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We demonstrate that the well-known expression for the charge magnetization of a sample with
a non-zero Berry curvature can be obtained by demanding that the Einstein relation holds for the
electric transport current. We extend this formalism to the transport energy current and show that
the energy magnetization must satisfy a particular condition. We provide a physical interpretation
of this condition and relate the energy magnetization to circulating energy currents due to chiral
edge states. We further obtain an expression for the energy magnetization analogous to the one
previously obtained for the charge magnetization. We also solve the Boltzmann Transport Equation
for the non-equilibrium distribution function in 2D for systems with a non-zero Berry curvature
in a magnetic field. This distribution function can be used to obtain the regular Hall response in
time-reversal invariant samples with a non-zero Berry curvature, for which there is no anomalous

Hall response.

I. INTRODUCTION

The effect of the Berry curvature on thermoelectric
transport in crystals has received a lot of attention in re-
cent years. Following the seminal work of Berry on the
adiabatic evolution of quantum states®, it was realized
that the geometric phase identified by him has important
consequences for the semiclassical dynamics of electron
wavepackets in crystals. In particular, the Berry curva-
ture associated with this phase contributes an anomalous
term to the velocity of the wavepacket® 7. This anoma-
lous velocity can give rise to a Hall response without an
external magnetic field, resulting in the anomalous Hall
effect®, the Magnus Hall Effect® !, as well as many other
interesting electronic transport phenomena'?. Similarly,
in response to a temperature gradient, without any exter-
nal magnetic field, it generate a transverse Hall voltage,
known as the anomalous Nernst effect”!15. Coupled
with the Boltzmann transport theory, the modified semi-
classical equations have been employed to study trans-
port in topological insulators'%!'7, Chern Insulators'®,
Weyl Semi-Metals'* 121925 Kondo Insulators®®, Rashba,
systems?”?8, triple-component Fermionic systems?’, op-
tical lattices and quasicrystals®®3!, superconductors®?,
non-Hermitian systems®>3*, as well as in various other
systems®° !, Non-linear effects in transport have also
been studied within this formalism*? !,

In the linear response regime of thermoelectric trans-
port, the electric current and heat current are given by
the expressions,
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where the heat current 5 is related to the energy current
4% and the number density current jV by the relation
49 = §F — ugN°2, 1 being the chemical potential, and

the electric current j°¢ is related to the number density
current 5V by the relation®? j¢ = —ej. Here 211 is the
electric conductivity tensor, 222, the thermal conductiv-
ity tensor®*, and <Zlg and 221 are the Peltier conductivity
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coefficients. The coefficients [,12 and [ are related via
the Onsager relation® 7,
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It is important to note that the Onsager relation holds
only for the coefficients that relate transport currents to
the applied gradients and not the total currents. The to-
tal currents for systems with broken time reversal sym-
metry typically have diamagnetic contributions, which
need to be subtracted in order to obtain the transport
currents®’. This has been explicitly demonstrated for
systems with a non-zero Berry curvature'?°8,

An additional set of relations are the Einstein relations
which require the transport currents generated by an
electric field FE to be equal to those due to a chemical po-
tential gradient Wy of strength e E°7°%, Tt is well known
that the bound electric current in a magnetic sample can
be expressed as the curl of the charge magnetization®.
Similarly, there can be circulating energy currents in a
sample, which can be expressed as the curl of a quantity
called the energy magnetization®”. It has been demon-
strated that the Einstein relation holds for the electric,
heat, and energy currents in systems with a non-zero
Berry curvature®®%’, by employing various interesting
techniques like introduction of a fictitious inhomogeneous
disorder field. However, as shown by Onsager®°°, the
Einstein relation should always hold due to the principle
of detailed balance, and should not depend on the mi-
croscopic details of the sample. In this paper, we show
that assuming the Einstein relation holds, one can con-
veniently find the forms of the charge magnetization and
the energy magnetization, without introducing an inho-
mogeneous disorder field, as was done in®. Here we show
that the energy magnetization has to satisfy a certain



specific condition, and provide an interpretation of this
condition for a Chern insulator in terms of the number
of chiral edge modes.

As will be shown in section IV, the transport currents
contain pieces which depend on the equilibrium and the
non-equilibrium distribution functions. The equilibrium
distribution function (Fermi function) contributes to the
intrinsic anomalous Hall and Nernst responses, which oc-
cur without any external magnetic field, for a system
with non-zero Berry curvature. The non-equilibrium dis-
tribution function, which is calculated in section IV up
to leading order in the external potential and tempera-
ture gradients for a two-dimensional system, is respon-
sible for the regular Hall and Nernst responses and cap-
tures the effects of Berry curvature on these. Similar
expressions for the non-equilibrium part of the distribu-
tion were obtained in several papers?"61:62 but only in
the context of chiral magnetic effects, which are absent
in two dimensions. When the Berry curvature 2 = 0,
the non-equilibrium parts of the distributions obtained in
the above-mentioned papers only lead to regular Ohmic
transport, but not the regular Hall effect. Neglecting
parts of the non-equilibrium distribution function is jus-
tified for systems like Weyl semimetals, where the anoma-
lous Hall effect is much stronger than the regular Hall ef-
fect. However, there are systems (e.g., bilayer graphene)
with non-zero Berry curvature, which do not show the
anomalous Hall effect due to intrinsic time reversal sym-
metry. In such samples, the Berry curvature modifies the
regular Hall effect, which can be calculated with the so-
lution (Eq. (18)) of the Boltzmann Transport Equation
obtained in this paper.

There are two main results of this paper. The first,
obtained through the calculations of sections II-III, is a
derivation of the charge and energy magnetization as-
suming the validity of the Einstein relation, and the
interpretation of a condition on the energy magnetiza-
tion. The second result, obtained in section IV, is a
complete solution of the Boltzmann Transport Equation
in two-dimensions in the linear response regime, which
can be used to calculate transport currents for a two-
dimensional system with a non-zero Berry curvature and
in the presence of a magnetic field.

The paper is organized as follows: We describe the
overall formalism of calculating currents from the semi-
classical equations in section II, and further discuss how
the orbital magnetization affects the electric and energy
currents. While the effects of orbital magnetization on
these currents have been addressed in the literature be-
fore?3°8 | we emphasize some of the salient aspects of the
physics which are important for us to derive the central
results of our paper described in Secs. ITI B and IV. We
first illustrate how the the validity of the Einstein rela-
tion for the charge and energy currents can be exploited
to obtain expressions for the charge and energy magneti-
zations. While the expressions for these magnetizations
have been obtained from microscopics recently®®:%3, our
approach has the virtue of simplicity. Our focus is the en-

ergy magnetization but as a warm-up, we first employ our
method in section IIT A, to obtain the known expression
for the more commonly studied, charge magnetization.
Section IIIB contains one of the two central results of
this paper. Here we employ the same method as for the
charge magnetization to find a condition that the energy
magnetization has to obey, which has a physical intuitive
interpretation. We then use it to find the expression of
the energy magnetization. In section IV, we derive the
complete expressions for the transport heat current den-
sity, and solve the Boltzmann transport equation for the
electron distribution function up to linear order in the
potential and temperature gradient in the presence of a
magnetic field and non-zero Berry curvature. As men-
tioned above, the distribution function can be used to
obtain the regular Hall and Nernst responses.

II. FORMALISM

The semiclassical equations of motion for the position
and crystal momentum of a Bloch wavepacket are®*347,
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Here, Q(k) = i (V, up k| X |V tp k) is the Berry cur-
vature in the reciprocal space, and uy,  is the periodic
part of the Bloch wavefunction. The energy eigenvalues
are modified due to the orbital magnetic moment®® m,
of an wavepacket, ¢, = eo(k) — m, - B, where (k) is
the original band structure energy at zero magnetic field.

It has been shown that the equations of motion (Eq.
(3)) violate Liouville’s theorem, and for a phase space
volume element AV, the quantity AV (1 +5B- Q(k:))
remains a constant of motion®®. As a result, the calcula-
tion of the expectation value of any operator O over all

states requires the introduction of an additional factor of
(1+ £B-€Q(k)) in the integrand.

<@>:z/% (1+%B-Q(k)) <O>f (4)

The factor of 2 is for the spin degeneracy®. Here, fk
is the distribution function and in thermodynamic equi-
librium, it reduces to the Fermi distribution function,
fo = ——L1 . When an external electromagnetic

eﬁ(6k7“)+1
field, chemical potential gradient or temperature gradi-
ent is applied, the distribution function is modified to
f. = f. + 9., where g, is the non-equilibrium contribu-
tion. We calculate g, for a two dimensional system within
the Boltzmann transport formalism in Section IV. Up to
linear order in the external fields, g, contributes to reg-
ular Ohmic conduction, the regular Hall effect, and the
regular Nernst effect. In the presence of a non-zero Berry
curvature, the equilibrium part of the distribution con-
tributes to the anomalous Hall effect and the anomalous



Nernst effect, up to linear order in the external electric
field, temperature gradient, and chemical potential gra-
dient.

Let us briefly review the calculation of the orbital mag-
netic moment of a Bloch wavepacket, which is responsi-
ble for the circulating magnetization energy currents and
electric currents. While a Bloch wavepacket®7 is local-
ized at a point (say, rg), the electron is not necessar-
ily localized there, and can have an angular momentum
due to the motion about the center of the wavepacket,
giving rise to an orbital magnetic moment given by the
expression”8:67-69

e

M = =5 (| (F = 70) X Plr,) . (5)

Note that m is the bare electron mass, not the effective
mass of the Bloch state.

rT=T7T

FIG. 1. In addition to its velocity, a Bloch wavepacket can
have an angular momentum about its center, which gives rise
to an orbital magnetic moment.

Since the Bloch wavepacket is not completely localized,
the wavepacket centered at one point, can contribute to
the currents at another point, and the orbital magnetic
moment is involved in these part of the electric and en-
ergy currents. In the absence of an external magnetic
field™®, the total electric current density'?*? and energy
current density®®% are given by
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In both Equations (6a) and (6b), the terms in the first
lines, those does not involve the energy magnetization
my, can be considered as the contribution due to the
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movement of the center of the Bloch wavepacket, while
the other terms are the contribution of the movement of
the electron about the center of the wavepacket.

III. OBTAINING THE EXPRESSION FOR
CHARGE AND ENERGY MAGNETIZATIONS
FROM THE EINSTEIN RELATION OF THE
TRANSPORT CURRENTS

A. Obtaining the expression for charge
magnetization from the Einstein relation of the
electric current

In this section we demonstrate that the known ex-
pression of the charge magnetization can be recovered by
demanding that the Einstein relation holds for the elec-
tric transport current. The electric transport current can
be obtained by subtracting the charge magnetization cur-
rent from the total electric current. The magnetization
electric current is the curl of the charge magnetization,
whose expression has been obtained in Ref.”®. Here we
show that the same expression of the charge magneti-
zation can be obtained by demanding that the Einstein
relation holds for the electric transport current. In the
next section, we will employ the same strategy to find
the expression for the energy magnetization (whose curl
is the bound energy current). The expression for the
electric magnetization current is,
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Consequently, we can calculate the transport current
Jiransport = Jtotal — Jis» and demanding that the terms
can only depend on the combination (eE + V), we get
the condition (see Appendix E),
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After integrating and applying appropriate boundary

conditions™?, we get,
2dk e
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which is the same as the expression obtained in Ref.%®.

B. Obtaining the expression for energy
magnetization from the Einstein relation of the
energy current

The expression in Eq. (6) is the total energy current
density, which is due to the sum of the transport and



magnetization parts of the energy current. The magneti-
zation energy current is the curl of energy magnetization,
which is°", M¥ = MF — (E - r)M¢. Here M¥ is the
energy magnetization at zero external electric field, and
M¢ is the usual charge magnetization™ (whose curl is
the bound electric current density).

In the presence of an electric field, we need to add this
additional term because the charges carry the potential
whose gradient gives rise to the field. Both the bare en-
ergy magnetization M¥ and the charge magnetization
M€ are functions of the chemical potential p and tem-
perature T'. Then, the circulating, bound energy current
density is,

E x M*
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—_———

9)

2nd order quantity
Here V X M€ is already a function of Vi and VT, and
hence, the term (E - 7)V X M¢ is of second order, and

we drop it. It follows that the transport energy current
density is (see Appendix F),
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In Eq. (10), there is an asymmetry between eE and
Vi For the Einstein relation to hold for the energy cur-
rent, the allowed terms can only depend on the combina-
tion (eE + V). As shown in Sec.IV, g is proportional
to this particular combination. Thus, for the Einstein
relation to hold,

oMEF 2dk 0
N auo :/(QW)dEO(k)z;:f(T>
+ [ |aoth e )

+ kBTlog<1 + e_’B(EO(k)_“)>] .

When the temperature scale (kgT') is negligible com-
pared to the chemical potential ;1 (more precisely, negligi-
ble compared to (i — €min), where enyi, is the band min-
ima), which happens for ordinary metals in room tem-
perature, and there are more than one bands, it can be
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shown that (See Appendix G) up to leading order (zeroth
order) in temperature,
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where n is the band index. This has a particularly sim-
ple interpretation in a two-dimensional Chern Insulator,
where the chemical potential falls on a band gap and
hence, the term containing the Dirac Delta function can
be dropped. The magnitude of the circulating, bound
energy current along an edge (not to be confused with
the energy current density 5, which resides in the bulk)
is given by I¥ = Az|MF x n| (see Fig. 2).

M

3>
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FIG. 2. The circulating current and the magnetization in an
effectively two-dimensional sample of thickness Az are related
as I = Az|M x 7.
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Then, the result can be rewritten as, A =

Chern
Dok f 2dk Q0 (k) frk. A similar result for the
Charge magnetlzatmn and the circulating electric cur-
rent was shown in Refs.®®™ using the known
expression®67:%8 for the charge magnetization. Note
that we obtained this condition on the energy magne-
tization current from a necessary condition (Eq. (11)) so
that the Einstein relation would hold. Let us discuss
several cases, similar to the discussion on the circulating
electric current by R. Resta’™
For a Chern insulator, the integral of the Berry curva-
ture over the filled bands (with all the factors of 27 in-
cluded) is the sum of the Chern numbers of those bands,
which can be interpreted as the number of chiral edge
states”™ 0. We get,

N
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where Ny (Npy) is the number of chiral edge states circu-
lating along the anti-clockwise (clockwise) direction. As
the chemical potential is varied, per unit change in chem-
ical potential, each of the chiral edge states contributes
to the the circulating energy current by an amount 4 per
unit thickness of the sample””



When there are no chiral edge states (e.g. in a triv-
ial insulator), this quantity is zero. Also, when there
are equal number of chiral edge states circulating in the
clockwise and counter-clockwise direction, their contri-
butions cancel.

In a metallic sample, the result would be similar to
Eq. (13) for the filled bands, but the Fermi surface would
contribute (through the delta function term), and if the
conduction band (which is partially filled) is of topologi-
cal nature, it would also partially contribute.

It has been shown®”>" that the derivative of the charge
magnetization with respect to the chemical potential has
aterm, £>° [ (Qdi)dfnan (k). The sign difference with
Eq. (12) is because, when an electron moves, the local
energy current density and the electric current density
would be in opposite directions, as the electron bears a
negative charge.

The expression for the bare energy magnetization can
be calculated by numerically integrating Eq. (11),
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with the initial condition that the energy magnetization
would be zero when the chemical potential is at negative
infinity, as then there would be no electrons to gener-
ate the circulating currents. Here, the first term can
be regarded as the contribution of the individual orbital
magnetic moments of the Bloch wavepackets, and the
second term involving the Berry curvature arises due to
the modification of the phase space volume. This expres-
sion matches the results obtained from gauge theories
of gravity™®, that obtained by introducing an inhomoge-
neous disorder field®, and that obtained by introducing
a gravitomagnetic field®?.

IV. COMPLETE EXPRESSIONS FOR
TRANSPORT CURRENTS IN A
TWO-DIMENSIONAL SAMPLE WITH
NON-ZERO BERRY CURVATURE

The electric transport current density can be obtained
by subtracting the curl of the charge magnetization from
the total electric current density®®. The expression for
the transport electric current density, and the heat cur-
rent density™ (See Appendix F) are,
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These expressions match with those previously obtained
by introducing an inhomogeneous disorder field°. Note

that Vo — 0 as T — 0, implying (221: 0at T =0,
which is consistent with the Onsager relation, Eq. (2).
Once the band structure is known, the value of Q(k) can
be obtained from the Bloch wavefunctions. Then, if we
can find the expression of the out of equilibrium part of
the distribution function, gg, the transport parts of the
electric and the heat currents can be calculated up to
linear order. We can calculate g with the Boltzmann
transport equation®. When the external fields are time
independent, we can drop the explicit partial derivatives
with respect to time, and the equation takes the form,
.9 .0 -0 . 0

In general, the scattering timescale 7, may depend on
the crystal momentum of the electron. However, only
the electrons near the Fermi surface can be effectively
scattered, and if the scattering timescale only depends
on the energy of the Bloch wavefunction, then we can
consider it to be a constant. The following calculation
remains valid even when 7, varies with the crystal mo-
mentum. Using the decoupled equations of motion in
two-dimensions (Eq. (B3) and Eq. (B4)), the right hand
side of the above equation simplifies to (see Appendix
I1),
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Here we can exchange eE < Vyu, i.e., the Einstein
relation holds for the currents generated by the non-
equilibrium distribution. We will show that the Onsager
relation holds as well. We assume that the fields are

constant in space, and drop the term containing - ’“81
Then, the BTE takes the form,
gi_eE+h26kXB o _9of 1
Ty 1+:B-Q 8k"_65k1—|—%B-Q
1 0e, €, — U
Z leE +V VTt
hok |CFTVRTYVITT

We can further simplify this equation. If we neglect the

term E - ag,: in the LHS, we would find (in the next sec-
tion) that g, is a linear function of the electric field, the
chemical potential gradient, and the temperature gradi-

ent. Then, FE - TI: would be quadratic in the applied
fields, and the solution would remain self-consistent up
to the first order if we neglect it. Finally, the equation
takes the form,

I heg ak xB 0 ﬁ 1
7. 1+¢B-Q 0k% T 051+ :B-Q
treated as a perturbation
1 0¢, € — MU
_ . FE Tk
s ok |© +Vu+V T
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We treat the second term in the LHS as a perturbation.
An order of the magnitude estimate in Appendix J shows
that the magnetic field needs to be of the order of hun-
dreds of Tesla for this term to be of the same magnitude
as the other term, z—:. Since the magnetic field in the

laboratories are much less than that, we can treat it as
a perturbation. We would see that this term gives rise
to the (ordinary) Hall effect in samples with a non-zero
Berry curvature, and that is why we would not com-
pletely neglect it. Up to linear order in external fields,
the solution of Eq. (17) is (see Appendix I),
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where S = eE + Vi + -2 VT .52 Having obtained Eq.
(18), gr, has to be substituted in the expressions of trans-
port currents, Eq (15&) and Eq. (L)b) and the trans-

port coefficients L11, ng, L21 and L22 can be read off.
However, the actual computation will require the band
structure and the Bloch eigenfunctions (to calculate the
Berry curvature).

In this solution, VT is always multiplied with a factor
of 2% and the expression of heat current has a factor
of (¢, — 1) (Eq. (15b)), from which it follows that the On-
sager relation holds for the contribution due to the non-
equilibrium part of the distribution function in presence
of Berry curvature. It has previously been demonstrated
in Ref.%® that the Onsager relation holds for the contri-
bution due to the equilibrium part of the distribution.

V. CONCLUSIONS

The Einstein relation has been shown to hold from
certain microscopic theories for the electric, energy, and
heat transport current in systems with non-zero Berry
curvature®®®. In this paper, we employ a complemen-

tary approach to first demonstrate that, assuming that

the Einstein relation holds (whose validity can be estab-
lished from thermodynamic arguments®®°%, irrespective
of the underlying microscopic theory), an expression for
the charge magnetization can be obtained in a relatively
straightforward manner which agrees with the expression
obtained for this quantity previously. We then extend
this argument to the transport energy current and the
heat current, to obtain a condition that the energy mag-
netization has to obey. We have used it to obtain an ex-
pression for the energy magnetization, analogous to the
one that exists for the charge magnetization. Moreover,
we have found a physical interpretation of this condition,
in terms of the circulating chiral edge modes in a Chern
insulator. We have also solved the Boltzmann transport
equation up to linear order in potential and tempera-
ture gradients for a two-dimensional system, which can
be used to obtain the regular Hall response in systems like
bilayer graphene, which possess a non-zero Berry curva-
ture, but display no anomalous Hall Effect due to time
reversal invariance.
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Appendix A: About the heat conductivity tensor

Here we denoted thermal conductivity as the heat current per unit temperature gradient, at zero electric field or
zero chemical potential gradient. Sometimes, thermal conductivity is denoted as heat current per unit temperature
gradient, when the net electric current is zero (an internal electrochemical potential gradient is generated to maintain
zero electric current, but that internal electrochemical potential gradient in turn contributes to the heat current). In
that case, it can be shown that (see Eq. (13.56) of Ref.”?) the heat current (which is the heat conductivity, because

. 2 pxg Ang 15 . . . . .- knT 2
we set VI'=1)is Lags — Lo1 (L11)”+ Li2. But this additional term is a small correction, it is of the order (fT) .

Appendix B: Decoupling of the equations of motion and their simplification in two dimensions

The coupled differential equations of motion for 7 and k can be decoupled with some simple vector algebra®!, and
the resulting decoupled equations are,

o 2T REXD) + (R 5B B1)
1+£B-Q

CE+ 5% x B+ S (E-B)Q

o
1+£B-Q

(B2)

In a two-dimension sample, the Berry curvature € is along the z axis, while 2 S is in the xy plane, then the quantity
Q- %% = 0. Also, in two-dimensions, € is along the z axis, whereas k is restricted to the xy plane. Then we can
neglect the term (E - B)Q in the expression of k. Then the equations (B1) and (B2) simplify to,

K+ < 0)

. B
" 1+¢B-Q (B3)
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Appendix C: Self contained derivation of Eq. (6a)

The wavefunction of a Bloch wavepacket located at 79, and peaked at crystal momentum kg is>” (here we follow
the notation from?),

w(r)n,k'o _ /dkzw(kz - ko)eiA(ko)-(k—ko)e—ik~ro (eikhrumk(?")) ) (Cl)

Here w(k — ko) is an (arbitrary) weight function sharply peaked at k = ko, uy, k() is the periodic part of the Bloch
wavefunction with crystal momentum k and band index n, and A(k) = i (un k| V, |unk) is the Berry connection.
U 1 (7) is normalized such that (un k|tunk) = [ i con @7 ltnk(r)[* = 1. Tt is to be noted that the calculations in
Appendix D does not depend on the actual form of the weight function w(k — ko).

An electron in a Bloch wavepacket centered at ry may be found at another point 71 (# 7p), and it can contribute to
the local current density at 1. As an analogy, the total electron density near an atom in an insulator is not just the
electron density of that atom, but the sum of electron densities belonging to all the atoms, evaluated at that point.
Of course, atoms far away from the point would contribute very less, but nearby atoms can contribute significantly.
Let us try write down the expectation value of a general operator O at a point ;. We would consider the sum of the
contributions from all the wavepackets centered at a point g, and sum over all ro'?. That is,

o) = [ dro [ 5557+ 9) (1 5B+ 9) (el 506~ r)} )



Here # is the position operator that acts on the states. r; is just a parameter, and here 71 acting on a state has to
be understood as the operator 71Z, with Z being the identity operator. And, ${O,§(# — )} denotes the Hermitized
06(r r1)+6(r 1‘1)(’)

operator , in case 7 and O do not commute (for example, to calculate the electric current, we need
to find the expectatlon value of the velocity operator, which does not commute with the position operator).
Now, since the state is centered around r(, we can take that into account by expanding the delta function (up to
leading order)®?,
(5(7‘1 — ’F) = 5((?"1 — ’r'o) — (’I’; — To)) ~ 5(1"1 — 7‘0) (’f‘ ()) VTI(S(’I”l — ?“0)
=0(r1 —710) = Vo - [(F = 710)d(r1 — 70)]

Using this, we get,
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h
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_V‘f‘l : ( ) (f+g) (1+ﬁBQ> <7/}k,7’1|5{07(ﬁ_r1)}|wk,7’1>
We would work with this leading order expansion of the Delta function. For the current density operator, we need to
separately take the three components of 3 = —eZ to be O.

Let us define the tensor,

1
Mij = W | {22, (7 = 70):} [

where 4, j runs from 1,2,...d. It can be shown that (see Appendix D 1) M;; is completely anti-symmetric’®. Then,
in 3D universe (the sample can still be 2 dimensional), we can construct a vector, whose components are, m; =
1eijeM;p™". It can be shown (see Appendix D 2) that this is identical to the i-th component of the orbital magnetic
moment my, defined in Eq. (5). We can also invert this relation, M, = €;;zm;.

Note that we can rewrite the second term as,

2dk
(2m)

2dk e 1A .
= 81/( ) (er )<1+ }TLBQ) <wk,r1‘ 5{03 (r*rl)i}W)k,m%

with sum over ¢ implied. Then to get the pu-th component of <35>, we take O = —e% We denote [dk] = (gi’)cd (1+
+B - Q). We get,

Ve [ 24 0) (14 £B9) W | 50,6~ 7)) o)

h

o, / (dk)(f + 9) M,
_ o, / [AK)(f + g)meviy

This is the p-th component of V x [ (gi’)“d (f+9)(14% B-Q)my,. When the electric field, the magnetic field, the chemical

potential gradient and the temperature gradients are constant, we can drop the term V x [ 2dkg(1 + B - Q)my,
because g is already a linear function in the constant fields E, Vu and VT.
The first term, f 2dk (f+9)(1+5£B-Q) (Yr,r, | 3¢ [t1,r,) is the contribution of the center of the wavepacket, which

is (up to linear order), —e f 2dk [gk 3 %Ek + fei (E X ﬂ(kz))} (note that the phase space correction factor (1+ 7 B-)

gets canceled). Flnally we get, up to linear order,

o = (i) = ¢ [ o |y G+ A B x )|+ 9 x [ 2 h (14 5B @) (C3)

This equation has a simple interpretation. The net current is the contribution of the movement of the center the
wavepackets, as well as due to the rotation about their individual centers. We want to calculate the properties of the
anomalous Hall effect, where B = 0. Then the expression simplifies to

. 2dk 1 0go(k) e 2dk
Jtotal |B=0 = —e/ (2 [ k7 80k: +fk}fl(E><Q }‘FV / kM. (C4)




Appendix D: Certain calculations related to orbital magnetic moment

1. M = W] %{—e%, (P —=71)i} [k~ ) is a totally antisymmetric tensor

The effective Hamiltonian®? acting on u,, g in its effective Schrodinger equation is, H (k) = [%(kz —iV)2+ V(r)} =

e kT [etk T with H being the original Hamiltonian.
Let us define P(k) = % ag,(ck) = h(k —iV) = e"* T Pe* T We would first prove some preliminary results which
we would need later on.

a. Calculation of (uk|P(k)|ux)

The idea of this calculation is based on®.

(PUK)) = (el POR) ) = ™ (e 2 ED
= |Gl 10 1)~ Gl 710)| )|
= 2 [t g e ) =, (] )|
-z :<u| (gk aaku>) 4+l (?951: u>) ., <u ;ku>]

which is just the (bare) electron mass times its velocity. Note that the Berry curvature term does not appear here
because we took a single Bloch eigenstate, not an wavepacket.

b. Calculation of <(%uk| P(k) |ug)

This calculation is based on®.

<6(Zuuk P, (k) |ug) = <8(Z“u’“ 31;}556)\ k)
s 18 ) 0
=% g g, E® ) = { g-u H(k)’(?kyu>]

a u
ok,

Oe,, 0
(Gt == <8k“

")

=3 =3 =3 =3 =3 =3

| (@
=% (e 1= —H(k)‘akyuﬂ +%§Z’: <aiﬂ ‘|u>
<aiu e, — H(k) ‘aiyuﬂ +iA,(k) <Pl,(ki)>

c. Calculation OfS — all space <’LLk1 ‘ e—ik-(’f‘—To)(,’. - rO)HPVeik'(T_TO) |uk2>ull space
Notation: ., space <w1|¢2>a11 space — fall space dryTis and cen <¢1|w2>0611 = funit cell driyive. If 91, ¥ are periodic

over unit cells, then a1 space (¥1|¥2) 11 space = Neent (¥1|12) o> Where N is the number of unit cells.
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We use the relation, P (e ("=70) |y, )) = ?* ("=70) P(ky) |ug, ). Then,

S =ai space Uy nl € F 7T (1 —10), Pre™ T Jug, 1)

= all space <“k1,n| ei(kQ_kl)'(ﬁ_TO)O" - 7"0)#131/(’@) |u’<~‘27”>all space

Since |ug, ) for different values of n are eigenstates of H(ks) for fixed value of k2, they form a complete set. Then,
1= Zn |uk2,n> cell cell <uk2,n|7 and due to periodicity, % Zn ‘qu,n> all space all space <uk2,n = 7. We insert this in the
expression above.

S=u.n space <uk1,n| ei(k2ik1).(i‘7m)(r - TO)MPIJ(kQ) ‘ng,n>a11 space

all space

A0 ikeky)(rro) | B
= all space <uk1,n| 1 (%eZ(kZ ka)-(r 0)) Pl/<k2) |uk27n>

1

N

n’

1 A T ~
= =~ Z all space <uk1,n| 1 <%ez(k2 k1) (r 1'0)> ‘ng,n’> all space all space <uk:2,n’ | PV(kZ) |uk2,n>a11 space
Ty

where we used the periodicity of the Bloch wavefunctions to absorb the normalization factor. Now we would manipulate
the derivative with respect to ky,,.

) 0 oo Toi ) (e ~
S E ( k all space <7-Lk:1,n el(kz ku)-(r TO)) |uk2,n/>a11 space all space <uk27n/| I V(m?) |uk27n> all space
N 0 1
n’ H

i 0
- N § / all space %ukl n
n

In the first term, we use the relation %an space (Ukg.n'| P, (K2) |Uky 1) all space = cell {Uky,n| 13,,(k2) [ty n) cen and in the
second term, we again use % Y o [Uks n) all space all space (Ukg,n| = Z.

i(k2—k1)-(r—mro

€ ) ‘ukz,n’> all space all space <uk2,n’| PV(kQ) |uk'2,n> all space

‘ 0 (o —Fer )+ (r— s
S=i Z W (all space (Uk;,n| ¢i(ka k) (r=ro) |tk n)an Space) cell (Uks,n'| Py (K2) [uks n) cen
n’ ®

6i(k2—k:1)~(1‘—7'0)151/(k2) |uk2,n> all space

. 0
— 1 all space Uky,n
0k, '
w

When the number of sites in a lattice is very large, the points in reciprocal space are dense, and we can approximate
. . d
the sum over the real space lattice sites, > 5 e?®1=k2)- B — L [ gpeilki—ka)r — @5(1{:1 —k3), where V. is the volume
(2m*?

v— = VBz, where Vpz is the volume of the 1°¢ Brillouin zone.

of the d dimensional unit cell. We can further write
For any periodic function over the unit cells,

/ ei(klfm)'rf(periodic) _ < Z 6i(k1kz)~R> (/ f(periodiC)) = [Vzd(k1 — k3)] (/ f(periodic)> .
all space unit cell unit cell

Rec lattice sites

Now we choose units such that Vgz = 1 for the simplicity of the subsequent calculations (anyway it can always be
absorbed in the normalization). We get,

0

S = Z; a]ﬁ# (5(](71 - k2)ce11 <'Ufk1,n| |uk2,n’>ce11) cell <uk2,n’| Pu(kQ) |uk2,n> cell
- 7/6(]91 - kZ) cell <8k1uk1,n Py(k2) |uk2,n> cell
m
. 0 .
- Zn’: 6k‘lu (5(k1 B k2)) cell <uk1’"| |uk’2*”,>cell cell <uk2,n" PV(k2) ‘ukz,n> cell

|“k2,n’>ceu cell <uk2,n’| Pu(kQ) |uk2,n> cell

_ 0
+1 ; 0(k1 — k2)cenl <8k1uukl,n

- 7/6(]91 - kZ) cell <

Pu(k2) |uk2,n> cell

7uk1,n
Ok,
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After summing over n’ in the second term of the above expression, the second and the third terms cancel each other.

) 0 .
S =1 Z/ |:8k1u5<k1 - k2):| cell <uk:1,n| |uk2,n/>ce“ cell <uk2,n’ | Pv(kZ) |uk2,n> cell

| o ~
=1 d(k1 — k2)| cent (Uky .n| Po(k2) [ty n) cel
ks,

d.  To show that (Yi,re| {(F — 70) 4, 151,} |tk,r ) is antisymmetric in p, v for a Bloch wavepacket Vi r,, which implies M;j is
totally antisymmetric

It is mentioned in Ref."" that M, = (Vk.ro| 3{(r — 70)4, P,} [g.r,) is a completely antisymmetric tensor. Here
we prove it. A similar calculation to find the orbital angular momentum of a wavepacket can be found at Appendix
B of Ref.*. First we calculate the quantity without the anticommutator.

wk'l’ol ) P Iwkro>

/ / dkydkaw(ky — k)w(ky — k)e~tAK) (ki=k) oiA(k) (k2 —k)
X all space <uk1 | € —ik-(F— TO)(”' - TO)HPL/eikV(T—rO) |uk2>

all space

Now we use the boxed result from the previous section,

/ / dkydkow(ky — k)w(ky — k)e™ " AKR) (ki=k) jiA(k)-(k2—k)

X i (k1 — k) | cen (U, n| Py (K2) [ty n) cen
akl L
After integrating by parts to shift the derivative from the delta function to the other quantities,

/ / dkydkow(ky — k)w(ky — ko)e " AKR) (ki=k) giA(k)-(k2—k)

[8k1u6( k2)] celt (tkey | Py (K2) [tk ) cen

= —i / / dkydkow(ky — k)w(ky — k)eAko)(ki—ko) giA(k)-(k2—k)

0
x 0(ky — k2) [ce11<ak Uky n
Integrating over the delta function, and using the result o <0,f Uky.n

m 9
h |:<8k1uu

~V(k2) ‘uk27n> cell — ZAu(k) cell <uk1,n‘ Py(kQ) ‘ukz,n> cell :|

~l/(k1) |uk1,n> cell =

€

H(kq) ‘ak u>} + 1A, (k1) (P, (k1)) from the previous section, we get,

_@/dkzl (k1 — k)]*— Kak@l# akalyu>]

5 (] 10 )

The last line follows because w(k; — k) being sharply peaked at k1 = k, picks up the value of the integrand at that
point, and due to normalization of ¢(r), x in Eq. (C1), [ dki[w(ki —k)]> =1 (In other words, [w(k; —k)]? effectively
behaves like d(k; — k)).
Case: u # v. . .

In this case, (r — (), P, Hermitian (because (r —7), and P, commute, and they are individually Hermitian), and
its expectation value must be real. Then, <a%uu‘ e, — H(k) ‘62, u> =B (o | {( — 70) Py} [k.ro) must be purely
imaginary.

k1

€ H(k1)
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Now, ¢, — H(k) is Hermitian. Then, <

(k) [ 2u) = (Gu
s —
€ ‘ém u> <8kuu H(k) ’%u>
Also, since (r — rg),, and P, commute, (r — (), P, = Hr- 70)u, P, }.
)=

Consequently, for p # v, (k| 2{(1 —70) 1 P} [Vkere) = — Whoro| 2{(1 = 70) s B} [ty ) B0y | My = =My, |

But since this is purely imaginary, < ok, U

Combining the two, we get, <8‘Z U

Case: p = v. In this subsection, no sum is implied for repeated indices

In this case, (7 — 7q) wPy is not anymore Hermitian. However, [< BCZ? U

‘Bk u>] must be real. Conse-

e, — H(k) ’%uﬂ = <(r — ’I’O)ILF)/L> is purely imaginary, say, iy. Then, <]—2’,,,(r — To)u> = —1y,

quently, —i7 [<%u
and

<(r - rO)upu + ]5#(1' — 1‘0)#> =0.

Therefore, for all .

Note: Since we know that <(7‘ — TO)IJ«PU> is purely imaginary, and also, [(T —7¢), P, — Pu(r —70),] = ih, it follows

that <(r — TO)MPM> =2
Therefore, M is a completely antisymmetric tensor.

2. 7 = 3 M ke is identical to the magnetic moment defined in Eq. (5)

Since only the j # k terms contribute in M ie;;,, and pr commutes with 7; for j # k, we can get rid of the
anticommutator,

<1/Jk r0| e £ (@ - 70);} [Vk,ro) €ijk = _%Eijk (koo | (F = 70) Dk [Vieyro)

_% (Vkiro| (F = 10) X B),; [Pre,ro)

which is the i-th component of magnetic moment my, defined in Eq. (5), that is, m; = m;.

Appendix E: Derivation of the transport electric current density and derivation of the charge magnetization

The total electric current is,

+fk%(

e -
Jtotal = —

2dk [ 1850( )
/(27r) T

2dk
+ V x /7(27T)dfkmk

Ex Q)|

_ - (E1)
2dk 1 860( ) e
= — —(FE x Q(k
e/@ﬁ) g e+ D x 2(k))
2dk 0 fk 2dk Of
+ Vi x / 2m) o mg + VI X / (27r)d78ka
The electric magnetization current is,
oM ¢ oM
]]\/[ VXMe V/,LX +VT>< (EQ)

ou oT
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The electric transport current is,

-c _ se -c
Jtransport = Jtotal — JM

:_e/(dez [ 1 0=0(k )+fk- (Exﬂ(k))}

2m)d |7*h ok
2dk O fy 2dk Oy (E3)
—&-Vux/(%)d aumk—i—VTx/(%)d aka
oM*® oM e
-V x o — VT x 5T

It is shown in section IV that g is already a function of (eE + V). Then, for the Einstein relation to hold for the

electric transport current,
oM ¢ _ 2dk O fy 2dk
o =] G gem | Gide o)

Integrating,

2dk e2
. _ —Bleolk)— 1)
M / an) {m(k:)fk + kgT " log(l +e > + c(k,T)} ,

where ¢(k,T) is a p-independent function. Now, the magnetization should be zero for an empty band, i.e., at any
temperature, M€ — 0 as p — —oo. Applying this condition, we get ¢(k,T’) = 0.

Appendix F: Derivation of transport heat current density

Since the energy magnetization M{¥ is a function of the temperature T' and the chemical potential u, it follows
from Eq. (9) that the magnetization energy current is,

. OMEF OME .
Jn=Vux 8u0 + VT x 8TO —-ExM
oOMEF OME
= T x o
=Vux ay +Vv a7
— E x / 2dk [ Ve + kT f?log(l—keﬁ(g"(k)“))}

Then, the transport energy current density is,

Jtransport — Jtotal — IM

- / éd'fdsom)[ ;&g,i) + B < b))

(2d’; log(l—&—e_ﬁ(s(’(k) #))
0 / (mk> (F1)
8
8T/ 0 (7)
— Vi x aaMOE — VT x agv;o

Substituting the expression of the bare energy magnetization,

M =3 | [ et (72) = [ e 5 [ it uai + kT ron 1+ e o0 ) ]

=—00
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we get,

B - Qdk 1(960( )
Jtransport _/(QW)dEO(k) h Ok

+eB+ VW x [ éj’;‘; (colk) fic + kT log(1 4 e~ )) (F2)

L VT x aaT/(zd’;d‘;/oo( o(k) fr(fi )+kBTlog<1+e (so(k)fﬁ)))

The charge magnetization has been shown to be®®% M¢ = 3 L[ gi’)“d £Q(k)log(1 + e_ﬁ(sﬂ(k)_“)) + %fkmkv

and the corresponding circulating magnetization electric current is,

Iy =V x M¢
=V [ et Vi [ SRR+ S« [ G0 e e~ )

vT 2dk e
vI . [ 2dk e ~Bleo(k)—n)
+ x/(QW)dhﬂ(k)kBTlog(l—ke )

. =
The electric transport current is°®,

N L[ 2k, . 1d(k) L € ([, Vi
J transport/(2ﬂ_)d( e)g n ok fk: A _E+ e | Xﬂ(k)

=T [ G ) [fuleoh) = )+ T o (14 e}

:/Qdk( €) gk 1 920(k) fez(_EjLV“ xQ(k:))

(2m)d ook Fh
o [ 2dk e
_ I Bt —B(eo(k)—w)
VT x o /(ZW)th(kz) [kBTlog<1+e )]

The number density transport current is _7't]\rfamspOrt = J“aiise‘“’“, and the full expression for the transport heat current
density (Eq. (15b)) is,

jtransport = jgansport - Mjgansport
_ 2dk 1 860( )
- / (27_(_)51 (Eo(k) )h ok 9k
2dk €2

) + (50(k)fk + kBTlog(l + 6_6(50(’“)_“)))

o [ 2dk Q i
s ~ —B(eo(k)—i) _ —B(eo(k)—p)
+ VT x aT/(%)d - H/#_OO (so(k:)fk(u)-i—kBTlog(l-i—e ))} Mk:BTlog<1+e 0 )}

+(eE+V,u)></

Appendix G: Simplification of the condition on energy magnetization at low temperature

At very low temperature (in the limit Sp > 1), for |k| < k¢, we have fr ~ 1, and log(l +e_ﬁ(50(’“)_“)) ~
log(e~#(a®)=) = B(y — e (k)).
Then, go(k) fx + kBTlog(l + e_'@(aﬂ(k)_“)) ~ L.
And for |k| > kyf, fi ~ e PEo®=1) « 1 and log(1l + e AlEok)=m) ~ e=Aleok)=n) « 1. Then, the quantity

[50(k)fk + k:BTlog(l + e‘ﬁ(go(k)_“))] is negligibly small compared to u, and it can be neglected.
Combining both the relations, we can write

eo(k) fr + kBTlog(l + e*ﬁ@o(k)*m) ~ pO(u — eo(k)) ~ pfr,

where O is the Heaviside step function.
Also, at very low temperatures, % ~ d(eo(k) — p).
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Appendix H: Discussion about the absolute value of the chemical potential in the expression of the
circulating energy current at the edge

Note that the condition on the energy magnetization (Eq. (12)) depends on the absolute value of the chemical
potential (not something like its relative value with respect to the minima of the band). However, this is not unphysical.
When we change the chemical potential by a small amount (i.e. |Hil; - | < 1), new electrons are added to the system,
and they have energy in the order of p. Even if these newly added electrons belong to a bulk state (i.e., not a chiral
edge state), the circulating energy currents due to these bulk states (which cancel in the bulk) would contribute to
the change in the energy current circulating in the edges, and this change is in the order of (the absolute value of) pu,
and the net contribution is, as if, only chiral edge states are contributing to the circulating current (A similar result
holds for the circulating electric current™). For example, if the chemical potential is at zero energy (then the band
minima would be at some negative energy), and new electrons are added to the system, they would have zero energy,
and the circulating energy current at the edges would not change, a result which agrees with Eq. (13).

Appendix I: Calculations for the Boltzmann Transport Equation

In this appendix, the subscripts k of €, g and 7 are not explicitly written. It is to be understood that they are
functions of the crystal momentum.

1. Simplification of RHS of Eq. (16)

; : e ) ) 9 . . Lot (ExQ
Since f = ﬁ, it follows that (Ti = {TJ; [—%(5— )— Vu], and —f = 8’; gfc Using r» = %}35)7 and
e Oe .
k= 71122738’};]3 we now calculate 7 - a% f+k- f Here, 2L is linear in external fields, and 7 has a term E x €2,
and we neglect the product of these terms, which is a second order quantity.
Then we get, —7 - 3rf k- akf m%gi [eEJrVqu %(57;0].
2. Solution of the BTE for E #0, Vu=VT =0
In this case, the equation becomes,
0 0 0 1 10
9 gz O p 0, 0F 1 10 g4 (1)
T 1+$B-Q0k ok Oe 1+ :B-Qhok

We solve this equation, treating the second term in LHS as a perturbatlon (See Appendlx J for justification). We

write g = go + g1, such that £ = ggu—%ﬁ% gfc eE, and & — ﬁgi x B - akgo = 0. Then, g; is a linear
function of B, and it is justified to discard the term 5 9c B -2 g, as it would be quadratic in B.
T+eBQ ok 8k
Then, go = 8]; TIBQ Lee o . E. To find g, we need to calculate & %0 ie., the quantity 5 8]50 71_‘_;3 ST E}

To calculate it, let us first calculate V [¢pA - C], where ¢ is a scalar function, A is a vector function, and C' is a
constant vector.
V[pA-C| = (V@) (A-C)+¢(C - V)A+ ¢(C x (V x A)). In our calculation, ¢ ~ 2L LT A ~ 92 and

9 T+<B-Q h> ok’
C~E.
Then,
of of
O0of 1 erle pl O\ 5T B 0= 5T |(ep O @JFEE 9 0O
Ok |[0e 1+ $£B-Q h Ok Ok |1+:B-Q| h 0k 1+ :B-Q [\h ok ) Ok ok 0Ok

The last term is zero because it is the curl of a gradient, -2 5% g—z =V, x(V,e)=0.

Finally, the solution is, obtained by adding go and g1,
% B 0=\ Gt [(en 00
h Ok 1+£B-Q |\h ok ) Ok

g= N E+ N L
ok |1+ £B-Q

of 1 T Oe = Oe 0
Je 1+ B - Qhok 1+ £B- Qok
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3. Solution of the BTE for E =0, Vu#0, VI'#0

Under these conditions, the equation becomes,

9 _ dexB o _of 1 1o [g
7 1+<B-Q k' 9:1+<B-Qhok

_ 2= « B
Let g = go + g1, with go = 3L g £ 22 - [Vp+ VT572] and 2 — 22520 Bg = 0.

The form is otherwise similar to the form of the equations in Appendix 12, but here we have a factor of (e — p)

with VT'. As a result, we would get additional factors like % . VTT when we calculate %i,f in order to calculate g;.

One might think that such additional factors may violate the Onsager relation. But such factors would cancel due to
a vector triple product being zero, and the Onsager relation continues to hold.

We have,

0 e— o £—
90 _ 0 | gt |\ Vpiigt 0e i |\(Vpdigt 0N o L(o  e—p) (0 0
ok Ok |1+3:B-Q h ok 1+:B-Q h ok | Ok  h T ok Ok

8f e 0 evT +18EX ax evVT
1+eB Q ok Ok T h Ok ok T

The term inside the last third bracket can be further simplified.

@ . E evVT n @ o 0 o evVT Os  Oe VT n & o 88 VT
Ok Ok T ok ok T ok Ok ok 8k:

B % Oe VT n 0s VT Oe (86 @)(E)

“\ ok ok ok T ) ok Ok Ok’ T

_ (9= VT @
T \ok T )oKk

de

2: B .

% : a@kgo, this term cancels because (% x B) - g—z =0.
h

Then, the full solution is, g = go + ¢1

When we calculate g = 7

of 1 T O¢ E— i
- . T—-
e 1+ B -Qhok [V’”V T ]
LB e g 0| _gr | Vet VTR b gir  [(Ved VIS 0 o
1+ ¢B-Q0ok Ok |1+ ¢B-Q h Ok  1+:B-Q h ok | Ok

Since Eq. (17) is linear, when the electric field, the temperature gradient and the chemical potential gradient are
each non-zero, we can add the two solutions in appendix 12 and appendix I3, and we get the solution in Eq. (18).

Appendix J: Validity of the perturbation theory on Boltzmann Transport Equation

Let us do an order of the magnitude calculation of the term containing the magnetic field. Classically, k - aik g~
. e
p-c%gwe('va) mavgwwxv Fo o~ wyg.

Then, if w <« % (in the limit of low magnetic field), it is justified to treat wg as a perturbation over £.
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1. How low magnetic is ‘low’?

For w = %, Berig = 7, and a magnetic field much lower than this qualifies as a “low” magnetic field. If we take
m* = me (the free electron mass) and 7 ~ 10~ 145 (from chapter 3 of Ref.?*, for a typical metal), implies Be.;; ~ 5707,
which is order of magnitudes higher than the magnetic field accessible in labs. In typical metals, m* > m,, the bare
electron mass, and the critical magnetic field is even higher.

In very clean samples, 7 can be as high as 10725, and even there, the critical magnetic field would be 5.7T, which
too is hard to achieve in most labs. In less clean samples, the critical magnetic field is much more.

Conclusion: Unless the sample is very clean, the magnetic fields produced in labs qualify as “low”, and in this
regime, this perturbation theory remains valid.
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