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Abstract

Near term quantum computers suffer from a degree of decoherence which is
prohibitive for high fidelity simulations with deep circuits. An economical use
of circuit depth is therefore paramount. For digital quantum simulation of
quantum many-body systems, real time evolution is typically achieved by a
Trotter decomposition of the time evolution operator into circuits consisting
only of two qubit gates. To match the geometry of the physical system and
the CNOT connectivity of the quantum processor, additional SWAP gates are
needed. We show that optimal fidelity, beyond what is achievable by simple
Trotter decompositions for a fixed gate count, can be obtained by compiling
the evolution operator into optimal brickwall circuits for the S = 1/2 quantum
Heisenberg model on chains and ladders, when mapped to one dimensional
quantum processors without the need of additional SWAP gates.
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1 Introduction

Quantum processors are a rapidly evolving technology which is expected to be pivotal for
many classically hard problems like integer factorization, database search, optimization
and many others [1–4]. While truly universal quantum computing is still a long shot,
one of the most promising near-term applications is the simulation of complex quantum
systems due to their relative similarity to the quantum hardware itself. The simulation of
such systems on classical computers is extremely hard due to the exponential complexity in
terms of storage and computer time, while both problems are naturally solved on quantum
hardware.

There are two different approaches: analog and digital quantum simulators. Analog
simulators are specifically engineered systems to mimic the corresponding dynamics of the
target system and are often based on quantum optical setups. This technique has been
successfully applied to condensed matter systems [4–9] and lattice gauge theories [10–12]
and is in principle extremely powerful but requires a tailored experimental setup for a
given type of problem.

In contrast, digital quantum simulators [13] rely on a discrete representation of the wave
function on an array of two level systems (dubbed qubits), which can be fully controlled
by a universal set of quantum gates which allows in principle for the representation of any
unitary operation on the many-body wave function, represented as a sequence of gates.
Due to the universal representation of the wave function, this is an attractive approach
which is extremely flexible once a suitable mapping of the system of interest to qubits
is devised. Recent applications include condensed matter systems [14–19], simulations
from quantum chemistry [11, 20–22] and high-energy physics [23, 24]. Digital quantum
simulations were also used to realize exotic phases of matter like time crystals [25,26] and
quantum spin liquids [27].

The state-of-the-art method for simulating the real time dynamics of complex quantum
systems involves a factorization of the time evolution operator into a sequence of gates
using Trotter decompositions of different orders [28–32], introducing discrete time steps
to get an approximation of the exact time evolution of the system. This introduces a
discretization error, which can be systematically controlled by using smaller step sizes.
As a downside, small step sizes require a larger number of gates. Due to the fragility
of the quantum state stored in the machine, and due to hardware imperfections, each
additional gate potentially introduces new sources of error due to dissipation processes.
Hence a trade-off between discretization errors and errors due to intrinsic machine noise
during the simulation is required. To achieve optimal fidelity in light of this tradeoff,
it is therefore important to minimize the resource costs for a given simulation. Recent
work yielded tighter bounds for the discretization errors [33]. Furthermore, it was also
argued recently that beyond a certain step size the fidelity of the Trotter decomposition
breaks down in a universal fashion, leading to a regime of quantum chaos [34, 35]. This
sets also upper bounds for possible step sizes. It remains however unclear, whether better
alternatives to Trotter decompositions exist.

One promising approach in this regard are quantum variational algorithms. The main
idea of them is to approximate a time-evolved state using a parametrized circuit [36–39].
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The parameters are then fixed using optimization algorithms on a quantum computer.
Recent numerics suggest that the number of parameters needed to describe time-evolved
states or ground states scales favorable even in comparison to matrix-product states [40,
41]. Most of these algorithms involve optimization where gradients are measured directly
on the quantum devices, or they use deep learning approaches. However, the measurement
of gradients on a quantum device is currently infeasible due to the high error rates, while
optimization using deep neural networks is not controlled.

In this paper we take a more universal approach. Rather than focussing on the wave
function, we directly target the time evolution operator, aiming at a compact representa-
tion as a shallow circuit. We use brickwall circuits in which the gates are parametrized
two qubit unitaries, connecting neighboring qubits in the architecture of the quantum
processor as an ansatz for the time evolution operator. This parametrized circuit can be
optimized classically to represent the time evolution operator for a given time step with
high fidelity. The resulting circuit can then be repeated to evolve the quantum state to
later times. We show that such an optimized circuit can yield significantly higher fidelity
time evolution for a fixed gate count compared to the traditional Trotter decomposition
and is thus superior for digital quantum simulation.

We also show that this strategy allows us to obtain similar accuracy using signifi-
cantly less gates, even for systems where the physical geometry does not coincide with the
proposed circuit architecture, essentially “baking in” the otherwise required SWAP gates
to match geometries into the circuit. As an interesting benchmark problem, we use our
approach to compute out-of-time-ordered correlators (OTOCs) and show that we achieve
better accuracy than Trotter methods with similar resource cost. Finally, we analyze the
gate structure of the optimized gates, as a first step towards further improvements of this
approach.

2 Model and Method

2.1 Model

For concreteness and simplicity, we focus on simulating finite systems of s = 1/2 spins
on a lattice with L sites, designed to be performed on a quantum processor with an
identical Hilbert space H, which is the product space of L two-level quantum systems
(qubits)

⊗L
i=1Qi and has an exponentially growing dimension dimH = 2L. Specifically,

we discuss spin-1/2 systems with SU(2) symmetric Heisenberg couplings

hij = σxi σ
x
j + σyi σ

y
j + σzi σ

z
j , (1)

between nearest neighbor (NN) spins on a chain c and a triangular ladder l, both with
open boundary conditions, i.e.

Hc =
∑
〈i,j〉

hij Hl =
∑
〈〈i,j〉〉

hij . (2)

Here σx,y,z are the usual Pauli matrices while 〈i, j〉 and 〈〈i, j〉〉 denote the NN sites of
the chain, or the NN sites of our triangular ladder geometry (note that this is identical
to a chain with nearest and next nearest neighbor (NNN) interactions). These lattice
geometries are illustrated in Fig. 1.

Most current quantum devices using superconducting qubits are not capable of all-to-
all connectivity, i.e. due to the chip setup two qubit gates can only be applied between
neighboring qubits, which are arranged in different geometries [42–44] In order to apply
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Figure 1: The chain (left) and triangular ladder (right) lattice geometries used
in this work.

M = 2

ui uj

u′i u′j

vij

Figure 2: Left: A brickwall circuit with depth M = 2 for six qubits, with each
color representing a M = 1 layer. Circles represent the initial state of the qubits
and boxes indicate a two qubit unitary gate applied to a pair of neighboring
qubits. Right: Parametrization of a two qubit unitary as a product of four single
qubit gates and one two qubit gate.

gates between distant qubits, one has to use a sequence of swap gates, which exchange the
quantum state of neighboring qubits, such that effectively the states of distant qubits are
moved to neighboring qubits in the processor geometry. On these, any two qubit gate can
be applied and then the swap sequence needs to be applied in reverse order. This requires
a great number of additional gates and therefore introduces further possible sources of
errors.

Our goal is therefore to find the best unitary circuit C of a given depth M to approx-
imate the time evolution operator U(t) = exp(−itHc/l). In order to mimic the limited
connectivity of current quantum devices, we choose C to consist only of NN two-qubit
gates on a 1d chain, arranged in a brickwall pattern, i.e. we model our quantum processor
as an open chain of qubits, while one of our physical models we want to simulate on this
machine has a different, triangular ladder, geometry. This allows us to investigate whether
it is possible to compile the time evolution operator in a nearest neighbor, brickwall circuit
(exemplified in the left panel of Fig. 2) without the need for additional swap gates, which
are generally costly on superconducting platforms.

2.2 Trotter circuits

To benchmark the performance of the brickwall circuits we will compare them with the
first-, second- and fourth-order Trotter circuits that are based on the well known Trotter
decompositions [45]. Here we introduce these circuits for the Hamiltonians (2) that are
used in this work.

For the chain Hamiltonian Hc we have two non-commuting parts, namely the bond
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=

SWAP

Figure 3: Left: The blue brickwall layer encodes the first-order Trotter decom-
position for NN interachting Hamiltonians. The combination of the blue and red
layers encodes the first-order Trotter decomposition for NNN interacting Hamil-
tonians, where the blue gates act on NN qubits whereas the red gates act on
NNN qubits. Right: The decomposition involving SWAP gates, displayed as
the crossed line, which is used to convert the NNN two-qubit gate into a circuit
involving only two-qubit gates.

Hamiltonians hi,i+1 (1) on alternating bonds, such that we can split Hc in two commuting
parts as

Hc = H1 +H2 =
∑

i=0,2,...

hi,i+1 +
∑

i=1,2,...

hi,i+1. (3)

For the ladder Hamiltonian we have on top of this three extra non-commuting parts due
to the NNN couplings, i.e. we can split Hl into five commuting parts as

Hl = Hc +H3 +H4 +H5 = Hc +
∑

i=0,3,...

hi,i+2 +
∑

i=1,4,...

hi,i+2 +
∑

i=2,5,...

hi,i+2. (4)

By writing the Hamiltonians in this way we can define the M = 1 first-order Trotter
circuits for Hc and Hl as [45]

U1st
c (t) = U1(t)U2(t), (5)

= exp(−itH1) exp(−itH2), (6)

U1st
l (t) = U1(t)U2(t)U3(t)U4(t)U5(t), (7)

= exp(−itH1) exp(−itH2) exp(−itH3) exp(−itH4) exp(−itH5). (8)

These circuits approximate the exact U(t) = exp(−itHc/l) with error O(t2) [33]. Note
that depth M = 1 for the Trotter circuits does not mean one brickwall layer, but instead
one Trotter step U1nd

c/l (t). While these coincide for the first-order Trotter circuit for the
chain, this is not the case for the first-order Trotter circuit for the ladder, and for the
second- and fourth-order Trotter circuits which we introduce below. The circuit diagram
for U1st

c (t) is shown as the blue brickwall layer in the left panel of Fig. 3, where U1(t) is
the half-brickwall layer on odd bonds and U2(t) is the half-brickwall layer on even bonds.
The circuit diagram for U1st

l (t) is the full circuit in this figure, where U1(t) and U2 again
form the blue brickwall layer while U3(t), U4(t) and U5(t) form the red layer, containing
two-qubit gates that act on NNN instead of NN qubits. To turn this into a circuit that
involves only NN two-qubit gates we introduce the SWAP gate and decompose every NNN
gate as in the right panel of Fig. 3.

The circuit layers U1,U2,U3,U4,U5 form the building blocks of the second- and fourth-
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order Trotter circuits. The M = 1 second-order Trotter circuits are composed as [45]

U2nd
c (t) = U1(t/2)U2(t)U1(t/2), (9)

U2nd
l (t) = U1(t/2)U2(t/2)U3(t/2)U4(t/2)U5(t)U4(t/2)U3(t/2)U2(t/2)U1(t/2), (10)

which approximate the exact evolution operators with errorO(t3) [33]. Using these second-
order Trotter circuits we can define the M = 1 fourth-order Trotter circuits as [45]

U4th
c/l (t) = U2nd

c/l (t1)U2nd
c/l (t1)U2nd

c/l (t2)U2nd
c/l (t1)U2nd

c/l (t1), (11)

where we defined the time steps

t1 =
1

4− 41/3
t t2 = (1− 4t1)t. (12)

These circuits approximate the exact evolution operators with error O(t5) [33].
Because we are concerned with circuits that are implemented on a quantum processor

with only NN qubit connectivity, we have to convert every NNN two-qubit gate that
appears in U1st

l ,U2nd
l ,U4th

l to three NN two-qubit gates, as shown in the right panel of
Fig. 3. The gate counts Ng of the resulting NN Trotter circuits are given in Sec. A, also
for the chain geometry.

2.3 Optimization

Each two-qubit gate Uij ∈ C4×4 of the circuit C, acting on two neighboring qubits i and
j, can be decomposed into a product of one-qubit gates ui ∈ C2×2 and a two-qubit gate
vij ∈ C4×4 [46]

Uij = (ui ⊗ uj)vij(u′i ⊗ u′j). (13)

Here vij is parameterized as

vij(λ0, λ1, λ2) = e−i(λ0σ
x
i ⊗σx

j +λ1σ
y
i ⊗σ

y
j+λ2σ

z
i⊗σz

j ), (14)

with three real parameters λ0,1,2, and the ui are parameterized up to a global phase as

ui(φ0, φ1, φ2) =

(
eiφ1 cos(φ0) eiφ2 sin(φ0)
−e−iφ2 sin(φ0) e−iφ1 cos(φ0),

)
, (15)

each containing three real parameters φ0,1,2. Hence this decomposition of Uij contains 15
real parameters, and it can be visualised as in the right panel of Fig. 2. To represent the
unitary gate as a global unitary matrix, acting on the full wave function, we introduce its
matrix form

mat(Uij) = I2i−1 × Uij × I2L−j , (16)

by taking the Kronecker product with identity matrices on the qubits on which the gate
does not act (and implicitly encoding the nearest neighbor condition j = i+1). The entire
circuit is a product of such unitaries and can formally be expressed by

C =

Ng∏
k=0

mat(Uik,jk), (17)

where Ng is the total number of gates in the circuit. Since each gate is parametrized by
~θik = (~λik ,

~φik), the circuit depends on all these 15Ng parameters ~θ = (~θi0 ,
~θi1 . . . ) ∈ R15Ng

C(~θ) =

Ng∏
k=0

mat(Uik,jk(~θik)). (18)
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In practice, when stacking the gates to form the circuit, we merge two one-qubit unitaries
into a single one-qubit unitary where possible, since a product of general one-qubit uni-
taries can be written as a single general one-qubit unitary. This reduces the amount of
circuit parameters.

We would like to find an optimal parameter set ~θ for a given circuit architecture, such
that the distance between the unitary represented by the circuit C(~θ) and the targeted time
evolution operator U of the system up to time t is minimized. For two unitary operators
U and C, we therefore define a measure of distance in terms of the normalized Frobenius
norm, namely the ”infidelity” ε, given by

ε =
1

2

‖U − C‖2F
2L

=
1

2L+1
Tr
[
(U − C)†(U − C)

]
= 1−

ReTr
[
U†C

]
2L

. (19)

We use this infidelity as an objective function, such that we obtain a minimization problem
for a fixed circuit architecture (number and sequence of two qubit gates). In our case the
target unitary U is an approximation of an exact time-evolution operator, where the error
stems from the tensor network methods that make the optimization tractable.

The objective function ε needs to be evaluated many times during the optimization
and we find that it is efficient to first compress the time evolution operator U into a matrix
product operator (MPO)Mχ of bond dimension χ, such that we can calculate ε via efficient
standard tensor network methods. For the local systems we investigate here and for short
times, this is always efficient, due to the low operator entanglement of the time evolution
operator [47]. In particular, we discard the smallest singular values for which the squares
sum to a tiny number, since their contribution is negligible, such that lowly entangled
operators do not saturate the maximum bond dimension χ. To obtain the (truncated)
MPO representation of U with negligible discretization error, we take an identity MPO
and perform time-evolving block decimation [45, 48] with a small timestep δt = 10−4 and
fourth-order Trotter decomposition, such that the introduced error is negligible1.

To optimize the parameters ~θ of the circuit such that ε is minimal, we employ the
paradigm of differentiable programming [49]. Here the gradient ∇~θ ε is calculated in
a similar fashion as the original backpropagation algorithm used for deep neural net-
works [50], which has been generalized to arbitrary programs, including tensor network
algorithms [49]. To this end, a program is represented as a computational graph through
which the local gradients are propagated, which requires each computational component
to have a well-defined gradient. In particular, for the tensor network algorithm in this
work, the SVD is a crucial component, and so it is important to construct a stable SVD
gradient [49]. Fortunately, differentiable programming inherits the cost from its base al-
gorithm, i.e. in our case from the M SVDs that are performed when obtaining the circuit
MPO at every iteration. As a result our algorithm has the scaling O(NiLMd6χ3), where
N is the amount of gradient descent iterations. Importantly, even though the cost scales
linearly with system size L and circuit depth M , the amount of parameters grows as
O(LM), such that the amount of iterations required to reach a low-lying minimum also
grows, because local minima prolifrate with growing parameter count [51].

Using the global gradient ∇~θ ε we then perform gradient descent. We use this global
optimization procedure instead of the local optimization from [40] because we found that
this yields significantly higher fidelity when an Adam-like adaptive learning rate is used
[52]. Here it is crucial not to stop optimizing when the infidelity appears to have stagnated,
since we have often found that the optimization gets stuck in such a ”local minimum” for

1We compare the results for our circuits to Trotter circuits with comparable gate counts, and in all
instances of the involved Trotter circuits, the timesteps are several orders of magnitude larger than the
stepsize used to approximate the target unitary U .
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some time before it jumps out and converges to a lower minimum. This is possibly related
to the ”barren plateau” problem that often occurs when performing gradient descent for
quantum circuits with a large parameter space, where the optimization reaches a set of
circuit parameters for which the majority of its gradients become very small such that the
optimization (temporarily) halts [53]. In Sec. B we review the Adam method and discuss
the mentioned convergence behavior in more detail.

At small M the optimized circuits in a sense compress the targeted time evolution
operator, especially when its time-step is large, and therefore they are called ”compressed
circuits”. In Sec. D we check if the lattice symmetries of the targeted unitary emerge in
the gates of the optimized circuits.

2.4 Stacking circuits

The general strategy we implement is the following: For some (short) timestep t, we find
an optimal circuit C(~θ) which best approximates the targeted time evolution operator Ut.
In principle, t is arbitrary, with the general logic that shorter t unitaries can be encoded
by shallower circuits (lower M). In practice, t will be also governed by the time grid, on
which observables should be evaluated, although this could be achieved also by working
with two or more different optimized circuits with different t, a case we do not further
discuss in this work. To propagate the wave function to longer times, which are multiples
of t, we then use the circuit

C(~θ)n ≈ Unt . (20)

It is interesting to investigate how well this stacked circuit performs for time evolution to
longer times and we will confront these results to benchmarks for the circuits discussed in
Sec. 2.2 that result from traditional Trotter decompositions.

2.5 Quantities of interest

Having obtained the compressed circuits for short times, for which the relatively low
entanglement allows for an accurate description with truncated MPOs, we then compute
ε for long times using the stacked circuits as approximation. If we now were to use the
same MPO formalism that was used during the optimization, the growing of entanglement
as we stack the circuit multiple times results in either an unfeasible amount of required
computational resources or significant truncation errors. In particular, the stacked circuit
represents a target unitary at large times, which generally has large entanglement, such
that an accurate MPO representation requires a saturated bond dimension, i.e. the central
tensors would require bond dimension 2L to prevent significant truncation errors.

For a highly entangled MPS |ψi〉 this central bond dimension is instead 2L/2, which
is still managable for the system sizes considered in this work. Hence, to probe the true
representablity of the stacked circuit, without having to deal with artefacts of the tensor
network method, we use typicality [54]. Here the trace in Eq. 19 is replaced by the average
over Nψ Haar random states |ψi〉, i.e.

Tr
[
U†C

]
≈ 1

Nψ

∑
i

〈ψi |U†C|ψi〉. (21)

This allows us to calculate ε in an unbiased manner for the system sizes considered in this
work.

Besides using the infidelity ε as a measure of the performance of the circuits, we will
also use the circuits to compute out-of-time-ordered correlators (OTOCs) [55]. For spin-
1/2 σz operators, the OTOC Cij between lattice sites i and j is defined with the Frobenius
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norm as
Cij(t) =

∥∥[σzi (t), σzj ]∥∥2F , (22)

where σzi (t) = C†σzi C is the spin operator on site i evolved by the circuit. As for the
infidelity, it is important to use typicality instead of the truncated MPO formalism when
calculating Cij for a circuit that is stacked many times.

To calculate (22) we invoke the hermiticity of the spin operators σz, such that by
expanding the commutator in (22) we can write the OTOC as

Cij(t) = 1− 1

4
Tr
[
σzjσ

z
i (t)σ

z
jσ

z
i (t)

]
, (23)

which is readily calculated in the MPO formalism. Concretely, we take an identity MPO
and put a z-spin operator σz at site i, which is then evolved in the Heisenberg picture by
the circuit C, yielding a different MPO. Then we again take an identity MPO and put a
z-spin operator on site j, which we do not evolve. Then we calculate the trace in (23) via
a full contraction of four MPOs, which can be done efficiently.

3 Results

To benchmark the performance of the compression strategy outlined in Sec. 2, we system-
atically analyze the infidelity ε as a function of simulation time step t, total gate count
Ng and system size, in direct comparison to Trotter decompositions of different orders,
and present these results in Sec. 3.1. In Sec. 3.2 we extend this systematic analysis to
out-of-time-ordered correlators (OTOCs) (22). Furthermore, in Sec. 3.3 we probe the
structure of the gates that make up the optimized circuits, in an attempt to uncover the
structures that allow these circuits to outperform their Trotter counterparts.

3.1 Infidelity

As a first test of the circuit optimization algorithm outlined in Sec. 2, we compare the opti-
mal infidelities of compressed circuits to those of comparable Trotter circuits. Concretely,
we consider time evolution operators of the chain and ladder Heisenberg Hamiltonians (2)
at three system sizes L = 8, 12, 16 and two time-steps t = 1, 2. For each Hamiltonian,
system size and time-step, we determine the time evolution operator U with numerically
negligible discretization error for a certain bond dimension χ, and perform the global op-
timization as outlined in Sec 2 to minimize the infidelity ε of the compressed circuit. For
L = 8, 12, 16 we have taken χ = 256, 150, 100 as a compromise between precision and
practical efficiency. We note that our main concern here is not to get a numerically exact
MPO representation, but rather a reasonably good approximation of the time evolution
operator. We call this our target time-evolution operator, which we want to approximate
with our circuits.

As a first benchmark, we take for each of our parameter sets various circuit depths
M = 1, 2, 4, 8, 16, where M is the number of elementary layers of L−1 gates, and consider
ε as a function of the corresponding gate count Ng (see Sec. A for details on how to obtain
the number of gates). We compare this with first-, second- and fourth-order Trotter
circuits [45].

The results are shown in Fig. 4. The left pair of panel columns is for the chain and
the right pair is for the ladder. The first and third columns are for time-step t = 1 and
the second and fourth are for t = 2. The upper row is for system size L = 8, the middle
row is for L = 12, and the bottom row is for L = 16. Each panel contains the infidelities
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Figure 4: The infidelity ε versus gate count Ng for the time evolution operator of
the Heisenberg model on a chain (left panels) and ladder (right panels) in log-log
scale. The first and third columns are for t = 1 while the second and fourth
columns are for t = 2. The top panels are for L = 8 and a time evolution MPO
with χ = 256, the middle panels are for L = 12 with χ = 150, and the bottom
panels are for L = 16 with χ = 100. The blue curves represent the Trotter circuits
and the red curve represents the compressed circuit (CC).

of the optimized compressed circuits (CC) as a red line, and the infidelities of the Trotter
circuits as blue lines. The infidelities of the Trotter circuits are calculated for the same
depths M as the compressed circuit, where it should be remembered from Sec. 2.2 that
in this case M is not necessarily equal to the amount of brickwall layers in the Trotter
circuit, but is instead equal to the amount of Trotter steps that compose the circuit. The
time-step of the Trotter step is chosen as t/M , such that M subsequent steps correspond
to a total time-step t. The gate counts of the Trotter circuits were calculated with the
expressions in Sec. A, which take into account the number of swap gates required to map
the ladder geometry to a chain of qubits.

From Fig. 4 it becomes clear that per gate the compressed circuit outperforms the
Trotter circuits for all considered parameter sets. Moreover, it appears that for L = 8 the
infidelity of the compressed circuit roughly scales with Ng like the best Trotter order, but
with a more favorable prefactor, i.e. at intermediate gate counts it scales as second-order
whereas at the highest probed gate count it scales as fourth-order. We have found that
the same picture emerges when plotting ε versus the t at which the circuit was optimized,
where M = 1 scales like first-order Trotter, and by increasing M we approach the fourth-
order scaling, passing through the second-order scaling. We expect the same to hold for
L = 12 and L = 16, if we could reach a lower minimum, but here the optimization is more
expensive.

Having considered the infidelities of the compressed circuits at the time-step for which
they were optimized, we now quantify how these infidelities grow when the circuits are
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stacked, which we do for the same systems as in Fig. 4. To this end we select a compressed
circuit that was optimized at t = 2, and take for every Trotter order a circuit of depth
M with a gate count as close as possible to that of the compressed circuit, and choose its
time-step to be t/M .

Concretely, for the chain we take a compressed circuit with M = 8, in which case
we have to take first-, second-, and fourth-order Trotter circuits with M = 8, 7, 1. Us-
ing the gate count equations from Sec. A we find that for L = 8 the circuits have
Ng = 56, 56, 53, 39, for L = 12 they have Ng = 88, 88, 83, 61, and for L = 16 they have
Ng = 120, 120, 113, 83. For the ladder we take a compressed circuit with M = 16, such
that we have to take first-, second-, and fourth-order Trotter circuits with M = 4, 3, 1. The
corresponding gate counts are Ng = 112, 100, 124, 204 for L = 8, Ng = 176, 164, 207, 341
for L = 12, and Ng = 240, 228, 290, 478 for L = 16.

To quantify the quality of the compressed and Trotter circuits under stacking, we take
various infidelity thresholds ε̂ and stack the circuits up to a thousand times until they
cross this threshold at some time t̂, i.e. we determine ε(t̂) = ε̂. As mentioned in Sec. 2 we
utilize typicality (21) to calculate the stacked infidelities.

In Fig. 5 we plot ε̂ versus t̂ in log-log scale. The used color coding is identical to that of
Fig. 4, except that the fourth-order Trotter circuit for the ladder is now represented with
a dashed line, to emphasize that its infidelity relative to that of the compressed circuit is
not necessarily indicative of the relative performance, because it contains roughly twice as
many gates as the compressed circuit. From these plots it is clear that the advantage of
the compressed circuits from Fig. 4 is not lost when stacking it many times. In particular,
in all considered cases the compressed circuits are able to go to significantly larger times,
at all infidelity thresholds, than the Trotter counterparts. The only exception is for the
ladder at t = 1, where the fourth-order Trotter circuit performs better, but as mentioned
this Trotter circuit has twice as many gates as the compressed circuit and is therefore not
a fair comparison.

From the plots we extract the universal quadratic power-law ε̂ ∝ t̂2, for both the
compressed and the Trotter circuits. This error scaling is analogous to first-order Trot-
ter decomposition. The only exception is the ladder with L = 16 at t = 2, where the
infidelity reaches ε ≈ 1 rather quickly, such that it is situated in the rounding part that
is also observed for the t = 1 ladder curves at the high-infidelity end. The gap between
the compressed circuits and the best performing Trotter circuits is thus found to grow
quadratically with t̂. Concretely, for the chain with L = 12 and timestep t = 1, we find
that for ε̂ = 10−3 the compressed circuit has t̂ = 644 whereas the best Trotter circuit
(i.e. of fourth-order) has t̂ = 94. For ε̂ = 10−4 we instead get t̂ = 201 for the compressed
circuit and t̂ = 29 for the best Trotter circuit. For the same system at timestep t = 2,
we find that at ε̂ = 10−3 the compressed circuit has t̂ = 116 while the best Trotter circuit
has t̂ = 14. At ε = 10−2 we have t̂ = 378 for the compressed circuit and t̂ = 46 for the
best Trotter circuit. From these values it is clear that for the chain we can go roughly
eight times further in time than the best Trotter circuit with similar gate count. These
values are for L = 12, and the same analysis at L = 8 reveals that here we can go fourteen
to twenty times as far, while for L = 16 we can go three to eight times as far, with the
lower bounds for t = 2 and the upper bounds for t = 1. These values emphasize that the
larger we choose ε̂, the larger the gap between t̂ of the compressed and Trotter circuits
becomes, which grows quadratically as stated above. This implies that the superiority of
the compressed circuits over Trotter circuits becomes especially apparent when we set a
relatively high error threshold, which for the compressed circuits is reached at much larger
time than for Trotter circuits which have comparable gate count.

Repeating this analysis for the ladder, again starting off with L = 12 and t = 1, we
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Figure 5: The time t̂ after which the stacked circuits exceed the infidelity thresh-
old ε̂, for the time evolution operator of the Heisenberg model on a chain (left
panels) and ladder (right panels) in log-log scale. The first and third columns
are for circuits optimized at t = 1 while the second and fourth columns are for
t = 2, with the circuits being stacked up to a thousand times. The circuits were
chosen such that they have similar gate counts, with M = 8, 8, 7, 1 for the chain
and M = 16, 4, 3, 1 for the ladder, for the compressed circuit and first-, second-
and fourth-order Trotter circuits, respectively. The top panels are for L = 8 with
χ = 256, the middle panels are for L = 12 with χ = 150, and the bottom panels
are for L = 16 with χ = 100. The blue curves represent the Trotter circuits and
the red curve represents the compressed circuit (CC). The fourth-order Trotter
circuit for the ladder is displayed as a dashed line, since it contains roughly twice
as many gates as the compressed circuit and is therefore not necessarily indicative
of their relative performance.

find at ε̂ = 10−2 that the compressed circuit has t̂ = 34 whereas the best Trotter circuit,
excluding the fourth-order Trotter with double the gate count, has t̂ = 14. With ε̂ = 10−1

the compressed circuit has t̂ = 125 whereas the second-order Trotter circuit has t̂ = 57.
For the same system at t = 2 and with ε̂ = 10−1, we have t̂ = 40 for the compressed
circuit and t̂ = 10 for the second-order Trotter circuit. Hence for the ladder we can go
roughly two to four times as far than the best Trotter circuit with comparable gate count.
Repeating this analysis for L = 8 we find that we can go five to two times farther, and for
L = 16 we can go three to two times farther, again with the lower bounds for t = 1 and
the upper bounds for t = 2.

Instead of examining the stacking behavior of compressed and Trotter circuits with
comparable gate count, we now compare how circuits with comparable optimized infidelity
stack, to see whether similar fidelities are achievable with compressed circuits that have
only a fraction of the gates of Trotter circuits. To this end we consider the chain and
ladder for a single system size L = 12, with time-step t = 2 for the chain and t = 1 for
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Figure 6: The infidelity ε versus stacking time t for the time evolution operator
of the L = 12 Heisenberg model on a chain at t = 2 (left panels) and ladder at
t = 1 (right panels), for compressed and second-order circuits that are stacked
twenty times. The circuits were chosen such they have similar ε at the optimized
t, with M = 4, 8 and M = 5, 16 for compressed and second-order Trotter circuits
on the chain, and M = 8, 16 and M = 2, 4 for the ladder. As a result the
compressed circuits have significantly lower gate count than the corresponding
Trotter circuits. The red dashed lines are for the power laws ε ∝ tn with the best
fitting power n.

the ladder, and we stack the circuits up to t = 20. For simplicity we compare only with
second-order Trotter circuits, as we find analogous results for the other Trotter orders.
For the chain we take compressed circuits with M = 4, 8, in which case the second-order
Trotter circuits with similar optimized infidelity have M = 5, 16. Imporantly, while these
compressed and Trotter circuits have similar fidelity, the M = 5 Trotter circuit has 1.4
times the gate count of the M = 4 compressed circuit, whereas the M = 16 Trotter circuit
has 2.1 times the gate count of the M = 8 compressed circuit. For the ladder we take
compressed circuits with M = 8, 16, such that the corresponding second-order Trotter
circuits have M = 2, 4, i.e. they contain 1.6 times as many gates.

The results are displayed in Fig. 6 in log-log scale, where in the left panel we show the
stacked infidelities for the chain and in the right panel for the ladder. The red dashed lines
are for the power laws ε ∝ tn with the best fitting power n. It is seen that the infidelity
increases similarly for all considered pairs of compressed and Trotter circuits, which like
Fig. 5 emphasizes that the compression strategy expounded in Sec. 2 has no drawbacks
at long times, relative to the Trotter circuits. Moreover, the mentioned discrepancy in
gate counts, with in all cases the Trotter circuit having significantly more gates, makes
the compressed circuits especially favorable for simulation on real quantum devices, where
the error due to gate imperfections and decoherence noise hampers time evolution.

3.2 Out-of-time-ordered correlators

Having studied the infidelity and its behavior under stacking in detail in Sec. 3.1, we now
use the compressed circuits to determine the behavior of a quantity that does not enter
the objective function (19), namely the OTOC (22).
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Figure 7: The absolute Ci=2,j(t) errors for the chain (top three rows) and ladder
(bottom three rows) for a compressed circuit optimized at t = 2 and stacked up
to ten times, along with the errors for Trotter circuits with similar gate counts.
For the chain j labels the sites and for the ladder it labels the rungs. The first and
fourth row are for L = 8 with χ = 256, the second and fifth row are for L = 12
with χ = 150, and the third and sixth row are for L = 16 with χ = 100. The first
column is for the compressed circuit, the second, third and fourth columns are for
the first-, second- and fourth-order Trotter circuits. To have roughly equal gate
counts, the used depths are M = 8, 8, 7, 1 for the chain and M = 16, 4, 3, 1 for
the ladder, for the compressed circuit and first-, second- and fourth-order Trotter
circuits, respectively.

In Fig. 7 we show the absolute Ci=2,j(t) errors, relative to the targeted time-evolution
operator, for compressed circuits which were optimized for L = 8, 12, 16 chains and ladders
at t = 2 and stacked up to ten times, along with the errors for Trotter circuits with gate
counts similar to these compressed circuits. For the chain we let j run over all sites,
whereas for the ladder it runs over all rungs. The upper three rows are for the chain while
the lower three rows are for the ladder. The first and fourth row are for L = 8, the second
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and fifth row are for L = 12, and the third and sixth row are for L = 16. The left column
is for the compressed circuit while the second, third and fourth columns are for the first-,
second- and fourth-order Trotter circuits. As in Fig. 5 the depths are M = 8, 8, 7, 1 for
the chain and M = 16, 4, 3, 1 for the ladder, for the compressed circuit and first-, second-
and fourth-order Trotter circuits, respectively.

For the chain it is clear that the compressed circuit works better than the Trotter
circuits within the lightcone, whereas it is slightly worse than the second- and fourth-
order Trotter circuits at approximating the small values outside of the lightcone. For
the ladder the compressed circuit is better everywhere, even better than the fourth-order
Trotter circuit which has twice as many gates. Hence we draw the same conclusion as
from Fig. 5: With a similar amount of gates we are able to go farther in time with the
compressed circuits than with the Trotter circuits, before reaching some error threshold,
even though we do not optimize based on OTOCs.

In Sec. C we show the OTOC values corresponding to the errors from Fig. 7, for
compressed circuits and the targeted time-evolution operators. There we also show how the
relative error of Ci=2,j=4(t) propagates with stacking, for compressed and Trotter circuits
that have similar optimized fidelity, indicating that we can maintain similar fidelity with
compressed circuits that have a fraction of the amount of gates of the Trotter circuits.

3.3 Analysis of the compressed circuit

In the previous Sections 3.1 and 3.2 we have seen that the compressed circuit outperforms
the Trotter circuits. Here we investigate how this is achieved, by probing the structure of
the layers and gates that make up the compressed and Trotter circuits.

M∗

u0

u†0

u1

u†1

u2

u†2

u3

u†3

u4

u†4

u5

u†5

Figure 8: The gauge freedom that exists between the layers of a circuit. When we
cut the circuit across the horizontal dashed line, and want to use the lowest M∗

layers to calculate an infidelity, we have to take into account the gauge freedom
that is encoded by inserting a pair of conjugate one-qubit unitaries u†iui = I at
each qubit, and absorbing one unitary upwards and the other downwards.

Starting off, we take a compressed circuit and Trotter circuits with comparable gate
counts, and consider the infidelity between a subset of layers M∗ < M (counting from the
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bottom layer) and the time evolution operator at a time t∗ < t that is smaller than the
time-step t at which the compressed circuit was optimized. Crucially, we must take into
account the gauge freedom that exists between layers, where we are able to insert conjugate
layers of one-qubit unitaries, and absorb one layer into the subset we are considering and
the other layer into its complement. This process is illustrated in Fig. 8. Hence when
calculating a subset infidelity for the compressed circuit, we add a layer of one-qubit
unitaries between the subset and the time evolution operator at t∗, and minimize the
infidelity with respect to these one-qubit unitaries. This way we account for the gauge
freedom.
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Figure 9: The infidelity between a subset of layers M∗ < M , counting from the
bottom layer, and the targeted time evolution operator at time t∗ < t, where t
denotes the time-step at which the compressed circuit was optimized. The plots
are for a Heisenberg chain with L = 8 at t = 1. In the top left panel we show
the results for a compressed circuit with M = 8, in the top right for a first-order
Trotter circuit with M = 8, in the bottom left for a second-order Trotter circuit
with M = 7, and in the bottom right for a fourth-order Trotter circuit with
M = 1. These depths were chosen such that the circuits have similar gate count.
The curve with M∗ = M corresponds to the full circuit. The dashed lines mark
times tM∗/8.

In Fig. 9 we show the results for the chain with L = 8 at t = 1, for a compressed
circuit with M = 8 and Trotter circuits with M = 8, 7, 1 for first-, second- and fourth-
order, which have gate counts close to that of the compressed circuit. Here we define a
Trotter circuit with M∗ layers as having M∗ brickwall layers, and the largest shown M∗

is the full circuit, which e.g. for the second-order Trotter circuit involves adding half a
brickwall layer to its largest subset. For the compressed circuit M∗ = 8 corresponds to
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the full circuit. The dashed lines mark the times t∗ = tM∗/8.
From Fig. 9 it is clear that at t = 1 there is significant overlap of the subsets with a

time evolution operator at t∗ < t for both the compressed and Trotter circuits. However,
in contrast to the first- and second-order Trotter circuits, where the infidelity dips are
equidistant, and where for the first-order Trotter circuit the dip depth is decreasing with
the number of stacked layers while for the second-order Trotter circuit it is constant, the
dips of the compressed circuit are instead roughly symmetric and are smallest around
t∗ ≈ t/2. A closer look reveals that the infidelity at this point is roughly 10−2, which is
more than one order of magnitude larger than for the first- and second-order Trotter circuit
at similar t∗. This is even more remarkable when taking the final infidelity into account,
which is ε = 1.8 · 10−9 for the compressed circuit and therefore at least three orders of
magnitudes better than the first-, second- and fourth-order Trotter circuits, which have
ε = 8.2 · 10−4, 1.2 · 10−6, 2.1 · 10−6. This indicates that the compressed circuit does not

Figure 10: A sketch of the ”refocussing” mechanism that potentially explains the
structures observed in Fig. 9. Here the targeted time evolution U(t) is shown in
black, the Trotter evolution U tr(t) is shown in blue, and the compressed evolution
Uc(t) is shown in red. While U tr(t) follows the target trajectory quite closely,
Uc(t) instead becomes ”refocussed” at multiples of the optimization timestep t.

follow the target ”trajectory” given by the unitary time evolution, but slightly deviates
from it. However, it becomes ”refocused” at t∗ = t, which we sketch in Fig. 10. It is
an interesting question for future research to understand the alternative trajectory, which
might be beneficial for an optimal discretization of time evolution beyond the Trotter
decomposition. In Sec. C we show that the refocussing also occurs for the OTOCs.

We note that we did not find these symmetric dips for all our compressed circuits,
especially for larger t and the ladder geometry. It remains an open question whether this
is an artefact of the convergence of the optimization to a non-global minimum.

As a further comparison between compressed and Trotter circuits, we calculate the
operator entanglement entropy (opEE) of their gates [47, 56]. Concretely, we take an
optimized compressed circuit C and decompose each two-qubit gate Uij ∈ C using a singular
value decomposition into

Uij =
4∑
l=1

slv
l
i ⊗ vlj , (24)

where vli and vlj are two sets of four one-qubit operators, acting on qubit i and j respec-
tively, and where the four singular values sl encode the opEE of Uij as

opEE = −
∑
l

s2l ln(s2l ). (25)

In Fig. 11 we display the opEE of all gates in a M = 8 compressed circuit for the chain
(left panel) and ladder (right panel) for L = 16 at t = 2. The histograms are stacked, with
each color denoting the content of a layer, where the lightest color represents the bottom
layer and the darkest color the top layer. The red vertical lines mark the values for the
M = 8 first-order Trotter circuit, with the two lines in the ladder plots corresponding to
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Figure 11: Stacked histograms for the opEE of the gates of a compressed circuit
with depth M = 8, optimized at t = 2 for a L = 16 chain (left panels) and ladder
(right panels). The colors denote the contents of each layer, with the lightest
color for the bottom layer and the darkest for the top layer. The red vertical
lines denote the values for the gates in a M = 8 first-order Trotter circuit, with
the two lines in the ladder plots corresponding to the evolution and SWAP gates.

the evolution and SWAP gates. These histograms show that the gates of the compressed
circuit are more hetergenous compared to those of the Trotter circuits, since they have a
relatively large spread in opEE instead of one or two values. Moreover, for the ladder it
is seen that a several gates in the compressed circuit assume an opEE that is near to that
of the SWAP gate, which we view as an indication that the action of the SWAP gate is
baked into our optimized circuits.

Finally we consider the distribution of the parameter λ1 across the optimized two-qubit
unitaries, which are parameterized as in (14). We found that λ2 and λ3 are distributed
similarly. In Fig. 12 we show histograms for the parameter counts Np of λ1 for the chain
(left panel) and ladder (right panel) with L = 8 at t = 1, for a compressed circuit with
M = 8. Note here the different scales of the x-axes. The histograms are again stacked,
with the lightest color corresponding to the bottom layer and the darkest color to the top
layer. The red dashed lines mark the values of the gates in the M = 8 first-order Trotter
circuit, for which λSWAP

1 = −π and λevo1 = t/M , both having no one-qubit dressing (15).
As in Fig. 11, we see that the gates of the compressed circuit have a larger spread than
the gates of the Trotter circuit, which instead assume one or two values. Also, for the
ladder we again observe an accumulation of gates near the SWAP value.

The gates appearing in the optimized circuits appear to encode more structure than
gates from Trotter circuits and are generally speaking encoding a larger change of the wave
function per gate compared to the case of Trotter circuits. This can be seen best in the
limit of very small Trotter time steps, in which each appearing gate (except SWAP) is very
close to identity, while in the opposite limit which we optimize for, each gate needs to be
sufficiently different from identity in order to represent the same time evolution operator.
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Figure 12: The distribution of the λ1 parameter which enters the two-qubit
unitary parameterization that was used in this work, shown for the chain (left
panel) and ladder (right panel) with L = 8 at t = 1. The parameter count Np

for a compressed circuit with M = 8 is shown as a stacked histogram, with the
lightest color corresponding to the bottom layer and the darkest color to the top
layer. The first-order Trotter evolution gate value λevo1 = t/M and the SWAP
gate value λSWAP

1 = −π are shown as dashed red lines. The other two-qubit
parameters λ2 and λ3 are distributed similarly. Note the different scales of the
x-axes.

4 Conclusion and Outlook

In this work we have presented an approach which reduces the resource cost of digital
quantum simulation compared to standard Trotter decompositions by globally optimizing
a simple parameterized brickwall circuit in a way that is scalable to large systems. Cru-
cially, the performance per gate is better even when the compressed circuit does not respect
the connectivity of the simulated lattice, potentially allowing for high fidelity simulation
of systems with a connectivity that is larger than that of the used quantum processor.
To illustrate this we have compared the infidelity of the compressed and Trotter circuits
with the targeted time evolution operators of Heisenberg chains and ladders, as well as
the ability to reproduce their OTOCs.

We have shown that we can achieve similar accuracy of the time evolution operator
with up to one order of magnitude less gates, depending on the desired accuracy and
system. Moreover, we checked that this advantage persists when stacking the circuits
many times, a central ingredient to simulating a quantum system over long times. This
enables high fidelity propagation to times which are currently elusive with conventional
Trotter decomposition methods.

Furthermore, we analyzed the structure of the compressed circuits. In the case of the
chain, we observed a ”refocussing” mechanism, which suppresses the infidelity at multiples
of the optimized time step, while the evolution inside the optimized circuit appears to
follow a trajectory which is further away from the targeted time evolution operator. It is
an interesting question for further research to understand this trajectory and relate it also
to recent studies of Trotter decompositions and its breakdown for large time steps [34,35].
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Our results open the door for many further directions. As a next step, one can for
example take symmetries into account to further reduce the number of parameters. This
might be especially favorable when exploiting translation symmetries. Furthermore, one
can optimize the circuits with other cost functions than the fidelity, as was also done
for example in [37]. Promising directions are using local observables or density matrices.
While such an approach might simplify the convergence of the optimization, it is still
an open question to what extent the accurate simulation of observables or other general
quantities would be recovered.

We end by stressing that in this work we have used the simplest possible noise model,
by assuming that each applied gate introduces the same amount of noise to the system and
that therefore a minimization of the gate count reduces the overall noise. A refinement of
this noise model will be the subject of future research.
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A Gate count equations

Here we state the equations for the NN two-qubit gate counts Ng of the first-, second- and
fourth-order Trotter circuits of depth M , which are used in Sec. 3. These are denoted by
N1st
gc/l(M), N2nd

gc/l (M) and N4th
gc/l(M), respectively, where c corresponds to the chain and l to

the triangular ladder. In deriving these equations we made maximal use of the ability to
combine gates in subsequent Trotter steps. The compressed circuits have gate count N1st

gc .
For the chain the equations are

N1st
gc (M) = M(L− 1), (26)

N2nd
gc (M) = M(L− 1) +

⌊
L

2

⌋
, (27)

N4th
gc (M) = 5M(L− 1) +

⌊
L

2

⌋
. (28)

For the ladder, in which case we have to take into account the SWAP gates, the corre-
sponding equations are

N1st
gl (M) = M (4L− 7) (29)

N2nd
gl (M) = 2M

(
N1st
gl (1) + 1

)
− (3M − 1)

⌊
L

2

⌋
(30)

N4th
gl (M) = 5MN2nd

gl (1)− (5M − 1)

⌊
L

2

⌋
. (31)
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B Convergence of the optimization

In order to find the optimal compressed circuit using the gradient descent method outlined
in Sec. 2.3, it is important to scan the hyperparameter space of the used optimizer. The
reason is that there is no single set of hyperparameters which finds the best solution
for all optimization problems. We find the best convergence by using the vanilla Adam
optimizer [52], which is presented in Algorithm 1.

Algorithm 1 Vanilla Adam [52]. This gradient-descent optimizer updates the circuit
parameters ~θ to minimize the infidelity ε(~θ), by taking into account exponentially decaying
running averages of the first moment m and second moment v of the infidelity gradient g for
each parameter separately. Instead of choosing the parameter updates to be proportional
to g, as in vanilla gradient descent, here it is proportional to a memory of the previous
gradients m. This results in a relatively stable minimization and to some extent prevents
getting stuck in local minima. Moreover, since the optimization algorithm is first order,
the magnitude of the parameter update is proportional to its uncertainty in decreasing the
infidelity. For this reason, large updates are undesirable, whereas tiny updates are also
undesirable since they halt the minimization and promote getting stuck in local minima.
With this in mind, the update magnitude is forced to be desirable, by choosing it to be
proportional to m/

√
v.

Hyperparameters:
λ: Raw learning-rate
β1: First moment decay strength
β2: Second moment decay strength
δ: Regularization
Niters: Amount of iterations

Initial conditions:
m0 ← 0 (First moment initially zero)
v0 ← 0 (Second moment initially zero)

for ( i = 0; i < Niters; i = i+1 ) do
gi ← ∇~θi−1

ε(~θi−1) (Calculate gradient at current parameters)

mi ← β1mi−1 + (1− β1)gi (Extend running average of first moment)
m∗i ← mi/(1− βi1) (Bias correction)
vi ← β2vi−1 + (1− β2)g2i (Extend running average of second moment)
v∗i ← vi/(1− βi2) (Bias correction)
~θi ← ~θi−1 − λm∗i /(

√
v∗i + δ) (Update parameters)

end for
return ~θi (Final circuit parameters)

We scan the hyperparameter space (λ, δ, β1, β2) for the most favorable convergence
properties. As mentioned in Sec. 2.3, it is crucial to continue iterating the algorithm
when we reach a plateau in the fidelity. This is illustrated in Fig. 13, where we display
the gradient descent of ε for a circuit with M = 8 layers on the time evolution operator
of an L = 8 ladder at t = 1, and consider various (β1, β2) with learning-rate τ = 0.01
and regularization δ = 10−4. Here the largest fidelity is obtained with β1 = β2 = 0.999,
but we have to overcome multiple plateaus, which would have been spoiled by using a
convergence criterion.
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Figure 13: The infidelity ε as a function of the iteration step i for an Adam
optimizer with learning-rate τ = 0.01, regularization δ = 10−4, and various decay
rates (β1, β2) with β1, β2 ∈ {0.9, 0.99, 0.999}. The optimization is performed for
a size L = 8 ladder at time t = 1 with circuit depth M = 8. The lowest infidelity
is reached with (0.999, 0.999), but crucially this requires the optimizer to spend
time in local minima without getting stopped by a convergence criterion when
the infidelity has stagnated.

C OTOC details

First we display the OTOC values of the stacked compressed circuits and targeted time-
evolution operators that were used to make Fig. 7. In the left two panel columns of
Fig. 14 we show the OTOCs Ci=2,j(t) for the chain and in the right two columns for the
ladder. The first and third columns are for the compressed circuits, whereas the second
and fourth columns are for the target unitaries. As already became apparent from Fig. 7,
the agreement is excellent for all considered stacking times t.

Now we consider the analog of Fig. 6 for the relative error of the OTOC Ci=2,j=4. In
particular, we consider the chain and ladder with L = 12 and take a couple compressed
circuits for which the infidelities were optimized at t = 2 for the chain and t = 1 for the
ladder, which we then stack up to t = 20. As in Fig. 6 we take compressed circuits with
M = 4, 8 for the chain and M = 8, 16 for the ladder, and we compare these with second-
order Trotter circuits that have similar fidelity at the optimized time step, corresponding
to M = 5, 16 for the chain and M = 2, 4 for the ladder. In Fig. 15 we show the results,
with the left panel for the chain and the right panel for the ladder. The implications are
the same as those derived from Fig. 6: With a smaller amount of gates we essentially
get the same performance, in this case even for a quantity that does not appear in the
objective function (19).

Finally, we check whether the refocussing that was observed for the infidelity ε in Fig.
9 also emerges for the OTOCs, which contrary to ε does not enter the cost function of
the optimization scheme. In Fig. 16 we show the relative error of Ci=5,j=5(t

∗) between
that of M∗ layers and that of the target unitary at time t∗. Before using the M∗ layers
to calculate the OTOC at t∗, we minimize its infidelity with respect to the target unitary
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Figure 14: The OTOCs Ci=2,j(t) as a function of site or rung j and stacking time
t for the chain (left columns) and the ladder (right columns), for compressed
circuits optimized at t = 2 and stacked up to ten times (first and third columns)
and the corresponding target values (second and fourth columns). For the chain
we take M = 8 and for the ladder M = 16. The top row is for L = 8 with
χ = 256, the middle row is for L = 12 with χ = 150, and the bottom row is for
L = 16 with χ = 100.
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Figure 15: The relative error of the OTOC Ci=2,j=4(t) versus stacking time t for
the chain (left panel) and ladder (right panel) with L = 12, for circuits optimized
at t = 2 for the chain and t = 1 for the ladder, and stacked up to time t = 20.
For the chain we consider M = 4, 8 and for the ladder M = 8, 16. For each M we
choose a second-order Trotter circuit with similar fidelity at the optimized t, i.e.
M = 5, 16 for the chain and M = 2, 4 for the ladder. As a result the compressed
circuits have significantly less gates than the corresponding Trotter circuits.
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at t∗, taking into account the gauge invariance. As in Fig. 9, we perform the calculations
for the Heisenberg chain with L = 8 and a M = 8 circuit optimized at t = 1, with the
results shown in Fig. 16. We see that a similar refocussing takes place, with the minima
for M∗ < M being elevated with respect to that at M∗ = M and with unequal spacing in
time.
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Figure 16: The relative error of the OTOC Ci=5,j=5(t
∗) between that of a subset

M∗ of layers and that of the target unitary at time t∗, for the Heisenberg chain
at L = 8 and a depth M = 8 circuit optimized at time t = 1. The curve with
M∗ = M corresponds to the full circuit and the dashed lines mark times tM∗/8.

D Emergence of lattice symmetries

The brickwall circuit ansatz (18) used in this work has the most general form, consisting
of arbitrary two-body unitaries and not taking into account any symmetry of the targeted
time-evolution operator, i.e. in our case those corresponding to the Hamiltonians (2). To
restrict the ansatz space it could be useful to incorporate such symmetries into the circuit
at the gate level.

Take for example the Heisenberg chain in (2), which possesses lattice inversion sym-
metry, being invariant under a flip of the lattice across the middle bond for even L. To
incorporate this into the ansatz we let the gate acting on the bond between sites i and
i+ 1 also act on the mirrored bond between L− 2− i and L− 1− i, albeit flipped across
the time axis. Since this gate and its flipped counterpart should be equal for the inver-
sion symmetry to be manifest, the gate parameterization (13) implies that the one-qubit
unitary ui should be equal to uj , and that u′i should be equal to u′j , with the two-qubit
unitary vij being flip-symmetric by construction.

Since we did not incorporate this inversion symmetry into the circuits used for our
simulations, it is an interesting question whether the chosen circuit ansatz in combina-
tion with the optimization procedure leads to its emergence. To probe this, we take an
optimized circuit and for each of its gates we calculate the infidelity with its mirrored
counterpart, and then average over all gates to get the average gate infidelity δ. As for the

24



SciPost Physics Submission

subset infidelity from Fig. 9, here it is crucial to take into account the gauge symmetry.
We also calculate the infidelity ε of the circuit as a whole with its mirrored counterpart,
to determine if it is reasonable to expect the symmetry to emerge on the gate level. If
this overall infidelity is high, it is unlikely that it is low at the gate level. The results are
shown in Fig. 17.
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Figure 17: The average gate-wise infidelity δ of every gate with its mirrored coun-
terpart (top panels), flipped across the middle bond, for all gates in compressed
circuits which were optimized to approximate the lattice inversion symmetric
Heisenberg chain time-evolution operator. For comparison, we also show the in-
fidelity ε of the circuit as a whole with its mirrored counterpart (bottom panels).
These quantities probe to which extent the inversion symmetry of the targeted
unitary emerges in the compressed circuit. The infidelities are shown as a func-
tion of the circuit depth M , for times t = 1 and t = 2. The left panels are for
system size L = 8, the middle panels are for L = 12, and the right panels are for
L = 16.
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