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Abstract

We study a model of free fermions on a chain with dynamics generated by random unitary
gates acting on nearest neighbor bonds and present an exact calculation of out-of-time-
ordered correlators. We consider three distinct cases: the random circuit with spatio-
temporal disorder (i) with and (ii) without particle number conservation and (iii) the
particle non-conserving case with purely temporal disorder. In all three cases, temporal
disorder causes diffusive operator spreading and ∼

√
t entanglement growth. We show

that operator scrambling is strongly constrained in these random unitary circuits. The
behavior of these models lies in sharp contrast to Anderson localization for the case of
static disorder, and to the ballistic behavior and efficient scrambling observed both in
evolution under interacting clean Hamiltonians and in fully random unitary quantum
circuits.
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1 Introduction

Understanding quantum dynamics in many-body systems far from equilibrium is a central
issue in contemporary physics. In the spirit of finding universal features in many-body
dynamics, random unitary circuits [1–8] have been intensively studied in the last few
years. In such models, instead of smooth temporal evolution, time is discrete and local
random unitary gates are applied to some underlying degrees of freedom. Since there
is no Hamiltonian dynamics, energy conservation is sacrificed in order to uncover generic
features of local dynamics. These models capture the scrambling and spreading of quantum
information including the initial linear growth of bipartite entanglement from an initial
product state to a fully random state with Page entanglement [9]. An observable that is
particularly suited to quantifying information spreading is the degree to which spatially
separated local operators commute after time evolution [10,11,11–20]:

C(r, t) ≡ 1
2Tr

(
ρ [O0(t),Or]† [O0(t),Or]

)
, (1)

where Or is an operator localized at position r. Expanding out the correlator gives a time
ordered correlator (TOC) that is constant for Pauli-like observables and a nontrivial out-
of-time-ordered correlator (OTOC). The quantity C(r, t) exhibits ballistic spreading and
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Figure 1: (a) Exact C(r, t) measuring operator spreading in the r − t plane for
a system with 100 sites. The black curves envelop the σ(t) =

√
2t and 2σ(t)

regions. (b) Circuit scheme in the r − t plane: random two-site unitaries Ur,r+1
are applied to neighboring sites in a brick wall pattern. (c,d) Operator spreading
can be understood in terms of the stochastic update of a single string of Pauli
operators, S. Starting with the string S = . . . ⊗ I ⊗ Z ⊗ I ⊗ . . ., we show possible
histories for its evolution under free fermion (c) and Haar-random unitary circuits
(d) [1, 3].

KPZ growth at the light cone interface [1,3], and the dynamics can be mapped to a biased
random walk. In addition, one can map the evolution of the OTOC to that of a spreading
ensemble of Pauli strings that rapidly scramble. In the presence of a conserved charge, the
picture is modified owing to the diffusion of the conserved charges − there is a ballistic front
that itself spreads diffusively [4,5]. The OTOC in such random unitary circuits provides a
tractable instance of the universal physics of thermalization and the scrambling of quantum
information in general non-integrable many-body interacting systems. The OTOC has also
been used numerically to characterize information spreading in Hamiltonian evolution,
both for interacting systems [21–25,25] and for free fermions [26–29].

In this work we consider free fermion dynamics within the context of random uni-
tary circuits. Free fermion circuits first appeared as classically simulatable matchgate
circuits [30], which were later shown to correspond to a model of free fermions in 1D [31].
Unlike their interacting analogues, free fermion models with temporal noise exhibit dif-
fusive dynamical features. This has been observed in the ∼

√
t growth of entanglement

entropy [2, 32–34] and in relaxation dynamics [32, 35, 36]. This diffusive dynamics sits in
sharp contrast to the known free-fermion behaviors without temporal disorder − ballistic
behavior for spatially non-disordered systems and Anderson localization (no spreading)
for spatially ordered systems. Addition of temporal disorder renders either of these classes
of systems diffusive.

Given the central role of free fermion systems in condensed matter theory, arriving
at a general understanding of this remarkable diffusive behavior is clearly important.
We present steps toward such a general understanding, by analyzing operator spreading
and entanglement in the random circuit setting. Both spatially disordered and spatially
uniform systems are readily treated in this framework. We adapt the Pauli string picture
of operator spreading to free fermions, thus providing (i) a physical understanding of
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how one obtains diffusion instead of ballistic behavior, and (ii) a precise picture of how
free fermion circuits have only weak quantum information scrambling. In addition, an
exact calculation of C(r, t) is possible, where the overline indicates an average over random
circuits. We thus provide an exact derivation of the previously observed diffusion and
elucidate the slow scrambling of free fermion dynamics.

We consider three distinct instances of free fermion evolution: a non particle conserving
spatio-temporal random circuit (NC-ST), its restriction to a particle conserving process
(C-ST), and a spatially homogeneous case where randomness appears only in the time
direction (NC-T). Each of these cases shows diffusive operator spreading in the OTOC,
and correspondingly, entanglement entropy growing as a square root of time. We also
show explicitly numerically that the phenomenon disappears without temporal disorder −
a non particle conserving circuit with quenched spatial disorder (NC-S) shows Anderson
localization (see Section 5.12.1).

In the next section we describe the free fermion random circuit model that we explore
later in the paper and the observables we consider. Then, in Section 3, we give a self-
contained overview of all of our results before launching into a detailed presentation of the
many-body and single-body calculations.

2 Free fermion circuit model and operator spreading

2.1 Fermionic quadratic Hamiltonians
Before describing the random circuit model in detail we briefly remind the reader of some
facts about free (or quadratic) fermions.

Consider a free fermion (FF) chain with L sites. The Hamiltonian has, at most,
quadratic terms in the fermionic operators, a and a†, and it can be written as

H = 1
2A†HA with H =

(
h ∆

∆† −hT

)
, (2)

where A = (a1, · · ·, aL, a†1, · · ·, a†L)T is the Nambu vector and h = h† and ∆ = −∆T . This
system is invariant under the exchange of creation and annihilation operators, i.e. it is
particle-hole symmetric, which translates to

SHS = −HT with S =
(

0 1L×L

1L×L 0

)
. (3)

An operator H respecting (3) is said to be particle-hole (PH) symmetric.

Single-body description Given the 2L × 2L single-body Hamiltonian matrix, H, we may
diagonalize it and compute arbitrary observables in terms of the single-particle states.
More specifically, having the two-point correlator χ = ⟨AA†⟩, the mean value of any
observable of the form O = A†OA can be computed using

⟨O(t)⟩ = tr
(
ρA†(t)OA(t)

)
= − tr

(
Oχ(t)

)
, (4)

with ρ = e−βH/Z and Z = tr(e−βH) for a thermal density matrix (this is valid for the
circuits considered with β = 0). Furthermore, we know that the fermionic operators A(t)
obey ∂tA(t) = −iHA(t), evolving according to A(t) = exp(−iHt)A0. With this, and
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considering the initial χ = ⟨AA†⟩ = diag (1 − n1, . . . , 1 − nL, n1, . . . , nL), we obtain the
following equation for the evolution of χ(t):

χ(t) = e−iHtχeiHt. (5)

Hence, we have the tools to compute (4). In particular, the entanglement entropy itself
can be computed in a simple manner with [37,38]

S = − tr
(
ρ log ρ

)
= − tr

(
χ log χ

)
. (6)

2.2 Random circuit model
The random circuit acts on a chain of L sites (r = 0, ..., L − 1) with periodic boundary
conditions as a discrete time protocol. A time step corresponds to one layer of random
gates acting on even bonds, followed by one layer of random gates acting on odd bonds.
A gate applied to neighboring sites acts non-trivially on the local 4-dimensional Hilbert
space referring to these sites. The evolution follows the brick wall pattern of Fig. 1 (b).

2.2.1 Time evolution operator

Let us distinguish between the random unitary circuits used in the single and many-body
basis. We use calligraphic and non-calligraphic letters to denote many (MB) and single-
body (SB) evolution operators, respectively.

Many-body basis When working in the many-body basis, the 2L × 2L circuit U evolving
|Ψ(t)⟩ = U(t) |Ψ⟩ and O(t) = U†(t)OU(t) is obtained from q2 × q2 unitaries (with q = 2
the local Hilbert space dimension) as follows. A time step corresponds to the action of
U = UevenUodd, where Ueven and Uodd are built as

Ueven =
L/2−1⊗
R=0

U2R,2R+1 and Uodd =
L/2−1⊗
R=0

U2R−1,2R, (7)

with Ur,r+1 a two-site random unitary acting non-trivially on the local 4-dimensional
Hilbert space of sites r and r + 1.

Single-body basis In the single-body picture, each observable O evolves according to
O(t) = U †(t)OU(t), with U(t) the single-particle evolution operator. Each U(t) is a
succession of t gates U = UevenUodd, each composed of one even and one odd layers.
Considering Ur,r+1 as the 2L × 2L operator which acts non-trivially on sites r and r + 1,
even and odd layers can be written as

Ueven =
L/2−1∏
R=0

U2R,2R+1 and Uodd =
L/2−1∏
R=0

U2R−1,2R. (8)

In its turn, Ur,r+1 = ur,r+1 + Pr,r+1, where

ur,r+1 =
∑
s,s′

∑
x,x′∈{r,r+1}

|x, s⟩ ⟨x, s| u |x′, s′⟩ ⟨x′, s′| (9)

is the 4 × 4 matrix responsible for mixing the pair of sites r and r + 1, while

P̄r,r+1 =
∑

s

∑
x/∈{r,r+1}

|x, s⟩ ⟨x, s| (10)
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is the trivial projector into the complement of the pair. Taking this into account, we can
write each layer in terms of the non-trivial us as

Ueven =
L/2−1∑
R=0

u2R,2R+1 and Uodd =
L/2−1∑
R=0

u2R−1,2R. (11)

2.2.2 Free fermion gates

Depending on which gates are used to build the random circuit, it can mimic different types
of dynamics. To simulate generic unitary dynamics, the gates considered are uniformly
distributed, i.e. Haar-distributed, in the unitary group U(4). We say the circuits are
composed of Haar-random unitaries [1, 39]. To simulate free fermion dynamics, we must
consider a more restricted set of gates in U(4) respecting the free fermion symmetries.
Namely, the gates must preserve the particle-hole symmetry and conserve the parity of
the number of particles.

We must realize both the many-body evolution operator, U(t) = exp(−iHt)
= exp(−i/2A†HAt), and the single-body evolution operator, u(t) = exp(−iHt). These
operators acting on r and r + 1 are related by

(Ar(t))i = U†r,r+1(Ar)iUr,r+1 = (ur,r+1(t)Ar)i, (12)

with Ar = (ar, ar+1, a†r, a†r+1)T the Nambu vector and i = 1, . . . , 4 an index selecting a
component of Ar.

We first realize u, from which we obtain U from u using (12).

Single-body basis The single-body evolution operator u inherits the particle-hole sym-
metry (3) as SuT S = u†. Going to the Majorana representation u → ũ = V uV †, with V
defined in (13), one sees that particle-hole symmetry leads ũ to be orthogonal, i.e ũũT = 1.
This transformed back to the Dirac representation produces to the desired result:

u = V †OV with V = 1√
2

(
12×2 12×2

−i12×2 i12×2

)
(13)

and O ∈ O(4) a random Haar-distributed orthogonal matrix. Such O can be obtained
by generating a 4 × 4 real matrix z = qr belonging to the real Ginibre ensemble, and
performing a unique QR decomposition [40]. This is done using Python’s algorithm:
scipy.stats.ortho_group.rvs(4) [41].

For the particle number conserving case we have H = h ⊕ −hT , i.e. there are no
anomalous terms. In this case, ur,r+1 = vr,r+1 ⊕ v∗r,r+1 (where ⊕ stands for direct sum),
with vr,r+1 ∈ U(2) a Haar distributed unitary matrix.

Many-body basis Having u given by (13), one obtains U implicitly via (12). These U
gates are precisely the matchgates introduced in Ref. [30], whose connection with non-
interacting fermions was later established [42].

2.3 Operator spreading
The time-ordered density-density correlator becomes trivial when averaged over temporal
disorder (see Section 5.3), but C(r, t), introduced in (1), remains non-trivial upon aver-
aging. We consider an average over separable initial states, which is equivalent to taking
ρ ∝ 1 in (1), i.e. the infinite temperature ensemble. In the following, we shall consider
quadratic observables Or = Ψ†OrΨ where Ψ ≡ (a1, . . . , aL, a†1, . . . , a†L)T and Or is a local
single-particle operator.
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3 Overview

This section is intended to spare readers the full details of the calculations by focussing
on the key ideas, on the results and their implications. Given the background covered
in Section 2, this section should be reasonably comprehensible without referring to later
sections though, for more avid readers, we do indicate where further details are to be
found.

3.1 Many-body calculation
We now sketch the central result of the paper − an exact many-body calculation of the
OTOC. This calculation provides important intuition into the diffusive growth of entan-
glement and offers insight into how free fermion random circuits differ from their generic
unitary counterparts. One of the outcomes of the calculation is a demonstration that free
fermions scramble quantum information poorly in contrast to the unitary case.

The single-site Pauli operators are to be denoted I, X, Y, Z. We compute the OTOC
for operator an O0(t) in terms of a basis of Pauli strings S: O0(t) =

∑
S aS(t)S with nor-

malization
∑

S a2
S(t) = 1. The OTOC may then be written as C(r, t) =

∑
S:Sr=X,Y 2a2

S(t),
where the nonvanishing contribution to the OTOC dictates that the Pauli string at posi-
tion r must be Sr = X or Y . The problem of determining the OTOC at time t is reduced
to finding the dynamics of aS(t)2 = 4−Ltr (U†O0(t − 1/2)US)2, with U = Ueven or Uodd.
Expanding O0(t − 1/2) in a basis of Pauli strings yields

a2
S(t) =

∑
S′S′′

aS′(t − 1/2)aS′′(t − 1/2)WS←S′,S′′ , (14)

where WS←S′,S′′ ≡
∏

r tr(U†r,r+1S′r,r+1Ur,r+1Sr,r+1)tr(U†r,r+1S′′r,r+1Ur,r+1Sr,r+1), with Sr,r+1
the substring at sites r and r + 1.

Averaging over the many-body random unitary operators (see Section 4.1) results in

a2
S(t) =

∑
S′

WSS′a2
S′(t − 1/2). (15)

This result holds for both generic random unitary dynamics and the constrained free
fermion dynamics considered here. The difference is reflected in the weights WSS′ , which
depend on the distribution of U over the space of local unitaries.

For generic random unitaries, the weights for a two-site chain S are [1, 3]

WSS′ = δS,IδS′,I + 1
15 (1 − δS,I)

(
1 − δS′,I

)
, (16)

meaning that a pair of identity operators on a pair of sites evolves into itself whereas the
remaining 15 nontrivial Pauli string pairs are updated into any nontrivial pair with equal
probability. From the initial condition with a single Z operator on site 0, the operator
spreads to the left and right. At the right-hand boundary separating a nontrivial string
from unit operators, there is a bond with Sr ⊗ I with Sr = X, Y or Z. The update rule
implies that the I will be turned into one of X, Y or Z more often than it remains the
same − out of the 15 nontrivial substrings, 12 lead the right endpoint to propagate to
the right. It follows that the evolution for generic unitaries is a biased random walk with
a ballistically spreading boundary. Within the lightcone boundary, the operators update
between all the available nontrivial configurations resulting in a scrambling of quantum
information represented pictorially in Fig. 1(d). This figure shows the space-time evolution
of a single realization of the Pauli string starting from a single Z operator halfway along
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the chain. As time passes, the operator spreads with a roughly linear front. The colors
represent the different Pauli operators contributing to the string. From one time step to
the next, the three nontrivial Pauli operators are uncorrelated on each site within the bulk
of the string. In other words, they are scrambled completely.

The evolution of Pauli strings for the free fermion case is qualitatively different to the
generic case. The update rules on a pair of sites preserve I ⊗ I and Z ⊗ Z strings. The
remaining 14 operators fall into three classes that scramble among themselves with equal
probability. These are

{I ⊗ Z, Z ⊗ I, X ⊗ X, X ⊗ Y, Y ⊗ X, Y ⊗ Y } (17)
{I ⊗ X, I ⊗ Y, X ⊗ Z, Y ⊗ Z} (18)

{X ⊗ I, Y ⊗ I, Z ⊗ X, Z ⊗ Y } . (19)

Notice that each set contains either parity preserving or non-preserving substrings, such
that parity is globally conserved, as required. Starting from the string with only Z at
site 0 nontrivial, it is straightforward to see that these update rules lead to strings with
X or Y at separated boundaries with a frozen core of Z operators. The chances are the
same that the boundary moves outwards or inwards so each distinct boundary is a random
walker that diffuses. The two ends can meet and restore the configuration with a single Z
operator. The intersection points are localized departures from the random walk and we
explicitly compute these departures in the next section. A single realization of the Pauli
string evolution just described is shown in Fig. 1(c). Unlike the corresponding figure for
the generic unitary case, one sees that the boundaries are unbiased random walkers that
are X or Y operators while, between the boundaries, the string is a block of Z operators.
We conclude that the free fermion random circuit evolution is diffusive. Besides, free
fermions are ineffective at scrambling quantum information in the precise sense given by
the string picture just described − the only interesting dynamics is that of the string
endpoints, between which there is a frozen core of Z operators.

3.2 Single-body calculation
In the previous subsection we presented an exact calculation of the OTOC in the many-
particle basis that supplies a useful intuition about the nature of free fermions in relation
to the spreading of quantum information. The computation of C(r, t) for free fermions −
in common with other correlators [37, 38] − can be brought into a form where the trace
need only be performed over 2L × 2L matrices rather than over the entire Hilbert space.
In Section 5, we provide an independent calculation of the OTOC from this single-particle
perspective. One can show that the many-body correlator can be written in terms of
single-body quantities as C(r, t) = 2[C1(r, t) − C2(r, t)], where

C1(r, t) = tr
(
O2

0(t)O2
r

)
, (20)

C2(r, t) = tr (O0(t)OrO0(t)Or) , (21)

and O(t) = UO(t − 1)U †. The general relation between the single particle and many-
body TOC and OTOC is given in Section 5.1. The result is that both C1 and C2 spread
diffusively.

Exact results for C(r, t) are shown in Fig. 1(a) for a symmetrized particle number
operator Or = a†rar − ara†r = 2a†rar − 1 for a spatio-temporal random circuit that does not
conserve particle number (NC-ST). Notice that Jordan-Wigner transforming Or results
in the Pauli operator Z at site r used in the many-body calculations. Whereas C1 in the
continuum limit evolves as C1(x, t) = (1/

√
πt) exp(−x2/4t), the contribution from C2 can
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Figure 2: Scheme of a unitary circuit acting on L sites: unitaries ur,r+1 are applied
to neighboring sites r and r + 1 in a brickwall pattern. At integer time steps, we
apply even layers of gates, i.e. two-site unitaries are applied to even pairs of sites
(2R, 2R + 1), with R = 0, . . . , L/2 − 1; and, at half-integer time steps, we apply
odd layers, with gates acting on odd pairs instead, i.e. on (2R − 1, 2R). Due to
periodic boundary conditions, the total number of sites L is even and the sites
are acted upon by modulo L. (a) Circuit scheme for the NC-ST and C-ST cases
in the r − t plane, with randomness is space and time. The two cases differ in
the gates used: the NC-ST case uses two-site free fermion gates ur,r+1 = V †OV ,
where O is a 4 × 4 random Haar-distributed orthogonal matrix, while for C-ST
ur,r+1 = vr,r+1 ⊕ v∗r,r+1, with vr,r+1 a 2 × 2 random Haar-distributed unitary
matrix. When working in the many-body basis instead, many-body gates U are
applied. (b) Circuit scheme for the NC-T case. At each half time step, the same
unitary u is applied to all pairs of sites. (c) Circuit scheme for the NC-S case.
One even and one odd layers are generated as usual, these are fixed and repeated
in time, i.e. the grey box is repeated in time. In (b) and (c) the gates are identical
to the ones used for NC-ST.

be viewed as arising from a two-dimensional diffusive process projected onto one dimension,
C2(x, t) ∼ 1/(4πt) exp(−x2/2t) (see Section 5.5). These contributions have a natural
interpretation in terms of the random walkers coming from the many-particle calculation.
The term C1 is the part coming from the two independent random walkers while C2 is
the sub-leading part originating from the interaction and annihilation of those walkers.
Notice that limt→∞C2/C1 = 0, i.e. deviations from the random walk are subleading in
time, as expected since the Pauli string grows in time such that its endpoints are less likely
to meet.

3.3 Extensions to particle conserving (C-ST), space (NC-T) and time (NC-S)
translation invariant cases

We have shown that both C1 and C2 spread diffusively for free fermions in 1D in the
presence of spatio-temporal noise (NC-ST). We now consider exact calculations for two
further cases: C-ST where the fermion particle number is conserved and each gate in the
quantum circuit is chosen randomly, and NC-T where the unitary evolution is spatially
homogeneous but where there is temporal noise − a single gate is chosen randomly at each
time step and applied to all pairs of sites, as shown in Fig. 2(b). Section 5 lays out in
detail exact calculations of C1 and C2 for the different instances of free fermion evolution
just enumerated. The result is that there is diffusive spreading in all three cases with
diffusion constants coinciding with those found for NC-ST. A comparison between exact
and numerical results for C1 and C2 for NC-ST, C-ST and NC-T is shown in Fig. 3(a).
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Figure 3: (a) Rescaled single-particle C1(r, t) and C2(r, t) for 100 sites subjected
to different free-fermion random circuits, illustrating their diffusive evolution at
different times. Both the analytical and numerical solutions, the latter includ-
ing an average over 4000 disorder realizations, collapse to the continuum limit
solution g(r, t) = 1/(

√
2π) exp[−(r − 1/2)2/(2σ2(t))]. (b) Growth of the entan-

glement entropy divided by the saturation value S/S∞ as a function of t/L2 for
random free fermions − NC-ST (filled), C-ST (dashed) and NC-T (inset) − with
L = 100 and a subsystem of 50 sites showing S(t) ∝

√
t at the earliest times.

The data results from averaging over 1000 realizations up to t = 5000, starting
from a random product state with particle number fixed to L/2. The curves for
NC-ST and NC-T overlap.

In contrast, numerical results obtained for the temporal homogeneous case (NC-S) pre-
sented in Section 5.12.1, where even and odd layers of random gates are fixed and applied
repeatedly in time - see Fig. 2(c) - show that C1 and C2 remain Anderson localized (see
Fig. 13), decaying exponentially around r = 0 [43, 44].

3.4 Dynamics of entanglement
For completeness, we analyse the dynamics of the von Neumann entropy, S = − tr(ρ̃ ln ρ̃),
with ρ̃ the reduced density matrix of a subsystem of size L/2, starting from an initial prod-
uct state with a well defined particle number. Fig. 3(b) shows that for the three processes
the entanglement grows as ∼ DS

√
t for small times (with DS a time independent constant),

saturating at times tsat ∼ L2. For t ≫ tsat, the saturation value S∞ = s0L + s1 + O(1/L),
coincides with the mean entanglement entropy of a random Gaussian state [45–49], with
s0 ≃ 0.193 for all the considered free fermion processes and s1 ≃ 0.085 for the NC-ST case,
well below the Page value (s0 = ln 2/2 ≃ 0.346, s1 = −1/2) obtained by averaging over
the full Hilbert space [9]. These results show that the rate of increase of the entanglement
is compatible with the diffusion of quantum information we derived for the OTOC.

4 Operator spreading in the many-body basis

We now turn to the detailed calculations of the OTOC in the many-body (Section 4) and
single-body basis (Section 5).

In this section, we present detailed calculations showing operator diffusion for free
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fermion circuits. These calculations in the many-body basis provide an intuitive picture
for diffusion in terms of a spreading Pauli string whose endpoints are approximate random
walkers.

These calculations draw inspiration from recent works where Nahum et al. [1] and
Keyserlingk et al. [39] obtained an analytical expression showing ballistic operator growth
in Haar-distributed random circuits. We begin by summarizing these calculations. Then,
we highlight the differences occurring for free fermion evolution.

4.1 Operator growth as spreading Pauli strings
The spreading of operators can be measured by the degree of non-commutativity between
two local observables O0 and Or centred, respectively, around positions 0 and r with finite
support, i.e. by (1), which can be rewritten as

C(r, t) = 1
2⟨|[O0(t),Or]|2⟩ = −1

2⟨[O0(t),Or]2⟩, (22)

where the last equality holds for hermitian operators, i.e. O†r(t) = Or(t).
We consider Or ≡ Or(t = 0) = Zr and O0 ≡ O0(t = 0) = Z0, with

Zr = · · · ⊗ Ir−1 ⊗ Zr ⊗ Ir+1 ⊗ · · · ∈ SU(qL) (23)

acting with the single-site Pauli operator Z ∈ SU(q) on position r and with the identity I
elsewhere. Here, q = 2 is the local Hilbert space dimension of a fermion. We will use the
following notation for Pauli operators interchangeably: {I, X, Y, Z} ≡ {σ0, σ1, σ2, σ3}.

Let us decompose the evolving operator Z0(t) in terms of strings S of L single-site
Pauli operators, i.e. S ∈ PL = {σi1 ⊗ . . . ⊗ σiL : i1, . . . , iL = 0, 1, 2, 3}, which is a basis of
SU(qL),

Z0(t) = U(t)†Z0U(t) =
∑
S∈PL

aS(t)S. (24)

The normalization
⟨SS ′⟩ = tr(ρ∞SS ′) = δSS′ (25)

follows from
σµσν = 1δµν + iεµνασα, (26)

with ν, µ, α = 1, 2, 3 and εµνα the Levi-Civita symbol.
Considering (22) to (26), we obtain [1, 39]

C(r, t) = −1
2⟨[Z0(t),Zr]2⟩ =

∑
S∈PL:Sr=x,y

2aS(t)2, (27)

where we considered the reduced density matrix to be in the infinite temperature Gibbs
state ρ = ρ∞ = 1/2L, since we perform an average over separable initial states. Notice
that the strings S contributing to C(r, t) must have either X or Y at position r such that
they do not commute with Zr, i.e. they belong to the set

{σi1 ⊗ . . . ⊗ σiL : i1, . . . , ir−1, ir+1, . . . , iL = 0, 1, 2, 3 ∧ ir = 1, 2}. (28)

Thus, determining the evolution of C(r, t) reduces to determining that of the coefficients
aS(t)2.

11
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Evolution of the operator string distribution Let us obtain a recursive evolution equation
for aS(t)2.

Using aS(t) = ⟨Z0(t)S⟩ = q−L tr(Z0(t)S) and (24), it follows that

aS(t)2 = 1
q2L

tr(U†Z0(t − 1/2)US)2

= 1
q2L

∑
S′,S′′∈PL

aS′(t − 1/2)aS′′(t − 1/2) tr(U†S′US) tr(U†S ′′US)

= 1
q2L

∑
S′,S′′∈PL

aS′(t − 1/2)aS′′(t − 1/2)

×
∏
r

tr(U†r,r+1S′r,r+1Ur,r+1Sr,r+1) tr(U†r,r+1S′′r,r+1Ur,r+1Sr,r+1), (29)

where U(t, t − 1/2) = U is either Ueven or Uodd given by (7), with Ur,r+1 ∈ U(4) acting on
sites r and r+1, and Sr =

⊗
r Sr = · · · ⊗ Sr−2,r−1 ⊗ Sr,r+1 ⊗ Sr+2,r+3 ⊗ · · · ∈ SU(2L), with

Sr,r+1 ∈ SU(4) acting on sites r and r + 1. Moreover, notice we have used

(
⊗

r

Ur)(
⊗
r′

Sr′) =
⊗

r

UrSr (30)

and tr(
⊗

r UrSr) =
∏

r tr(UrSr).
In fact, we are interested in aS(t)2 averaged over circuit disorder, i.e.

aS(t)2 = 1
q2L

∑
S′S′′

aS′(t − 1/2)aS′′(t − 1/2)

×
∏
r

tr(U†r,r+1S′r,r+1Ur,r+1Sr,r+1) tr(U†r,r+1S′′r,r+1Ur,r+1Sr,r+1), (31)

where averages at different time steps and sites can be performed independently since
different unitaries are completely uncorrelated.

To compute the average over unitaries in (31) reduces to calculating the second moment
of a many-body free fermion unitary U , i.e. Eµ(U ⊗U ⊗U∗⊗U∗) ≡ U ⊗ U ⊗ U∗ ⊗ U∗, with
µ the uniform measure over the group of unitaries U composing the circuit. The average
over time evolution operators U uniformly distributed over the group of many-body free
fermion operators, we denote by UFFMB(4), and not U(4) is precisely where the calculation
for the many-body free fermion case diverges from that for Haar unitaries [1, 39].

4.2 Operator spreading for free fermions
While the previous calculations are valid for any local circuit, henceforth the calculations
are specific to free fermion circuits, with U ∈ UFFMB(4). We start by computing the second
moment of a free fermion many-body unitary, and then resume computing (31) and the
averaged OTOC, C(r, t).

4.2.1 Second moment of many-body free fermion unitaries

We have established that, for U uniformly distributed in UFFMB(4), the following expression
holds:

Ua′aU∗b′bUc′cU∗d′d =
(1

4 − 1
12 (δcā + δac)

)
δabδcdδa′b′δc′d′ (δāa′ + δaa′) (δc̄c′ + δcc′)

+
(1

4 − 1
12 (δbā + δab)

)(
δcāδdb̄δa′c′δb′c′ (δaa′ − δāa′) (δbb′ − δb̄b′)

+ δadδbcδa′c′δb′c′ (δāa′ + δaa′) (δb̄b′ + δbb′)
)
, (32)

12
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where a, a′, . . . = 1, 2, 3, 4 index the entries Ua′a = ⟨a′|U |a⟩ and where the bar operator
indicates the conjugate entry in the same parity sector, i.e. 1̄ = 4, 4̄ = 1, 2̄ = 3 and 3̄ = 2,
with entries 1 and 4 belonging to the even sector and 2 and 3 to the odd sector.

Expression (32) was obtained from numerical evidence as follows:

1. the relation between the many-body U and the single-body u evolution operators
(12) and unitarity, U†U = 1, allow us to obtain a non-linear expression for U in
terms of the entries of u;

2. after generating u as indicated in (13), we obtain U and U ⊗ U ⊗ U∗ ⊗ U∗ numeri-
cally;

3. averaging over several realizations of U , we identify the non-zero entries and their
value, obtaining (32).

4.2.2 Operator string probability distribution

Consider the partition A = {A1, AZ , AI , AL, AR} of the 16 two-site Pauli gates, P2, with

A1 = {I ⊗ I} , AZ = {Z ⊗ Z} → trivial (33)
AI = {I ⊗ Z, Z ⊗ I, X ⊗ X, X ⊗ Y, Y ⊗ X, Y ⊗ Y } → walkers meet (34)
AL = {I ⊗ X, I ⊗ Y, X ⊗ Z, Y ⊗ Z} → left boundary ∼ random walker (35)
AR = {X ⊗ I, Y ⊗ I, Z ⊗ X, Z ⊗ Y } → right boundary ∼ random walker (36)

For U a MB free fermion gate, (Ur,r+1)a′a(U∗r,r+1)b′b(Ur,r+1)c′c(U∗r,r+1)d′d is given by
(32), such that

tr(U†r,r+1S′r,r+1Ur,r+1Sr,r+1) tr(U†r,r+1S′′r,r+1Ur,r+1Sr,r+1) = 16 δS′
r,r+1S′′

r,r+1
WSr,r+1S′

r,r+1

(37)

with

WSr,r+1S′
r,r+1

=
∑
A∈A

∑
s,s′∈A

δSr,r+1sδS′
r,r+1s′

dim(A) (38)

and dim(A) =
∑

s∈A 1 the number of elements in the set A.
Considering (37), (31) becomes

aS(t)2 =
∑
S′

WSS′aS′(t − 1/2)2 with WSS′ =
∏
r

WSr,r+1S′
r,r+1

. (39)

i.e. a linear evolution equation for aS(t)2.
The circuit’s structure is such that neighboring pairs of sites interact and different

pairs are updated independently. The probability for S′r,r+1 to be update to Sr,r+1 is
WSr,r+1S′

r,r+1
, with

∑
Sr,r+1∈P2 WSr,r+1,S′

r,r+1
= 1. According to (38) and the partition of P2

given by (33) to (36), WSr,r+1S′
r,r+1

is such that an element Sr,r+1 ∈ Ak is mapped with
uniform probability onto an element of Ak, with k = 1, Z, I, L, R. Then, the probability
for S to be updated to S ′ is simply WSS′ =

∏
r WSr,r+1,S′

r,r+1
, with

∑
S∈PL

WSS′ = 1.
Hence, we must simply update the operators at each pair of interacting sites according to
the probabilities WSr,r+1,S′

r,r+1
given by (38), alternating between updating even and odd

pairs, i.e. following the circuit’s brick wall pattern.
While Z0(t) is a superposition of exponentially many strings, with aS(t) the weight

with which string S appears in the superposition, the averaged C(r, t), which ‘inherits’ the

13
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Figure 4: (a,b) Evolution of the initial operator string
S = . . . ⊗ 1 ⊗ (σ3)r=50 ⊗ 1 ⊗ . . . under free fermion dynamics. In one
step, the operator string S is updated to S′ with probability WSS′ given by (39).
(c,d) Equivalent picture for string evolution under Haar-random unitary circuit.
In this case, the probability for a two-site substring S to become S ′ is WSS′

given by (16) [1, 39].

dynamics of Z0(t), can be described under (27) and (39) as a stochastic update of a single
string onto a single string. Consider the probability space (S, aS(t)2), with aS(t)2 obeying∑

S aS(t)2 = 1 the probability for the string S to appear, which evolves in time with (38).
This probability space restricted to S with Sr = X, Y describes the strings contributing
to C(r, t).

4.2.3 Description of string evolution

We saw that the two-site string Sr,r+1 on sites r and r + 1 is updated to S′r,r+1 ∈ P2
with probability WSr,r+1S′

r,r+1
given by (38). Namely, WSr,r+1S′

r,r+1
is such that an el-

ement Sr,r+1 ∈ Ak is mapped with uniform probability onto an element of Ak, with
k = 1, Z, I, L, R and Ai given by (33) to (36). In particular, I ⊗ I and Z ⊗ Z each evolve
trivially onto themselves. Although a two-site substring is mapped to a two-site substring
in the same subset Ai, the circuit’s brick wall pattern leads all the different subsets Ai to
be visited.

Let us anticipate that, starting with . . .⊗I ⊗σ3 ⊗I ⊗ . . ., these rules allow the following
operator string configurations

. . . ⊗ I ⊗ σ3 ⊗ I ⊗ . . . (40)
. . . ⊗ I ⊗ σi ⊗ σj ⊗ I ⊗ . . . (41)

. . . ⊗ I ⊗ σi ⊗ σ3 ⊗ . . . ⊗ σ3 ⊗ σj ⊗ I ⊗ . . . (42)

where i, j = 1, 2. Fig. 4(a,b) shows two possible string evolution histories or configurations
obbeying these rules.

Consider we start with . . .⊗I ⊗σ3 ⊗I ⊗ . . ., i.e. Z0. Only the pair involving σ3 evolves
non-trivially:

(I ⊗ σ3) ∨ (σ3 ⊗ I) → (σ3 ⊗ I) ∨ (I ⊗ σ3) ∨ (
∨

i,j=1,2
σi ⊗ σj), each with probability 1/6,

(43)

where the underbrackets link interacting sites which are updated to one of the right hand-
side pairs with the given probability. This is, σ3 can remain at the same location or move
to the left or right, or σi ⊗ σj (i, j = 1, 2) can arise from it. Having updated the even
(odd) pairs, we must now update the odd (even) pairs. We just saw how I ⊗σ3 and σ3 ⊗ I

14
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evolve, σi ⊗ σj evolves as follows:∨
i,j=1,2

I ⊗ σi ⊗ σj ⊗ I →
∨

k,l=1,2
(I ⊗ σk ∨ σk ⊗ σ3) ⊗ (σl ⊗ I ∨ σ3 ⊗ σl), (44)

each with probability 1/16 i.e. the string can remain of type (41) or it can ‘grow’ to the
shape (42) which at later times will prevail. In the next time step, a possible update is∨

i,j=1,2
σi ⊗ σj → (σ3 ⊗ I) ∨ (I ⊗ σ3) ∨ (

∨
k,l=1,2

σk ⊗ σl), each with probability 1/4 (45)

i.e. (41) can shrink back to (40), i.e. a single σ3 operator, or keep expanding to (42).
Analogously, (42) can shrink back to (41) or continue expanding and keep its shape (42).
The tendency will be for the string to grow.

Summarizing, in general we have a string of single-qubit σ3 operators with either a σ1
or a σ2 operator at each of its endpoints. Hence, the interesting behaviour occurs at the
string endpoints.

Let us focus on the behaviour of the endpoints, we define as the nontrivial operators
(i.e. ̸= I) furthest to the left and to right of the origin. While the subsets A1 and AZ (33)
of P2 correspond to trivially updating the string outside and inside its non-trivial region,
AL (35) and AR (36) correspond to, respectively, the left and right endpoints moving
independently when far apart. Note that, although the two-site gates in AL and AR do not
preserve the parity of particle number locally, this is preserved globally. Moreover, these
sets include the (locally) non-conserving gates such that a non-conserving gate is mapped
to a non-conserving gate, as required to globally preserve the particle number parity.
Finally, AI (34) corresponds to the two endpoints meeting and occasionally annihilating.

Consider that the two endpoints are far apart, neglecting their interaction via the
substrings in AI (34) that can occur. The substrings including, for example, the right
endpoint are those in AR (36), which are equally probable to appear. Averaging over
these endpoint configurations, it happens that the averaged endpoint describes a random
walk: it has a 1/4 probability of moving one unit to the left or right in a half-time step
and a 1/2 probability of remaining in the same place. This initial average compensates
for the fact that half of the walkers are biased to the left and the other half to the right,
because of the circuit’s brick wall pattern: updating Z ⊗ X or Z ⊗ Y results in the walker
remaining in the same place or moving to the left, while updating X ⊗ 1 or Y ⊗ 1 results
in the walker remaining in the same place or moving to the right. Thus,

1. when far apart, the left and right endpoints σ1 or σ2 are ∼ 1D independent random
walkers,

2. when nearby, the walkers interact (e.g. they annihilate). This results in sub-leading
corrections ∼ O

(
1/

√
t
)

to the random walk.

4.2.4 String endpoints as approximate random walkers

Remember the connection between C(r, t) and the picture of a spreading string given by
(24): the correlator C(r, t) gets contributions 2aS(t)2 from strings S with endpoints σ1 or
σ2 at site r. Hence, the endpoint behaviour is truly what defines the free fermion OTOC.

Since we know the rules to obtain all possible string configurations, such as the ones
shown in Fig. 4(a,b), to sum over all of these yields C(r, t). In Fig. 5(a), we show C(r, t) for
free fermion circuits obtained by considering 105 random realizations of string evolution
histories, such as seen in Fig. 4(a,b). Since each of the string endpoints approximately
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Figure 5: C(r, t) obtained for (a) free fermion evolution and (b) evolution under
a circuit of Haar-random unitaries [1,39] for a system with L = 100 and periodic
boundary conditions. This was obtained numerically by considering the contri-
bution of 105 randomly generate string evolution histories, such as seen in Fig. 4.
While for the chaotic case the OTOC spreads ballistically, with vB = 6/5 the
front speed set by the circuit geometry [1, 39], under free fermion evolution it
diffuses with σ ∼

√
2t.

describes a 1D random walk, as discussed at the end of last section, C(r, t) is approximately
given by twice the probability for a random walker to be at position r after time t. On its
turn, the probability for a random walker starting at r = 0 to be at position r after time
t is

P (r, t) = 1
2t

(
n

(r + t)/2

)
∼ C(r, t)/2. (46)

5 Operator spreading in the single-body basis

The exact many-body calculation of the free fermion OTOC was carried out in the previous
section. Here, the same exact result is obtained using instead the single-body basis. While
the many-body result has an intuitive interpretation in terms of spreading strings with
approximate random walkers at the endpoints, it is convenient to compute the deviations
to exact random walkers occurring when the string endpoints meet using the single-body
picture. Such calculations run over many pages so, here, we give a summary of the main
steps to guide the reader through the remainder of the section.

The analytical calculation of the OTOC given here makes use of the single-body formal-
ism introduced in Section 2.1. We study the correlator of commutators C(r, t), introduced
in (1), that is written in terms of a time-ordered correlation function (TOC), C1(r, t), and
an out-of-time order correlator, C2(r, t). In this section, we analyse these in the local single
particle basis. It turns out (Section 5.1) that the many-body correlator (1) can be written
in terms of single particle correlators C1(r, t) and C2(r, t), which are similar respectively to
C1(r, t) and C2(r, t). However, despite the similarity, the correspondence between C1(C2)
and C1(C2) is not one-to-one, with the single particle TOC and OTOC being a mixture of
the many-body TOC and OTOC. In this section, when referring to TOC and OTOC we
usually mean the single-body ones.
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Observables for the random circuit must be disorder averaged. A summary of results
on random matrix averages, needed for the average of free fermion gates, is given in Section
5.2 and further explained throughout the text. One can imagine building the random cir-
cuit for a given disorder realization, computing the desired correlator and then averaging
over realizations. This computation can be done instead by studying first the action of a
single layer, acting on even or odd pairs of sites, and then building up to multiple layers.
Before proceeding to calculate higher order correlators, we briefly show that the time-
ordered density-density correlator becomes trivial when averaged over temporal disorder
(Section 5.3). Section 5.4 presents the calculation of the time-ordered correlator C1 for the
NC-ST case, where we begin by establishing a vectorized notation to be used throughout
the text. The calculation of C1 involves an average over two unitaries (Section 5.4) and
shows the TOC to be given by a discrete random walk in 1D (Section 5.4). Taking the con-
tinuum limit of the discrete evolution equation for C1 results in a diffusion equation in 1D
(Section 5.4) and a Gaussian broadening with standard deviation σ(t) =

√
2t. In Section

5.5, the calculation of C2 proceeds analogously to that of C1 but is more involved not least
because the disorder average is carried out over a product of four unitaries rather than
two in the case of C1. The result is that C2 is the diagonal of a two-dimensional quantity
whose discrete evolution equation, detailed in Section 5.5, is approximated by a 2D diffu-
sion equation in the continuum limit, and the OTOC is approximated by a Gaussian with
broadening width σ(t) =

√
t (Section 5.5). After establishing the results for the NC-ST

case, we extend these to the NC-T and C-ST cases by pointing out the differences with
regards to NC-ST. The different structure of the NC-T circuit plays no role and both C1
(Section 5.6) and C2 (Section 5.7) are exactly equal to the ones obtained for NC-ST. The
same holds true for C1 in the C-ST case (Section 5.8). However, the conserving character
of the unitaries used to build the circuit leads C2 to be different from its non-conserving
counterpart. The details given in Section 5.9 do not alter the qualitative behaviour in the
continuum limit, affecting only the normalization of the Gaussian obtained before.

Lastly, the analytical results obtained for the three instances of free fermion evolution
(NC-ST, NC-T and C-ST) are shown to agree with simulations and also with the contin-
uum limit solutions (Section 5.12). Furthermore, before concluding we present numerical
results for a non particle conserving circuit with quenched spatial disorder (NC-S) that
Anderson localizes (Section 5.12.1). Finally, we compare the MB and SB results and
revisit how the OTOC deviates from a 1D random walk (Section 6).

5.1 TOC and OTOC in the single-body picture
The spreading of operators can be measured by (1), we rewrite here considering two local
observables W and V centred, respectively, around positions 0 and r with finite support:

C(r, t) = 1
2⟨|[W(t),V]|2⟩ = C1(r, t) − C2(r, t), (47)

where W = U†(t)WU(t) and the TOC and OTOC are, respectively, C1(r, t) = ⟨W2(t)V2⟩
and C2(r, t) = ⟨W(t)VW(t)V⟩. Quadratic many-body observables V = V(0) and W = W(0)
can be written as V = A†V A and W = A†WA, with A = (a1, · · ·, aL, a†1, · · ·, a†L)T the
Nambu vector and ar and a†r the fermionic operators at position r. Considering that W
and V have this form, we can express (47) in terms of V and W , the so called single-body
observables. For this, it is convenient to write the relation between many and single-body
operators

V = ∂v

∣∣∣
v=0

exp
(
vA†V A

)
and W = ∂w

∣∣∣
w=0

exp
(
wA†WA

)
(48)
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This operator evolves as W(t) = U†(t)WU(t), with

U(t) = e−
i
2 A†HtA . . . e−

i
2 A†H1A. (49)

Replacing V and W by (48) in (47), C1(t) and C2(t) become

Ck(r, t) = ∂w

∣∣∣
w=0

∂v=0
∣∣∣
v=0

∂w′

∣∣∣
w′=0

∂v′

∣∣∣
v′=0

C̃k(r, t) with k = 1, 2, (50)

C̃1(r, t) = 1
2L

tr
[
U†(t)ew+w′A†W AU(t)ev+v′A†W A

]
, (51)

C̃2(r, t) = 1
2L

tr
[
U†(t)ewA†W AU(t)evA†V AU†(t)ew′A†W AU(t)ev′A†V A

]
, (52)

where ρ = ρ∞ = 1/2L. These expressions can be simplified using the equalities

e−
1
2 A†BnA . . . e−

1
2 A†B1A = e−

1
2 A†B̃A with eB̃ = eB1 . . . eBn , (53)

tr
[
e−

1
2 A†B̃A

]
=
[
det

(
1 + eB̃

)] 1
2 , (54)

det(A) = exp(tr[log A]), (55)

with the second one being valid for B̃ particle-hole symmetric (3). Applying these three
expression to (51) and (52), we get

C̃k(r, t) = 1
2L

tr
[
e−

1
2 A†B̃kA

]
= 1

2L

[
det(1 + eB̃k)

] 1
2 = 1

2L
exp

(1
2 tr

[
log(1 + eB̃k)

])
, (56)

where k = 1, 2 and

eB̃1 ≡ e(v+v′)V u†te(w+w′)W ut, (57)

eB̃2 ≡ ev′V u†t ew′W utevV u†tewW ut, (58)
ut ≡ e−iHt . . . e−iH1 . (59)

Finally, to obtain C(r, t) as a simple function of W (t) and V , we must perform the
derivatives in (50), making use of (56). After doing so, and using trV = trW = 0 (which
greatly simplifies the result), we obtain

C1(r, t) = 1
2 tr[W (t)V ]2 + 1

4 tr[W 2(t)] tr[V 2] − tr[W (t)V W (t)V ], (60)

C2(r, t) = 1
2 tr[W (t)V ]2 + 1

4 tr[W 2(t)] tr[V 2] + tr[W (t)V W (t)V ] − 2 tr[W 2(t)V 2]. (61)

Combining (60) and (61) in (47) we obtain

C(r, t) = 2
[
C1(r, t) − C2(r, t)

]
, (62)

with the new TOC and OTOC being, respectively,

C1(r, t) = tr[W 2(t)V 2], (63)
C2(r, t) = tr[W (t)V W (t)V ]. (64)

These expressions are very similar to C1(r, t) and C2(r, t), with the many-body observables
being replaced by the respective single-body ones. Note, however, that the correspondence
between the many and single-body TOC and OTOC, given in (60) and (61), is not one-to-
one. The relations (60) and (61) can be simplified if we specify the observables to be the
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symmetrized particle number operator introduced below, i.e. W = O0 and V = Or. Since
Or respects PH symmetry, one can show that 1/2 tr[O0(t)Or]2 = tr[O0(t)OrO0(t)Or] and
tr[O2

0(t)] tr[O2
r ] = 4 such that

C1(r, t) = 1, (65)
C2(r, t) = 1 + 2C2(r, t) − 2C1(r, t). (66)

Knowing that the TOC and OTOC are given by (63) and (64) in terms of single-
particle observables, we devote the next sections to computing these. Before proceeding
to do this, we address some useful topics. Namely, we introduce the observables to be
used and some convenient notation for the single-particle states.

Symmetrized particle number observable The ballistic or diffusive nature of the OTOC
should not depend on the particular local observable used. For convenience, we consider
the symmetrized particle number operator at position r, i.e.

Or(0) = Or = A†OrA = a†rar − ara†r = 2a†rar − 1
⇔ Or(0) = Or = diag(. . . , 1r, . . . , −1r+L, . . .). (67)

Specifically, V and W are the symmetrized number operators initially localized at positions
r and 0, respectively: V = Or ⇔ V = Or and W = O0 ⇔ W = O0. All the results in
Section 5 are obtained for these observables.

To compare the single-body results directly to the many-body results, we simply notice
that Jordan-Wigner transforming Or in (67) gives the Pauli operator Z acting on site r
used in the many-body picture calculation.

Single-particle states Rewriting the observables according to Nambu’s notation as
O = 1/2A†OA allows us to work with the single-body observable O in the 2L-dimensional
single-body basis. A single-particle state corresponds to a site r being occupied or not, i.e.
to having either a particle or a hole identified, respectively, by indices p and h: |r, p⟩ = |1r⟩
or |r, h⟩ = |0r⟩. It is convenient to label these states by

|α⟩ = |rα, sα⟩ = |2Rrα + brα , sα⟩ , (68)

where rα = 0, ..., L−1 runs over the lattice sites and sα ∈ {p, h} is the particle-hole index.
In the second equality the position index rα is decomposed as rα = 2Rrα + brα , where
Rrα = 0, ...., L/2−1 labels the pair of sites (rα, rα + 1) and brα ∈ {0, 1} labels the position
within the pair Rrα . This decomposition will prove useful since it emphasizes the structure
of the circuit built with two-site unitaries. Besides, we use |ᾱ⟩ to refer to |rα, s̄α⟩ where
p̄ = h and h̄ = p. For convenience, we will use the different notations interchangeably.

5.2 Moments of Haar-distributed orthogonal and unitary matrices
Consider gates on a group M(N) (e.g. U(N) or O(N)), distributed according to the Haar
measure on that group. This is the unique measure invariant under group multiplication,
weighting different regions of the probability space equally and thus behaving like a uniform
distribution [40]. The average with respect to the Haar probability measure µ on the
matrix probability state M(N) is denoted by

∫
M(N) . . . dµ(M) and abbreviated as a line

over the averaged quantity. We will address to the average of products of entries of some
Haar-distributed gate u as moments or matrix integrals of u.

Since non-conserving free fermion gates are obtained from real orthogonal matrices O
according to u = V OV †, their moments can be obtained from those of Haar-distributed
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orthogonal matrices. The average of products of matrix elements of a single orthogonal
matrix O with respect to the Haar probability measure µ on O(N) is in Ref. [50]. In
particular, the products of two and four entries are guven by:

⟨α1| O |β1⟩ ⟨α2| O |β2⟩ = 1
N

δα1α2δβ1β2 , (69)

⟨β1| O |α1⟩ ⟨β2| O |α2⟩ ⟨β3| O |α3⟩ ⟨β4| O |α4⟩

= 1
N(N − 1)(N + 2)

{
δβ1β4δβ2β3

[
(N + 1)δα1α4δα2α3 − δα1α2δα3α4 − δα1α3δα2α4

]
+ δβ1β2δβ3β4

[
− δα1α4δα2α3 + (N + 1)δα1α2δα3α4 − δα1α3δα2α4

]
+ δβ1β3δβ2β4

[
− δα1α4δα2α3 − δα1α2δα3α4 + (N + 1)δα1α3δα2α4

]}
, .

(70)

Equivalent expressions for free fermion gates obtained by doing u = V OV † (13) are given
by (79), (101) and (102). These are very similar to the ones above, with the difference
that indices of the type ᾱ appear.

For the particle conserving case, the average over free fermion gates u = diag(w, w),
where w are unitary gates, can be obtained from the moments of unitary matrices, which
are given by the Corollary 2.4 in [50]. In particular, the second moment of a N × N
unitary matrix w, ⟨α1| w |β1⟩∗ ⟨α2| w |β2⟩, is equal to (69) while the fourth moment is
given by (150).

5.3 Two-point correlator

Consider the two-point correlator tr[O0(t)Ox] with Ox the symmetrized particle number
operator. Its dynamics is determined by O0(t + 1/2) = U †O0(t)U , where U alternates
between Ueven and Uodd (11). This can be averaged considering

⟨α1| u |β1⟩∗ ⟨α2| u |β2⟩ = 1/Nδα1α2δβ1β2 , (71)

becoming

O0(t + 1/2) =
∑
R

∑
r,r′∈{2R,2R+1}

∑
s,s′

|r′, s′⟩ ⟨r, s|O0(t)|r, s⟩ ⟨r′, s′| , (72)

where we considered U = Ueven, with analogous results following for U = Uodd. Since∑
s ⟨r, s|O0(t)|r, s⟩ = 0 (due to PH symmetry), it follows that tr[O0(t)Ox] = 0. Thus, to

access nontrivial behavior it is necessary to probe higher order correlators.

5.4 NC-ST: averaged TOC, C1(r, t)
We start by considering the spatio-temporal noisy free fermion circuit without particle
conservation (NC-ST), drawn in Fig. 2 (a). We first compute C1(r, t) and then C2(r, t).
The dynamics of the later will prove to be more intricate and so we employ a vectorized
notation which helps clarifying its behaviour. For a matter of consistency, this is also
applied to C1(r, t). Accordingly, we consider C1(r, t) as the overlap of two vectorized
operators

C1(r, t) = tr[O2
0(t)O2

r ] =
〈〈

O2
r

∥∥∥O2
0(t)

〉〉
, (73)
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with ||O2
r(t)⟩⟩ given by

||O2
r(t)⟩⟩ =

L−1∑
x,x′=0

∑
s,s′

||x, s; x′, s′⟩⟩ ⟨x, s|O2
r(t)|x′, s′⟩ , (74)

where ||x, s; x′, s′⟩⟩ = |x, s⟩ ⊗ ⟨x′, s′|T and the particle-hole index s sums over p and h (we
usually omit these). Also, with Or the symmetrized number operator at position r given
by (67) we have

||O2
r⟩⟩ =

∑
s

||r, s; r, s⟩⟩ . (75)

Having established this vectorized formalism as the framework to use, we proceed
to average C1(r, t) over multiple realizations of the random circuit and we evaluate the
ensuing dynamics.

Time evolution of ||O2
0(t)⟩⟩

The dynamics of C1(r, t) is completely contained in ||O2
0(t)⟩⟩. The operator O2

0(t) evolves
as O2

0(t + 1) = U †O2
0(t)U which, in the vectorized notation, translates to

||O2
0(t + 1)⟩⟩ = U † ⊗ UT ||O2

0(t)⟩⟩ . (76)

Each circuit is a succession of layers of two-site gates acting on even and odd pairs of sites.
In one unit of time one even and one odd layers are applied, U = UoddUeven, such that

||O2
0(t + 1)⟩⟩ =

(
U † ⊗ UT

)
even

(
U † ⊗ UT

)
odd

||O2
0(t)⟩⟩

=

 L/2−1∑
R,R′=0

u†2R,2R+1 ⊗ uT
2R′,2R′+1

 L/2−1∑
R,R′=0

u†2R−1,2R ⊗ uT
2R′−1,2R′

 ||O2
0(t)⟩⟩ ,

(77)

where the sites are labelled using the pair indices and where we used (11).

Average over disorder realizations Next, we average random realizations of the circuit.
The average ||O2

0(t)⟩⟩ reduces to the average over the two-site gates composing the circuit.
Since these are randomly chosen, they are uncorrelated and we can perform the average
independently at different half-time steps. Thus, we need

u†r,r+1 ⊗ uT
r′,r′+1 = ||α1α2⟩⟩ ⟨β1| ur,r+1 |α1⟩∗ ⟨β2| ur′,r′+1 |α2⟩ ||β1β2⟩⟩ . (78)

This demands that we compute the average of products of entries of some Haar-distributed
free fermion gate u. A short discussion on the topic was presented in Section 5.2. Sum-
marizing, only moments of an even number of entries of u are non-zero. This implies
u†r,r+1 ⊗ uT

r′,r′+1 = δr,r′u†r,r+1 ⊗ uT
r,r+1. Considering that the second moment of some free

fermion gate u is given by (see Section 5.2)

⟨α1| u |β1⟩∗ ⟨α2| u |β2⟩ = 1
N

δα1α2δβ1β2 , (79)

where N = rank(u) = 4, we get

u†r,r+1 ⊗ uT
r,r+1 = 1

N
||αα⟩⟩ ⟨⟨ββ|| = ||ϕr⟩⟩ ⟨⟨ϕr|| , (80)
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This is a projector evolving the pair of sites (r, r + 1) from t to t + 1/2, with

||ϕr⟩⟩ = 1
2

∑
x∈{r,r+1}

∑
s

||x, s; x, s⟩⟩ , (81)

which obeys ⟨⟨ϕr ∥ϕr′⟩⟩ = δr′,r + 1
2δr′,r±1. Also, note that ||ϕr⟩⟩ ⟨⟨ϕr|| leads O2

0(t) to be
always diagonal. Plugging these results into the averaged (77) leads to

||O2
0(t + 1)⟩⟩ =

L/2−1∑
R=0

||ϕ2R⟩⟩ ⟨⟨ϕ2R||

L/2−1∑
R=0

||ϕ2R−1⟩⟩ ⟨⟨ϕ2R−1||

 ||O2
0(t)⟩⟩ . (82)

To know ||O2
0(t)⟩⟩ at any t we start from the initial condition ||O2

0(0)⟩⟩ =
∑

s ||0, s; 0, s⟩⟩
and apply the above expression successively.

Dynamics of ||O2
0(t)⟩⟩ Starting with ||O2

0(0)⟩⟩ =
∑

s ||0, s; 0, s⟩⟩ and applying the first
odd layer of the circuit we obtain

||O2
0(t = 1/2)⟩⟩ =

L/2−1∑
R=0

||ϕ2R−1⟩⟩ ⟨⟨ϕ2R−1||

 ||O2
0(0)⟩⟩

= ||ϕ−1⟩⟩
〈
⟨ϕ−1

∥∥∥O2
0(0)

〉〉
= ||ϕ−1⟩⟩ , (83)

to which we apply a second even layer to obtain

||O2
0(t = 1)⟩⟩ =

L/2−1∑
R=0

||ϕ2R⟩⟩ ⟨⟨ϕ2R||

 ||O2
0(1/2)⟩⟩

=
(

||ϕ−2⟩⟩ ⟨⟨ϕ−2|| + ||ϕ0⟩⟩ ⟨⟨ϕ0||
)

||ϕ−1⟩⟩ = 1
2
(

||ϕ−2⟩⟩ + ||ϕ0⟩⟩
)
. (84)

Mixing neighboring pairs in successive layers is mediated by

||ϕr⟩⟩ ⟨⟨ϕr ∥ϕr±1⟩⟩ = 1
2 ||ϕr⟩⟩ , (85)

which guarantees that the subspace {||ϕr⟩⟩} is closed under time evolution. This, allied
with (84), allows the decomposition

||O2
0(t)⟩⟩ =


∑L/2−1

R=0 ||ϕ2R⟩⟩
〈
⟨ϕ2R

∥∥∥O2
0(t)

〉〉
, for t integer∑L/2−1

R=0 ||ϕ2R−1⟩⟩
〈
⟨ϕ2R−1

∥∥∥O2
0(t)

〉〉
, for t half-integer

(86)

i.e. {||ϕ2R⟩⟩ | R = 0, . . . , L/2 − 1} and {||ϕ2R−1⟩⟩ | R = 0, . . . , L/2 − 1} for t inte-
ger and half-integer, respectively, are the natural orthonormal basis for this problem.
This is, they take full advantage of the structure coming from the average of gates, i.e.〈
⟨r, s; r, s

∥∥∥O2
0(t)

〉〉
=
〈
⟨r + 1, s; r + 1, s

∥∥∥O2
0(t)

〉〉
, where (r, r+1) forms a pair, and of the

PH symmetry of O0(t), which leads to
〈
⟨r, p; r, p

∥∥∥O2
0(t)

〉〉
=
〈
⟨r, h; r, h

∥∥∥O2
0(t)

〉〉
. Having

established the good basis to use, we can employ (85) to obtain, for t ≥ 1/2,〈
⟨ϕr

∥∥∥O2
0(t + 1/2)

〉〉
= ⟨⟨ϕr||

(
||ϕr−1⟩⟩ ⟨⟨ϕr−1|| + ||ϕr+1⟩⟩ ⟨⟨ϕr+1||

)
||O2

0(t)⟩⟩

= 1
2
(

⟨⟨ϕr−1|| + ⟨⟨ϕr+1||
)

||O2
0(t)⟩⟩ , (87)
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i.e. the time-evolution of
〈
⟨ϕr

∥∥∥O2
0(t)

〉〉
can be understood as an averaging process with

contributions from the nearest neighbors. Applying this twice gives〈
⟨ϕr

∥∥∥O2
0(t + 1)

〉〉
= 1

4
(

⟨⟨ϕr−2|| + 2 ⟨⟨ϕr|| + ⟨⟨ϕr+2||
)

||O2
0(t)⟩⟩ . (88)

This recursive expression associated to ||O2
0(t)⟩⟩ =

∑L/2−1
R=0 ||ϕ2R⟩⟩

〈
⟨ϕ2R

∥∥∥O2
0(t)

〉〉
is equiv-

alent to (82), but more transparent than the latter.

Exact result for C1(r, t)

Now that we have analyzed the dynamics of ||O2
0(t)⟩⟩, we focus back on the TOC.

For t = 0, we use the initial condition ||O2
0(0)⟩⟩ =

∑
s ||0, s; 0, s⟩⟩ in (73) to obtain

C1(r, 0) = C1(r, 0) =
〈〈

O2
r

∥∥∥O2
0(0)

〉〉
= 2δr,0. (89)

For t ≥ 1, we decompose ||O2
0(t)⟩⟩ using (86) to obtain

C1(r, t) =
〈〈

O2
r

∥∥∥O2
0(t)

〉〉
= ⟨⟨O2

r ||
L/2−1∑
R=0

||ϕ2R⟩⟩
〈
⟨ϕ2R

∥∥∥O2
0(t)

〉〉

=
L/2−1∑
R=0

(δr,2R + δr,2R+1)
〈
⟨ϕ2R

∥∥∥O2
0(t)

〉〉
, (90)

i.e. C1(2R, t) = C1(2R + 1, t) =
〈
⟨ϕ2R

∥∥∥O2
0(t)

〉〉
. The dynamics of C1(r, t) is then deter-

mined by that of
〈
⟨ϕ2R

∥∥∥O2
0(t)

〉〉
, which we saw is given by (88), starting with (84) as the

initial condition, i.e.

C1 (2R, t + 1) = C1 (2R + 1, t + 1)

=


1
2(δR−1,0 + δR,0) , for t = 0
1
4

(
C1 (2R − 2, t) + 2C1 (2R, t) + C1 (2R + 2, t)

)
, for t ≥ 1

. (91)

Having broken down the TOC given initially by (73), we end up with a very clean
picture: the circuit’s structure leads C1(r, t) to depend only on the pair R to which r
belongs and evolving it comes down to performing a weighted average as specified in (91).
This averaging process is represented pictorially in Fig. 6. In the Fig. 6(c) the ‘brickwall’
structure of the circuit ensures that, as time evolves, C1(r, t) spreads across the system.
Although the boundary in the r − t plane between the region with zero and non-zero
C1(r, t) describes a light cone, the weights are concentrated around r = 0 such that the
process is diffusive and not ballistic. Next, we take the continuum limit.

Continuum limit of C1(r, t)

Equation (91) is a discrete diffusion equation in 1D, whose continuum limit leads to the
usual continuum 1D diffusion equation.

Consider the scaling form aC ′1(x = ra, τ = ta2). For a = 1, this coincides with the
discrete C1(r, t). If we let a → 0, this approximates C1(r, t) in the continuum limit.
After making this identification in (91), where r = 2R, we Taylor expand it up to O(a3),
obtaining the one-dimensional continuum diffusion equation

∂τ C ′1(x, τ) = D1 ∂2
xC ′1(x, τ), (92)
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Figure 6: The values in the boxes are C1(r, t) in the r − t plane (in empty boxes
C1(r, t) = 0). Panels (a) and (b) translate Eqs. (87) and (88) to a schematic,
representing the evolution of C1(r, t) in one half and one full time steps. The
scheme in (b) is obtained by applying (a) twice. (c) The previous schemes can be
applied to obtain C1(r, t), starting with C1(r, 0) = 2δr,0 as the initial condition.
Even layers are depicted in blue while odd layers appear in red.

with diffusion coefficient D1 = 1. Using the initial condition (89), which translates to
C ′1(x, t = 0) = 2δ(x), the solution to (92) approximating C1(r, t) for large t and L is

C1(2R, t) = C1(2R + 1, t) ≃ aC ′1(x = 2Ra, τ = ta2) = A√
2πσ(t)

exp
(

− (2R)2

2σ(t)2

)
, (93)

i.e. a Gaussian normalized to A = 2 with standard deviation σ =
√

2t.

5.5 NC-ST: averaged OTOC, C2(r, t)
We move on to calculate the OTOC for the non-conserving circuit with randomness in
space and time (NC-ST). Although this will prove to be more intricate than C1(r, t), the
procedure follows the same steps.

We start by writing C2(r, t) as the overlap of two vectorized operators

C2(r, t) = tr [O0(t)OrO0(t)Or] = ⟨⟨Qr|| S ||Q0(t)⟩⟩ , (94)

with Qr ≡ Or ⊗ Or and

||Qr(t)⟩⟩ =
∑

αβµν

||αβµν⟩⟩ ⟨αβ |Qr(t)| µν⟩ , (95)

S =
∑

αβµν

||αβµν⟩⟩ ⟨⟨αβνµ|| , (96)

where ||αβµν⟩⟩ = |αβ⟩ ⊗ ⟨µν|T and S reorders the indices such that ⟨⟨Qr|| S ||Q0(t)⟩⟩ is
the trace present in (94). Also, with Or the symmetrized number operator at position r,
we have

||Qr⟩⟩ =
∑

s

||rs, rs, rs, rs⟩⟩ − ||rs, rs̄, rs, rs̄⟩⟩ . (97)
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In the vectorized notation a parallel is established between C1(r, t) =
〈〈

O2
r

∥∥O2
0(t)

〉〉
and C2(r, t) = ⟨⟨Qr|| S ||Q0(t)⟩⟩: ||O2

r⟩⟩ and ||O2
0(t)⟩⟩ are to C1(r, t) as ||Qr⟩⟩ and ||Q0(t)⟩⟩

are to C2(r, t). The dynamics of the latter is set by ||Q0(t)⟩⟩, which we proceed to evaluate.

Time evolution of ||Q0(t)⟩⟩

As done for C1(r, t), we first compute how ||Q0(t)⟩⟩ evolves and then we average the result
obtained.

From O0(t + 1) = U †O0(t)U it follows that Q0(t + 1) = (U †⊗ U †)Q0(t)(U ⊗ U) which,
in the vectorized notation, becomes

||Q0(t + 1)⟩⟩ = U † ⊗ U † ⊗ UT ⊗ UT ||Q0(t)⟩⟩ . (98)

In one time step two layers of the circuit are applied, U = UoddUeven. Using (11), it follows
that

||Q0(t + 1)⟩⟩ = (U † ⊗ U † ⊗ UT ⊗ UT )even(U † ⊗ U † ⊗ UT ⊗ UT )odd ||Q0(t)⟩⟩

=

 L/2−1∑
R,R′,R′′,R′′′=0

u†2R,2R+1 ⊗ u†2R′,2R′+1 ⊗ uT
2R′′,2R′′+1 ⊗ uT

2R′′′,2R′′′+1


 L/2−1∑

R,R′,R′′,R′′′=0
u†2R−1,2R ⊗ u†2R′−1,2R′ ⊗ uT

2R′′−1,2R′′ ⊗ uT
2R′′′−1,2R′′′

 ||Q0(t)⟩⟩ , (99)

valid for a realization of the circuit.

Average over disorder realizations We move on to average (99) over random realizations
of the circuit. As before, we take the average of each layer independently from the others.
Thus, it suffices to compute

u†r,r+1 ⊗ u†r′,r′+1 ⊗ uT
r′′,r′′+1 ⊗ uT

r′′′,r′′′+1 = ||α1α2α3α4⟩⟩ ⟨⟨β1β2β3β4|| ·

· ⟨β1|ur,r+1|α1⟩∗ ⟨β2|ur′,r′+1|α2⟩∗ ⟨β3|ur′′,r′′+1|α3⟩ ⟨β4|ur′′′,r′′′+1|α4⟩. (100)

To perform this average we refer again to Section 5.2. Recall that only even moments of
u are non-zero. The second moments are given either by (79) and

⟨β1| u |α1⟩ ⟨β2| u |α2⟩ = ⟨β1| u |α1⟩∗ ⟨β2| u |α2⟩∗ = 1
N

δᾱ1α2δβ̄1β2
, (101)

and the fourth moment is given by

⟨β1| u |α1⟩∗ ⟨β2| u |α2⟩∗ ⟨β3| u |α3⟩ ⟨β4| u |α4⟩

= 1
N(N − 1)(N + 2)

{
δβ1β4δβ2β3

[
(N + 1)δα1α4δα2α3 − δᾱ1α2δᾱ3α4 − δα1α3δα2α4

]
+ δβ̄1β2

δβ̄3β4

[
− δα1α4δα2α3 + (N + 1)δᾱ1α2δᾱ3α4 − δα1α3δα2α4

]
+ δβ1β3δβ2β4

[
− δα1α4δα2α3 − δᾱ1α2δᾱ3α4 + (N + 1)δα1α3δα2α4

]}
,

(102)

with N = rank(u) = 4. This means that, when performing the average in (100), either two
or four entries of u must refer to the same unitary, leaving us with four possible terms. The
case where all entries refer to the same unitary (i.e. r = r′ = r′′ = r′′′) contributes with
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one term while the other three come from two different unitaries appearing, for which there
are three configurations corresponding to the pairings we can make out of four elements:
(12)(34), (13)(24) and (14)(23). Taking (79), (101) and (102) into account, the sum over
(100) becomes

L/2−1∑
r,r′,r′′,r′′′=0

u†r,r+1 ⊗ u†r′,r′+1 ⊗ uT
r′′,r′′+1 ⊗ uT

r′′′,r′′′+1 =
L/2−1∑
r,r′=0

vr,r′ , (103)

with

vr,r′ = (1 − δrr′)
(

||Θ⟩⟩ ⟨⟨Θ|| + ||Θ̄⟩⟩ ⟨⟨Θ̄|| + ||Θ̃⟩⟩ ⟨⟨Θ̃||
)

r,r′

+ δrr′

(N + 2)

([
(N + 1) ||Θ⟩⟩ − ||Θ̄⟩⟩ − ||Θ̃⟩⟩

]
⟨⟨Θ||

+
[

− ||Θ⟩⟩ + (N + 1) ||Θ̄⟩⟩ − ||Θ̃⟩⟩
]

⟨⟨Θ̄|| +
[

− ||Θ⟩⟩ − ||Θ̄⟩⟩ + (N + 1) ||Θ̃⟩⟩
]

⟨⟨Θ̃||
)

r,r

,

(104)

where we use the definitions

||Θr,r′⟩⟩ = 1
√

gr,r′

∑
rα∈{r,r+1}

rβ∈{r′,r′+1}

∑
sα,sβ

||αββα⟩⟩ , (105)

||Θ̄r,r′⟩⟩ = 1
√

gr,r′

∑
rα∈{r,r+1}

rβ∈{r′,r′+1}

∑
sα,sβ

||αᾱββ̄⟩⟩ , (106)

||Θ̃r,r′⟩⟩ = 1
√

gr,r′

∑
rα∈{r,r+1}

rβ∈{r′,r′+1}

∑
sα,sβ

||αβαβ⟩⟩ , (107)

with gr,r′ = N(N − δr,r′). Since r and r′ have the same parity, these obey

〈
⟨irr′

∥∥iqq′
〉〉

= 16
gr,r′

δq,rδq′,r′ + 4
√

grr′gqq′
δq,r±1δq′,r′±1, (108)

〈
⟨irr′

∥∥jqq′
〉〉

= δr,r′

6
(
2δq,rδq′,r′ + δq,r+1δq′,r′+1 + δq,r−1δq′,r′−1

)
, (109)

for i ̸= j ∈ {Θ, Θ̄, Θ̃}. Notice that, while the evolution of ||O2
0(t)⟩⟩ in C1(r, t) involved

mixing within each pair of sites (r, r + 1) through the projector ||ϕr⟩⟩ ⟨⟨ϕr|| (80), here the
evolution through vr,r′ entails mixing between each two pairs (r, r + 1) and (r′, r′ + 1).
Thus, we expect the time evolution of ||O2

0(t)⟩⟩ to be a two-dimensional process in space.
Finally, considering (103), the average of (99) becomes

||Q0(t + 1)⟩⟩ =

 L/2−1∑
R,R′=0

v2R,2R′

 L/2−1∑
R,R′=0

v2R−1,2R′−1

 ||Q0(t)⟩⟩ , (110)

with vr,r′ given by (104). Starting with ||Q0(0)⟩⟩ given by (97), applying this expression
recursively gives ||Q0(t)⟩⟩ at successive time steps. Next, we do this and simplify (110).
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Dynamics of ||Q0(t)⟩⟩ We start by defining

||ΘΘ̄r,r′⟩⟩ = ||Θr,r′⟩⟩ − ||Θ̄r,r′⟩⟩ . (111)

Starting with ||Q0(0)⟩⟩ given by (97), applying the first odd layer of the circuit leads to

||Q0(t = 1/2)⟩⟩ =

 L/2−1∑
R,R′=0

v2R−1,2R′−1

 ||Q0(0)⟩⟩ = v−1,−1 ||Q0(0)⟩⟩ = 1√
3

||ΘΘ̄−1,−1⟩⟩ ,

(112)

to which we apply a second even layer to obtain

||Q0(t = 1)⟩⟩ =

 L/2−1∑
R,R′=0

v2R,2R′

 ||Q0(1/2)⟩⟩ = (v−2,−2 + v−2,0 + v0,−2 + v0,0) ||Q0(1/2)⟩⟩

= 1
6
√

3

(
||ΘΘ̄−2,−2⟩⟩ + ||ΘΘ̄0,0⟩⟩

)
+ 1

6
(

||ΘΘ̄−2,0⟩⟩ + ||ΘΘ̄0,−2⟩⟩
)
. (113)

Also, we use (108) and (109) to see that ||ΘΘ̄r,r′⟩⟩ evolves under vr,r′ according to

vr+a,r′+a ||ΘΘ̄r,r′⟩⟩ =
(1

4 −
δr,r′

12

)
||ΘΘ̄r+a,r′+a⟩⟩ , (114)

vr+a,r′−a ||ΘΘ̄r,r′⟩⟩ =
[1

4 +
( 1

2
√

3
− 1

4

)
(δr,r′ + δr+a,r′−a)

]
||ΘΘ̄r+a,r′−a⟩⟩ , (115)

where a = ±1. These relations control the mixing occurring between neighboring pairs
in successive time steps and ensure that the subspace {||ΘΘ̄r,r′⟩⟩} is closed under time
evolution. This, allied with (112), allows the decomposition

||Q0(t)⟩⟩ =


∑L/2−1

R=0
1
2 ||ΘΘ̄2R,2R′⟩⟩

〈〈
ΘΘ̄2R,2R′

∥∥∥Q0(t)
〉〉

, for t integer∑L/2−1
R=0

1
2 ||ΘΘ̄2R−1,2R′−1⟩⟩

〈〈
ΘΘ̄2R−1,2R′−1

∥∥∥Q0(t)
〉〉

, for t half-integer
(116)

where the factor 1/2 arises from
〈〈
ΘΘ̄r,r′

∥∥ΘΘ̄q,q′
〉〉

= 2δr,qδr′,q′ , where the indices are
restricted to having the same parity. As {||ϕr⟩⟩} was the natural basis on which to
express ||O2

0(t)⟩⟩, so it happens that { 1√
2 ||ΘΘ̄2R,2R′⟩⟩ | R, R′ = 0, . . . , L/2 − 1} and

{ 1√
2 ||ΘΘ̄2R−1,2R′−1⟩⟩ | R, R′ = 0, . . . , L/2−1} are the natural orthonormal basis on which

to express ||Q0(t)⟩⟩. Let us comment on the states ||αβµν⟩⟩ grouped under the same
||ΘΘ̄r,r′⟩⟩. Due to PH symmetry, out of the three types of states surviving the average of
Haar-distributed gates − ||αββα⟩⟩, ||αᾱββ̄⟩⟩ and ||αβαβ⟩⟩ − only the first two survive;
explicitly: ⟨⟨αβαβ ∥Q0(t)⟩⟩ = − ⟨⟨αβαβ ∥Q0(t)⟩⟩ ⇒

∑
sα

⟨⟨αβαβ ∥Q0(t)⟩⟩ = 0. Further-
more, PH symmetry implies ⟨⟨αββα ∥Q0(t)⟩⟩ = −

〈〈
αᾱββ̄ ∥Q0(t)⟩

〉
= | ⟨α|O0(t)|β⟩ |2

such that ||ΘΘ̄r,r′⟩⟩ groups the states ||Θr,r′⟩⟩ and − ||Θ̄r,r′⟩⟩ which evolve equally. The
structure appearing restricts the dynamics of ||Q0(t)⟩⟩ such that it is simpler than one
might have guessed, with only 8L2 entries out of (2L)4 being non-zero.

Having established the good basis to use, we employ (114) and (115) to obtain, for
t ≥ 1/2,〈〈

ΘΘ̄r,r′

∥∥∥Q0(t + 1/2)
〉〉

=

= ⟨⟨ΘΘ̄r,r′ ||
(
vr−1,r′−1 + vr+1,r′+1 + vr−1,r′+1 + vr+1,r′−1

)
||Q0(t)⟩⟩

= tr

mr,r′

(
⟨⟨ΘΘ̄r−1,r′−1|| ⟨⟨ΘΘ̄r−1,r′+1||
⟨⟨ΘΘ̄r+1,r′−1|| ⟨⟨ΘΘ̄r+1,r′+1||

)T

||Q0(t)⟩⟩

 , (117)
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Figure 7: Scheme of the evolution of the bulk
〈〈
ΘΘ̄r,r′

∥∥∥Q0(t)
〉〉

||r−r′|>2 (values
in boxes) in one-half time step. The bulk evolution uses the third matrix mr,r′

in (118) and is effectively an average of neighboring elements
〈〈
ΘΘ̄r,r′

∥∥∥Q0(t)
〉〉

whose position indices belong to the pairs (r, r + 1) and (r′, r′ + 1). Depending
on whether t + 1/2 is integer or half-integer, these pairs are even or odd.

where mr,r′ is a coefficient matrix which assumes different values depending on r and r′:

mr,r =
( 1

6
1

2
√

3
1

2
√

3
1
6

)
, mr,r+2 = mT

r,r−2 =
( 1

4
1
4

1
2
√

3
1
4

)
, mr,r′ = 1

4

(
1 1
1 1

)
, (118)

with the last mr,r′ being valid for |r − r′| > 2. In the bulk, i.e. for |r − r′| > 2, this
evolution equation is an average over neighboring sites, as depicted in Fig. 7. This is
similar to what is shown to happen for C1(r, t) in Fig. 6, where the process occurring is
one instead of two-dimensional.

Applying (117) twice gives〈〈
ΘΘ̄r,r′

∥∥∥Q0(t + 1)
〉〉

=

= tr

Mr,r′

⟨⟨ΘΘ̄r−2,r′−2|| ⟨⟨ΘΘ̄r−2,r′ || ⟨⟨ΘΘ̄r−2,r′+2||
⟨⟨ΘΘ̄r,r′−2|| ⟨⟨ΘΘ̄r,r′ || ⟨⟨ΘΘ̄r,r′+2||

⟨⟨ΘΘ̄r+2,r′−2|| ⟨⟨ΘΘ̄r+2,r′ || ⟨⟨ΘΘ̄r+2,r′+2||


T

||Q0(t)⟩⟩

 (119)

with Mr,r′ a coefficient matrix given by

Mr,r = 1
72

 2 5
√

3 3
√

3
5
√

3 16 5
√

3
3
√

3 5
√

3 2

 , Mr,r+2 = MT
r,r−2 = 1

48

 3 6 3
10√

3 13 6
4 10√

3 3



Mr,r+4 = MT
r,r−4 = 1

16

 1 2 1
2 4 2
2√
3 2 1

 , Mr,r′ = 1
16

1 2 1
2 4 2
1 2 1

 , (120)

where the last Mr,r′ is valid for |r − r′| > 4. This last matrix establishes the evolution of
the bulk of

〈〈
ΘΘ̄r,r′

∥∥∥Q0(t)
〉〉

as a weighted average resulting from applying the scheme
seen in Fig. 7 twice.

At last, starting with (113) as the initial condition, ||Q0(t)⟩⟩ is given by the recursive
expression (119) alongside (116). This is equivalent to (110), only simplified. Now we are
equipped to compute the OTOC.
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Exact result for C2(r, t)

Let us obtain the final result for C2(r, t). At t = 0, ||Q0(0)⟩⟩ is given by (97) such that
(94) becomes

C2(r, t = 0) = C2(r, t = 0) = ⟨⟨Qr|| S ||Q0(0)⟩⟩ = 2δr,0. (121)

For t ≥ 1, we decompose ||Q0(t)⟩⟩ using (116) to obtain

C2(r, t) = ⟨⟨Qr|| S ||Q0(t)⟩⟩ = ⟨⟨Qr|| S

 L/2−1∑
R,R′=0

1
2 ||ΘΘ̄2R,2R′⟩⟩

〈〈
ΘΘ̄2R,2R′

∥∥∥Q0(t)
〉〉

= 1
2
√

3

L/2−1∑
R=0

(δr,2R + δr,2R+1)
〈〈
ΘΘ̄2R,2R

∥∥∥Q0(t)
〉〉

. (122)

For convenience, we define

Kr,r′(t) = 1
2
√

3

〈〈
ΘΘ̄r,r′

∥∥∥Q0(t)
〉〉

, (123)

whose diagonal gives the OTOC: C2(2R, t) = C2(2R + 1, t) = K2R,2R(t). Thus, we use
(113) to get the OTOC at t = 1:

C2(2R, t = 1) = C2(2R + 1, t = 1) = 1
18
(
δR,−1 + δR,0

)
, (124)

At subsequent time steps the dynamics of C2(r, t) is determined by that of
〈〈
ΘΘ̄r,r′

∥∥∥O2
0(t)

〉〉
⇔ Kr,r′(t) we saw to be given by (119), i.e. for t ≥ 1 we have

C2(2R, t + 1) = C2(2R + 1, t + 1) = diag[K2R,2R′(t + 1)]

= diag

tr

M2R,2R′

K2R−2,2R′−2 K2R−2,2R′ K2R−2,2R′+2
K2R,2R′−2 K2R,2R′ K2R,2R′+2

K2R+2,2R′−2 K2R+2,2R′ K2R+2,2R′+2


T

(t)


 (125)

Note that, although the OTOC is given by the diagonal of Kr,r′(t), we must keep track
of the whole matrix to learn its dynamics. Before proceeding to inspect the dynamics of
Kr,r′(t) in the continuum limit, we give a pictorial view in Fig. 8 of how Kr,r′(t) (and thus,
the OTOC) evolves in half-time steps.

Continuum limit of C2(r, t)

Here, we recover the 2D continuum diffusion equation by taking the continuum limit
of (117), which evolves Kr,r′(t) in half time steps. Note that this equation (or, more
specifically, the matrix mr,r′) differs depending on whether r′ = r, r′ = r±2 or |r′−r| > 2.
However, since in the thermodynamic limit (L → ∞) the regions with r′ = r and r′ = r±2
constitute a set of measure zero where Kr,r′(t) does not diverge, they are not expected to
influence the behaviour of the bulk. Thus, we start by obtaining a continuum diffusion
equation for the bulk, i.e. forKr,r′(t) in |r′ − r| > 2. Then, wishing to obtain the OTOC,
given by Kr,r(t), we see that the diagonal differs from the bulk by a constant factor.

Consider the scaling form a2K ′(x = ra, x′ = r′a, τ = ta2). For a = 1, this coincides
with the discrete Kr,r′(t). If we let a → 0, this approximates Kr,r′(t) in the continuum
limit, i.e. limL→∞, t→∞Kr,r′(t) = lima→0 a2K ′(ra, r′a, ta2). After making this identifi-
cation in (119) and considering mr,r′ ||r−r′|>2 to be the isotropic bulk coefficient matrix

29



SciPost Physics Submission

Figure 8: The values in the boxes correspond to Kr,r′(t) in the r − r′ plane,
shown here for t ∈ {1/2, 1, 3/2, 2} (empty boxes have zero value). Start-
ing with Kr,r′(t) = 2δr,r′,0 as the initial condition, we evolve this by apply-
ing (117) successively. The highlighted diagonal gives C2(r, t). Note that the
boxes group the pairs of sites (r, r + 1) and (r′, r′ + 1) enhancing the symmetry
Kr,r′(t) = Kr+1,r′+1(t) = Kr+1,r′(t) = Kr,r′+1(t). Depending on whether t is
integer or half-integer (blue/red), these pairs are even or odd.

given in (118), we Taylor expand K ′bulk(x, x′, τ), i.e. the quantity K ′(x, x′, τ) evolving
isotropically under (119) with mr,r′ ||r−r′|>2, up to O(a2) such that (117) becomes

∂τ K ′bulk(x, x′, τ) = D2(∂2
x + ∂2

x′)K ′bulk(x, x′, τ), (126)

i.e. the isotropic diffusion equation in 2D, with diffusion constant D2 = 1.
Let us address the diagonal Kr,r(t). Namely, we account for the anisotropy present

in the evolution of the diagonal which impacts the way the diagonal initial condition is
distributed along different directions, something which we disregarded to obtain (126).
To begin with, we distinguish between r = r′ and r ̸= r′ and approximate Kr,r(t) by
a2K ′(x, x, τ) for r′ = r and by K ′bulk(x, x′, τ) for r′ ̸= r. Making this identification in (117)
gives

K ′bulk(x − a, x + a, τ + 1/2)
= 1/4[K ′bulk(x − 2a, x, τ) + K ′bulk(x − 2a, x + 2a, τ) + K ′bulk(x, x + 2a, τ)]

+ 1/(2
√

3)K ′(x, x, τ) (127)

which, after Taylor expanding K ′bulk up to the lowest order, O(a0), yields

K ′(x, x, τ) ≈ cK ′bulk(x, x, τ), (128)

with c =
√

3/2. Note that we approximated K ′(x, x ± 2a, τ) by the bulk K ′bulk: similarly
to what is done to obtain (128), we can Taylor expand K ′bulk up to O(a0) in the evolution
equation of K ′bulk(x − 2a, x + 2a, τ + 1/2) to obtain K ′(x, x ± 2a, τ) ∼ K ′bulk(x, x′ ± 2a, τ).

Considering (128) in the evolution equation of the diagonal (117) leads to the weighted
average

K ′bulk(x, x, τ + 1/2) = tr

m′r,r′

(
K ′bulk(x − 2, x − 2, τ) K ′bulk(x − 2, x + 2, τ)
K ′bulk(x + 2, x − 2, τ) K ′bulk(x + 2, x + 2, τ)

)T
 , (129)

with

m′r,r = 1
6

(
1 2
2 1

)
. (130)
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This allows us to directly compare the diagonal with the bulk. The anisotropy in the new
coefficient matrix m′r,r leads to diffusion with weighting factor f = 1/2 (the anti-diagonal
elements are twice the diagonal ones). Thus, to obtain K ′(x, x, τ), we take the diagonal of
K ′bulk(x, x′, τ) given as the solution of (126) and multiply it by c − which accounts for the
different scaling of the diagonal − and by f − which accounts for the anisotropy present.

Finally, we obtain the solution of (126) and, hence, the OTOC. The initial condition
(121) translates to K ′(x, x, τ = 0) ≈ cK ′bulk(x, x, τ = 0) = Aδ(x)δ(x′), with A = 2 and
where we used (128), such that the solution to (126) is

cK ′bulk(x, x′, τ) = A

4πτD2
exp

(
−x2 + x′2

4D2τ

)
. (131)

Finally, the OTOC is approximated by (131) times the corrective factor f

C2(2R, t) = C2(2R + 1, t) = K2R,2R(t)

≃ fca2K ′bulk(2Ra, 2Ra, τ) = A(t)√
2πσ(t)

exp
(

− (2R)2

2σ(t)2

)
, (132)

i.e. in the continuum limit, the OTOC is described by a Gaussian with broadening width
σ(t) =

√
t and varying normalization A(t) = fA/(2

√
2πt), with A = 2 and f = 1/2. We

conclude that C2(r, t) is approximately the diagonal of a quantity which diffuses in 2D,
analogously to C1(r, t) which instead diffused in 1D.

5.6 NC-T: averaged TOC, C1(r, t)
Now, we turn to the non particle conserving case, but with randomness only in time (NC-
T). This is realized by the circuit in Fig 2(b) − each layer Ueven and Uodd is built acting
with the same randomly chosen gate u on all pairs of sites such that the system is invariant
under space translation by multiples of two sites.

Here, we derive the behaviour of C1(r, t) by pointing out the differences from the
NC-ST case, which reside in the average of unitaries. We saw in Section 5.4 that the
average of unitaries u†r,r+1 ⊗ uT

r′,r′+1 is non-zero if ur,r+1 = ur′,r′+1. While in the NC-ST
case this demanded r′ = r, the spatial homogeneity of NC-T softens this condition to
r′ = r modulo 2. As a consequence, the operator

∑
r ||ϕr⟩⟩ ⟨⟨ϕr|| which evolves ||O2

0(t)⟩⟩
in NC-ST is generalized to

∑
rr′ ||ϕrr′⟩⟩ ⟨⟨ϕrr′ || with

||ϕr⟩⟩ −→ ||ϕrr′⟩⟩ = 1
2
∑

b∈{0,1}

∑
s

||r + b, s; r′ + b, s⟩⟩ . (133)

Considering the new evolution operator, we start from ||O2
0(0)⟩⟩ =

∑
s ||0, s; 0, s⟩⟩ to obtain

||Q0(1/2)⟩⟩ =

 L/2−1∑
R,R′=0

||ϕ2R,2R′⟩⟩ ⟨⟨ϕ2R,2R′ ||

 ||Q0(0)⟩⟩ = ||ϕ−1−1⟩⟩ = ||ϕ−1⟩⟩ . (134)

The interaction between neighboring pairs in successive layers analogous to (85) is

||ϕr,r′⟩⟩
〈〈

ϕr,r′
∥∥ϕr+a,r′+a

〉〉
= 1

2 ||ϕr,r′⟩⟩ , (135)

with a = ±1. This leads to an evolution equation analogous to (87)〈〈
ϕr,r′

∥∥∥O2
0(t + 1/2)

〉〉
=

= ⟨⟨ϕr,r′ ||
(

||ϕr−1,r′−1⟩⟩ ⟨⟨ϕr−1,r′−1|| + ||ϕr+1,r′+1⟩⟩ ⟨⟨ϕr+1,r′+1||
)

||O2
0(t)⟩⟩

= 1
2
(

⟨⟨ϕr−1,r′−1|| + ⟨⟨ϕr+1,r′+1||
)

||O2
0(t)⟩⟩ . (136)
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This expression alongside the initial condition (134) leads only terms of the type
||ϕr,r⟩⟩ = ||ϕr⟩⟩ to arise. Thus, the above expression is effectively reduced to (87). Since
the initial condition ||Q0(1/2)⟩⟩) = ||ϕ−1⟩⟩ is the same we had for NC-ST, C1(r, t) in
the NC-T case to be exactly equal to the one obtained for NC-ST. Although the spatial
homogeneity of the new circuit threatens the TOC dynamics to be described by a two-
dimensional process, the initial condition fixes it to the one-dimensional process already
known for NC-ST.

5.7 NC-T: averaged OTOC, C2(r, t)

We now compute C2(r, t) for the NC-T case. As it happens with C1(r, t), the difference
from the NC-ST case lies in the average of unitaries.

We saw in Section 5.5 that, for the average u†r1,r1+1 ⊗ u†r2,r2+1 ⊗ uT
r′

1,r′
1+1 ⊗ uT

r′
2,r′

2+1 to be
non-zero„ either two or four unitaries must be equal, which, in the NC-ST case, translates
to r1 = r2 ∧r′1 = r′2 or r1 = r′1 ∧r2 = r′2 or r1 = r′2 ∧r2 = r′1 or r1 = r2 = r′1 = r′2. Similarly
to what we just saw for C1(r, t), these restrictions are softened in the NC-T case: since all
the gates composing one layer are the same the four unitaries can refer to different pairs
such that vr,r′ is generalized to vr1,r2,r′

1,r′
2

by transforming (105), (106) and (107) according
to

||Θr,r′⟩⟩ → ||Θr1,r2,r′
1,r′

2
⟩⟩ =

= 1
√

gr1,r2

∑
b1,b2∈{0,1}

s1,s2

||r1 + b1, s1; r2 + b2, s2; r′2 + b2, s2; r′1 + b1, s1⟩⟩ , (137)

||Θ̄r,r′⟩⟩ → ||Θ̄r1,r2,r′
1,r′

2
⟩⟩ =

= 1
√

gr1,r2

∑
b1,b2∈{0,1}

s1,s2

||r1 + b1, s1; r′1 + b1, s̄1; r2 + b2, s2; r′2 + b2, s̄2⟩⟩ , (138)

||Θ̃r,r′⟩⟩ → ||Θ̃r1,r2,r′
1,r′

2
⟩⟩ =

= 1
√

gr1,r2

∑
b1,b2∈{0,1}

s1,s2

||r1 + b1, s1; r2 + b2, s2; r′1 + b1, s1; r′2 + b2, s2⟩⟩ . (139)

These obey relations equivalent to (108) and (109),〈〈
ir1,r2,r′

1,r′
2

∥∥∥iq1,q2,q′
1,q′

2

〉〉
= 16

gr1,r2
δq1r1δq2r2δq′

1r′
1
δq′

2r′
2

+ 4
√

gr1r2gq1q2
δq1,r1+aδq2,r2+bδq′

1,r′
1+aδq′

2,r′
2+b, (140)

〈〈
ir1,r2,r′

1,r′
2

∥∥∥jq1,q2,q′
1,q′

2

〉〉
= δr1r2

6
(
2δq1r1δq2r2δq′

1r′
1
δq′

2r′
2

+ δq1,r1+1δq2,r2+1δq′
1,r′

1+1δq′
2,r′

2+1

+ δq1,r1−1δq2,r2−1δq′
1,r′

1−1δq′
2,r′

2−1
)
, (141)

with a, b = ±1, which can be used to obtain the interaction between neighboring pairs in
successive layers

vr1+a,r2+a,r′
1+a,r′

2+a ||ΘΘ̄r1,r2,r′
1,r′

2
⟩⟩ =

(1
4 −

δr,r′

12

)
||ΘΘ̄r1+a,r2+a,r′

1+a,r′
2+a⟩⟩ , (142)

vr1+a,r2−a,r′
1+a,r′

2−a ||ΘΘ̄r1,r2,r′
1,r′

2
⟩⟩ =[1

4 +
( 1

2
√

3
− 1

4

)
(δr,r′ + δr+a,r′−a)

]
||ΘΘ̄r1+a,r2−a,r′

1+a,r′
2−a⟩⟩ . (143)
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Applying this to ||Q0(0)⟩⟩, given by (97), results in

||Q0(t = 1/2)⟩⟩ =

 L/2−1∑
R1,R2,R′

1,R′
2=0

v2R1−1,2R2−1,2R′
1−1,2R′

2−1

 ||Q0(0)⟩⟩

= v−1,−1,−1,−1 ||Q0(0)⟩⟩ = 1√
3

||ΘΘ̄−1,−1,−1,−1⟩⟩ = 1√
3

||ΘΘ̄−1,−1⟩⟩ ,

(144)

i.e. the same initial condition we have for the NC-ST case. Since in (142) and (143) r1
and r′1 as well as r2 and r′2 are restricted to varying by the same amount, the subspace
{||ΘΘ̄r1,r2,r1,r2⟩⟩} is closed under time evolution. Thus, starting with (144) as the initial
condition, the relation ||ΘΘ̄r1,r2,r1,r2⟩⟩ = ||ΘΘ̄r1,r2⟩⟩ effectively reduces the evolution rela-
tions (142) and (143) to the ones we had for NC-ST, (114) and (115). It follows that C2(r, t)
for the NC-T case is equal to the one obtained before for the NC-ST case. Equivalently to
what happens for C1(r, t), although the spatial homogeneity of the new circuit threatens
the OTOC dynamics to be described by a four-dimensional process, initial conditions fix
it to the two-dimensional process already known for NC-ST.

5.8 C-ST: averaged TOC, C1(r, t)
Lastly, we focus on the third instance of free fermion evolution, a restriction of the NC-
ST case to a particle conserving process admitting spatio-temporal noise (C-ST). The
difference from NC-ST lies in the new two-site unitaries conserving particle number, i.e.
there are no anomalous terms aiaj or a†i a

†
j such that the ph and hp sectors of u are null,

where by ph sector we mean those |r, s⟩ ⟨r, s|u|r′, s′⟩ ⟨r′, s′| with s = p and s′ = h. The
new unitaries are diagonal by blocks: ur,r+1 = wr,r+1 ⊕ w∗r,r+1, with w 2 × 2 random
Haar-distributed unitary matrices 2.2.2. We start by computing C1(r, t) and then C2(r, t).

Knowing that, according to (69) in Section 5.2, w∗αβwµν = 1
N δαµδβν , the average of

(79) becomes

⟨α1| u |β1⟩∗ ⟨α2| u |β2⟩ = ⟨α1| w |β1⟩∗ ⟨α2| w |β2⟩δsα1 sβ1
δsα2 sβ2

= 1
N

δα1α2δβ1β2δsα1 sβ1
δsα2 sβ2

,

(145)

where N = rank(w) = 2, with the difference from NC-ST being a restriction to the non-
anomalous sectors pp and hh. This results in the evolution operator (80) becoming

||ϕr⟩⟩ ⟨⟨ϕr|| −→ Φr = 1
2

∑
x∈{r,r+1}

x′∈{r′,r′+1}

∑
s

||x, s; x, s⟩⟩ ⟨⟨x′, s; x′, s|| . (146)

The initial condition ||O2
0(0)⟩⟩ =

∑
s ||0, s; 0, s⟩⟩ evolves under this as

||Q0(1/2)⟩⟩ =

L/2−1∑
R=0

Φ2R−1

 ||Q0(0)⟩⟩ = Φ−1 ||Q0(0)⟩⟩ = ||ϕ−1⟩⟩ , (147)

i.e. ||Q0(1/2)⟩⟩ is equal to that of NC-ST and NC-T. Also, the interaction between neigh-
boring pairs in successive layers reduces to

Φr±1 ||ϕr⟩⟩ = 1
2 ||ϕr±1⟩⟩ , (148)

also analogous to ||ϕr⟩⟩ ⟨⟨ϕr′ ∥ϕr±1⟩⟩ = 1/2 valid for the NC-ST case. It follows that
C1(r, t) is the same we obtained for the previous two cases, with the restriction in the
particle-hole sector in (146), when comparing to ||ϕr⟩⟩ ⟨⟨ϕr||, being compensated by the
different prefactor.
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5.9 C-ST: averaged OTOC, C2(r, t)

Next, we obtain C2(r, t) for the C-ST case, which differs from C2(r, t) obtained for NC-T
and C-ST.

Time evolution of ||Q0(t)⟩⟩

As done for the NC-ST case, we start by computing ||Q0(t)⟩⟩.

Average over disorder realizations Particle conserving free fermion gates vary from their
non-conserving counterparts. Being built as mentioned at the beginning of Section 5.8,
their moments can be obtained directly from those of 2 × 2 unitary matrices w. Thus,
their second moments ⟨β1| u |α1⟩∗ ⟨β2| u |α2⟩ are given by (145) while its fourth moment is

⟨β1| u |α1⟩∗ ⟨β2| u |α2⟩∗ ⟨β3| u |α3⟩ ⟨β4| u |α4⟩

= ⟨β1| w |α1⟩∗ ⟨β2| w |α2⟩∗ ⟨β3| w |α3⟩ ⟨β4| w |α4⟩δsα1 sβ1
δsα2 sβ2

δsα3 sβ3
δsα4 sβ4

, (149)

with the average of unitary matrices being (see Corollary 2.4 in [50])

⟨β1| w |α1⟩∗ ⟨β2| w |α2⟩∗ ⟨β3| w |α3⟩ ⟨β4| w |α4⟩

= 1
N(N2 − 1)

[
δβ1β4δβ2β3(Nδα1α4δα2α3 − δα1α3δα2α4)

+δβ1β3δβ2β4(Nδα1α3δα2α4 − δα1α4δα2α3)
]
. (150)

with N = rank(w) = 2. With these changes, vr,r′ given previously by (104) becomes

vr,r′ → vC
r,r′ = 1 − δrr′

N2

[
||θ⟩⟩ ⟨⟨θ|| ⊗ (Π+ π) + ||θ̃⟩⟩ ⟨⟨θ̃|| ⊗ (Π+ π̃)

]
r,r′

+ δrr′

N(N2 − 1)
[
N ||θ⟩⟩ ⟨⟨θ|| ⊗ (Π+ π)

− ||θ⟩⟩ ⟨⟨θ̃|| ⊗ Π− ||θ̃⟩⟩ ⟨⟨θ|| ⊗ Π+ N ||θ̃⟩⟩ ⟨⟨θ̃|| ⊗ (Π+ π̃)
]

r,r
, (151)

where we defined

||θr,r′⟩⟩ =
∑

x∈{r,r+1}

∑
x′∈{r′,r′+1}

||x, x′, x′, x⟩⟩ , (152)

||θ̃r,r′⟩⟩ =
∑

x∈{r,r+1}

∑
x′∈{r′,r′+1}

||x, x′, x, x′⟩⟩ , (153)

which respect 〈
⟨irr′

∥∥iqq′
〉〉

= 4δq,rδq′,r′ + δq,r±1δq′,r′±1, (154)〈
⟨irr′

∥∥jqq′
〉〉

= δr,r′

(
2δq,rδq′,r′ + δq,r+1δq′,r′+1 + δq,r−1δq′,r′−1

)
, (155)

with i ̸= j ∈ {θ, θ̄, θ̃}. We also used

Π = ||pppp⟩⟩ ⟨⟨pppp|| + ||hhhh⟩⟩ ⟨⟨hhhh|| , ||Π⟩⟩ = ||pppp⟩⟩ + ||hhhh⟩⟩ (156)
π = ||phhp⟩⟩ ⟨⟨phhp|| + ||hpph⟩⟩ ⟨⟨hpph|| , ||π⟩⟩ = ||phhp⟩⟩ + ||hpph⟩⟩ (157)
π̃ = ||phph⟩⟩ ⟨⟨phph|| + ||hphp⟩⟩ ⟨⟨hphp|| , ||π̃⟩⟩ = ||phph⟩⟩ + ||hphp⟩⟩ (158)

for which PP ′ = δP P ′ and P ||P ⟩⟩ = ||P ⟩⟩ holds, with P and P ′ ∈ {π, π̄, π̃}.
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Dynamics of ||Q0(t)⟩⟩ Defining

||ΘΘ̃r,r′⟩⟩ =
(

||θr,r′⟩⟩ + ||θ̃r,r′⟩⟩
)

⊗ ||Π⟩⟩ , (159)

we obtain from initial conditions

||Q0(t = 1/2)⟩⟩ = vC
−1,−1 ||Q0(0)⟩⟩ = 1

6 ||ΘΘ̃−1,−1⟩⟩ − 1
3 ||θ̃−1,−1⟩⟩ ⊗ ||π̃⟩⟩ , (160)

to which we can apply a second even layer of gates to obtain

||Q0(t = 1)⟩⟩ =

 L/2−1∑
R,R′=0

vC
2R,2R′

 ||Q0(1/2)⟩⟩ = (vC
−2,−2 + vC

−2,0 + vC
0,−2 + vC

0,0) ||Q0(1/2)⟩⟩

= 1
18
(

||ΘΘ̃−2,−2⟩⟩ + ||ΘΘ̃0,0⟩⟩
)

+ 1
24
(

||ΘΘ̃−2,0⟩⟩ + ||ΘΘ̃0,−2⟩⟩
)

− 1
9
(

||θ̃−2,−2⟩⟩ + ||θ̃0,0⟩⟩
)

⊗ ||π̃⟩⟩ − 1
12
(

||θ̃−2,0⟩⟩ + ||θ̃0,−2⟩⟩
)

⊗ ||π̃⟩⟩ .

(161)

One can check, making use of (154) and (155), that ||ΘΘ̃r,r′⟩⟩ and ||θ̃r,r′⟩⟩ ⊗ ||π̃⟩⟩ evolve
under vC

r,r′ as

vC
r+a,r′+a ||ΘΘ̃r,r′⟩⟩ =

(1
4 + δr,r′

12

)
||ΘΘ̃r+a,r′+a⟩⟩ , (162)

vC
r+a,r′−a ||ΘΘ̃r,r′⟩⟩ =

(1
4 −

δr,r′

12

)
||ΘΘ̃r+a,r′−a⟩⟩ , (163)

vC
r±a,r′±a ||θ̃r,r′⟩⟩ ⊗ ||π̃⟩⟩ =

(1
4 + δr,r′

12

)
||θ̃r±a,r′±a⟩⟩ ⊗ ||π̃⟩⟩ , (164)

with a = ±1. These relations control the mixing occurring between neighboring pairs in
successive time steps and imply that both {||ΘΘ̃r,r′⟩⟩} and {||θ̃r,r′⟩⟩ ⊗ ||π̃⟩⟩} are closed
under time evolution, besides being orthogonal to one another, since ⟨⟨Π ∥π̃⟩⟩ = 0. Thus,
we can write

||Q0(t)⟩⟩ =
L/2−1∑
R=0

(
||ΘΘ̃2R,2R′⟩⟩ ⟨⟨ΘΘ̃2R,2R′ ||

8(2 + δ2R,2R′) + ||θ̃2R,2R′⟩⟩ ⟨⟨θ̃2R,2R′ || ⊗ ||π̃⟩⟩ ⟨⟨π̃||
8

)
||Q0(t)⟩⟩ ,

(165)

valid for t integer, becoming valid for t half-integer under 2R → 2R−1 and 2R′ → 2R′−1.
The prefactors originate from

〈〈
ΘΘ̃r,r′

∥∥ΘΘ̃q,q′
〉〉

= 8(2 + δr,r′)δr,qδr′,q′ and〈〈
θ̃r,r′

∥∥∥θ̃q,q′

〉〉
⟨⟨π̃ ∥π̃⟩⟩ = 8δr,qδr′,q′ , where the indices are restricted to having the same

parity. Ahead, we will see that only states of the type ||ΘΘ̃r,r′⟩⟩ contribute to the OTOC
and thus we can ignore {||θ̃r,r′⟩⟩ ⊗ ||π̃⟩⟩}. Although ||ΘΘ̃r,r′⟩⟩ are analogous to the states
||ΘΘ̄r,r′⟩⟩ appearing in the NC-ST case, the two are inherently different: while ||ΘΘ̃r,r′⟩⟩
includes, besides ||αββα⟩⟩, states of the type ||αβαβ⟩⟩ which do not appear in NC-ST
due to PH symmetry, it leaves out states of the kind ||αᾱββ̄⟩⟩, which do not appear when
averaging over the gates.

Having {1/[8(2+δr,r′) ||ΘΘ̃r,r′⟩⟩]} as the natural basis to use, we use (162) and (163) to
obtain, for t ≥ 1/2, an expression equivalent to (117) with the changes ⟨⟨ΘΘ̄r,r′ || → ⟨⟨ΘΘ̃r,r′ ||
and mr,r′ → mC

r,r′ , with mC
r,r′ coefficient matrices given by

mC
r,r =

(
1
3

1
4

1
4

1
3

)
, mC

r,r+2 = (mC
r,r−2)T =

(
1
4

1
4

1
6

1
4

)
, mC

r,r′ = 1
4

(
1 1
1 1

)
, (166)
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with the last mC
r,r′ being valid for |r − r′| > 2. Applying this twice gives an expression

equivalent to (119) with ⟨⟨ΘΘ̄r,r′ || → ⟨⟨ΘΘ̃r,r′ || and Mr,r′ → MC
r,r′ , with the new coefficient

matrices MC
r,r′ being

MC
r,r = 1

144

16 21 9
21 44 21
9 21 16

 , MC
r,r+2 = (MC

r,r−2)T = 1
32

 1 2 1
14
9

11
3 2

2
3

14
9 1


MC

r,r+4 = (MC
r,r−4)T = 1

16

1 2 1
2 4 2
2
3 2 1

 , MC
r,r′ = 1

16

1 2 1
2 4 2
1 2 1

 , (167)

where the last MC
r,r′ is valid for |r − r′| > 4. At last, starting with (161) as the ini-

tial condition, ||Q0(t)⟩⟩ is given by an analogue of the recursive expression (119), with
⟨⟨ΘΘ̄r,r′ || → ⟨⟨ΘΘ̃r,r′ || and Mr,r′ → MC

r,r′ , alongside (165). Although the details surround-
ing C-ST and NC-ST are different, the overall structure appearing in the dynamics of
||Q0(t)⟩⟩ is similar. Namely, the dependence on the nearest and second nearest neighbors
is the same almost everywhere, i.e. MC

r,r′ = Mr,r′ for |r − r′| > 4.

Exact result for C2(r, t)

Now that we know the dynamics of ||Q0(t)⟩⟩ we can obtain that of the OTOC.
For t = 0 (121) holds. For t ≥ 1 we can decompose C2(r, t) using (165) to obtain

C2(r, t) = ⟨⟨Qr|| S ||Q0(t)⟩⟩

= ⟨⟨Qr|| S

 L/2−1∑
R,R′=0

1
8(2 + δr,r′) ||ΘΘ̃2R,2R′⟩⟩

〈〈
ΘΘ̃2R,2R′

∥∥∥Q0(t)
〉〉

= 1
6

L/2−1∑
R=0

(δr,2R + δr,2R+1)
〈〈
ΘΘ̃2R,2R

∥∥∥O2
0(t)

〉〉
. (168)

Note that, as we already suggested, the term ||θ̃r,r′⟩⟩ ⊗ ||π̃⟩⟩ coming from (165) does
not contribute to the OTOC, since the particle-hole sector of S ||Qr⟩⟩ is ||Π+ π⟩⟩ and
⟨⟨Π+ π ∥π̃⟩⟩ = 0.

Defining

KC
r,r′(t) = 1

6
〈〈
ΘΘ̃r,r′

∥∥∥Q0(t)
〉〉

, (169)

analogous to (123), the OTOC is then C2(2R, t) = C2(2R + 1, t) = KC
2R,2R(t). Finally, we

can use (161) to get the OTOC at t = 1,

C2(2R, t = 1) = C2(2R + 1, t = 1) = 2
9
(
δR,−1 + δR,0

)
, (170)

and, at subsequent time steps, the dynamics of C2(r, t) is determined by that of〈〈
ΘΘ̃r,r′

∥∥∥O2
0(t)

〉〉
⇔ KC

r,r′(t), we just saw to be given by (119) with the changes
⟨⟨ΘΘ̄|| → ⟨⟨ΘΘ̃|| and M → MC . This is, for t > 1 the OTOC is determined by (125) with
the changes Kr,r′(t) → KC

r,r′(t) and Mr,r′ → MC
r,r′ , given by (159) and (167), respectively.

36



SciPost Physics Submission

Figure 9: The values in the boxes correspond to KC
r,r′(t) in the r − r′ plane,

shown here for t ∈ {1/2, 1, 3/2, 2} (empty boxes have zero value). Starting with
KC

r,r′(t) = 2δr,r′,0 as the initial condition, we evolve this by applying (117) suc-
cessively (with ⟨⟨ΘΘ̄|| → ⟨⟨ΘΘ̃|| and M → MC , given by (159) and (167), respec-
tively). The highlighted diagonal gives C2(r, t) for the C-ST case. This picture
is equivalent to Fig. 8, valid for NC-ST and NC-T.

Continuum limit of C2(r, t) Since the bulk evolution of KC
r,r′(t) is equal to that of Kr,r′(t),

i.e. mC
r,r′ ||r−r′|>2 = mr,r′ ||r−r′|>2, the continuum limit of the OTOC for the C-ST case is

analogous to the one obtained for NC-ST. The differences of the diagonal with regards to
the NC-ST case translate to

c → cC = 3/2, (171)

m′r,r → m′Cr,r = 1
6

(
2 1
1 2

)
, (172)

f → fC = 2. (173)

In this case, the anisotropy of m′Cr,r leads to diffusion within the diagonal with weighting
factor fC = 2.

This results in the OTOC being given by (132), with the changes c =
√

3/2 → cC = 3/2
and f = 1/2 → fC = 2. Thus, in the continuum limit, the OTOC is a Gaussian with
broadening width σ(t) =

√
t, equal to the NC-ST and NC-T cases apart from the normal-

ization which is A(t) → AC(t) = fC/fA(t) = fCA/(2
√

2πt).

5.10 Comparing NC-ST, NC-T and C-ST
The NC-T case differs from NC-ST by the way the circuit is built − instead of having
spatial disorder, a gate is randomly chosen at each half time step and applied to all pairs
of sites (Fig. 2). In principle, this could lead the dynamics of C1 and C2 to arise from
respectively 2D and 4D processes (Sections 5.6 and 5.7), but the initial condition reduces
them to the 1D and 2D processes already known for NC-ST.

To obtain the particle conserving dynamics (C-ST), the free fermion gates used in the
NC-ST case, built from orthogonal matrices, are replaced by gates built out of unitary
matrices. Since the average of two orthogonal and two unitary gates needed to obtain
C1 coincide, the TOC is equal to the one obtained for the NC-ST case (Section 5.8).
The picture is different for C2 − it is the only correlator which differs from the NC-ST
results out of the cases studied. This happens because the average of four gates needed
to compute C2 is different for orthogonal and unitary matrices (Section 5.9). However,
this does not change the fundamental diffusive nature of the process. It merely leads to a
different normalization in the continuum limit.
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5.11 Continuum limit of C(r, t)

Finally, we can take into account the contributions of C1(r, t) and C2(r, t) in the continuum
limit, given respectively by (93) and (132), to obtain

C(2R, t) = C(2R + 1, t) = 1
24

[
A√
4πt

exp
(

−(2R)2

4t

)
− f

A

4πt
exp

(
−(2R)2

2t

)]
, (174)

where A = 2 and f = 1/2 for the NC-ST and NC-T cases and f → fC = 2 for the C-ST
case.

Although C(r, t) is typically given by the sum of two Gaussians with different stan-
dard deviation, in the infinite time limit it reduces to the first one, i.e. limt→∞ C(r, t) =
= C1(r, t)/23 since limt→∞C2(r, t)/C1(r, t) = 0. This occurs because the normalization of
C1(r, t) is constant while that of C2(r, t) is ∝ 1/

√
t.

5.12 Numerical results
In the previous sections, we obtained analytical expressions for the TOC and OTOC
for three instances of free fermion evolution: NC-ST, C-ST and NC-T. In the following,
we compare these results with the respective approximate expressions in the continuum
limit and also with data obtained from simulations. We also realize a fourth instance of
free fermion evolution numerically − a temporally homogeneous case where randomness
appears only along the space direction (NC-S). While the analytical results take into
account all possible evolutions of the system, i.e. all possible circuits, the simulations
approximate this by an average over Nr = 4000 disorder realizations. We look at a system
with L = 100 using C1(r, 0) = C2(r, 0) = 2δr,0 as the initial condition.

We begin with the analytical results, plotted in Fig. 10. We see that the profile of
C1(r, t) and C2(r, t) at fixed time steps is given by a Gaussian whose width broadens with
time according to σ(t) =

√
2t and σ(t) =

√
t, respectively. We see that C1 dominates over

C2. To compare these results with the data obtained from simulations we draw the profile
of both C1(r, t) and C2(r, t) at fixed time steps.
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Figure 10: (a) Height and colour maps of the exact C1(r, t) in the r − t plane
for the NC-ST, NC-T and C-ST cases, given by (91). (b) Exact C2(r, t) for
the NC-ST and NC-T cases, given by (124) for t = 1 and (125) for t > 1. (c)
Exact C2(r, t) for the C-ST case, given by (170) for t = 1 and by an expression
equivalent to (125) for t > 1, with the changes K → KC and M → MC given
respectively by (169) and (167). These results are for a system with L = 100 and
periodic boundary conditions. The results are shown for 1 ≤ t ≤ 100. The black
curves indicate σ(t) and 2σ(t), with σ(t) =

√
2t for C1 and σ(t) =

√
t for C2.
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Figure 11: Rescaled TOC, C1(r, t) · σ(t)/A, (top) and OTOC, C2(r, t) · σ(t)/A(t),
(bottom) as a function of (r−µ)/σ(t) at three fixed time steps t ∈ {4, 50, 100} for
a system with L = 100 and for the three cases NC-ST (left), NC-T (centre) and
C-ST (right). Full lines correspond to the exact calculations seen in Fig. 10 and
the colored regions to data obtained from simulations averaging over Nr = 4000
disorder realizations. Also, g(r, t) = 1/(

√
2π) exp

(
−(r − µ)2/2σ2(t)

)
. For each

case, the appropriate standard deviation σ(t) and normalization A or A(t) are
used. For C1(r, t), A = 2 and σ(t) =

√
2t for all cases. For C2(r, t), σ(t) =

√
t for

all cases, A(t) = 1/(2
√

2πt) for NC-ST and NC-T and A(t) = 2/(
√

2πt) for C-
ST. The deviation µ = 1/2 appears because the brickwall structure of the circuit
leads the TOC and OTOC to be centred around µ instead of 0.

Fig. 11 is a comparison of the analytic results and numerical simulation data for
the three different cases NC-ST, NC-T and C-ST. The continuum limit in each case
is tested by checking whether C1 and C2 respect (93) and (132), respectively. This
translates to C1(r, t) σ(t)/A and C2(r, t) σ(t)/A(t) collapsing to the Gaussian g(r, t) =
= 1√

2π
exp

(
− (r−µ)2

2σ2(t)

)
, with A or A(t) and σ(t) given for each case in the caption of Fig. 11.

We see in Fig. 11 that, for small time steps (t = 4), the discrete data does not follow a
Gaussian, as expected, while for higher time steps it does. Indeed, for a reasonable system
size (L = 100), the continuum limit quickly becomes a good approximation for either the
TOC or the OTOC. For time steps significantly larger than t = 100, periodic boundary
conditions cause the discrete data to diverge from the continuum limit expectation.

We have established that the analytical SB results, the data from simulations and
the continuum limit expressions are in good mutual agreement. Before proceeding to
analyse the numerical results obtained for the NC-S case, we provide some indication of
the fluctuations present in both C1(r, t) and C2(r, t) by showing a single realization for
each case of free fermion evolution in Fig. 12.

5.12.1 NC-S: randomness in space alone

We now present numerical results for NC-S for L = 100 and Nr = 4000. The circuit for
NC-S is built as shown in Fig. 2 (c): we construct two random layers, one even and one
odd, and apply them repeatedly, such that there is discrete time translation symmetry.
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Figure 13: (a) and (b) Height map of C1(r, t) and C2(r, t), respectively, in the
r − t plane for 1 ≤ t ≤ 50, in the NC-S case. (c) and (d) Profile of C1(r, t) and
C2(r, t) on a logarithmic scale, obtained by fixing t to 4, 50 and 100 in panels
(a) and (b). The data results from an average over Nr = 4000 simulations, for a
system with L = 100 and periodic boundary conditions.

We see in Fig. 13 that for the NC-S case both the TOC and OTOC are localized in
space, decaying exponentially around r = 0 − see Fig. 13(b,d). This phenomenon, arising
from the disordered landscape, is a discrete time analogue of Anderson localization. This
picture is unlike the diffusive behaviour seen for quadratic fermion evolution and the usual
ballistic behaviour. Furthermore, this hints that the diffusive behaviour observed for NC-
ST, NC-T and also C-ST is due to randomness in time alone.

6 Deviations from a 1D random walk

Here, we compare the results obtained Sections 4 and 5.
In the single-body basis (Section 5) we saw that C(r, t) = 2[C1(r, t)−C2(r, t)] (62), with

C1 and C2 correlators of single-body observables. For details on the calculations of C1
and C2 see Sections 5.4 and 5.5, respectively. While C1(r, t) (91) is exactly the probability
for a random walker to reach position r after time t, C2(r, t) accounts for the deviations
of C(r, t) from a 1D random walk. Specifically, C2 is the diagonal of a 2D process close
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Figure 14: In blue, C2(r, t) and, in red, C1(r, t) − C(r, t)/2 for a system with
L = 100 and time fixed at t = 5, 10, 20 and 50. Here, C1(r, t) and C2(r, t)
are given analytically by (91) and (125), respectively, and C(r, t) is obtained as
described in Fig. 5(a), but using instead 106 string evolution histories.

to a 2D random walk, given by (125). A 2D random walk can be decomposed into two
independent 1D random walks. In the 2D random process behind C2(r, t), the deviations
from a 2D random walk occur precisely when the walker in 2D is in the main diagonal
or the diagonals immediately above and bellow the main one, which corresponds precisely
to the two 1D walkers meeting or occupying adjacent sites. As discussed before, in the
many-body calculation (Section 4), these are precisely the points where the two walkers
deviate from being independent. Let us emphasize that C2(r, t)/C1(r, t) = 1/

√
t → 0

when t → ∞, i.e. the corrections are in fact a subleading term and tend to become less
significant in time. This is expected since, as the string grows, its endpoints/walkers are
less likely to meet.

The results obtained for C(r, t) in the single and many-body basis match. This is shown
in Fig. 14, which compares the SB C2 given by (125) and the deviations of the many-body
C(r, t) from a 1D random walk, i.e. C1(r, t) − C(r, t)/2, where C1(r, t) is exactly the 1D
random walk given by (91) and C(r, t) the many-body result obtained as described in
Fig. 5. The agreement observed indicates, as suspected, that C2(r, t) accounts for the
interaction and annihilation of random walkers.

7 Discussion and Outlook

Matchgate and free-fermion circuits are of wide interest, e.g. in the context of com-
putational complexity [51–59], for investigating effects of measurement [60–63] or other
non-unitary processes [64–66]. In this work, we have used this class of circuits to provide
a derivation of (and intuition for) a peculiar phenomenon that is apparently generic in
several types of free-fermion systems and in systems that can be mapped to free fermions.

The diffusive spreading of information and accompanying S(t) ∼
√

t behavior for free
fermions subject to temporal noise appears to be very robust − it has been observed both
for circuits [34] and for Hamiltonian evolution [2, 32, 33, 35, 36], and both for continuous-
time noise [32,33,36] and for discrete-time randomness [34,35]. Thus, a generic derivation
of the phenomenon is highly desirable. The present work provides such a derivation. It
also provides physical intuition, grounded in the Pauli string calculation, for the fact that
free fermions scramble information poorly. While this setting admittedly only treats the
discrete-time case, it is widely applicable because all inessential features are stripped out
of the circuit model, laying bare the essence of a highly nontrivial but robust phenomenon.

Our expectation is that the results obtained for the circuit model of free fermions
generalize to the case of noisy free fermion Hamiltonian evolution. With this goal in
mind, it may be interesting to revisit the stochastic free-fermion model of Refs. [49,67,68].
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