs. 8 and 9. Of the three models in each kinematic
variable, one model is trained using a target latent-space distribution equivalent to the
training set distribution, i.e., the PYTHIA generated distribution of p/, or py. The other
two trained models have target latent-space distributions that are distinctly different from
the training set distributions. For p/, we choose trapezoidal and triangular target latent
distributions and for py we choose a skewed normal and triangular target latent-space dis-
tributions. The latent-space distributions are shown in Fig. 7, while their analytic forms
can be found in Appendix C. Regardless of the choice of the latent-space distribution, the
trained and the target (prior) data distributions are in good agreement.

The dimension of the latent space is a tunable discrete hyperparameter, taking values
d, € [2,35], see the fourth column in Table 1. The regularization parameter A controls
the magnitude of the sliced-Wasserstein loss and determines its relative weight in the
total loss function, see Eq. (4). In practice, the regularization parameter determines how
closely the encoded latent-space distribution will agree with the chosen target latent-
space distribution, I(z,c). In our trained models the regularization parameter in the loss
function Eq. (4) takes values A € [15,35], as listed in the fifth column in Table 1. Larger
values are chosen in models where the target latent-space distribution is similar to the
training distribution. Large values of A effectively reduce the size of the explored manifold
which maps decoder weight-configurations to values of the loss function (if we think of
the decoder as a partition function and the loss function as a functional, large values of
A place the decoder near a saddle-point configuration). This improves the convergence to
the minimum of L, resulting in shorter training times. This can also be explained by
describing the correlation between the minimization of Lgw and Lyec.
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Figure 8: Top: MLHAD generated p, distributions for first-hadron emission
from a string with an energy F = 50 GeV, using three different latent-space
distributions, PYTHIA (blue), trapezoidal (red), and triangular (green), compared
to the PYTHIA generated target distribution (purple), as well as the ratios of
MLHAD generated to PYTHIA generated distributions. Bottom: comparison of
the trained and target latent-space distributions for the three cases.

The number of slices or projections used in the sliced-Wasserstein loss is also a tunable
hyperparameter taking values L € [15,30], as listed in the last column in Table 1. Each
model uses the kinematic data generated from N = 4 x 10° first emission events parti-
tioned into N/N, = 4000 N.-dimensional vectors, where 80% of the data is used as the
training and 20% as the validation set. We use an initial learning rate value of 10~3 and
utilize PYTORCH’s dynamic learning-rate scheduler to reduce the learning rate according
to plateaus of the loss function during training.

3.2 Labels and E dependent distributions

The trained models for the first-hadron emission presented in the previous section were
all obtained for a fixed initial string energy, E. To reproduce the PYTHIA model for the
first-hadron emissions (for string fragments with energies above E¢y¢) this is all that is
required. The p/, distributions for any string energy can be obtained from the reference
value of E = 50 GeV that we used in the training by performing the rescaling, cf. Eq. (2)
and Fig. 2. The pr distributions for first emissions, on the other hand, are independent
of the initial string energy.

However, the above scaling behaviors are not expected to be exact in nature. For one,
at lower string energies the approximations in deriving the string Lund model are likely to
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Figure 9: Top: MLHAD generated pr distributions for first-hadron emission
using three different latent-space distributions, PYTHIA (blue), skewed-normal
(red), and triangular (green), compared to the PYTHIA generated target distri-
bution (purple), as well as the ratios of MLHAD generated to PYTHIA generated
distributions. Bottom: comparison of the trained and target latent-space distri-
butions for the three cases.

fail - the quarks are not massless, and there may be couplings between pr and my, that are
not captured by the simple transverse mass tunneling ansatz, Eq. (3). Furthermore, the
origin of pr distributions for first emissions is purely non-perturbative in nature, and thus
the E independence of pr distribution assumed in PYTHIA is not rooted in first principles.

The MLHAD architecture is flexible enough to allow for the dependence of first emis-
sions on the string energy, E. This is achieved by training the conditional SWAE on
label-dependent datasets, which we demonstrate next. The training proceeds in a similar
way as in the previous section, but now on a dataset comprising of first-hadron emis-
sions for four distinct string energies, E = {5,30, 700, 1000} GeV.®> Each x; input vector is
therefore accompanied by one of the four discrete values for the two-dimensional vectors
¢; = (1—c¢;, ¢;) encoding the string energy through the label ¢; as defined in Eq. (9), taking
FEnin = 5GeV and Epax = 1000 GeV.

The decoder in the trained cSWAE was then used to generate the first-hadron emis-
sions at a different set of string energies, E = {100, 200, 300,400, 500} GeV. Importantly,
because the conditional vector is not discrete but rather depends on a continuous pa-
rameter defined between the minimum and maximum energies (Epin, Fmax) the trained

®One could also have used emission data for continuous values of E, but binned finely enough in string
energy values. We choose discrete string energies to demonstrate clearly that the cSWAE decoder can
interpolate between the input labels.
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Figure 10: MLHAD generated p, distributions using the cSWAE model trained
on data with string energies different from training and compared with PYTHIA
(black).

decoder is able to interpolate between labels (ones which the decoder has not trained on
explicitly, see Fig. 4) and rescale the kinematic distributions accordingly. This consider-
ably increases the flexibility of generating training datasets as the user is able to choose
the number of interpolation points which the model can use as anchors in generating data
with a unique energy label. The comparison of MLHAD and PYTHIA generated p, dis-
tributions for the first-hadron emissions is shown in Fig. 10, demonstrating that MLHAD
reproduces faithfully the PYTHIA results.

3.3 Hadronization chain

As shown in the previous subsections the cSWAE trained models in MLHAD are able to
accurately reproduce PYTHIA’s first emission kinematics for a hadronized ¢g system in the
center-of-mass frame of the string. In this section we show how well the MLHAD decoder
reproduces the full PYTHIA hadronization event. The implementation can be summarized
as follows: from the initial string system, one string end is chosen randomly, while PYTHIA
flavor selector is used to determine the flavor ID of the emitted hadron. Given the energy
of the initial string end in the center-of-mass frame, p/, and pr are sampled using the
corresponding cSWAE models. The p), and pr of the emitted hadron are transformed
to pa, py,p. variables using Eqs. (1) and (2), and boosted to the lab frame. The string
fragment is boosted to its center-of-mass frame, see Fig. 6, after which one repeats the
hadron emission process until the string energy in the center of mass of the remaining
string fragment falls below the IR cutoff, E.y. The implemented fragmentation chain
architecture is illustrated in Fig. 5.

Fig. 11 shows a comparison between the hadronization chain multiplicities obtained
by PyTHIA (blue) and by the MLHAD model trained on first emission data (red). In
both cases, starting from the initial string energy of £ = 50 GeV, on average 9.1 hadron
emissions occur before the string fragment energy drops below the cutoff energy, Feyy = 5
GeV. The MLHAD decoder also reproduces well the distribution of hadronization chain
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Figure 11: Comparison of the number of hadrons produced in the fragmentation
chain of a single string for a sample of 10* strings, compared between PYTHIA
(blue) and MLHAD (red) generated hadronization events.

multiplicities. Only a few hadronization events result in just a few hadrons, a bulk of
hadronization events contain between 7 to 13 hadrons, and both hadronization chain
generators feature a tail of rather long hadronization chains. The differences between the
PyTHIA and MLHAD hadron multiplicity distributions are in most cases at the level of
5—10%, where the largest deviations occur for hadronization events with just a few hadron
emissions. This is expected, given that PyTHIA and MLHAD models of hadronization differ
in the treatment of the very first emission, see the discussion at the beginning of Section 3.

In Fig. 12 we also show the comparison of the average multiplicity of the hadroniza-
tion chain as a function of the initial parton energy, obtained either with PyTHIA (blue
solid line) or with MLHAD (red). We see that MLHAD is able to reproduce the PyTHIA
fragmentation chain length averages, and in particular also give the expected log E de-
pendence of the average number of produced hadrons. For each energy the multiplicity
distributions also match well, which we checked explicitly, while in the figure we only
show the result for MLHAD to guide the eye (red density plot). The density plot scan was
performed by randomly choosing an initial parton energy E between 20 GeV-1000 GeV
and binning each fragmentation chain length with a parton energy resolution of 22 GeV
and chain length resolution of 1.7 hadrons for a total of 2 x 10* fragmentation events. The
minimal initial string energy was chosen to be 20 GeV such that it is still well above the
imposed hadron emission cut E., = 5 GeV.

4 Conclusion and Outlook

The ¢cSWAE architecture that was developed in this work appears to be well suited for
modeling the nonperturbative process of hadronization — the creation of hadrons from the
energy stored in the string connecting a gg pair. We have demonstrated this by training the
MLHAD hadronization models to a simplified version of PYTHIA hadronization, limited to
only light quark flavor endings of the string, and allowing only for pions to be the final-state
hadrons. Furthermore, we utilized the scaling properties of the PYTHIA hadronization

16



SciPost Physics Submission

401 — PyTHIA _
MLHAD 70

351
60

301
— 50
g 40

290
= 30

15
L20

101
H10

5,

0 200 400 600 800 1000
E (GeV)

Figure 12: Comparison of the average number of hadrons produced in the frag-
mentation chain of a single string as a function of the initial parton energy F
(Estring = 2E), produced using PyTHIA (blue) and MLHAD (red). The density
plot shows the multiplicity distributions obtained with MLHAD for 2 x 10* frag-
mentation chains.

model that simplified the cSWAE training, requiring training at just a single string energy.
Even so, the results shown in Figs. 8, 9 and 11 are very encouraging. The PYTHIA first-
hadron emission distributions at a fixed string energy, Fig. 8, 9, are faithfully reproduced
by the MLHAD decoder, as are the hadron multiplicities for full hadronization chains,
Fig. 11.

The ¢cSWAE architecture also has enough built in flexibility that it should be pos-
sible to extend the MLHAD model to handle all possible string flavors and kinematics.
We have already shown that the inclusion of a label allows for an interpolation of the
hadronization models to different string energies, see Fig. 10. This should then also allow
to extend the MLHAD models below the string energy cut of 5 GeV that we imposed in
this preliminary exploration. Similarly, the conditional label could be used for MLHAD to
handle the generation of hadron flavors, including possible kinematic dependencies. The
MLHAD architecture should also allow us to model any correlations between p, and pr
distributions of the emitted hadrons, if these are present in data, even though currently we
used the absence of such correlations in PYTHIA generated data to simplify the training of
MLHAD models. Another important feature that we anticipate to be particularly impor-
tant once MLHAD is trained directly on experimental data, is the flexibility in the choice
of the latent-space distributions, making it easier to adapt to any possible features not
captured by the rather constrained form of the Lund fragmentation function underlying
the hadronization implementation in PYTHIA. Finally, some of the planned extensions of
the MLHAD hadronization framework may require more thought, most notably how to
best model the hadronization of baryons and include gluons.

While in this paper the training of MLHAD was performed on the first hadron emissions
in the PYTHIA output, such training will not be possible when using real experimental
data, since such information is physically not possible to extract directly from data. In-
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stead, the training will need to be performed on the physically accessible observables
constructed from particle flows measured either in ete™ or pp collisions with two, three
or more jets in the final state. We anticipate that this is where the machine learning
approach to hadronization will prove most useful — capturing the many observables in
principle available in the data, such as hadron multiplicities, angular separations and mo-
mentum distributions for various hadrons (see [75-80] for a selection of potentially useful
observables). While many of these observables are not currently available in the literature,
open-data efforts by a number of collaborations have or will make access possible. This
data-collection is tedious when performed through human intervention and is a problem
that calls for a machine learning based optimization. We believe that the presented ML-
HAD cSWAE architecture is well suited to achieve this next step, and we are in the process
of building a pipeline to perform training of MLHAD on actual data. In addition differ-
ent generative models like Normalizing Flows will be explored, which provide a tractable
probability distribution function.
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A Public code MLhad v0.1

The public code may be accessed through https://gitlab.com/uchep/mlhad. The public
directory includes example files allowing the user to train and implement cSWAE models
in full fragmentation chains. The programs are written in Python and extensively use the
PyTHIA, PYTORCH and SCIKIT-LEARN libraries. Installation instructions can be found
on the respective installation pages for each library.

The provided programs can be split into two categories: training cSWAE models and
generating hadronization events. The latter relies on the former. However, we have also
provided pre-trained models such that the user can generate hadronization events without
explicitly training a model.

Training a unique model configuration can be done by modifying the files pT_SWAE. py,
pz_SWAE.py, or pz_cSWAE.py. The SWAE programs contain examples of label-independent
training, while the cSWAE program provides an example of label-dependent training. The
model hyperparameters and target latent distribution described in Section 2 have been
set to default values to provide a reasonable starting configuration but may be modified.
Label independent kinematic training datasets for p, and ppr have been provided as well
as a label-dependent p, dataset.

Full hadronization events use the trained model decoder to generate hadronic kinemat-
ics. An example of generating this kinematic data from SWAE trained model decoders
can be found in model _pxpypz.py. The setup of our modified fragmentation chain which
utilizes these kinematics can be seen in frag chain.py.
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B Sliced Wasserstein distance

In this appendix we give a short overview of the Wasserstein distance and the sliced-
Wasserstein distance.

The Wasserstein distance. The Earth mover’s distance or the Wasserstein distance
gives a measure of how different two distributions are, given a metric space {2 and a space
of Borel probability measures P(£2) on €. The p-Wasserstein distance W,(i, ) between
any two probability measures u € P(X) and v € P(Y) is [81]

Wytn) = _nt Aqawmuwoa (1)

e (i)

where c(x,y) is the cost function, II(u,v) is the set of all transportation plans, with
7 € II(p, v), while p € [1,00). The distance W is also commonly called the Kantorovich-
Rubinstein distance.

If © and v are one-dimensional measures, the Wasserstein distance has a closed-form
expression

wwmw=<41&%a—ﬂﬂwwwfm, (12

where F,,)(z) = [*_ I,0,)(7)dT are the cumulative distribution functions, with I,, and I,
the probability density functions for the measures p and v, respectively. The W,(u, v) for
the one dimensional case can therefore be calculated by simply sorting the samples from
the two distributions and calculating the average cost.

Radon transform and the sliced-Wasserstein distance. An approximate value for
the Wasserstein distance W), between two higher dimensional distributions on X = R4
can be obtained efficiently from a set of projections to one-dimensional distributions,
since for each of these one can use the closed form of Eq. (12). The projection from
the higher dimensional distribution to the one-dimensional representation is done by the
Radon transform.

The d-dimensional Radon transform R maps a function I € L'(R?) to [82]

RI(t,0) = /Rd |I(x)|6(t — (x, 0))dz, (13)

with (£,0) € R x ST 1, where S¢! is the unit sphere in R%, §(-) is the delta function
and (,) is the Euclidean scalar product. For a fixed direction # the Radon transform
RI,(-,0) therefore gives a one dimensional marginal distribution of I, that is obtained by
integrating I,, over the hyperplane orthogonal to 6.

The sliced-Wasserstein distance S Wp(I 1) 1)) between [ u and I, is defined as

SW,(I,,1,) = ( Wp(RIM(-,G),RI,,(-,G)d9>p. (14)

Sd—1
The Wasserstein distance between each of the one dimensional projections (slicings) RI,,(-,6)
and RI,(-,0) is obtained straightforwardly using the closed form result of Eq. (12). The
integral over the unit sphere vectors 6 probes all the possible slicings. Furthermore,
SWy(1,,1,) approximates Wy (1, 1,) “well enough” [83].
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The integration in Eq. (14) over the unit sphere in R¢ can be estimated using a Monte
Carlo integration that draws samples {6;} from the uniform distribution on S4~!, which
substitutes a finite sample average for the integral [84],

B =

L
SWo (L, 1,) ~ (; 3 Wp(RI#(-,Hl),RL,(-,Ql))> , (15)
=1

where L is the number of projections (slicings). With this result, the sliced-Wasserstein
distance is obtained by solving a finite number of one-dimensional optimal transport prob-
lems, each of which has a closed-form solution. Furthermore, the sliced-Wasserstein dis-
tance approximates well the Wasserstein distance and thus can be used as a useful dis-
criminator for the similarity of distributions. More details can be found in [84] and [65].

C Latent distributions

The analytic forms of the latent target distributions used in the training of cSWAE in
Section 3.1 are

2(z—a)
b-ae_a “=7=°
Itri.(Z; a, b7 C) = (16)
M C<Z<b
(b—a)(b—c)’ -
for the triangular distribution, and
2 S a<z<b
d+c—a—-bb—a’ - ’
2
: Y <
Livap.(2;0,b,¢,d) FRp— b<z<c, (17)
2 d—z
c <z <d,

d+c—a—-bd-c’ -

for the trapezoidal distribution. For a given initial parton energy F the choices of param-
eters a, b, c,d can be seen in Table 2. The target latent-space distributions are then given
by

Ne Ne
Itri. (Z, C) = H Itri. (Zk, a, b7 C), Itrap. (Z, C) = H Itrap(zk§ a, b7 c, d)7 (18)
k=1 k=1

that is we take the same values of a, b, ¢, d parameters for all d, latent dimensions.
The normal and skewed-normal distributions are given by

1 (2 — p)?
I (o) = - 19
Gauss(za , U) o /*27_[_ exp < 202 ’ ( )
a\zZ —
ISkeW—Gauss(Z; u, o, Oé) = 2IGauss(Z; My U)<1> <(O_'U)> 5 (20)

respectively, where

B(x) = \/12?/_30 /2t (21)

The u, o, and « are the fit parameters corresponding to the mean, standard deviation, and
skewness of the distribution, respectively. As in Eq. (18) the d, dimensional latent-space
distributions are products of one dimensional ones with the same u, o, & parameters. For
pr we have = 0.099, o = 0.257, and o = 4.259.
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Variable x ‘ Target z a b c d
, Trapezoidal | 0.04E 0.16F 0.24F E

Pz Triangular | 0.04E 02E E -

pT Triangular 0.0 0.3 1.0 -

Table 2: The p), and py latent-space distribution parameters.
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