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Abstract

Anyons in a topologically ordered phase can carry fractional quantum numbers with re-
spect to the symmetry group of the considered system, one example being the fractional
charge of the quasiparticles and quasiholes in the fractional quantum Hall effect. When
such symmetry-fractionalized anyons condense, the resulting phase must spontaneously
break the symmetry and display a local order parameter. In this paper, we study the
phase diagram and anyon condensation transitions of a Z2 topological order perturbed
by Ising interactions in the Toric Code. The interplay between the global (“onsite”) Ising
(Z2) symmetry and the lattice space group symmetries results in a non-trivial symme-
try fractionalization class for the anyons, and is shown to lead to two characteristically
different confined, symmetry-broken phases. To understand the anyon condensation
transitions, we use the recently introduced critical torus energy spectrum technique to
identify a line of emergent 2+1D XY* transitions ending at a fine-tuned (Ising2)* critical
point. We provide numerical evidence for the occurrence of two symmetry breaking pat-
terns predicted by the specific symmetry fractionalization class of the condensed anyons
in the explored phase diagram. In combination with large-scale quantum Monte Carlo
simulations we measure unusually large critical exponents η for the scaling of the corre-
lation function at the continuous anyon condensation transitions, and we further identify
lines of (weakly) first order transitions in the phase diagram. As an important additional
result, we discuss the phase diagram of a resulting 2+1D Ashkin-Teller model, where we
demonstrate that torus spectroscopy is capable of identifying emergent XY/O(2) criti-
cal behaviour, thereby solving some longstanding open questions in the domain of the
3D Ashkin-Teller models. To establish the generality of our results, we propose a field
theoretical description capturing the transition from a Z2 topological order to either Z2
symmetry broken phase, which is in excellent agreement with the numerical results.
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1 Introduction

Quantum phase transitions and quantum critical behaviour are in the center of attention in
many areas of science, especially in condensed matter physics. While many quantum phase
transitions can be described in terms of the classic Landau-Ginzburg-Wilson theory, in recent
years more and more examples of phase transitions beyond this paradigm have been iden-
tified [1–4]. A particularly interesting case are phase transitions with an adjacent quantum
spin liquid phase, since an increasing number of models featuring such topological phases
have been identified in the last years with a multitude of neighboring phases [5–10]. Quan-
tum spin liquids feature fractional excitations with anyonic statistics (anyons) which strongly
influence the nature of phase transitions leading to novel universal properties, such as unusu-
ally large critical exponents η for the scaling of the correlation function [11–14]. Anyons in
a quantum spin liquid can also carry fractional quantum numbers of the symmetry group of
the considered system. One prominent example therefore is the fractional charge of the quasi-
particles and quasiholes in the fractional quantum Hall effect [15]. When such symmetry-
fractionalized quasiparticles condense, it has strong consequences on the fate of the resulting
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confined phases [16].
The universality class of quantum critical points in quantum spin models is typically iden-

tified by precise measurements of critical exponents which define the singular behaviour of
observables at criticality. Recently, as an alternative, the analysis of the energy spectrum on
a spatial torus at criticality has been explored. It was shown that this critical torus energy
spectrum (CTES) is a universal property of critical points and can be used to identify their
universality classes [17–21].

The Toric Code [22] is the most prominent quantum spin model which describes a Z2
topologically ordered (TO) phase. This type of topological order has been realized recently
in Rydberg atom arrays [23] and on a superconducting cirquit [24]. The Toric Code can be
solved exactly, and it therefore forms a patent playground to study topological order. When
the Toric Code is perturbed with additional interactions, unconventional phase transitions
in quantum spin models can be induced once the topological order is destabilized. The Toric
Code in a longitudinal external field [25]with a phase transition between a Z2 TO phase and a
trivial, paramagnetic (i.e. non symmetry breaking) phase was successfully studied in Ref. [17]
to determine the CTES of the Ising* universality class, which exhibits unique, characteristic
features. The occurrence of such a non-trivial quantum phase transition between these phases
naturally leads us to the question what the nature of a direct transition between a Z2 TO and
a topologically trivial, but Z2 symmetry-broken (SB) phase would be.

In this paper, we study such a transition in the realm of quantum spin models by perturbing
the Toric Code with Ising interactions (TCI). Using a combination of exact diagonalization
(ED) and quantum Monte Carlo (QMC) simulations, we observe a rich phase diagram with a
Z2 TO phase and two distinct Z2 SB phases in the considered parameter regime. The phase
transition lines between these phases are found to be of rather varied kind, featuring first-order,
a fine-tuned (Ising2)*, and, most prominently, an emergent XY* transition. In particular, we
identify and chart the CTES for the (Ising2)* and the XY* transitions and strikingly demonstrate
the power of torus spectroscopy to identify emergent symmetries of critical points and the
influence of the fractional particles condensing at criticality.

We also identify the non-trivial symmetry fractionalization class of the condensing anyons [16,
26–29] in the TCI model, according to the global Z2 symmetry group and the lattice space
group, which enforces that the condensed phases must spontaneously break the symmetry of
the TCI model [16]. In particular, we will show that the condensed phases must either break
the spatial symmetry or the spin-inversion symmetry. From numerical simulations, we observe
examples for both of these symmetry-breaking patterns in the phase diagram and show that
they can be identified from energy level spectroscopy.

From QMC simulations, we also corroborate that the (Ising2)* and the emergent XY* tran-
sitions feature unusually large critical exponents η∗. As we will show, the (Ising2)* transition
in our system is particularly appealing, because the large value of η∗ can be microscopically
understood and analytically derived from the known value of η of the standard 3D Ising tran-
sition.

To demonstrate that our study is relevant for generic transitions between Z2 TO and Z2 SB
phases, we additionally propose a phenomenological field theory description for the transition
between such phases. The known fixed points and renormalization group flows of this field
theory agree well with the results obtained for our microscopic model. The results presented
in this paper are, thus, beyond the specific microscopic model considered here.

As an important additional result obtained along this journey, we discuss a large fraction
of the phase diagram of a peculiar resulting (non topological) 2+ 1D quantum Ashkin-Teller
model including its quantum phase transitions. We demonstrate that torus spectroscopy allows
to characterize the continuous quantum phase transitions with surprising accuracy, given the
fact that we only use ED for up to 36 spins. The phase diagram we obtain for the 2 + 1D
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quantum Ashkin-Teller model resembles the most complex region of the phase diagram of
the standard 3D classical Ashkin-Teller model [30–32], where the universality class of critical
points along a certain phase transition line is a long debated and unsolved issue [31–35].
Based on universality arguments we believe that the types of phase transitions we obtain in
the present work for the 2 + 1D quantum Ashkin-Teller model appear identically in the 3D
classical Ashkin-Teller model. We, therefore plausibly answer this open question in this paper.

In Sec. 2 we introduce the models and numerical methods used in this paper. In partic-
ular, we discuss the mapping of the TCI model to an effective Ashkin-Teller transverse field
Ising (AT-TFI) model and carefully analyze the symmetries of both models and their relations.
Also, we give details on the technique of torus spectroscopy, the QMC method, and advocate
a field theoretical description for the considered transition in terms of a two-component φ4

scalar theory with cubic anisotropy. In Sec. 3 we first thoroughly compute the phase diagram
and analyze the phase transitions of the AT-TFI model using torus spectroscopy combined with
more standard techniques. In Sec. 4 we finally discuss the phase diagram and phase transi-
tions in the TCI model. To do so, we exploit the microscopic mapping between the TCI and
the AT-TFI model and discuss how the presence of fractionalized quasiparticles influences the
critical behaviour. We also compute the non-trivial symmetry fractionalization class of the
condensing anyons and examine its implications on the possible symmetry breaking patterns
in the confined phases. We finally give our conclusions in Sec. 5.

Details of the mapping between the TCI model and the AT-TFI model are shown in App. A.
Appendix B provides further information about the QMC algorithm used in this paper. The
extrapolation of finite torus energy gaps to obtain the CTES is comprehensively illustrated in
App. C, and App. D shows an analysis of the critical exponent ν in the AT-TFI model from QMC
simulations.

2 Models & Methods

2.1 Models

In order to study the transition between a Z2 TO phase and a Z2 SB phase we study the Toric
Code model as the prime-example of a quantum spin model featuring a Z2 TO phase and
perturb it with Ising interactions. Increasing the strength of the Ising interactions is expected
to destroy the Z2 TO phase at some intermediate coupling strength and to ultimately stabilize
a Z2 spin SB phase for strong Ising couplings. The precise form of the phase diagram and the
nature of the phase transitions are some of the prime questions of interest here. For the sake of
generality we consider nearest-neighbor as well as next-to-nearest neighbor Ising interactions.
The Hamiltonian for this Toric Code-Ising (TCI) model is then given by

H =− Je

∑

s

As − Jm

∑

p

Bp

− JI

∑

〈i, j〉

σx
i σ

x
j − JI2

∑

〈〈i, j〉〉

σx
i σ

x
j − J ′I2

∑

〈〈i, j〉〉′
σx

i σ
x
j

(1)

with As =
∏

i∈sσ
x
i , Bp =

∏

i∈pσ
z
i , and Je, Jm ≥ 0. The Pauli matrices σαi describe spins on the

links of a square lattice. As shown in Fig. 1(a), p (s) denotes plaquettes (stars) on the lattice,
〈i, j〉 are the nearest neighbors, and 〈〈i, j〉〉(′) denote the next-to-nearest neighbor interactions,
which are divided into two types: interactions between sites along the edges of the lattice with
coupling JI2

and interactions between sites on opposite edges of the plaquettes with coupling

J ′I2
. We will restrict our analysis to ferromagnetic nearest neighbor coupling JI > 0, but do not
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Figure 1: (a) Toric Code model with Ising interactions among nearest neighbor (JI)
and next-nearest neighbor sites (J (′)I2

), Eq. (1). The spin variable on site i is denoted
as σi . The next-to-nearest neighbor interactions split up in two types, one of them
connecting sites along an edge of the lattice (yellow solid lines, JI2

) and the other

connecting sites on opposite sites of plaquettes (yellow dotted lines, J ′I2
). The As (Bp)

operators live on stars (plaquettes) of the lattice. (b) Transverse field Ising model
with 4-spin interactions, Eq. (2), on the dual square lattice with spin variables µi . The
original lattice is illustrated in light-grey. Squares (diamonds) indicate the sublattice
A (B). The mapping of the interactions of the TCI model (a) to the interactions in
the AT-TFI model (b) is sketched by using the same colors and linestyles for mapped
interactions. Note, that, for better readability, we only illustrate the mapping of
one interaction of each type in (b). In pink, we additionally show the space group
symmetry generators: translations Tx ,y , mirror reflection Mx , vertex-centered 4-fold
rotation C4.

restrict the sign of the next-to-nearest neighbor coupling JI2
, while we will later set J ′I2

= 0. We
choose Ising interactions along the spin-x direction. The As operators then commute with the
Ising interactions and are conserved for all values of JI and J (′)I2

1. So, we will only consider the
charge-free sector As = 1, ∀s, which describes the low-energy physics when Je� Jm, such that
the other As sectors are pushed to high energies. Additionally to the lattice space symmetry
group, the Hamiltonian Eq. (1) obeys a global Z2 spin-inversion symmetry generated by the
operator Rz =

∏

i σ
z
i , as we will elaborate in Sec. 2.2.

In the selected sector (As = 1, ∀s), the TCI model, Eq. (1), can be exactly mapped to a
transverse field Ising model on the dual square lattice [17,25,36,37] with additional Ashkin-
Teller like four-spin interactions coming from the next-to-nearest neighbor Ising interactions
[see Fig. 1(b)], with Hamiltonian

HAT =− h
∑

i

µz
i − J

∑

〈〈i, j〉〉

µx
i µ

x
j − J ′

∑

〈〈〈i, j〉〉〉

µx
i µ

x
j

+ JAT

∑

i

µx
i µ

x
i+x̂µ

x
i+ŷµ

x
i+x̂+ŷ (2)

The new spins are described by the Pauli matrices µαi and live on the vertices of the dual square
lattice (sites centered on the plaquettes of the original TCI model). x̂ (ŷ) denote the unit vec-
tors in x and y direction on the dual lattice. The plaquette operator Bp maps to a transverse
field µz

i on each site i of the dual lattice with h = Jm, while the Ising interactions σx
i σ

x
j be-

come either Ising interactions µx
i µ

x
j or a four-spin interaction involving four µx

i operators at

1When choosing the Ising interactions along the spin z direction we would simply switch the role of the As and
Bp operators in the rest of the paper, per the e−m duality of the unperturbed Toric code.
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the vertices of a square plaquette. HAT features an emergent two-sublattice structure: The
model lives on two interpenetrating square lattices with lattice constant a′ =

p
2a, such that

the interactions with couplings J = 2JI and J ′ = J ′I2
only couple spins on the same sublattice

[see Fig. 1(b)]. The four-spin interaction with JAT = −2JI2
couples two spins of one sublattice

with two spins on the other sublattice. This emergent two sublattice structure is an important
difference to the case of perturbing the Toric Code with local magnetic fields studied previ-
ously [17, 36, 38], where the resulting TFI model lived on a single square lattice. We call the
resulting model, Eq. (2), Ashkin-Teller transverse-field Ising model (AT-TFI) 2. For simplicity,
we set the couplings J ′I2

= J ′ = 0 in the following, and only consider next-to-nearest neigh-
bor Ising interactions along the edges (with coupling constant JI2

) of the original TCI model,

Eq. (1). While finite J ′ alters the precise shape of the phase boundaries, we do not expect it to
qualitatively change the nature of the phase transitions (as long as J ′ is not too large), since
it also preserves the two-sublattice structure of Eq. (2).

While we are going to discuss the phase diagram of the AT-TFI model as a stand-alone
model without further constraints in Sec. 3, we want to note that the AT-TFI model which one
obtains within the As = 1 sector of the TCI model has a number of constraints and spatial
boundary conditions particularities to consider. Specifically, the TCI model, Eq. (1), maps only
to the even sector regarding the global Ising symmetry S =

∏

i µ
z
i of the AT-TFI model, Eq. (2)

[see also Sec. 2.2 for a detailed discussion on the symmetries of both models]. Additionally,
the four topological sectors in the Z2 TO phase of the TCI model, described by eigenvalues ±1
of Wilson loop operators around the non-contractible paths of the torus, manifest themselves
in periodic and anti-periodic boundary conditions for the interactions along the two directions
of the torus in the AT-TFI model. Identical boundary conditions have to be chosen for both
sublattices, even in the case JAT = 0, where the sublattices decouple.

Details of the mapping from the TCI to the AT-TFI model are shown in App. A.

2.2 Symmetries

The TCI model, Eq. (1), preserves global (“onsite”) symmetries characterized by the group
G0 = D2 × Z

T
2 , as well as spatial (crystal) symmetries characterized by the wallpaper group

p4gm. The onsite symmetry group G0 is generated by spin rotations along the x , y, z axes by
an angle π:

Ra =
∏

i

σa
i , a = x , y, z (3)

and the time reversal symmetry T =
∏

i σ
y
i ·K, where K is the complex conjugation operator.

Meanwhile, the space group p4gm is generated by the vertex-centered 4-fold rotation C4,
mirror reflection Mx w.r.t. the yz plane parallel to the horizontal nearest-neighbor links, as
well as Bravais lattice translations Tx ,y [see Fig. 1].

As the Ising terms in the TCI model increase and a confinement transition happens, certain
symmetries are spontaneously broken in the TCI model. The relevant symmetries across the
phase transition are given by the following symmetry group

Gs = Z
Rz
2 × p4gm (4)

generated by Rz , C4, Mx and Tx ,y .

2We want to note that the structure of the Hamiltonian Eq. (2) is similar to an Ashkin-Teller model [33] where
two different spins live on a single site of a square lattice, which are coupled by a 4-body Ashkin-Teller interaction
on nearest-neighbor bonds. In our model Eq. (2) the interpenetrating sublattices take the role of the different
spins.
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Meanwhile, the dual AT-TFI model, Eq. (2), has a larger symmetry group than the original
TCI model. In addition to the same crystal symmetry group p4gm, it exhibits a Z2 ×Z2 sym-
metry of flipping all µx

i spins on the two distinct sublattices A, B individually, with symmetry
operators

SA(B) =
∏

i∈A(B)

µz
i (5)

Additionally, each of the spatial symmetry generators can exchange the two sublattices, A↔ B,
yielding the following algebra

(SAMx)
2 = S; (6)

SATaS−1
A T−1

a = S, a = x , y; (7)

SAC4S−1
A C−1

4 = S (8)

where
S =

∏

i

µz
i = SASB (9)

is the global Ising symmetry in the AT-TFI model. Mathematically, the symmetry group Gg of
the AT-TFI model, generated by SA,B and Mx , C4, Tx ,y , is related to the symmetry group Gs of
TCI model by the following central extension [26]:

1→ Z2→ Gg → Gs→ 1 (10)

where the center Z2 is generated by the global Ising symmetry S. The algebraic relations
Eqs. (6)-(8) suggest that Gg is a nontrivial extension of Gs, corresponding to a nontrivial group

cohomology H2(Gs,Z2) 6= 0. As will be discussed later in section 4.2, this is a direct conse-
quence of the nontrivial symmetry fractionalization class [26–29] for m particles in the TCI
model, and has strong implications on the spontaneous symmetry breaking patterns across the
phase boundary [16].

Microscopically, the TCI model, Eq. (1), maps only to the even sector regarding the global
Ising symmetry S of the AT-TFI model Eq. (2). Physically, S counts the parity of the total num-
ber of m particles in the TCI model, which is always even on a torus. On the other hand, the
global Z2 symmetry Rz of the TCI model Eq. (1) maps to the sublattice inversion symmetries
of the AT-TFI model, Rz = SA = SB. It is important to note here, that SA and SB are inde-
pendent symmetries in the AT-TFI model; only through the constraint of global evenness are
the symmetries SA and SB bound to be equivalent in the TCI model. Mathematically, in the
exact sequence Eq. (10), Rz in Gs has two preimages in Gg , SA and SB, in the surjective map
Gg → Gs.

2.3 Phenomenological quantum field theory description

We can find an effective quantum field theory describing the properties of the AT-TFI model in
the vicinity of the sublattice decoupled point JAT = 0. To do so, we consider two scalar fields
φ1, φ2, one for each of the sublattices, which are described by the standard Landau-Ginzburg-
Wilson (LGW) theory. The LGW Hamiltonian is chosen such that it is invariant under the
Z2×Z2 symmetry of flipping the sign of both fields individually (φ1→−φ1, φ2→−φ2), and
under the exchange of the two fields (φ1 ↔ φ2) because of the equivalence of sublattices in
the AT-TFI model (defined by the symmetry operator of exchanging the sublatttices SA↔B).
The interaction among the two different fields (coupling of sublattices in the AT-TFI model for
JAT 6= 0) can be modelled by a termφ2

1φ
2
2 which is the lowest order interaction term protecting
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the symmetries. The resulting field theory is the n = 2-component LGW Hamiltonian with
cubic anisotropy in D = (2+ 1) dimensions [39–41], where we only include scaling relevant
terms

H =
∫

d2 x
2
∑

i=1

1
2

�

Π2
i + (∇φi)

2 + rφ2
i +

u
12
φ4

i

�

+
v
4!
φ2

1φ
2
2 (11)

A renormalization group analysis of Eq. (11), with a n = 2 component scalar field in
D = (2 + 1) space-time dimensions features, apart from unstable Gaussian and cubic fixed
points, a stable O(n) symmetric fixed point, an unstable Ising fixed point (of n identical Ising
fields), and, outside the attraction regime of the fixed points, a flow towards first order be-
haviour [40,41]. The Ising fixed point can only be reached by fine-tuning of two parameters.
We will show numerically in this paper, that the AT-TFI model indeed features an extended
critical line in the 3D O(2) universality class, a line of (weakly) first order transitions and a
so-called Ising2 critical point, which can only be reached by fine-tuning both parameters JAT/J
and h/J . The cubic anisotropy model, Eq. (11), is thus a good description of the AT-TFI model
around JAT/J = 0 in the infrared scaling limit.

The cubic anisotropy model also describes the transition between a Z2 TO and a Z2 SB
state, which we eventually want to discuss in this paper in the context of the TCI model, when
certain properties for the fields are enforced. This is analogous to the transition between a
Z2 TO phase and a paramagnetic phase, which is described by the Ising* field theory, i.e. the
Ising field theory with additional constraints for the scalar field [17]. The transition from
the Z2 TO phase is induced here by the condensation of the (fractional) m particles of the
spin liquid. We describe the m particles by a scalar field φ which must be composed of two
real components to carry a Z2 charge, i.e. φ = (φ1,φ2), and the model must be invariant
under φ1↔ φ2. Also, as m particles can only be created in pairs, the Hamiltonian may only
contain terms even in φ. The Hamiltonian, where we again consider only scaling relevant
terms, is then precisely the cubic anisotropy model, Eq. (11). The fractional nature of the m
particles has further consequences: Since m particles can only be created in pairs, all physical
observables are at least bilinear combinations of the fields φi . Additionally, the boundary
conditions of the torus have to be generalized to be both, periodic (P) and anti-periodic (A),
along both directions of the torus, as the fields φ and −φ are physically indistinguishable. The
distinct boundary conditions represent the different topological sectors in the TO phase. These
additional constraints for the fields correspond to the microscopic constraints of even global
spin-inversion symmetry and (anti-)periodic boundary conditions observed in the microscopic
mapping from the TCI to the AT-TFI model.

2.4 Numerical methods

We use a combination of exact diagonalization (ED) and quantum Monte Carlo (QMC) [42]
simulations to explore the phase diagram and, in particular, the quantum critical features of
the TCI model, Eq. (1). For this purpose, we first chart the phase diagram of the topologically
trivial AT-TFI model, Eq. (2), in the ground state sector of periodic boundary conditions, and
then use the precise microscopic mapping between the TCI and AT-TFI model to investigate
properties of the TCI model in a later section.

We use discrete-time QMC simulations of the AT-TFI model which maps the partition func-
tion into an anisotropic 3D Ising model with Ising and Ashkin-Teller couplings within an
imaginary-time slice, and Ising couplings between the time slices [see App. B for more details
on the QMC method]. The different phases appearing in the AT-TFI model can be uniquely dis-
tinguished by measuring the equal-time sublattice magnetization histogram P(mA, mB), which
is defined as the probability to find sublattice A (B) with total magnetization mA = 〈

∑

i∈Aµ
x
i 〉

(mB = 〈
∑

i∈B µ
x
i 〉) within a given imaginary-time slice of the sampled ground state con-
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figurations. From P(mA, mB) any two-sublattice order parameter can be extracted, such as
〈mS〉 = 〈|mA| + |mB|〉, which is non-zero in the ordered phases we will obtain below, but
becomes zero in the paramagnetic phase (PM). The precise location of the phase boundary be-
tween ordered and disordered phases can be obtained from the Binder ratio U = 〈m4

S〉/〈m
2
S〉

2 [43].
U is independent of the system size (up to higher-order corrections) at critical points, such that
the location of a critical point can be identified from a crossing of U for different system sizes.
We perform QMC simulations on periodic square clusters of size N = L × L with L ≤ 48 to
accurately estimate the location of phase transition points and their properties.

Around critical points, we also compute the four-point correlation function 3 C(r) = 〈µx
0,Aµ

x
0,Bµ

x
r,Aµ

x
r,B〉

and the corresponding correlation length ξ. Here µx
i,A/B denotes the Pauli-x operator on one

of the two plaquettes (dual lattice) neighboring to lattice site i (original lattice) and A/B la-
bels the corresponding sublattice of the dual lattice [see App. B for more details]. A standard
finite-size scaling analysis [43] can then be used to estimate the values of the critical expo-
nents η and ν, which are universal properties of the quantum critical point (see below for
details). Here, we should mention, that the QMC simulations of the AT-TFI model include all
spin-inversion sectors and do not explicitly consider the additional constraints (only even spin-
inversion sectors, different boundary conditions) in the mapping to the TCI model. Since we
are interested in ground state physics at very low temperatures here, the additional presence
of the spin-inversion odd levels and the absence of the other boundary condition sectors (cor-
responding to the different topological sectors) should not influence the results significantly
for the TCI model.

Our main approach to identify the nature of the quantum critical points in the TCI and
AT-TFI models is the recently introduced technique of measuring the CTES [17–21]. CTESs
are universal properties of quantum critical points. Thus, they can be used to identify the
universality class of an investigated critical point by simply comparing its CTES to already
charted ones. In contrast to critical exponents, CTESs have been found to be qualitatively very
different among different universality classes, such that finite-size clusters of a few ten spins
are typically already sufficient to uniquely identify them.

The CTES for a critical point are computed with ED: We tune the Hamiltonian parameters
to the critical values and compute the low-energy spectrum on finite-size systems of N ≤ 36
spins on a spatial torus. The i-th energy gap to the ground state is denoted as ∆N

i . Due to the
translational symmetry the energy levels can be labelled by a quantum number κ=

p
N/(2π)|k

mod M| corresponding to the momentum k of the energy eigenstate, and M = (π,π) 4. We will
only consider the most important κ= 0 spectrum in this paper. Additionally, each level carries
a quantum number even/odd (si = ±1) according to the global spin-inversion symmetry S.
We do not measure the quantum numbers of the sublattice inversion symmetries SA,B. The
quantum number according to the exchange symmetry of the two sublattices SA↔B is encoded
in the irreducible representation of the square lattice space group. In particular, a state with
momentum k = Γ = (0, 0) is even, while a state with momentum k = M is odd under the
sublattice exchange symmetry SA↔B, for the trivial irreducible representation of the lattice
point group (C4 or D4).

We multiply the bare energy gaps with the linear system size
p

N to get rid of the dominant
scaling factor and extrapolate each level ∆N

i ×
p

N to the thermodynamic limit N → ∞ to
obtain the CTES levels, which we denote as ∆i ×

p
N [see also Fig. 4(b) and Appendix C].

CTESs are given by universal numbers ξi times a non-universal constant c corresponding to

3We study this particular four-point function, because it is related to the two-point function of the σ spin
operators of the TCI model.

4In the context of the AT-TFI model the ordered phases spontaneously break symmetry by building a superpo-
sition of states with momenta k= Γ = (0, 0) and k=M= (π,π). The dispersion relation of the quasi-particle thus
has minima around Γ and M which become effective light cones at the critical point. κ = 0 thus contains levels
with momenta Γ and M.
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JAT/J

FM (Baxter) [4x]

PM [1x]

µ [4x]

Ising2

Figure 2: Sketch of the phase diagram for the AT-TFI model, Eq. (2). Full lines de-
note continuous phase transitions, dashed lines (weakly) first order transitions. The
histograms sketch the typical sublattice magnetization histograms P(mA, mB) for the
corresponding phases and at the phase transitions. The magenta point denotes the
Ising2 critical point, XY denotes criticality in the 3D XY/O(2) universality class. The
question marks indicate regions we have not investigated in detail. The gray arrows
indicate the paths through the phase transitions shown in Fig. 3. The ground state
degeneracy of the phases is given by the numbers in square brackets.

the effective speed of light which depends on microscopic parameters, i.e. ∆i ×
p

N = c ξi . In
this paper, we do not compute the effective speed of light c. Therefore, we typically normalize
the CTESs by the first non-zero level to compare them among each other. To identify the
universality classes of critical points in the AT-TFI model, we compare the measured CTESs
along phase boundaries to already charted Wilson-Fisher CTESs [19]. This approach provides a
powerful complementary method to the standard identification scheme for universality classes
based on measuring critical exponents, as we will demonstrate in this paper.

3 Analysis of the AT-TFI model

We begin our discussion with a thorough analysis of the unconstrained AT-TFI model using
periodic boundary conditions. Using a combination of ED and QMC methods we obtain its
phase diagram and carefully analyze the transitions among the different phases. While this
analysis is interesting in itself, we will eventually also be able to infer many properties of the
original TCI model in Sec. 4, using the microscopic mapping and its constraints and boundary
conditions discussed above.

3.1 Phase diagram

The different phases appearing in the AT-TFI model can be uniquely distinguished by the sub-
lattice magnetization histogram P(mA, mB) [see Sec. 2.4]. We compute P(mA, mB) with ED on
clusters of a few ten spins and with QMC for clusters up to 32 x 32 spins. The so obtained
phase diagram of the AT-TFI model is sketched in Fig. 2 and discussed in the following.

In the special case JAT = 0, the properties of the AT-TFI model can be easily understood. The
two sublattices A, B of the square lattice decouple and Eq. (2) decomposes into two identical
copies of a ferromagnetic transverse field Ising (TFI) model, each on a single sublattice. For
small transverse fields h/J the TFI models exhibit ferromagnetic order, individually on both
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sublattices. The sublattice magnetization histogram therefore shows four peaks at the locations
mA,B = {(+m,+m), (−m,+m), (+m,−m), (−m,−m)}, where m> 0 denotes the magnetization
of the standard TFI model for this value of h/J [see Fig. 3(a)]. This state is often referred to as
the Baxter ferromagnet (FM) state in the literature on Ashkin-Teller models [33,34,44]. Note,
that this FM state contains not only states where all spins are parallel, but also ones, where the
spins on the different sublattices are antiparallel, in contrast to the standard Ising FM state. For
large h/J the two TFI models become disordered (paramagnetic, PM) and P(mA, mB) shows
a Gaussian peak centred around zero magnetization mA,B = 0. The phase transition happens
precisely at the critical point of the TFI model (h/J)0c ≈ 3.04438(2) [42].

We will now continue discussing the generic case JAT 6= 0, which couples the two sublat-
tices through a four-spin term. We find that both the FM and PM phases are stable against
such a perturbation and form extended phases in the phase diagram. The PM phase extends
throughout the entire considered JAT range. The exact position of the phase transition line
(h/J)c to the other phases, however, is modified by JAT.

For ferromagnetic four-spin interactions, JAT < 0, the FM phase is stable up to at least
JAT/J ≈ −1.3. We have not investigated the phase diagram further in this direction and
leave this for future studies. For antiferromagnetic JAT > 0, the FM phase is destabilized
at JAT/J ≈ 1, where a transition to another ordered phase, which we denote 〈µ〉 is found. In
the 〈µ〉-phase only one of the two sublattices is ferromagnetically ordered, while the magne-
tization of the other sublattice is zero. The histogram shows peaks at the distinct locations
mA,B = {(+m, 0), (−m, 0), (0,+m), (0,−m)} [see also Fig. 3(d), right plot]. The 〈µ〉 phase be-
comes unstable rather quickly when JAT is increased further and the AT-TFI model becomes
strongly frustrated. We then observe a large number of low-lying energy levels in the energy
spectrum in multiple different symmetry sectors [see also Fig. 6 below]. We leave an investi-
gation of this parameter regime for future studies.

3.2 Phase transitions

In the following, we will discuss in detail the different types of quantum phase transitions
that appear in the AT-TFI model. The precise locations of the phase boundaries are computed
through binder ratios of the sublattice order parameter using QMC [see Sec. 2.4]. In Fig. 3
we first show sublattice magnetization histograms from QMC for different cuts through phase
boundaries in the AT-TFI model in the considered parameter range. This data already allows
for a first qualitative analysis of the different types of phase transitions appearing in this model.

In the sublattice decoupled case, JAT = 0, the four peaks along the diagonal (FM) contin-
uously transform into a broader central peak (PM) when the transverse field h/J is increased
[see Fig. 3(a)]. This confirms our expectation that both sublattices individually, but simulta-
neously undergo a standard 2+1D Ising (Z2) quantum phase transition at the critical point
(h/J)0c . We label the critical point at JAT = 0 as Ising2, for reasons becoming clear later.

For negative JAT/J < 0 [see Fig. 3(b)], the FM peaks in the histogram do not transform
smoothly to a central peak. Rather, we observe a clear coexistence of the four peaks along the
diagonal with another peak in the center. This sign of phase coexistence of the FM and PM at
the phase transition is a strong indicator for a (weakly) first-order phase transition.

For positive JAT/J > 0 [see Fig. 3(c)], the histogram around the phase transition looks
again different. It smoothly transforms into a circle and becomes emergently rotational sym-
metric when the critical point is approached from within the ordered phase, while its radius is
continuously decreasing. This rotational O(2) symmetry is an emergent feature at criticality
since the Hamiltonian, Eq. (2), is not invariant under this continuous symmetry group, and
hints at an emergent XY/O(2) criticality [2, 45] for the phase transition between the FM and
the PM when JAT/J > 0. We corroborate this finding using the CTES below.
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JAT = 0, h = 3.01 JAT = 0, h = 3.038 JAT = 0, h = 3.064 JAT = −1.25, h = 4.164 JAT = −1.25, h = 4.176 JAT = −1.25, h = 4.188

JAT = 0.625, h = 2.588 JAT = 0.625, h = 2.624 JAT = 0.625, h = 2.662 JAT = 0.85, h = 1.306 JAT = 0.85, h = 1.310 JAT = 0.85, h = 1.314

(a) (b)

(c) (d)

Figure 3: Sublattice magnetization histograms P(mA, mB) for paths through different
types of phase transitions. For each path, we fix JAT and vary h to cross the transi-
tion. The left and right panels show the histograms within the corresponding phases,
the central panels are very close to the phase transition point. For all plots L = 32
except for (b) where L = 16 is shown. (a) Ising2 transition from the FM phase to the
PM phase for JAT = 0. The central panel shows that the four peaks (FM) smoothly
transform into a single peak (PM), illustrating the continuous Ising2 nature of the
critical point. (b) (Weakly) first order transition between the FM and the PM phase
for JAT/J = −1.25. The central panel shows phase coexistence of the two phases
where the four peaks at the diagonal (FM) are equally present with the center peak
(PM). (c) XY/O(2) transition from the FM to the PM phase for JAT/J = 0.625. Around
the critical point (central panel) the histogram becomes rotationally symmetric illus-
trating the emergent O(2) symmetry of the critical point. (d) (Weakly) first order
transition between the FM and the 〈µ〉 phase for JAT/J = 0.85. The central panel
shows that the absolute magnetization 〈mS〉 is finite at the transition. The distinct
four plus four peaks characteristic for both phases are weak, but equally present.

Finally, let us consider the transition between the two ordered phases, FM and 〈µ〉 [see
Fig. 3(d)]. The sublattice magnetization histogram then retains a finite radius at the phase
transition and a coexistence of the four (FM) plus four (〈µ〉) peaks is observable. This co-
existence together with the non-vanishing (with system size) values of the order parameters
(proportional to the radius of the histogram) strongly indicates a (weakly) first-order transition
between the ordered phases.

After this informative first characterization of the phase transitions we will, in the follow-
ing, analyze those in more detail. To characterize the critical properties of the continuous
quantum phase transitions, we focus on the novel approach of measuring the CTES with ED.
We complement our results with the more traditional approach of estimating critical exponents
from QMC simulations.

3.2.1 Ising2

First, let us again consider the illustrative case JAT = 0, where the two sublattices of the AT-TFI
model decouple. As we have discussed, tuning the parameter h/J drives the AT-TFI model
through a quantum critical point, where both sublattices, individually but simultaneously, un-
dergo a transition in the Ising universality class, i.e. the full system undergoes a Ising2 transi-
tion. We choose the label Ising2 because the CTES is sensitive to the presence of two copies of
the Ising critical point, as we will discuss below.

We measure the CTES for the Ising2 transition by tuning JAT = 0 and computing the low-
energy spectrum for finite systems with ED. We extrapolate the individual energy levels linearly
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Figure 4: CTES for the Ising2 transition at JAT = 0 for κ = 0 levels only. The CTES
is normalized such that the first gap is set to unity. Circles (triangles) denote the
momentum sectors k = Γ = (0, 0) (k = M = (π,π)), while filled (open) symbols
indicate levels even (odd) under global spin inversion symmetry S. (a) Ising2 CTES
compared to the already charted Ising CTES [17]. Each combination of two levels
of the Ising CTES gives a level in the Ising2 CTES, where the gap is the sum of the
gaps in the Ising CTES. The numbers denote the full multiplicities of the levels. (b)
Finite-size extrapolations of the scaled energy gaps ∆N

i ×
p

N of the AT-TFI model at
JAT = 0. We perform linear expansions of scaled finite-size energy gaps (symbols) in
1/N (black lines) to obtain the Ising2 CTES for N →∞.

in 1/N to the thermodynamic limit N →∞ to obtain the CTES, as shown in Fig. 4(b) [see
Sec. 2.4 and App. C for further details]. The (normalized) Ising2 CTES shown in Fig. 4(a)
is then given by these extrapolated values together with the quantum numbers and degen-
eracies of the corresponding eigenstates, and is a universal property of the universality class
corresponding to the critical point. Due to the microscopic sublattice decoupling, the Ising2

CTES can also be directly obtained from suitable combinations of the CTES of the standard
2+1D Ising transition [17]. That means, each combination of two levels in the Ising CTES
yields a level in the Ising2 CTES with the gap equal to the sum of the single Ising gaps. The
quantum numbers and degeneracies can also be inferred directly. We show a comparison be-
tween the Ising and Ising2 CTES in Fig. 4(a), confirming this analysis. Note that the Ising2

CTES contains two low-lying Z2 even, momentum Γ , levels above the vacuum (at rescaled en-
ergies 2 and ∼ 3.8), hinting at the fact that the Ising2 critical point is multicritical, i.e. requires
fine-tuning of two parameters to be reached. This is in strong contrast to the standard Ising
CTES which is not multicritical and only contains a single low-lying Γ even level (at rescaled
energy ∼ 3.8).

Complementarily we analyze the correlation length ξ across the Ising2 transition in a stan-
dard finite-size approach using QMC data. We find that the data is consistent with the 3D
Ising critical exponent νIsing = 0.629971(4) [46], as expected for the Ising2 universality class,
where the two sublattices decouple [see App. D].

The CTES and standard analysis (finite-size scaling of QMC data) thus agree on the iden-
tification of the Ising2 universality class for the phase transition at JAT = 0.

3.2.2 Generic FM – PM transition

In this section, we will show that the coupling between the two sublattices for the generic case
JAT 6= 0 will drastically alter the critical behavior. The multicritical Ising2 transition can only
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Figure 5: Evolution of the CTES from the Ising2 (JAT = 0) to emergent XY/O(2) crit-
icality (JAT/J > 0). As a comparison, we show the CTES for the standard XY/O(2)
theory at κ= 0 [see Ref. [19]]. The levels of the Ising2 transition recombine to emer-
gently match the energies and degeneracies (see legend) of the standard XY/O(2)
critical spectrum as indicated by the arrows and boxes, while becoming strongly dif-
ferent from the Ising2 critical spectrum. Even (odd) denote si = 1 (−1) levels under
global spin-inversion symmetry S and are shown with full (empty) symbols for the
AT-TFI model.

be reached in the fine-tuned case of decoupled sublattices, JAT = 0.
As described above, for JAT/J < 0 we find coexistence of the FM and the PM phase at

the phase transition line in the sublattice magnetization histograms [see Fig. 3(b)]. Addition-
ally, the Binder cumulant shows a sharp negative peak around the phase transition point [not
shown], which is another important sign of a first order transition. Due to the limited sys-
tem sizes, we can clearly observe the phase coexistence only for negative JAT far enough from
JAT = 0. Closer to this fine-tuned case a slow crossover flow from the Ising2 critical point to the
(weakly) first-order transition appears. The crossover length scale becomes increasingly large
when JAT is tuned closer to the Ising2 transition and larger system sizes would be necessary
to directly observe phase coexistence. From field theoretical arguments, in particular the RG
flow analysis of the cubic anisotropy model [40,41] shortly summarized in Sec. 2.3, we expect
that the entire phase transition line between the FM and the PM is first order for ferromagnetic
JAT < 0.

For JAT/J > 0 yet another type of transition between the Baxter FM and PM phases is found.
Binder cumulant analysis and the investigation of the sublattice magnetization histograms
indicate a continuously vanishing (sublattice) magnetization with emergent rotational O(2)
symmetry [see Fig. 3(c)]. Thus, the phase transition is expected to be continuous, possibly
giving rise to a line of quantum critical points in the 3D XY/O(2) universality class. The
transition from the the 〈µ〉 to the PM phase, for even larger JAT/J , shows similar emergent
O(2) symmetry of the histograms. We, therefore, also expect XY criticality for the transition
between these phases.

Now, we want to highlight, that the emergence of XY critical behaviour can be uniquely
identified from a careful analysis of the CTES with systems of only a few ten sites, which is
one of the main results of this paper. In Fig. 5 we show the (normalized) CTES along the
critical line for JAT/J > 0, and for the established Ising2 case, JAT/J = 0, as a comparison.
For JAT/J = 0.625 (0.95) the transition is between the PM and the Baxter FM (〈µ〉) phase,
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respectively. The parameter JAT/J = 0.75 is very close to the point where the XY critical line
and the (weakly) first order line (between the FM and 〈µ〉 phases) meet [see also Fig. 2].
For JAT/J > 0 the spectrum changes considerably compared to the Ising2 CTES. In particular,
singly degenerate levels recombine and build new sets of two-fold (quasi-)degenerate or single
levels as indicated by the arrows in Fig. 5. This suggests that the nature of the critical point
is not Ising2 for JAT/J > 0 anymore. On the right hand side of Fig. 5 we additionally plot the
previously obtained [19], normalized CTES for the 2+1D XY/O(2) critical point in the κ = 0
sector. These levels can be labeled by a quantum number Sz and are non-degenerate when
Sz = 0 and doubly degenerate for Sz > 0. Comparing the to be classified CTESs for JAT > 0
with this XY CTES, we find a compelling agreement: not only do the quantitative values of the
gaps agree well, but, in particular, the (quasi-)degeneracies of the levels are the ones predicted
from the XY CTES [see e.g. the Sz = 2 level and the second Sz = 0 level]. Also, the even/odd
quantum numbers of the levels, regarding the global Z2 spin-inversion symmetry of the AT-TFI
model, agree with the even/odd Sz sectors of the XY/O(2) levels. Therefore, the CTES for the
FM – PM and the 〈µ〉 – PM transitions at JAT/J > 0 emergently matches the XY CTES, which
is a highly non-trivial feature, and strongly suggests that the continuous phase transition line
has an emergent O(2) symmetry and belongs to the 3D XY/O(2) universality class.

The CTES levels for JAT/J > 0 which correspond to the Sz = 2 XY/O(2) field [see green box
in Fig. 5] show a small splitting in energy: for JAT/J = 0.625 the Γ even level (blue circle) is
the lower energy level, while for JAT/J = 0.95 the M even level (yellow triangle) is the lower
one. The lower of these levels, together with the three further lower energy levels, i.e. the
ones corresponding to Sz = 0 and Sz = 1, form the four-fold quasi-degenerate ground state
manifold for the adjacent ordered FM and 〈µ〉 phases in the thermodynamic limit, respectively.
The small splitting of the Sz = 2 levels can now be interpreted as resulting from dangerously
irrelevant terms in the critical 3D XY theory. They do not influence critical properties but
eventually drive the PM into distinct symmetry-broken phases. In other words, we can read
off the sign of the (dangerously irrelevant) q = 4 monopole operator coupling constant at the
3D XY fixed point from the order of the two Sz = 2 XY levels in the CTES. The sign change for
this operator along the XY transition line in the AT-TFI model happens around JAT/J ≈ 0.75,
where the splitting of the Sz = 2 levels vanishes. Incidentally, this is precisely the location
where the (vertical) FM – 〈µ〉 transition line meets the (horizontal) 3D XY line in Fig. 2. We
will come back to this observation below in Sec. 3.2.3. Finally, we should mention that the
finite-size energy spectra along the phase boundary line evolve smoothly from the Ising2 case to
the XY case for a given system size. With the limited system sizes available, we need to choose
a sufficiently large value of JAT/J to overcome the crossover length scale and to observe the
clean characteristic XY CTES. So, in the immediate vicinity of the Ising2 transition we are not
in a position to detect the 3D XY behaviour using torus spectroscopy on clusters of only a few
ten sites, even though this critical behaviour is expected.

Additionally, we perform a more standard finite-size analysis of the correlation length ξ
across the phase transition, exemplarily for JAT/J = 0.625, which is consistent with the known
critical exponent for the 3D XY universality class, νXY = 0.6719(11) [46] [see App. D].

The different types of phase transitions between the PM and the FM obtained here around
JAT/J = 0 are also supported by a renormalization group analysis [40, 41] of the related cu-
bic anisotropy LGW model, Eq. (11) [see Sec. 2.3]. For a n = 2 component scalar field in
D = (2+ 1) space-time dimensions it features, apart from unstable Gaussian and cubic fixed
points, a stable O(n) symmetric fixed point, an unstable Ising fixed point (of n identical Ising
fields), and, outside the attraction regime of the fixed points, a flow towards first order be-
haviour [40, 41]. The stable O(n) fixed point corresponds to the extended O(2) critical line
observed for JAT/J > 0 in the AT-TFI model. The flow towards first order transitions for pa-
rameters outside the attraction regime of the fixed points corresponds to the line of first order
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Figure 6: Low-energy spectrum for the AT-TFI model as a function of JAT/J for a fixed
h/J = 1.2 on clusters of N = 16 (left panel) and N = 32 (right panel) spins. The
energy levels are characterized by their momentum Γ = (0,0) or M = (π,π) and their
quantum number even (si = 1, full symbols) or odd (si = −1, empty symbols) under
global spin inversion symmetry. The four lowest energy levels for small JAT/J ® 0.875
correspond to the prediction for the FM phase, while for JAT/J ≈ 0.875−1.5 the four
lowest levels indicate the 〈µ〉 phase (see text). For JAT/J ¦ 1.5 the AT-TFI model
becomes strongly frustrated and the 〈µ〉 phase is destabilized. At the weakly first
order transition JAT/J ® 0.875 the finite-size spectra approximate an O(2) rotor
spectrum for these system sizes (see text).

transitions between the PM and FM phases for JAT/J < 0. The unstable Ising fixed point cor-
responds to the Ising2 transition, which can, accordingly, only be reached by fine-tuning the
model parameters, i.e. adjusting JAT/J = 0 and h/J = (h/J)0c , simultaneously.

To sum up, we find good agreement of the critical properties between the FM and the
PM phases among all three complementary approaches: CTES, critical exponent analysis from
QMC, and LGW field theory.

3.2.3 FM – 〈µ〉 transition

The transition between the two ordered phases, FM and 〈µ〉, is found to be (weakly) first
order from an analysis of the sublattice magnetization histograms, as discussed above [see
also Fig. 3(d)].

Since the transition between these ordered phase is not continuous it does not feature a
well-defined CTES. Yet, both ordered phases can be identified from their low-energy spectrum.
From the ordering patterns revealed in the sublattice magnetization histograms (mA, mB) one
can predict a particular combination of quantum numbers of a set of low-energy eigenstates
in the symmetry-broken phases [47–49]. In the thermodynamic limit, these states become
exactly degenerate and span the ground state manifold. On finite-size systems these states
are expected to appear as the lowest-energy states and the finite energy gaps with reference
to the finite-size ground state energy scale to zero exponentially with increasing system size
N . For the Baxter FM phase one predicts the particular combination of the four states {2 ×
Γ even, Γ odd, M odd} where Γ = (0,0) and M = (π,π) denote the momentum k of the
eigenstate, and even/odd denotes the eigenvalue under the global spin-inversion symmetry
S. For the 〈µ〉 phase one expects another set of four states {Γ even, Γ odd, M even, M odd} as
lowest energy states. The larger Z2 × Z2 onsite symmetry group of the AT-TFI model, where
the spins on both sublattices can be individually inverted, was not resolved in our simulations,
but enforces the Γ odd and M odd levels to form a degenerate set. In Fig. 6 we show the
low-energy spectrum across the FM–〈µ〉 transition as a function of JAT/J for a fixed h/J = 1.2
for two different system sizes N = 16 (left panel) and N = 32 (right panel). For small JAT/J
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the four lowest energy states are precisely those predicted for the FM phase with a large gap to
the next excitations. For larger JAT/J ≈ 0.875−1.5 the second Γ even level is shifted to higher
energy while a M even level becomes a low-energy level such that the four lowest states are
precisely the ones predicted for the 〈µ〉 phase. The transition happens around JAT/J ≈ 0.875,
where the Γ even and M even levels cross. For JAT/J ¦ 1.5 we observe that many levels in
the energy spectrum start collapsing to the ground state rapidly, destroying the 〈µ〉 phase. A
further analysis of this strongly frustrated coupling regime is left for future studies.

Comparing the N = 16 and N = 32 systems in the FM and 〈µ〉 phases, one clearly observes
that the four expected ground state levels have approximately constant scaled energy gaps
∆N

i × N in the vicinity of the phase transition point, which means that the bare energy gaps
scale to zero approximately as 1/N . Further away from the phase transition, this collapse is
even faster and eventually becomes exponential. The scaled energy gaps to the higher levels,
on the other hand, scale upwards in ∆N

i × N such that their bare energy gaps are expected
to be non-zero in the thermodynamic limit N → ∞, so that indeed a four-fold degenerate
ground state manifold is built, as expected.

The energy spectrum at the phase transition point between the FM and 〈µ〉 phases is inter-
esting by itself. It resembles an O(2) rotor spectrum in the ordered (Goldstone) phase where all
levels above the unique ground state are two-fold degenerate and the gaps ∆N

i ∝ i2/N [50],
where we here, for simplicity, identify the two-fold (quasi-)degenerate levels with the same
value of i. In contrast to a critical point, the scaling of the energy gaps with system size here is
inversely proportional to N instead of L =

p
N . Such a rotor spectrum is characteristic for an

O(2)-symmetry broken Goldstone phase. The spectra shown in Fig. 6 obey these unique prop-
erties close to the phase transition point (indicated by a vertical dashed line at JAT/J ≈ 0.875)
where the low-energy gaps are found at the values ∆N

i × N ≈ {0, 1,4, 9, . . . }, and all levels
above the ground state are two-fold (quasi-)degenerate.

We want to emphasize, that we expect this rotor spectrum to be only approximate: At the
transition point the q = 4 monopole operator in an effective field theory description vanishes.
Away from the transition point this operator is non-zero and relevant and, depending on its
sign, stabilizes directly either the FM or the 〈µ〉 phases. At the transition, only the higher-order
q = 8 monopole operator remains non-zero [see also the eight peak structure of the sublattice
magnetization histogram in Fig. 3(d), center plot] and is relevant to eventually (as a function
of system size) destroy the Goldstone phase. Due to its high order, the breakdown of the
O(2) rotor spectrum will only be observed for larger system sizes. This somewhat surprising
structure at this (weakly) first order transition is comparable to the situation reported recently
in quantum dimer and loop models on the square lattice [51–53], where an approximate
Goldstone energy spectrum is also observed at a weakly first order transition. In contrast to
those works, the weakly first order line we find, terminates at one point in a genuine 3D XY
critical line, where the relevant q = 4 monopole operator of the Goldstone phase transmutes
to the dangerously irrelevant q = 4 monopole perturbation of the 3D XY fixed point. It is quite
rewarding that the study of the torus spectrum allows to identify these operators and scenarios
using relatively modest system sizes in ED.

3.3 Connection to classical 3D Ashkin-Teller model

The here obtained phase diagram for the 2+ 1D AT-TFI model is similar to parts of the phase
diagram of the classical 3D Ashkin-Teller (CAT) model [30–35, 54]. In particular, the phases
we obtain here are also found in the phase diagram of the CAT model in a similar arrangement.
Also, the pattern of (weakly) first order and continuous phase transitions are identical in both
models. Especially, the transition between the Baxter FM and the PM phases are also found to
be either (weakly) first order or continuous in the CAT model, depending on the sign of the
four-spin Ashkin-Teller coupling. However, the universality class of a line of continuous phase
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Z2 SB (spin) [2x SB]
[2x SB]

Figure 7: Sketch of the phase diagram for the TCI model, Eq. (1). Full lines de-
note continuous phase transitions, dashed lines (weakly) first order transitions. TO
denotes topological order, Z2 SB denotes states that spontaneously break a Z2 sym-
metry, while (spin) indicates that the spin-inversion symmetry is broken, and (lat-
tice) indicates that the sublattice exchange symmetry (part of the larger lattice space
symmetry group) is broken. The question marks indicate regions we have not inves-
tigated in detail. The ground state degeneracy of the phases (on a torus) is given by
the numbers in square brackets, where “topo” (“SB”) indicates that the degeneracy
is of topological (symmetry-broken) nature.

transitions in the CAT model from the PM to the Baxter FM and the 〈σ〉 (corresponding to
the 〈µ〉 phase in our language) phases has been a long debated and outstanding issue in the
CAT model [31–35], where remnants of tricitical behaviour, extremely large crossover regions
between continuous and first-order transitions [35], or even non-universal behaviour [33]
have been suggested.

Based on universality arguments, we expect that the results obtained here for the AT-TFI
model also apply for the critical behaviour in the CAT model. Therefore, we propose, that the
transition from the PM to the Baxter FM and to the 〈σ〉 phases in the CAT model belong to the
3D XY universality class. Furthermore, we suggest that the critical point where all those three
phases meet is not of tricritical nature, as previously suggested [32, 33], but also belongs to
the 3D XY universality class. This point is still somewhat special, as it is the point along the
XY transition line where the coupling constant of the dangerously irrelevant q = 4 monopole
operator changes sign.

Eventually, the peculiar nature of the weakly first-order phase transition between the FM
and the 〈µ〉 phases might also be translated to the transition between the Baxter FM and the
〈σ〉 phases in the CAT model, explaining its weakly first order nature.

4 Analysis of the Toric Code Ising model

After we have provided the foundation with the extensive discussion of the topologically trivial,
unconstrained AT-TFI model in the previous section we will now discuss the properties of the
original TCI model, Eq. (1). We will particularly focus on the properties of the confinement-
deconfinement transition between the Z2 TO and the Z2 SB phases.
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4.1 Phase diagram

We show a sketch of the phase diagram for the TCI model in Fig. 7 together with a classification
of the phases and types of phase transitions. The mapping between the TCI model and the AT-
TFI model makes it possible to directly infer the phase diagram and types of phase transitions
in the TCI model from the results of the unconstrained AT-TFI model:

The PM phase of the AT-TFI model maps to the Z2 TO phase in the TCI model where the
fractionalized anyonic excitations are deconfined [Z2 TO in Fig. 7]. The topological four-fold
degenerate ground state (in the thermodynamic limit) is built from the lowest energy levels in
all four different boundary condition sectors (periodic and antiperiodic around both directions
of the torus) of the AT-TFI model, which become quasi-degenerate in this phase.

The FM (Baxter) phase in the AT-TFI model maps to the well-known Ising ferromagnet in
the original σx

i operators which spontaneously breaks the global Z2 spin rotational symmetry
Rz =

∏

i σ
z
i [Z2 SB (spin) in Fig. 7]: The constraint of globally even spin-inversion symme-

try for the µi operators (symmetry operator S) in the mapping from the AT-TFI to the TCI
model deletes two of the four quasi-degenerate ground states of the (Baxter) FM phase, i.e.
the Γ odd and the M odd levels [see also Fig. 6]. The remaining two states, {2×Γ even (under
S)}, correspond to the two quasi-degenerate ground states of the standard Ising ferromagnet.
They transform trivially under the sublattice exchange symmetry SA↔B, but non-trivially un-
der the individual sublattice spin-inversion symmetries SA,B. Therefore, they are even and odd
states under the spin-inversion operator for theσi operators, Rz; their combination in the ther-
modynamic limit spontaneously breaks spin-inversion symmetry but not sublattice exchange
symmetries (i.e. space symmetry group). The additional anti-periodic boundary condition lev-
els have a gap which grows with linear system-size, ∆N

i ∝ L, such that they can be ignored
in the thermodynamic limit.

In the 〈µ〉 phase the constraint of globally even spin inversion for the µi operators also
removes the two odd (si = −1) states of the four quasi-degenerate ground states. The two re-
maining states {Γ even (under S), M even (under S)} now have different momentum quantum
numbers [see also Fig. 6]. This pair of levels transforms trivially under the sublattice spin-
inversion symmetries SA,B, but non-trivially under the sublattice exchange symmetry SA↔B
(note the non-zero momentum sector M). In the TCI model this corresponds to a state which
spontaneously breaks a Z2 subgroup of the lattice space symmetry group (in particular transla-
tions Tx ,y , mirror reflection Mx and rotation C4), but the σi spin-inversion symmetry Rz is, in
contrast to the Ising ferromagnet, unbroken [Z2 SB (lattice) in Fig. 7]. Again, the anti-periodic
boundary condition levels scale away with linear system size, ∆N

i ∝ L, and do not influence
the symmetry-broken ground state. A further discussion of the precise nature of this phase in
terms of the σi operators is left for future studies.

4.2 Spontaneous symmetry breaking enforced by symmetry fractionalization

The spontaneous breaking of spin rotation (Rz) and/or space group symmetries (Mx , C4, Tx ,y)
across the confinement transitions is in fact constrained by the symmetry properties of the TCI
model. More precisely, in the deconfined Z2 TO, the symmetry group Gs in Eq. (4) is imple-
mented projectively on the m particles, whose condensation drives the confinement transition.
The symmetry fractionalization class of the m particles dictates the spontaneously broken sym-
metry in the confined phase, as we elaborate below.

The Z2 topological order in the TCI model features 3 types of anyons (or superselection
sectors) in addition to local excitations (sector 1): electric charge e, magnetic vortex m and
fermion ε = e ×m. In the Je → +∞ limit of interest here, electric charges e and fermions ε
are both absent, leaving m the only low-energy excitations in the deconfined topological order.
The symmetry group Gs in Eq. (4) is implemented on the m particles projectively, manifested by
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a nontrivial symmetry fractionalization class [5,26–29] [ωm] ∈H2(Gs,Z2) of the m particles:

Um
g Um

h =ωm(g, h)Um
gh, ∀ g, h ∈ G, ωm(g, h) = ±1,

ωm(g, h)ωm(gh, k) =ωm(g, hk)ωm(h, k). (12)

where Um
g is the localized symmetry action [27–29] on a single m particle, and [ωm] belongs

to the 2nd group cohomology of Z2 coefficient ωm(g, h) = ±1.
In the deconfined phase of the TCI model, for m particles, the gauge-invariant nontrivial

elements ωm(g, h) 6= 1 have the following form:

Um
Rz Mx

Um
Rz Mx

=ωm(Rz Mx , Rz Mx) = −1; (13)

Um
Rz

Um
Tα
(Um

Rz
)−1(Um

Tα
)−1 =

ωm(Rz , Tα)
ωm(Tα, Rz)

= −1, α= x , y; (14)

Um
Rz

Um
C4
(Um

Rz
)−1(Um

C4
)−1 =

ωm(Rz , C4)
ωm(C4, Rz)

= −1. (15)

In other words, the local symmetry actions {Um
g |g ∈ Gs} form a projective representation of

the symmetry group Gs, characterized by a nontrivial central extension Gg of group Gs with a
Z2 center, as shown in Eq. (10). In fact, the above algebra between symmetry operations is in
one-to-one correspondence with the symmetry relations Eqs. (6)-(8) in the dual AT-TFI model.

Increasing JI/Jm and |JI2
|/Jm condenses m particles, driving the system into a confined

phase. In such an anyon condensation transition [55–58] enriched by symmetry Gs, there is a
general theorem [16] about the spontaneously broken symmetries across the continuous phase
transition. In particular, in a Gs-symmetric topological order (or mathematically a unitary
braided fusion category C [5]), if the symmetry group Gs does not permute different types
of anyons, the symmetry fractionalization class is classified by the 2nd group cohomology
H2(Gs,A) valued in Abelian anyons A [27–29], such as (Z2)

2 = {1, e, m,ε} in the case of the
Toric Code. If a continuous phase transition is driven by condensing the Abelian anyon a (i.e.
with condensable algebra [56] A= 1+ a+ a2 + · · · ), the following theorem holds [16]:

Theorem: The symmetry Gs is preserved across a continuous phase transition driven by con-
densing anyon a if and only if the fractionalization class [ωa(g, h)] ∈ H2(Gs,A) of anyon a is
trivial in the topological order C enriched by symmetry Gs.

In other words, if the condensed anyon a has a nontrivial symmetry fractionalization class,
the resulting phase must spontaneously break the symmetry Gs to a subgroup.

Applying the above theorem to our case of m-condensation transition out of the TO phase
in the TCI model, based on the nontrivial symmetry fractionalization class summarized in
Eqs. (13)-(15), it becomes clear that in the confined phase, either onsite spin rotational sym-
metry Rz or the crystal symmetry p4gm (generated by Mx , Tx ,y , C4) must be spontaneously
broken. Translating into the language of the dual AT-TFI model: since the global Ising sym-
metry S must be broken across the phase transition, it is impossible to satisfy the algebra
Eqs. (6)-(8) if both the sublattice symmetry SA (or SB) and crystal symmetry p4gm are pre-
served. As a result, there are two possible fates for the confined phase:

(1) Preserving the symmetry Rz [SA(B) on one sublattice in the dual model], but sponta-
neously breaking the spatial symmetry Gs = p4gm, realized in the Z2 SB (lattice) phase of the
TCI model [〈µ〉 phase in the dual model];

(2) Preserving the spatial symmetry p4gm, but spontaneously breaking the Rz spin inver-
sion symmetry [SA,B symmetry on both sublattices in the dual model], realized in the Z2 SB
(spin) phase of the TCI model [Baxter FM phase in the dual model].

Clearly, the spontaneous SB patterns enforced by symmetry fractionalization in the Toric
Code is in full agreement with the phase diagrams of the TCI and AT-TFI models computed in
this paper [see Fig. 7 and Fig. 2].
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4.3 Phase transitions

The fractionalized excitations in the Z2 TO phase undergo the corresponding conventional
transitions observed for the AT-TFI model – i.e. first order, Ising2, and XY – when they con-
dense and become confined by the increased loop tension through the Ising interactions in the
symmetry broken phases. The critical theories are then the starred versions of the classical the-
ories where the condensing particles are not fractionalized [4,17,18]. We thus observe a line
of first-order transitions between confined and deconfined phases, a fine-tuned 2+1D (Ising2)*
and, most interestingly, a line of emergent 2+1D XY* transitions [4,14,59] between the Z2 TO
phase and the Z2 SB phases. The first-order and XY* transitions are induced by the coupling
among magnetic vortices, i.e. the m quasiparticles, on the two sublattices of the dual lattice,
such that we expect those to be generic for a Z2 TO to Z2 SB phase transition, independent of
the microscopic model, while the (Ising2)* transition can only be reached by fine-tuning. The
transition between the two distinct SB phases does not feature any deconfined quasi-particles
and, thus, remains a standard (weakly) first order transition.

In the following, we will discuss the unconventional critical points in more detail. We will
compute their distinct CTESs and show that they feature unusually large critical exponents for
the spatial decay of the correlations, η∗.

4.3.1 (Ising2)* transition

Once more, let us first consider the special case of vanishing next-to-nearest neighbor Ising
interactions JI2

= 0. This corresponds to a vanishing 4-spin interaction JAT = 0 in the AT-TFI

model where the two sublattices decouple. The fractional m particles then undergo the Ising2

transition, such that we call this transition (Ising2)*. Although the (Ising2)* transition can
only be reached by fine-tuning discussing it is very illustrative since many of its properties can
be exactly inferred from the standard Ising transition.

We show the CTES for the (Ising2)* critical point in Fig. 8(a), together with the Ising2

CTES as a comparison. The (Ising2)* CTES is obtained from the Ising2 CTES by removing all
odd levels under the global spin-inversion symmetry S (empty circles), and including levels,
which correspond to the other topological ground state sectors in the Z2 TO phase. We com-
pute these levels from finite-size simulations of the AT-TFI model using anti-periodic boundary
conditions along one or both directions of the torus [denoted A/P, A/A in Fig. 8, respectively]
and extrapolate the results to the thermodynamic limit as done for the periodic levels. The
resulting (Ising2)* CTES is very characteristic and features low-lying levels in the topologically
non-trivial sectors. This is similar to what has been observed in the CTES for the Ising* transi-
tion between a Z2 TO and a paramagnetic, confined phase [17]. We expect this feature to be
characteristic for starred critical points where deconfined excitations condense. The gaps to
the non-trivial topological sectors A/P, A/A are, however, twice as large as in the Ising* CTES
(up to the accuracy of the extrapolations). This can again be understood by the decoupling of
the sublattices, such that levels in the Ising2 spectrum can be constructed from pairs of levels
in the standard Ising spectrum, which applies individually to each boundary condition sector.

Apart from the CTES, another very characteristic feature of confinement-deconfinement
transitions, where the confined phase is symmetry broken and has a finite order-parameter, is
an unusually large critical exponent η∗ � η [11–14] which describes the decay of the order
parameter correlations at criticality

C(r) = 〈σx
0σ

x
r 〉 ∝ r−D+2−η∗ (16)

Starred critical exponents denote the values for the confinement transition while the unstarred
critical exponents denote the values for the corresponding classical transition, and D = 3. The
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Figure 8: CTES for the (a) (Ising2)*, (b) XY* transitions for κ= 0. As a comparison,
we show the CTES for the conventional Ising2 and XY universality classes in the
κ = 0 sector. The labels A/P etc. denote the boundary conditions along the two
directions of the torus, where P (A) means periodic (antiperiodic). The boundary
conditions correspond to the four different topological sectors of the Z2 TO phase on
the torus. Full (empty) symbols denote levels that are even (odd) under the global
spin-inversion symmetry S of the µi operators. In (b) we also indicate the emergent
Sz sector of the spectral levels.

correlation length exponent, in contrast, is identical to the one from the corresponding classical
transition for the fractionalized field, ν∗ = ν [11–14].

In the fine-tuned (Ising2)* case discussed here, η∗ can be calculated explicitely from the
standard value of η for the Ising transition. Starting within the deconfined phase, applying
a single σx

i operator on the ground state creates two fractional, deconfined excitations on
the plaquettes sharing site i, i.e. magnetic vortices with Bp = −1, which are precisely the m
particles. These fractional excitations live, in the fine tuned JI2

= 0 case, on the two distinct
sublattices and can, thus, be treated independently. The correlation function C(r) therefore
exactly fractionalizes in terms of the µ operators on the dual lattice

C(r) = 〈σx
0σ

x
r 〉= 〈µ

x
0,Aµ

x
0,Bµ

x
r,Aµ

x
r,B〉

= 〈µx
0,Aµ

x
r,A〉〈µ

x
0,Bµ

x
r,B〉 . (17)

The last relation follows from the decoupling of the sublattices of the dual lattice when JI2
= 0

(i.e. JAT = 0). From Eq. (17), the critical exponent η∗ (σ operators) can be explicitely com-
puted from η (µ operators)

−D+ 2−η∗ = 2 (−D+ 2−η)
⇒ η∗ = D− 2+ 2η (18)

For the case discussed here, D = 3, η∗ = 1 + 2η, and with η ≈ 0.036 in the Ising case [46]
we compute the unusually large characteristic η∗ ≈ 1.072 for (Ising2)*. For this particular
transition we can thus understand the unusually large value for the critical exponent η∗ on
a microscopic level. This transition is therefore a pedagogically very interesting example for
confinement-deconfinement transitions in general.

In Fig. 9(a) we show results for the correlation function C(r = L/4) obtained in terms of
the AT-TFI model via Eq. (17) around the critical point for different system sizes of linear size
L, rescaled by a standard finite-size scaling ansatz. We use the literature value for ν for the
Ising transition [see also Fig. 14(a) in the Appendix] and then tune η∗ such that we observe a
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Figure 9: Collapse plots for correlation function C(L/4) across the (Ising2)* transi-
tion (a), and the XY* transition for JAT/J = 0.625 (b). The dashed, grey line shows a
polynomial fit of the data as a guide to the eye. We use the known critical exponents
ν for the Ising and XY transitions [46] in (a), (b), respectively. The critical exponents
η∗ are chosen such that the best collapse of C(L/4) is observed (minimal root-mean-
square distance of the data to the fit). The obtained values for η∗ are much larger
than the standard Ising or XY values due to the fractionalization of the quasiparticles.
See text for further details.

good collapse of C(L/4). As expected, the obtained η∗ = 1.01(3) is much larger than the value
for a standard Ising transition η≈ 0.036 due to the fractionalization of the quasi-particles and
is close to the predicted value η∗ ≈ 1.072.

4.3.2 XY* transition

The XY* transition also shows a very characteristic CTES. As above, we construct the XY* CTES
by removing all levels which are odd under the global spin-inversion symmetry from the XY
spectrum of the AT-TFI model and add the non-trivial topological levels, obtained from finite-
size extrapolations of the A/P and A/A boundary sectors in the AT-TFI model. The obtained
CTES is shown in Fig. 8(b) and is a universal fingerprint for the unconventional D = 2+1 XY*
universality class. The XY* CTES is qualitatively different from the Ising* and the (Ising2)*
CTESs such that they can be easily distinguished. However, the lowest levels are again built
from the four different topological sectors, supporting once more our assumption that this is
a general feature for starred transitions where fractional particles condense.

Also the XY* transition can be characterized by an unconventionally large critical exponent
η∗ for the scaling of the correlation function while the exponent for the scaling of the correla-
tion length, ν∗, remains the classical XY value ν∗ = ν. The large value for η∗ is, again, because
of the two-particle correlation function 〈σx

0σ
x
r 〉 becoming effectively a four-particle correla-

tion function of the fractionalized particles [14]. While it was possible to compute η∗ exactly
from η for the (Ising2)* transition, this is not possible for the XY* critical point because the
fractionalized particles are coupled among the two sublattices of the dual lattice. In Fig. 9(b)
we show a collapse plot of C(r = L/4) for lattices with different linear sizes L across the XY*
transition. As above, we choose the literature XY value for ν [46] [see also Fig. 14(b)] and
tune the value for η∗ to give the best collapse of the data. We obtain η∗ ≈ 1.30(5) which is
much larger than the classical value η≈ 0.04 [46], demonstrating the fractionalization of the
condensing particles. The observed value for η∗ is lower than the expected value for a com-
posite operator in the XY theory, η∗ ≈ 1.47 [4, 14, 60]. This discrepancy might be due to the
emergent nature of the XY* transition which could introduce stronger finite-size corrections
and make it more difficult to obtain the critical exponent precisely.
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5 Conclusion

We have investigated the properties of a confinement-deconfinement phase transition between
a Z2 TO phase and a Z2 SB phase using the prime example of the Toric Code perturbed by Ising
interactions on nearest and next-to-nearest neighbors. We have used the modern approach of
measuring the CTES using ED combined with QMC simulations to identify the type of phase
transitions between the different phases. We obtain three distinct types of transitions between
the topologically ordered and the Z2 SB phases: An (Ising2)* transition for vanishing second-
neighbor Ising interactions, a line of (weakly) first-order transitions, and most interestingly, a
line of emergent XY* transitions. The (Ising2)* transition can only be reached by fine-tuning,
therefore we expect that a generic transition between a Z2 TO and a Z2 SB phase is either
described by a (weakly) first-order transition or a XY* critical point, independent of the specific
microscopic model. It is fascinating that theZ2 symmetry breaking phase transition is not in the
Ising universality class as one would naively expect from a Ginzburg Landau symmetry analysis
based on the nature of the order parameter. Instead, as we explained in this work, the adjacent
Z2 topological ordered phase with its fractional excitations promotes the phase transition a
XY* universality class. We believe that the TCI model studied here is one of the simplest and
prototypical instances of a beyond LGW transition involving spontaneous symmetry breaking.

In doing so, we have mapped the perturbed Toric Code model to a transverse field Ising
model with additional Ashkin-Teller like four-spin interactions, which we used to perform
extensive numerical simulations. In the latter, topologically trivial, model we were able to
identify the emergent XY critical points by comparing the measured CTES to the known CTES
for XY universality. This is a highly non-trivial test and demonstrates the power of critical torus
energy spectroscopy, already on systems of only a few ten spins.

Furthermore, we have constructed the universal CTESs for the (Ising2)* and XY* criti-
cal points which feature a universal fingerprint for the corresponding universality classes in
D = 2+ 1 dimensions. These further extend the catalogue of already charted CTESs and can
be used as a reference to identify these universality classes in the future.

In a more standard approach, we have also estimated the critical exponents ν andη∗ for the
(Ising2)* and the XY* transitions. The latter obtains a strongly increased value compared to the
Ising and XY transitions because of the fractionalized particles which condense at the critical
points. In the case of the (Ising2)* transition, the value of η∗ can be computed directly from
the exponent η of the standard Ising transition, making this transition particularly interesting
in a pedagogical sense.

We have also computed the non-trivial symmetry fractionalization class of the condensing
anyons with respect to the global Z2 symmetry and the lattice space symmetry group. This
analysis implies that a condensed phase has to be symmetry-broken and, in particular, either
break the Z2 spin-inversion or the space group symmetry of the TCI model. Both of these
predicted symmetry breaking patterns are observed in the numerically obtained phase diagram
and can be identified using energy level spectroscopy.

Our findings for the topologically trivial, mapped model are in agreement with the phase
transitions one expects in a n= 2-component scalar field LGW theory with cubic anisotropy.
The same field theory also describes the original topological model, where the fields describe
the fractionalized particles and thus have to fulfill additional constraints, giving rise to the
starred critical points. This demonstrates, that many of our results are not specific to the
chosen microscopic model, but hold generally for transitions between Z2 TO to Z2 SB phases.

The results presented in this paper demonstrate that torus energy spectroscopy can be
readily applied to identify and characterize non-trivial critical behaviour. It will be fruitful
to study other models featuring quantum spin liquid phases to chart and inspect other possi-
ble deconfined quantum critical points, such as the more general O(N)* ones, or deconfined
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criticality in designer Hamiltonians [2], in future studies.
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A Mapping Toric Code models to transverse field Ising models

In this appendix, we demonstrate the exact mapping of the charge-free sector of the TCI model
to the AT-TFI model. A similar mapping has been used in previous studies of the Toric Code in
a magnetic field [25,36,37] and, in particular, by the authors of this paper in Ref. [17] (supple-
mental material), where the additional constraints of globally even spin-inversion symmetry
and different boundary condition sectors have been worked out in detail. The mapping from
the TCI to the AT-TFI model follows the same steps as shown in the supplemental material of
Ref. [17]. For the benefit of the readers, we will reproduce the details of the mapping in this
appendix, and apply it to the TCI model.

The Hamiltonian of the TCI model, Eq. (1), we want to consider here is given by

H =− Je

∑

s

As − Jm

∑

p

Bp

− JI

∑

〈i, j〉

σx
i σ

x
j − JI2

∑

〈〈i, j〉〉

σx
i σ

x
j − J ′I2

∑

〈〈i, j〉〉′
σx

i σ
x
j

(19)

with the star and plaquette operators given by As =
∏

i∈sσ
x
i and Bp =

∏

i∈pσ
z
i , respectively.

Here, the σi describe spins on the links of a square lattice, p denotes a plaquette and s a star
on this lattice [see Fig. 10]. We will only consider the case Je, Jm ≥ 0.

Let us first recall some properties of the unperturbed Toric Code [22].. All As and Bp

commute with each other such that the GS of H, for JI = JI2
= J ′I2

= 0, can be found by
setting As = 1 ∀s and Bp = 1 ∀p. On a torus, however, not all of the As and Bp are linearly
independent, as

∏

s

As = 1, and
∏

p

Bp = 1 . (20)

These constraints lead to a four-fould degenerate ground-state manifold on a torus. The
ground states can be distinguished by the eigenvalues ±1 of two Wilson loop operators

t1,2 =
∏

i∈C1,2

σx
i , (21)
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Figure 10: Toric Code on a torus. Black dots show the positions of the Toric Code
variables σx ,z

i , grey squares the dual lattice for the variables µx ,z
p . C1,2 depict an

(arbitrary) choice of the two incontractible loops winding around the torus, which
define the Wilson loop operators t1,2. The reference lines R1,2 are used to define the
reference positions for the operators µx

p,→(↑). See text for further details.

where the closed paths C1,2 wind around the torus along the two different non-contractible
loops, as illustrated in Fig. 10. The precise shape of the paths C1,2 is arbitrary up to local
deformations; they can be modified by adding any contractible closed loop of σx

i operators.
Such a contractible loop can be written as the product of the enclosed As operators. In the
ground-state manifold, all As have eigenvalues +1, therefore changing the paths C1,2 locally
does not alter the eigenvalues of the t1,2 operators.

To perform the mapping from the TCI to the AT-TFI model we first note, that the operators
As and t1,2 are still conserved for non-zero Ising interactions. So, we will only consider the
charge-free sector, As = 1 ∀s, and set Je� Jm such that the low-energy physics is free of charge
excitations (As = −1). On each site p of the dual lattice (center of plaquette p) we define the
new variables [36]

µz
p = Bp (22)

µx
p,→(↑) =

∏

i∈cp→(↑)

σx
i . (23)

To define the paths cp→(↑), we choose two incontractible reference paths R1,2 in x̂ ( ŷ) direction
along the lattice; cp→(↑) is then a straight path from R2(1) to the site p in x̂ ( ŷ)-direction along
the dual lattice [see Fig. 10]. It is straightforward to show that these new variables fulfill the
Pauli algebra for spin operators, {µx

p ,µz
p}= 0, (µx

p)
2 = 1, (µz

p)
2 = 1, and that

σx
i ( x̂) = µ

x
p(i),↑µ

x
p(i)− ŷ ,↑ (24)

σx
i ( ŷ) = µ

x
p(i),→µ

x
p(i)− x̂ ,→ (25)

where σx
i ( x̂( ŷ)) describes a Pauli operator on a link in x̂( ŷ)-direction on the lattice.

With these definitions, the TCI model can be mapped to the AT-TFI model

HAT =− h
∑

i

µz
i − J

∑

〈〈i, j〉〉

µx
i µ

x
j − J ′

∑

〈〈〈i, j〉〉〉

µx
i µ

x
j

+ JAT

∑

i

µx
i µ

x
i+x̂µ

x
i+ŷµ

x
i+x̂+ŷ (26)

on the dual lattice and As = 1 ∀s, as it was imposed. The couplings are given in terms of
the original couplings as h = Jm, J = 2JI , J ′ = J ′I2

and JAT = −2JI2
. Figure 11 depicts an
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Figure 11: Mapping of the Ising interactions from the TCI to the AT-TFI model. Solid
lines show the original interactions, dotted lines (in the same color) the mapped
interactions. The two sublattices of the dual square lattice are denoted by red
squares/circles. The resulting two-body Ising interactions do not couple the sub-
lattices, while the four-body interaction couples them.

illustration how the individual interactions in the TCI model are mapped to the interactions
in the AT-TFI model.

The resulting AT-TFI model Eq. (26) is invariant under global spin-inversion S =
∏

p µ
z
p.

From Eq. (22) and Eq. (20) it immediately follows that

S =
∏

p

Bp = 1 . (27)

The last equality is always satisfied on a torus and so the TCI model maps to an even AT-TFI
model, where only states which are even representations of S are allowed.

Let us eventually consider the mapping of the different ground state sectors characterized
by the eigenvalues of t1,2. Using Eq. (24) and Eq. (25) it follows that

t1 =
L−1
∏

p=0

µx
(p, j)µ

x
(p+1, j) = µ

x
(0, j)µ

x
(L, j) (28)

where the index (p, j) labels the position px̂ + j ŷ on the dual lattice and L is the linear extent
of the torus. Since µx

(L, j) is the periodic image of µx
(0, j) (along the x̂-direction of the torus) and

the eigenvalues of t1 are ±1, we need to consider both periodic and anti-periodic boundary
conditions for the µ operators on the dual lattice. An equivalent relation can be computed
for t2 along the ŷ-direction of the torus. The different ground state sectors of the Toric Code,
therefore, map onto the four combinations of periodic and anti-periodic boundary conditions
of the AT-TFI model for both directions around the torus.

Finally, we consider the Z2 symmetry operation Rz =
∏

i σ
z
i of the original Hamiltonian

Eq. (19), which is spontaneously broken in the Z2 spin symmetry-broken phase (see main
text). It is easy to see that this symmetry operation is the product of the Bp plaquette operators
on every second plaquette (in a staggered arrangement). Therefore, using Eq. (22), we obtain

Rz =
∏

p∈SL A

µz
p =

∏

p∈SL B

µz
p , (29)

where the product is over all plaquettes corresponding to either of the two sublattices A or B
of the dual lattice.
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Figure 12: The correlation function Ca(r) is taken between parallel pairs of neigh-
boring sites at a distance r. It can be either between horizonntal pairs (a = x̂ , in red)
or vertical pairs (a = ŷ , in green).

B Details about the quantum Monte Carlo simulations for the AT-
TFI model

The QMC simulations were obtained via discrete-time world-line Monte Carlo. The original
2D quantum model Eq. (2) (at J ′ = 0) is mapped onto a 3D classical model by trotterization.
This model is obtained by introducing M imaginary-time slices, so that

exp
�

−βHAT

�

≈

�

exp

�

βh
M

∑

i

µz
i

�

(30)

×exp

�

−
βJ
M

∑

i

µx
i µ

x
i+x̂+ŷ

�

1−ρµx
i+x̂µ

x
i+ŷ

�

��M

,

with ρ = JAT/J and β = 1/T the inverse temperature.
By introducing M identities (in the µx

i basis) , the µz
i part turns into an Ising coupling λ

in the imaginary-time dimension. The resulting model is a 3D classical model with variables
sα = ±1, on an L × L ×M lattice :

H3D =−λ
∑

α

sαsα+ẑ (31)

− J̃
∑

α

sαsα+x̂+ŷ

�

1−ρ sα+x̂sα+ŷ

�

,

where J̃ = J/M andλ= − log tanh(hβ/M)/(2β). The vector ẑ connects consecutive imaginary-
time slices of the effective model H3D.

Additionally to the standard local Metropolis update, we used a variation of the Wolff
cluster update [61]. Each cluster starts at a random site, and only grows on a single sublattice.
When growing a cluster on sublattice A (B), all spins on sublattice B (A) are frozen. Therefore,
the growth of the cluster is done on an effective pure Ising model where the couplings along
each diagonal of a plaquette is decorated by the values of the other two spins of the same
plaquette

Jeff
i,i+x̂+ŷ← [ J̃

�

1−ρ sα+x̂sα+ŷ

�

. (32)

Each update is then guaranteed to satisfy detailed balance (this has been checked against
simulations using only single spin-flip updates). If |ρ| < 1, the effective coupling is always
positive, ensuring the efficiency of the algorithm. For larger values of |ρ|, the algorithm may
lose its efficiency, but this was not observed in our computations in the considered parameter
regime.
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Figure 13: Finite-size extrapolations of the scaled energy gaps of the AT-TFI model
at JAT/J > 0. We perform linear expansions of the scaled finite-size energy gaps
∆N

i ×
p

N (symbols) in 1/N (grey lines) to obtain the corresponding CTESs for
N →∞ (i.e. 1/N = 0). The CTESs are also shown in Fig. 5 in the main text and
identified to belong to the XY/O(2) universality class.

A similar algorithm was recently introduced to study the 3D Ashkin-Teller model in Ref. [54].
We estimated the four-point correlation function between two parallel pairs of neighboring
sites (as described in Fig. 12):

Ca(r) =
1
N

∑

i

〈µx
i µ

x
i+â µ

x
i+rµ

x
i+r+â〉GS (33)

≡
1

N M

∑

α

〈sαsα+â sα+rsα+r+â〉3D, (34)

for a ∈ { x̂ , ŷ}. In order to increase statistics and enforce the symmetry of the observable, we
actually use the average over the correlations between horizontal and vertical pairs, and along
two directions x̂ and ŷ :

C(r) =
�

Cx(rx̂) + Cx(rŷ) + Cy(rx̂) + Cy(rŷ)
�

/4 (35)

The corresponding correlation length ξ is then estimated via

ξ=

√

√

√〈C(r) r2〉r
〈C(r)〉r

. (36)

This second moment estimator of the correlation length [62] is simpler to numerically estimate
in QMC than estimating ξ by fitting the exponential decay of C(r). It is also ignorant about
the chosen fitting window, which is often a subtle issue when ξ is estimated by fitting C(r).

Simulations were done at temperature T = 0.075J and the number of imaginary-time
slices M was chosen such that β/M = 0.05.

C Extrapolation of finite torus energy gaps on the XY transition
line

In this appendix we demonstrate how we obtain the CTES of the AT-TFI model on the critical
phase transition line from the energy spectrum on finite tori, as shown in Fig. 13 for three
different values of JAT.
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Figure 14: Collapse plots for the correlation length ξ across the Ising2 (a), and the
XY transition at JAT/J = 0.625 (b). The dashed, grey line shows a polynomial fit of
the data as a guide to the eye. The known critical exponent ν [46] for the Ising (a)
and XY transition (b) gives a good collapse of ξ.

First, for a given JAT ≥ 0 we tune the strength of the transverse field to the critical point
hc

�

JAT

�

, which was obtained previously from a Binder cumulant analysis using QMC sim-
ulations. For this set of parameters, we measure the low-energy spectrum on rotationally
symmetric finite size tori with N ≤ 36 spins. We compute the finite-size energy gaps to the
ground state∆N

i = EN
i − EN

0 , where EN
i denotes the absolute energy of the i-th energy level on

a cluster of N sites. We then multiply these gaps by the linear system size L =
p

N to get rid
of the dominant scaling of energy gaps at a critical point with dynamical exponent z = 1. The
eigenstates corresponding to the gaps ∆N

i additionally carry quantum numbers si = ±1 under
the global spin inversion symmetry S and an irreducible representation of the square lattice
space group [see different symbols in Fig. 13]. We use these quantum numbers to identify
matching energy levels among different system sizes.

To obtain the CTES we extrapolate the individual scaled finite-size energy levels∆N
i ×
p

N
linearly in 1/N to the thermodynamic limit N →∞. The so-obtained gaps ,∆i×

p
N , together

with the quantum numbers of the finite-size energy eigenstates define the CTES of the critical
point, as shown in Fig. 5 in the main text.

D Estimating the critical exponent ν in the AT-TFI model from QMC
simulations

Complementary to the CTES approach used to identify the universality class of the critical
points in the AT-TFI model, we apply a standard finite-size scaling approach [43] of the cor-
relation length ξ around the critical points using QMC data [see Fig. 14]. For a given value
of JAT ≥ 0 we plot the scaled correlation length ξ/L against the rescaled distance from the
critical point hc for different linear system sizes L. When the proper critical exponents for
the analyzed critical point are chosen to rescale the coordinate axes one expects the data to
collapse on a single curve for all (large enough) L around hc .

In Fig. 14(a) we show that the correlation length ξ at JAT = 0 collapses nicely when the
critical exponent for the 3D Ising universality class νIsing = 0.629971(4) [46] is used. This is in
complete agreement with our analysis in the main text, that the transition of the AT-TFI model
with JAT = 0 belongs to the 3D Ising2 universality class, where the two sublattices decouple
and concurrently undergo a 3D Ising transition, such that νIsing2 = νIsing.

Figure 14(b) shows the collapse of ξ at JAT/J = 0.625, representative for the XY criti-
cal line. We perform the collapse with the critical exponent for the 3D XY universality class
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νXY = 0.6719(11) [46]. The good data collapse is yet another demonstration that the crit-
ical line between the PM and the FM or the 〈µ〉 phases in the AT-TFI model belongs to the
3D XY universality class. It is worth to note, that performing the data analysis of ξ with the
Ising exponent νIsing visually gives a good collapse, too. This demonstrates the strength of the
CTES approach for the identification of critical points, since the CTES is qualitatively different
among these universality classes already for systems of only a few ten sites.
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