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Abstract

We derive the antipodal matching relations used to demonstrate the equivalence be-

tween soft graviton theorems and BMS charge conservation across spatial infinity. To

this end we provide a precise map between Bondi data at null infinity I and Beig–

Schmidt data at spatial infinity i0 in a context appropriate to the gravitational scat-

tering problem and celestial holography. In addition, we explicitly match the various

proposals of BMS charges at I found in the literature with the conserved charges at i0.
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1 Introduction

In an S-matrix approach where data on I + are related to the

ones on I −, the point i0 has presumably to play a role.

R. Beig , 1984.

Important insights into the theory of gravitational scattering in asymptotically flat space-

times have been recently accumulated as a result of Strominger’s key observation that con-

servation of the charges associated with the Bondi, van der Burg, Metzner and Sachs (BMS)

asymptotic symmetries [1–3] implies Weinberg’s leading soft graviton theorem [4,5]. Follow-

ing this finding, new asymptotic symmetries and soft theorems have been discovered [6–11]

and a new approach to flat space scattering amplitudes referred to as celestial holography

has been put forward [12–16].

These developments offer new promising prospects in the study of (quantum) gravity

beyond the perturbative regime. In order for the program of celestial holography to reach

its full potential, we should carefully set it up in a way which appropriately incorporate the
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nonlinear nature of General Relativity. Indeed generic asymptotically flat spacetimes sig-

nificantly differ from Minkowski space, especially with regards to their structure at spatial

infinity i0. Physical fields are generically not single-valued at i0, such that continuity cannot

be invoked in order to relate their behavior from past null infinity I − to future null infinity

I +. These considerations should play an important role in celestial holograhy. Indeed the

newly discovered connections between asymptotic symmetries in General Relativity and soft

graviton theorems crucially rely on i) the definition of a single BMS group acting simulta-

neously on both I + and I − via antipodal identifications of the symmetry generators and

asymptotic fields, and on ii) the conservation of BMS charges from I −
+ to I +

− across i0.

Validity of these two conditions in the nonlinear theory should be tightly connected with the

behavior of the gravitational field in a neighborhood of i0.

In the present work we wish to shed further light on the matching of BMS charges across

spatial infinity i0 and on the corresponding antipodal matching conditions in the context

relevant to the gravitational scattering problem. The class of spacetimes typically considered

in that context are a peeling version of those studied by Christodoulou and Klainerman

(CK), which constitute a set of asymptotically flat geometries non-linearly close to Minkowski

space1 [17]. Although this class of spacetimes satisfies conditions i) and ii) as defined above,

they certainly do not contain all configurations of interest. In particular, they do not account

for spacetimes with nonzero supertranslation charges at i0 [18]. Thus a nontrivial matching

of the charges requires one to consider a broader class of spacetime asymptotics. We will

however not investigate how and whether these asymptotics result from the evolution of

mathematically well-defined initial data sets. See the work of Mohamed and Valiente Kroon

along these lines in the case of spin-1 and spin-2 fields [19].

A key result of our approach is the mapping of scattering data at I to gravitational

data in a neighborhood of i0. Our treatment is entirely coordinate-based and relies on the

Bondi–Sachs description of the gravitational field near I [1,2,20] and on the Beig–Schmidt

description of the gravitational field near i0 [21,22]. It therefore differs from the recent work

of Prabhu and Shehzad [23, 24] who studied the matching of charges within the Ashtekar–

Hansen formalism set up to treat i0 and I simultaneously [25, 26]. Rather we proceed

by performing an asymptotic coordinate transformation between Bondi and Beig–Schmidt

gauges in order to obtain an explicit map relating the respective asymptotic data.

The descriptions of the gravitational field at I or i0 have distinctive features, and relating

them is therefore of high interest. On the one hand, spatial infinity is the locus where the

1The initial data sets considered by CK are characterised by a spherically symmetric mass parameter and

result in spacetimes which do not satisfy the peeling property.
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variational principle is well-defined, and charges are both integrable and conserved. The

most general phase space in Beig-Schmidt gauge was analysed by Compère and Dehouck

(CD) [27] (see also [28–30]). Their charges satisfy all the desirable properties2 and give a

faithful representation of the BMS algebra without central extension. Their treatment also

extends previous constructions [25, 31, 32, 34–36] in that they account for nonzero leading

electric and magnetic Weyl tensor Eab and Bab, and do not impose parity conditions on the

corresponding potentials σ and kab. On the other hand, charges computed at I are neither

integrable nor conserved, a fact closely related to the leakage of symplectic flux through I

in the form of gravitational radiation.

Inspired by the celestial holography literature, we assume the scattering data at I to

admit a polynomial expansion in negative powers of the radial and retarded time coordinates

r and u, and no radiation in the limit to i0. This is the notion of gravitational scattering we

consider in this work. Under these assumptions we find that the scattering data maps onto

a restricted subset of the CD phase space. In particular both σ and kab turn out to satisfy

specific parity conditions, although the well-posedness of Einstein’s equations near spatial

infinity does not require them a priori. We also demonstrate that the resulting magnetic

Weyl tensor Bab vanishes, a property previously assumed by Prabhu and Shehzad when

considering the matching of Lorentz charges [24]. As far as we know, Bab = 0 had only been

established for spacetimes that are axisymmetric or stationary [37]. We confirm that it is in

fact a feature of the gravitational scattering problem (as considered here).

The explicit map between Bondi and Beig–Schmidt data allows us to derive the antipodal

matching relations together with the conservation of the BMS charges across spatial infinity.

This in particular implies that only the diagonal subgroup of BMS(I +)× BMS(I −) is

a symmetry of the entire spacetime asymptotic structure, as it was originally assumed by

Strominger in his seminal work [4].

Various analyses of the requirements under which I + and I − and their symmetries can

be matched across spatial infinity can be found in the literature. Perhaps the first step in this

2Note that the renormalization procedure that CD propose involves a Mann-Marolf-type counterterm

[31,32]. This prescription is well-known to partially break bulk diffeomorphisms, in the sense that in d = 4 it

requires additional boundary conditions on the gravitational fields depending on the choice of the regulating

surfaces in order for the variational principle to be well-defined. With our boundary conditions, this issue

does not play any role. It is however not clear whether in principle it is possible to define alternative schemes

that fully preserve covariance at spatial infinity. Another long-known problematic feature of renormalization

at spatial infinity is the non-locality of counterterms, as first stressed in [33]. From a holographic point of

view, this may be due to either some form of incompleteness of the current perspectives or a fundamental

property of theories dual to flat spaces. It would be thus interesting to assess more in depth these two points.
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direction was taken by Herberthson and Ludvigsen in demonstrating the antipodal matching

of the Bondi mass aspect [38]. More recently Troessaert derived Strominger’s original an-

tipodal matching condition relating the supertranslation symmetry parameters of BMS(I +)

and BMS(I −) [4, 39]. In subsequent work Henneaux and Troessaert studied a set of parity

conditions in the Hamiltonian formulation of gravity that allows for a canonical realisation of

BMS symmetries at i0 and argued that such a phase space supports Strominger’s antipodal

matching condition [40–42]. The aforementioned analysis of Prabhu and Shezad is instead

framed within the Ashtekar–Hansen formalism and focuses on the matching of the charges

themselves [23, 24]. The present paper builds upon this literature by giving the complete

map of asymptotic data and charges between I +
− and I −

+ .

From our analysis it also follows that the various proposals of BMS charges in Bondi

gauge found in the literature [43–48] all match with the conserved charges at spatial infinity.

This is a consequence of the fact that the terms by which they differ vanish in the limit to

i0 under our working assumptions.

In addition, our work highlights the restrictions on the global spacetime asymptotic

structure resulting from a choice of data at I . This turns into a signpost indicating the

limits of validity of the standard scattering setup, as well as a pathway to envision extensions

towards a more general holographic framework. Indeed we have not restricted our analysis

to solutions that are close to Minkowski space in the sense of CK. For these reasons, we

believe that our approach is naturally suited to study the interplay between null and spatial

infinity and to explore phenomenologically relevant processes beyond perturbative quantum

gravity.

The paper is organized as follows. In section 2 we recall the features of asymptotically flat

gravity at null infinity I in Bondi gauge and introduce assumptions regarding the behavior

of the fields in their limit to I −
+ and I +

− . In section 3 we describe the Beig–Schmidt

framework used to deal with Einstein’s equations in a neighborhood of spatial infinity i0. In

section 4 we present the map from the Bondi gauge to the Beig–Schmidt gauge, whose details

are given in appendix B. In section 5 we use this map together with Einstein’s equations

to derive the antipodal matching relations of the Bondi mass aspect, angular momentum

aspect and shear tensor. In section 6 we provide the matching of BMS charges between null

and spatial infinity.

Conventions. Three-dimensional indices are denoted with Roman letters a, b, c, ..., hab is

the metric of the three-dimensional de Sitter spacetime H and Da is its compatible covariant

derivative. The metric on the celestial sphere S2 is denoted with γAB and∇A is the covariant
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derivative, capital Roman indices label the coordinates on this manifold. Covering the sphere

S2 with angular coordinates xA = (θ , ϕ), we define the antipodal map Υ(θ , ϕ) = (π−θ , ϕ+π).

A tensor T on S2 is of odd parity under Υ if Υ∗ T = −T . In terms of components of a vector

field for example, this means that Tϕ and Tθ are odd and even functions on the sphere,

respectively. Even parity under Υ is similarly defined. Covering H with global coordinates

xa = (τ , θ , ϕ), we also define the H-antipodal map ΥH(τ , θ , ϕ) = (−τ , π − θ , ϕ + π) and

analogous considerations on parity properties apply.

2 Gravity at null infinity

Our main objective is to derive relations between quantities defined at past null infinity I −

and at future null infinity I +, more specifically in their limit to spatial infinity i0. We will

describe the gravitational field at null infinity in Bondi gauge, where the metric takes the

form

ds2 = guu du
2 + 2 gur du dr + 2 guA du dx

A + gAB dx
A dxB , (2.1)

where r is a luminosity distance, u is a retarded time and xA are coordinates covering the

celestial sphere S2. The limits r → ∞ and r → ∞ , u → −∞ describe the approach to I +
+

and I +
− , respectively. A similar gauge can be adopted near I − in terms of an advanced time

coordinate v, where v → ∞ describes the approach to I −
+ . Following the conventions of

Strominger [4], the Bondi gauge at I − is formally obtained by applying the transformation

u 7→ −v to (2.1) and all subsequent equations. Assuming that the large-r expansion does

not contain logarithmic terms, Einstein’s equations are solved by

guu = −1 +
2m

r
+
φ

r2
+O(r−3) , (2.2a)

gur = −1 +
1

16r2
CABC

AB +O(r−3) , (2.2b)

guA =
1

2
∇BCAB +

2

3r

(
NA + u ∂Am−

3

32
∂A
(
CBCC

BC
))

+O(r−2) , (2.2c)

gAB = r2 γAB + r CAB +
1

4
γAB CCDC

CD +O(r−1) . (2.2d)

The quantities m,NA and CAB are called the Bondi mass aspect, the angular momentum

aspect and the shear tensor, respectively3. The shear tensor satisfies γABCAB = 0 as part of

3The definition of the angular momentum aspect varies in the literature. The conventions adopted by

Flanagan–Nichols [44] or by Barnich–Troessaert and Compère–Fiorucci–Ruzziconi [43, 45, 46] are related to
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the gauge conditions. Einstein’s equations also imply the evolution equations

∂um = −1

8
NABN

AB +
1

4
∇A∇BN

AB − 4π lim
r→∞

(r2 Tuu) , (2.3a)

∂uNA = −u ∂A∂um+
1

4
∂A
(
NBCC

BC
)
− 1

4
∇B

(
CBCNCA

)
+

1

2
CAB∇CN

BC (2.3b)

− 1

4
∇B

(
∇B∇CCAC −∇A∇CC

BC
)
− 8π lim

r→∞
(r2 TuA) ,

where Tµν is the matter stress tensor and NAB ≡ ∂uCAB is the News tensor.

To proceed in the analysis of the matching with spacelike infinity we assume that this

gauge is well-suited to describe the region I +
− in the limit u → −∞ and we specify the

following falloff conditions compatible with the evolution equations

m = m0 + u−1m1 + o(u−1) , (2.4a)

NA = N0
A + o(u0) , (2.4b)

CAB = C0
AB + u−1C1

AB + o(u−1) , (2.4c)

together with the falloff rate of the matter stress tensor near I +
− ,

lim
r→∞

r2 Tuu = o(u−2) , lim
r→∞

r2 TuA = o(u−1) . (2.5)

Such conditions corresponds to those typically underlying the proofs of the relation between

soft theorems and asymptotic symmetries. They are inspired by those resulting from the

well-posed Cauchy problem studied by Christodoulou and Klainerman (CK), although here

m0 is not restricted to be a constant and NAB falls off faster than the O(u−
3
2 ) obtained

by CK [17]. Refer to Section 7 for further important comments on such falloff behaviour.

For the rest of our arguments, we need to notice that the evolution equation (2.3a)-(2.3b)

directly imply

∇B
(
∇B∇CC0

AC −∇A∇CC0
BC

)
= 0 , (2.6)

the one used here, respectively by

NFN
A = NA + u ∂Am,

NBT
A = NA + u ∂Am−

3

32
∂A(CBCC

BC)− 1

4
CAB∇CC

BC .

The quantity φ is needed for completeness of the map between Bondi and Beig-Schmidt gauges at the order

we work. The only information we actually use is that is behaves like φ = uφ−1 + φ0 + o(u0). The reader

can find its explicit expression in appendix B.
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and

m1 =
1

4
∇A∇BC1

AB , (2.7a)

∂Am
1 =

1

4
∇B

(
∇B∇CC1

AC −∇A∇CC1
BC

)
. (2.7b)

The meaning of these constraints becomes manifest once we decompose C0
AB and C1

AB in

electric and magnetic parts,

Ci
AB = −2∇A∇BC

i + γAB∇2Ci + εC(A∇B)∇CΨi , i = 0, 1 , (2.8)

where Ci is the corresponding electric scalar potential and Ψi is the corresponding magnetic

pseudo-scalar potential. Note that the l = 0, 1 spherical harmonics in Ci and Ψi do not

contribute to (2.8). We can check that the two differential operators appearing in (2.6)-(2.7)

respectively project out the electric or magnetic modes,

∇A∇BCi
AB = −∇2(∇2 + 2)Ci , (2.9a)

∇B
(
∇B∇CCi

AC −∇A∇CCi
BC

)
= −εAB∇B∇2(∇2 + 2)Ψi . (2.9b)

Hence the constraint (2.6) requires ∇2(∇2 + 2)Ψ0 = 0 which eliminates spherical harmonics

with l > 1 in Ψ0. Since C1 and Ψ1 are necessarily independent, the constraints (2.7) can only

be satisfied provided m1 = ∇2(∇2 + 2)C1 = ∇2(∇2 + 2)Ψ1 = 0 which similarly eliminate all

spherical harmonics with l > 1 in C1 and Ψ1. In summary, we can write

C0
AB = −2∇A∇BC + γAB∇2C , m1 = C1

AB = 0 , (2.10)

where the electric potential C ≡ C0 is known as the supertranslation Goldstone mode. In

particular we conclude that the News tensor satisfies the stronger falloff NAB = o(u−2). This

stronger falloff is in fact required for finiteness of the BMS charge fluxes along I [47], and

enters the assumptions for deriving the subleading soft graviton theorem [49].

3 Gravity at spatial infinity

The connection between quantities at I −
+ and I +

− will involve the dynamics of the gravita-

tional field near spatial infinity i0. A convenient way to describe this dynamics is to adopt

the Beig–Schmidt gauge [21]

ds2 = N2 dρ2 +Hab (Na dρ+ dxa) (N b dρ+ dxb) , (3.1)
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where spatial infinity is approached in the limit ρ → ∞. As this limit is taken, the metric

behaves as

N = 1 +
σ

ρ
, (3.2a)

HabN
b = o(ρ−1) , (3.2b)

Hab = ρ2

(
hab + ρ−1fab +

log ρ

ρ2
iab + ρ−2jab + o(ρ−2)

)
. (3.2c)

We assume sufficient falloff of the matter stress tensor ensuring that it does not affect the

dynamics of the quantities introduced in (3.2),

Tρρ = o(ρ−4) , Tρa = o(ρ−3) , Tab = o(ρ−2) . (3.3)

Einstein equations at leading order imply

R[h]ab = 2hab . (3.4)

We take hab to be globally the three-dimensional de Sitter spaceH. We stick to the boundary

conditions in [27], where hab is not allowed to fluctuate. We treat hab as a genuine metric

on H and define the corresponding covariant derivative Da. All three-dimensional indices

a, b, c, ... are raised and lowered with this metric.

The leading non-vanishing terms of the electric and magnetic parts of the Weyl tensor

are respectively

Eab = − (DaDb + hab)σ , Bab =
1

2
ε cd
a Dckdb , (3.5)

where

kab ≡ fab + 2σhab . (3.6)

The fields σ and kab play the role of potentials for the two components of the Weyl tensor.

In order to allow for a well-posed action principle, the trace of kab must vanish as part of

the boundary conditions [27],

kaa = habkab = 0 . (3.7)

Given these definitions and boundary conditions, Einstein’s equations reduce to dynam-

ical equations on the three-dimensional de Sitter hyperboloid H, which can be solved order

by order in the ρ−1 expansion. The leading order fields σ, kab and iab satisfy homogeneous

partial differential equations, and act as sources for the subleading field jab. More specifically,

the homogeneous equations satisfied by the leading fields are given by

(D2 + 3)σ = 0 , (D2 − 3)kab = 0 , Dakab = 0 , (3.8)
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and

(D2 − 2)iab = 0 , iaa = Daiab = 0 . (3.9)

The inhomogeneous equation satisfied by the subleading field jab is given by(
D2 − 2

)
jab = 2iab + Sab , (3.10)

subject to the constraints

jaa = 12σ2 +DaσD
aσ +

1

4
kabkab + kabDaDbσ , (3.11a)

Dbjba =
1

2
kcb D

bkca +Da

(
8σ2 +DaσD

aσ − 1

8
kcdkcd + kcdDcDdσ

)
. (3.11b)

The constraints (3.11) determine the trace and divergence of jab in terms of the first order

data σ and kab. The remaining equation (3.10) should be understood as a proper hyperbolic

equation for the remaining undetermined degrees of freedom carried by jab
4. This evolution

equation is sourced by a term Sab quadratic in σ and kab,

Sab = NLab(σ, σ) + NLab(σ, k) + NLab(k, k) , (3.12)

which is the manifestation of the nonlinear nature of Einstein’s equations. We refer to

appendix C of [27] for explicit expression of (3.12) which is lengthy but not particularly

illuminating.

One important goal of this work is to connect fields near i0 in Beig–Schmidt gauge to

fields near I ± in Bondi gauge. For that purpose we now study the behavior of the fields

σ , kab and jab in the limits to infinite past and future on the hyperboloid H, which we can

expect to connect to past and future null infinity I ± respectively. It will not be required

to discuss iab further since we will find in section 4 that no such term is needed in order to

account for the Bondi data appropriate to the gravitational scattering problem. Covering H
with coordinates (τ, xA) and metric

ds2
H = − dτ 2 + cosh2 τ γAB dx

A dxB , (3.13)

the loci of interest correspond to the limits τ → ±∞. For simplicity we will only describe

the late-time limit and expand the fields σ , kab and jab in the small parameter e−τ , but a

similar expansion in the early-time limit obviously holds. Such expansions are completely

analogous to the usual Fefferman–Graham expansions in anti-de Sitter space. We give the

details of these computations in appendix A and collect the relevant results here.

4Compère and Dehouck made this point more manifest by rewriting (3.10) as hyperbolic equation for a

tracefree and divergencefree tensor Vab [27], building on the seminal work of Beig and Schmidt [21].
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Leading fields. The large-τ expansion of the electric potential σ and magnetic potential

kab are found to be

σ(τ, x) = eτ σ(−1) + e−τσ(1) + e−3ττ σ̃ + e−3τ σ(3) + ... , (3.14)

and

kττ = e−3ττ k̃ττ + e−3τ k(3)
ττ + ... , (3.15a)

kτA = e−ττ k̃τA + e−τ k
(1)
τA + ... , (3.15b)

kAB = eττ k̃AB + eτ k
(−1)
AB + ... . (3.15c)

The equations of motion (3.8) are quadratic differential equations, and as such they generi-

cally admit two independent sets of solutions with distinct asymptotic behaviors. The two

independent solutions for the electric potential σ are characterized respectively by σ(−1) and

σ(3), while all the other functions appearing in the τ -expansion (3.14) can be fully deter-

mined in terms of these data. A similar structure applies to the components of kab, where the

two sets of independent solutions are characterized by the first two functions on the sphere

appearing in each of the τ -expansions (3.15).

Subleading field. The analysis of the large-τ behavior of jab is significantly more delicate

due to the appearance of terms quadratic in σ and kab on the right-hand side of (3.10)-(3.11).

These terms are the manifestation of the nonlinear nature of Einstein’s equations, and their

careful treatment is precisely what will allow us to prove the antipodal matching condition

of the angular momentum aspect without imposing dramatic restrictions on the Bondi data.

We can summarise the situation in the following way. The solutions to (3.10)-(3.11) are

given by the superposition of a particular solution that depends on pre-determined source

terms such as Sab, and a combination of homogeneous solutions. The asymptotic behavior

of the homogeneous solutions is easily worked out,

jττ = e−2τj(2)
ττ + e−4τj(4)

ττ + ... , (3.16a)

jτA = j
(0)
τA + e−2τj

(2)
τA + ... , (3.16b)

jAB = e2τj
(−2)
AB + j

(0)
AB + ... , (3.16c)

while the behavior of the particular solution strongly depends on the form of σ and kab. A

key result of the analysis to be presented in section 4 is that the Bondi data maps onto a

subset of the allowed Beig–Schmidt data, in such a way that the large-τ behavior of the

particular solution is subleading compared to that of the homogeneous solutions. Thus
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(3.16) holds true for the full solution of Einstein’s equations provided such a solution can

be mapped onto the Bondi phase space. On the other hand, a generic solution of the Beig–

Schmidt equations (3.10)-(3.11) which is not connected to the Bondi phase space would see

its leading asymptotics (3.16) modified due to weaker falloffs of the source terms quadratic

in σ and kab. This clean separation between large-τ asymptotics of the homogeneous and

particular solutions is a property of the Bondi phase space, not one of the larger Beig–

Schmidt phase space. As we will further show in section 4, the angular momentum aspect

sits in j
(2)
τA and assessing that this term is fully governed by a homogeneous solution appears

crucial to the derivation of the corresponding antipodal matching condition in section 5.

4 From Bondi to Beig-Schmidt

At leading order in r and ρ respectively, the Bondi and Beig-Schmidt metrics are simply

that of Minkowski space written in two different coordinate systems. The coordinate trans-

formation between these two is explicitly given by

u = −ρ e−τ , (4.1a)

r = ρ cosh τ. (4.1b)

Obviously there exists an analogous coordinate transformation to the advanced Bondi gauge

describing the neighborhood of I −,

v = ρ eτ , (4.2a)

r = ρ cosh τ. (4.2b)

We want to find a map between data of asymptotically flat gravity at null and spatial

infinity. We will proceed by explicit coordinate transformation from the Bondi gauge to the

Beig–Schmidt gauge. However each of these two asymptotic expansions are valid in different

regions of spacetime and one can only hope to relate them where these expansions overlap.

This happens in the regime r → ∞ , u → −∞ (v → ∞) or equivalently in the limit ρ , τ →
∞ (τ → −∞), which can intuitively be thought of as the neighborhood of I +

− (I −
+ ). To be

more precise, we will start from Bondi metrics written as a double asymptotic expansion in

r � |u| � 1, which we will map to Beig–Schmidt metrics written as a double asymptotic

expansion in ρ� eτ � 1. Since
u

r
= O(e−2τ ) , (4.3)
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terms that are subleading in r but overleading in u will contribute at the same order in ρ

but to subleading order in e−τ . The explicit details of this transformation are relegated to

appendix B.

A first important observation is that the logarithmic term iab is not generated by this

mapping of the Bondi data onto the Beig–Schmidt data. For the electric potential, the map

yields

σ(−1) = σ(1) = σ̃ = 0 , σ(3) = 2m0 , (4.4)

while for the magnetic potential, we find

k̃τA = k̃AB = 0 , k
(1)
τA = 2∇BC0

AB , k
(−1)
AB =

1

2
C0
AB . (4.5)

Note that this is enough to also determine k̃ττ from the the constraints kaa = Dakab = 0, and

the only undetermined data is therefore k
(3)
ττ . We show in appendix C that (4.5) necessarily

implies that kab takes the form

kab = − (DaDb + hab) Φ , (D2 + 3) Φ = 0 , (4.6)

where Φ is the Goldstone mode of Spi-supertranslations [50]. Just like the electric potential,

Φ is fully characterised by its leading asymptotic data Φ(−1) and Φ(3). In appendix C we

confirm the identification Φ(−1) = C with the supertranslation mode (2.10) previously made

in [50]. The remaining degree of freedom Φ(3) then corresponds to the undetermined data

k
(3)
ττ . It is known since the work of Troessaert that Φ(3) is in fact pure gauge [39], and we can

therefore consider Φ(3) = k
(3)
ττ = 0 without loss of generality. Thus kab is fully determined by

the supertranslation mode C. Another direct consequence of the restricted form (4.6) is the

vanishing of the leading magnetic Weyl tensor (3.5),

Bab = 0 . (4.7)

This result has often been assumed in the literature [25, 26, 51], and played a crucial role

in the previous matching of Lorentz charges by Prabhu and Shehzad [24]. We just showed

that (4.7) actually follows from the Bondi phase space described in section 2 and considered

appropriate to the gravitational scattering problem.

Similarly, we find that the leading asymptotic data allowed by the homogeneous solutions

for the subleading field jab actually vanishes,

j(2)
ττ = j

(0)
τA = j

(−2)
AB = 0 , (4.8)
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while the subleading asymptotic data is given by

j(4)
ττ = 4∇AC

0
BC∇ACBC

0 − 4∇EC
0
AB∇ACEB

0 + 64φ0 , (4.9a)

j
(2)
τA = 4N0

A + C0
AB∇CC

BC
0 , (4.9b)

j
(0)
AB =

1

8
C0
CDC

CD
0 γAB . (4.9c)

At this point we can compute the trace and divergence of jab and verify that they do satisfy

the constraints (3.11) resulting from Einstein’s equations in Beig–Schmidt gauge. Up to the

available orders in τ , we indeed find perfect agreement between the direct computation from

(4.9) and the evaluation of (3.11) requiring only knowledge of the leading data (4.4)-(4.5),

namely

jaa = e−2τ C0
ABC

AB
0 +O(e−4τ ) , (4.10a)

Dbjbτ = −e−2τ C0
ABC

AB
0 +O(e−4τ ) , (4.10b)

DbjbA =
1

2
e−2τ ∂A

(
C0
BCC

BC
0

)
+O(e−4τ ) . (4.10c)

We can now come back to the discussion started at the end of section 3 regarding the

clean separation observed between homogeneous and particular solutions of jab. By explicit

coordinate transformation between Bondi and Beig–Schmidt gauges, we just obtained a

large-τ behavior for jab which coincides with that of the homogeneous solutions to (3.10)-

(3.11) and described in (3.16). Consistency of our findings with the Beig–Schmidt dynamics

therefore requires that the particular solution of jab determined by the source terms in (3.10)

be subleading in τ , a fact which we have verified in appendix A by direct evaluation of the

source terms. Thus the quantities (4.9) are entirely governed by homogeneous solutions to

(3.10)-(3.11), which will prove crucial to the derivation of the antipodal matching condition

of the angular momentum aspect NA.

The map between data at I −
+ in retarded Bondi gauge and data in the limit τ → −∞

in Beig–Schmidt gauge is worked out in a similar way. The resulting identifications have the

same functional form as above, with a few minus signs differences. The rule of thumb is that

any τ index yields a relative minus sign. In particular, we find

σ(τ, xA) = 2m0
∣∣
I −

+
e3τ +O(e5τ ) , (4.11a)

kAB(τ, xA) =
1

2
C0
AB

∣∣
I −

+
e−τ +O(eτ ) , (4.11b)

jτA(τ, xA) = −
(
4N0

A + C0
AB∇CC

BC
0

) ∣∣
I −

+
e2τ +O(e4τ ) . (4.11c)

The antipodal matching conditions, to be studied in the next section, give relations between

quantities defined in the two limits τ →∞ and τ → −∞.
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5 Antipodal matching relations

We are now ready to give a complete derivation of the antipodal matching conditions used

by Strominger and crucial in establishing an equivalence between soft graviton theorems

and Ward identities associated with BMS symmetries [4, 5, 52]. These antipodal matching

relations are

Υ∗m|I +
−

= m|I −
+
, (5.1a)

Υ∗CAB
∣∣
I +

−
= −CAB

∣∣
I −

+
, (5.1b)

Υ∗NA

∣∣
I +

−
= NA

∣∣
I −

+
. (5.1c)

In the previous section we mapped the leading Bondi data onto a subset of the leading

Beig–Schmidt data. A key observation is that the latter is fully governed by homogeneous

solutions of the Beig–Schmidt equations. In this section we show that the antipodal matching

relations follow from the parity properties of these homogeneous solutions under the H-

antipodal map ΥH.

As commented in the introduction, various works already exist on this topic [23,24,39,42].

As summarised in [42], in the Hamiltonian framework conditions have been given at spacelike

infinity in order to recover BMS symmetries and argue in favour of the antipodal matching

among past and future null infinities. Earlier, some steps towards the derivation of (5.1) were

taken by Troessaert [39] by mapping the Bondi-Sachs gauge to the Beig-Schmidt gauge at

leading order. After showing that the Lie algebras associated with global BMS symmetries

(I ) and Spi-symmetries (i0) are isomorphic, he argued that the charge density and symmetry

parameter associated with Spi-supertranslations both satisfy antipodal relations. However

his analysis was restricted to linearized gravity. Recently Prabhu [23] and Prabhu and She-

hzad [24] tackled the antipodal matching of both supertranslation and angular momentum

charges using the formalism of Ashtekar and Hansen [25], formally without restricting to the

linear theory. Specifically, a number of assumptions were required to achieve the angular

momentum matching, among them the vanishing of the leading magnetic Weyl tensor Bab

was assumed and the inhomogeneous terms were neglected in the subleading equation of mo-

tion defining the angular momentum data [24]. In this approach, furthermore, the matching

is somewhat indirect because the charges at I + and i0 are independent and linked through

the observation that the asymptotic limit of certain bulk spacetime quantity is the same as

the limit toward i0 (I +) of the charge defined on I + (i0).

The analysis that we present here completes these results in various important ways.

First, the connection we make between I and i0 goes beyond that of matching Lie algebras
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associated with asymptotic symmetries, since we have provided in section 4 a precise dictio-

nary between Bondi data and Beig–Schmidt data. This allows us to unambiguously identify

where the initial data of the shear CAB, mass aspect m and angular momentum aspect NA

sits in the Beig–Schmidt gauge, and to proceed with the study of their parity properties and

matching of the asymptotic charges at I and i0.

Such analysis does not require any further assumption in the bulk, except those made

on the structure near null infinity. For example, as seen in the previous section, the leading

magnetic Weyl tensor at spacelike infinity Bab vanishes as a consequence of these. In the

current section, the key point we will use in the derivation of the antipodal matching (5.1)

also follows from the structure at null infinity. The relations (5.1) in fact stem from parity

properties of the homogeneous solutions for σ, kab and jab under the H-antipodal map ΥH.

While these were crucially used in [23,24,39] as well, here we do not need to discard source

terms quadratic in σ and kab in the equations (3.10)-(3.11) determining jab. Rather, the

dictionary of section 4 between Bondi and Beig–Schmidt data shows that such source terms

do not affect the large-τ behavior of jab, and hence the angular momentum aspect NA is still

fully governed by homogeneous solutions of jab. The derivation of the antipodal relations

(5.1) based on parity properties of homogeneous solutions to the Beig–Schmidt equations

then proceeds unobstructed.

Harmonic and Legendre functions. The dependence on the sphere coordinates xA will

be treated by decomposition into scalar spherical harmonics Y m
l (xA), satisfying

∇2Y m
l = −l(l + 1)Y m

l , Υ∗ Y m
l = (−1)l Y m

l . (5.2)

Beig–Schmidt equations then generically reduce to Legendre equations of the form[
(1− s2)∂2

s − 2s∂s + l(l + 1)− n2

1− s2

]
F (s) = S(s) , s ≡ tanh τ ∈ (−1, 1) , (5.3)

with S(s) a generic source term. The homogeneous solutions are associated Legendre func-

tions on the cut [53],

P n
l (s) , Qn

l (s) , (n ≥ 0) , (5.4)

satisfying the parity properties

P n
l (−s) = (−1)l+nP n

l (s) , Qn
l (−s) = (−1)l+n+1Qn

l (s) . (5.5)

Of importance to us will be their asymptotic behavior in the limit s → ±1, or equivalently

in the limit τ → ±∞. For l ≥ n, we have

P n
l (s) = O

(
(1− s)n/2

)
= O(e−nτ ) , Qn

l (s) = O
(
(1− s)−n/2

)
= O(enτ ) , (5.6)

15



while solutions with l < n have a separate asymptotic behavior. For n = 1, we have

P 1
0 (s) , Q1

0(s) = O(1/
√

1− s) = O(eτ ) , (5.7)

while for n = 2, we have

P 2
0 (s) , P 2

1 (s) , Q2
0(s) , Q2

1(s) = O (1/(1− s)) = O(e2τ ) . (5.8)

We can now proceed to the derivation of the antipodal relations (5.1).

Mass aspect. The initial value of the Bondi mass aspect at I +
− is carried by

σ(3) = 2m
∣∣
I +

−
, (5.9)

where the electric potential σ solves the homogeneous equation[
−∂2

τ − 2 tanh τ ∂τ + cosh−2 τ ∇2 + 3
]
σ = 0 . (5.10)

We introduce the variable s = tanh τ ∈ (−1, 1) and decompose σ in spherical harmonics,

σ(s, xA) =
√

1− s2
∑
l,m

σlm(s)Y m
l (xA) . (5.11)

The coefficients then satisfy the Legendre differential equation[
(1− s2)∂2

s − 2s∂s + l(l + 1)− 4

1− s2

]
σlm(s) = 0 , (5.12)

whose solutions are the Legendre functions

P 2
l (s) , Q2

l (s) . (5.13)

Taking into account the prefactor
√

1− s2 in (5.11), we can confirm that independent so-

lutions behave either as O(eτ ) or O(e−3τ ) in agreement with (3.14). In section 4 we found

that the mode O(eτ ) is absent, by explicit mapping of the Bondi data onto the Beig-Schmidt

data. Therefore we conclude that the relevant general solution for the electric potential takes

the form

σ(s, xA) =
√

1− s2

∞∑
l=2

l∑
m=−l

alm P
2
l (s)Y m

l (xA) . (5.14)

In particular, it is parity-even under the H-antipodal map,

Υ∗H σ = σ , (5.15)

in agreement with earlier discussions on the existence of a regular null infinity [23,38,39,50].

Making use of (4.11), this also directly yields the antipodal relation for the Bondi mass

aspect,

Υ∗m|I +
−

= m|I −
+
. (5.16)
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Shear tensor. The initial value of the shear tensor at I +
− is encoded in the leading

nontrivial component of the magnetic potential,

2 k
(−1)
AB = CAB

∣∣
I +

−
= −2∇A∇BC + γAB∇2C . (5.17)

We know from appendix C that the relevant solutions for kab take the form

kab = − (DaDb + hab) Φ ,
(
D2 + 3

)
Φ = 0 , (5.18)

where the supertranslation mode C is identified with the leading large-τ behavior of Φ,

Φ(τ, xA) = eτ C(xA) +O(e−τ ) . (5.19)

Thus it is the scalar potential Φ that carries the relevant information. Its evolution equation

is identical to that of σ, although this time there is no restriction on its asymptotic behavior.

Given (5.19) we are interested in the set of solutions scaling like O(eτ ),

Φ(s, xA) =
√

1− s2

(∑
l=0,1

l∑
m=−l

alm P
2
l (s) +

∞∑
l=0

l∑
m=−l

blmQ
2
l (s)

)
Y m
l (xA) . (5.20)

This solution almost has definite odd parity under ΥH, which is however spoiled by the alm

with l = 0, 1. But these do not contribute to the shear (5.17) since the four lowest spherical

harmonics Y m
0 , Y m

1 are precisely annihilated by the differential operator −2∇A∇B + γAB∇2.

Moreover it can be seen from (C.6) that none of the data specifying kab is actually sensitive

to the alm, such that we can as well set them to zero. This implies that the kab satisfies the

parity property

Υ∗H kab = −kab . (5.21)

Strictly speaking this requires the solutions of Φ scaling like O(e−3τ ) to be absent, and

this can always be achieved without loss of generality since these solutions can be removed

by pure gauge transformations [39]. It is sometimes useful to express these relations in

terms of kττ , kτA and kAB viewed as time-dependent scalar, vector and tensor fields on S2,

respectively. These read

Υ∗ kττ (−τ) = −kττ (τ) , Υ∗ kτA(−τ) = kτA(τ) , Υ∗ kAB(−τ) = −kAB(τ) . (5.22)

Using (4.11), this yields in particular the antipodal relation of the shear tensor,

Υ∗CAB
∣∣
I +

−
= −CAB

∣∣
I −

+
. (5.23)
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Angular momentum aspect. The initial value of the angular momentum aspect at I +
−

is carried by the leading data of the field jab, namely

j
(2)
τA = 4NA + CAB∇CC

BC
∣∣
I +

−
, (5.24)

and the relevant homogeneous solutions satisfy[
−∂2

τ − 2 tanh τ ∂τ + cosh−2 τ (∇2 − 1)
]
jτA = 0 . (5.25)

We make use of Helmholtz decomposition

jτA = ∇AΨ1 + εAB∇BΨ2 , (5.26)

where Ψ1 is a scalar and Ψ2 is a pseudo-scalar under the antipodal map Υ, and further

decompose them in spherical harmonics,

Ψi(s, x
A) =

√
1− s2

∑
l,m

Ψi,lm(s)Y m
l (xA) , i = 1, 2 , (5.27)

such that we end up with the ordinary differential equations[
(1− s2)∂2

s − 2s∂s + l(l + 1)− 1

1− s2

]
Ψi,lm(s) = 0 , i = 1, 2 . (5.28)

The solutions with asymptotic behavior O(e−2τ ) are of the form

Ψi(s, x
A) =

√
1− s2

∞∑
l=1

l∑
m=−l

ai,lm P
1
l (s)Y m

l (xA) . (5.29)

These are odd under ΥH following the parity properties of spherical harmonics and Legendre

functions. Hence the corresponding homogeneous solution jτA, viewed as a time-dependent

vector field on the sphere S2, satisfies

Υ∗ jτA(−τ) = −jτA(τ) . (5.30)

Making use of (4.11), we thus obtain the antipodal relation of the angular momentum aspect,

Υ∗NA

∣∣
I +

−
= NA

∣∣
I −

+
. (5.31)
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6 Matching of BMS charges from I to i0

As advertised in the introduction we are able to explicitly match various proposals of global5

BMS charges in Bondi gauge listed in [48] to the charges that were directly constructed in

Beig–Schmidt gauge by Compère and Dehouck6 (CD) [27]. Conservation of the CD charges

then directly implies conservation of the corresponding BMS charges across i0.

BMS charges at I +
− . Global BMS charges are labelled by the quantities (T, Y A) defined

over the celestial sphere S2, where T is a function parametrising supertranslations while

Y A is a conformal Killing vector parametrising Lorentz rotations and boosts. We give the

following parametrisation of the various proposals for global BMS charges in Bondi gauge,

Q(α,β)[T, Y
A] =

1

8πG

∫
S2
dΩ
(

2T m+ Y AN̂A

)
, (6.1)

with

N̂A ≡ NA −
α

16
∂A(CBCC

BC)− α

4
CAB∇CC

BC + u
β

4
∇B

(
∇B∇CCAC −∇A∇CCBC

)
. (6.2)

This parametrisation slightly extends the one given in [48] in that we include β in order

to properly account for the recently constructed charges in [45–47]. Now we evaluate these

charges in the limit to I +
− (u → −∞) where we can make use of the expansions (2.4),

resulting in

lim
u→−∞

Q(α,β)[T ] =
1

4πG

∫
dΩT m0 , (6.3)

lim
u→−∞

Q(α,β)[Y
A] =

1

8πG

∫
dΩY AN0

A . (6.4)

We note that the parameters (α , β) do not actually contribute in this limit. In particular

the term controlled by α is proportional to∫
dΩY A

[
∂A(C0

BCC
BC
0 ) + 4C0

AB∇CC
BC
0

]
= 0 , (6.5)

5Charges associated with generalized BMS symmetries are also studied in [8, 9, 45–47, 49]. Generalized

BMS transformations require to consider generic metrics γAB over the celestial sphere S2 together with an

additional ‘conformal’ connection Nvac
AB also known as tracefree Geroch tensor [49, 54, 55]. When γAB is the

unit round sphere metric as it is the case here, one has Nvac
AB = 0.

6They also considered charges associated to so-called logarithmic translations [21, 56, 57]. However these

asymptotic symmetries generate nonzero σ(−1) such that they cannot be considered when the existence of a

regular I is assumed [38,50].
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which integrates to zero on account of the various identities satisfied by C0
AB and Y A.

We show below that the expressions (6.3)-(6.4) indeed coincide the conserved CD charges.

Since the latter are conserved, they can be evaluated on any spacelike cut of H with topology

of the sphere S2. We will restrict to constant-τ cuts, and subsequently take the limit τ →∞
such that we can easily write them in the terms of leading Bondi data m0, C0

AB and N0
A.

Supertranslation charges. The supertranslation charges are given by [29]

QCD[ω] =
cosh2 τ

4πG

∮
dΩ (ω∂τσ − σ∂τω) , (6.6)

where the symmetry parameter ω(xa) satisfies the constraint(
D2 + 3

)
ω = 0 , (6.7)

and therefore admits the large-τ expansion

ω(τ, xA) = eτ ω̄(xA) +O(e−τ ) . (6.8)

Under Spi-supertranslation, the magnetic potential kab and Spi-supertranslation mode Φ

defined in (4.6) transform as

δωkab = 2 (DaDb + hab)ω , δωΦ = −2ω . (6.9)

Using (C.3) and (C.8), we can further identify the ω̄ as the symmetry parameter of super-

translations at I ,

ω̄ = −1

2
T , δTC = T . (6.10)

By identical arguments as those used in section 5, we also infer the antipodal matching of

the supertranslation parameter,7

Υ∗ T
∣∣
I +

−
= −T

∣∣
I −

+
. (6.12)

This is the condition used by Strominger to single out the diagonal subgroup of BMS(I +)×
BMS(I −) as the symmetry group of the gravitational S-matrix [4]. We evaluate these

charges in the limit τ →∞ and use the dictionary of section 4 to express them in terms of

Bondi data,

QCD[ω] = − 1

4πG

∮
dΩ ω̄ σ(3) = − 1

2πG

∮
dΩ ω̄ m0 =

1

4πG

∮
dΩT m0 . (6.13)

This indeed agrees with (6.3).

7The conventions adopted here are such that the supertranslation mode C transforms in the same way

at I ±,

δTC = T
∣∣
I + , δTC = T

∣∣
I − , (6.11)

and therefore differ by a relative minus sign from those adopted by Strominger [4].

20



Lorentz charges. The Lorentz charges are given by [29]

QCD[ξa] =
cosh2 τ

8πG

∫
dΩ ξaδbτ

[
−jab +

1

2
iab +

1

2
kcakcb + habF

]
, (6.14)

with

F ≡ 8σ2 +DcσDcσ −
1

8
kcdkcd + kcdDcDdσ . (6.15)

The symmetry parameters ξa are the Killing vector fields of the hyperboloid H, and indeed

the isometry group of three-dimensional de Sitter space is isomorphic to the Lorentz group

SO(3,1). They satisfy

Daξb +Dbξa = 0 , (6.16)

which in the (τ, xA) coordinate system reads

0 = ∂τξ
τ , (6.17a)

0 = ∂τξA − ∂Aξτ − 2 tanh τ ξA , (6.17b)

0 = ∇AξB +∇BξA + 2 cosh τ sinh τ γAB ξ
τ . (6.17c)

The solutions to these equations are given by

ξτ = b(xA) , (6.18a)

ξA = ξ̃A + tanh τ ∂Ab , ∂τ ξ̃
A = 0 , (6.18b)

with the constraints

0 = ∇Aξ̃B +∇B ξ̃A , (6.19a)

0 = (∇A∇B +∇B∇A + 2γAB) b . (6.19b)

The first constraint implies that ξ̃A is a Killing vector field on the sphere S2 that parametrise

rotations. The second constraint implies that b is a linear combination of the three spher-

ical harmonics Y m
l=1 parametrising boosts. ξ̃A and b have even and odd parities under the

antipodal map Υ, respectively, such that ξa is even under the H-antipodal map ΥH. In the

limit τ →∞, we can define the vector fields on the sphere

Y A ≡ − lim
τ→∞

ξA = −(ξ̃A + ∂Ab) , b =
1

2
∇AY

A . (6.20)

Using the above relations, one finds that they satisfy the conformal Killing equation on the

sphere,

∇AYB +∇BYA = γAB∇CY
C . (6.21)
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Consistently, the group of conformal isometries of S2 is isomorphic to the Lorentz group

SO(3,1). The even parity of ξa under ΥH in particular implies the antipodal matching

relation

Υ∗ Y A
∣∣
I +

−
= Y A

∣∣
I −

+
. (6.22)

We can then evaluate the Lorentz charges (6.14) in the limit τ →∞ using the expansions

of section 3 and their expressions in terns of Bondi data given in section 4. One obtains

QCD[ξa] = − 1

32πG

∫
dΩ
[
Y A
(
−j(2)

τA + 2k
(−1)
AB k(1)B

τ

)
−∇AY

A k
(−1)
BC k(−1)BC

]
(6.23a)

=
1

8πG

∫
dΩY A

[
N0
A −

1

16
∂A(C0

BCC
BC
0 )− 1

4
C0
AB∇CC

BC
0

]
(6.23b)

=
1

8πG

∫
dΩY AN0

A , (6.23c)

where we made use of (6.5) in the last equality. This exactly coincides with (6.4).

Linearisation stability constraints. This is a good place to quickly address the in-

tegrability conditions presented in [22, 27], also recognised as linearisation stability con-

straints [58, 59]. These constraints need to be satisfied in order for the solution of the

linearised system to lift to a nonlinear solution of Einstein’s equations. The integrability

conditions relate two types of conserved charges,

Q̃[ξa] ≡ cosh2 τ

∫
S2
dΩ ξaδbτ κab

!
= −2 cosh2 τ

∫
S2
dΩ ξaδbτ iab , (6.24)

where the quantity κab is quadratic in σ and kab and is given explicitly in appendix B of [27].

Our map from Bondi to Beig–Schmidt produced a vanishing iab, and we should therefore

ensure that the conserved charge Q̃[ξa] on the left-hand side also vanishes. Taking the limit

τ →∞, we find

Q̃[ξa] = −1

4

∫
dΩ
[
Y A∂A(C0

BCC
BC
0 ) +∇AY

AC0
BCC

BC
0

]
= 0 . (6.25)

We conclude that the data which we are considering is that of a proper solution to Einstein’s

equations.

7 Discussion

In this work we derived the antipodal matching relations (5.1) used in proving the equivalence

between the (sub)leading soft graviton theorems and (extended) BMS charge conservation
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across spatial infinity [4,5,52]. We also explicitly demonstrated that the various proposals for

global BMS charges at I precisely match the conserved charges at spatial infinity. To derive

these results we made a few assumptions in section 2 regarding the gravitational phase space

at I in Bondi gauge, in line with what is usually considered appropriate to the gravitational

scattering problem (at least within the celestial holography program). We then provided a

precise map between gravitational data in Bondi gauge and Beig–Schmidt gauge, allowing

us to address the dynamical evolution taking place between I −
+ and I +

− . The Bondi data

maps onto a restricted subset of the Beig–Schmidt data, yielding in particular a vanishing

leading magnetic Weyl tensor Bab at i0. This justifies to some extend the assumption made

by Prabhu and Shehzad who provided a different derivation of charge matching between i0

and I [24]. We also confirmed that the electric and magnetic potentials σ and kab satisfy

specific parity properties on the hyperboloid H (similar parity properties naturally arise in

the Hamiltonian framework [40–42]).

Several comments are in order along with a cursory overview of future directions.

General u-behavior at I . We made specific assumptions regarding the falloff rate of

the matter stress tensor (2.5) and other gravitational quantities (2.4) in the limit to I +
− .

While it has been recognised long ago that m0 should not be restricted to be spherically

symmetric – as opposed to what characterise CK spacetimes [17] – in order to not trivialize

BMS charges [23], the conditions on the asymptotic behaviour of the shear/news tensor are

much subtler.

We start from the assumption that the shear is expanded in a Taylor series in u−1. The

picture we present is in line with the minimal requirements for recovering the subleading

soft graviton theorem. The condition NAB = o(u−γ) is usually taken in order to guarantee

that the associated BMS fluxes are finite on all of I . Above γ = 1 for the leading soft

theorem [4], γ = 2 for the subleading soft theorem [49], and γ = 3 for the sub-subleading

soft theorem [60]. However, it is important to stress that our work does not exclude other

possibilities that have been given both in the context of mathematical general relativity and

soft theorems, as exemplified below.

For example, Christodoulou–Klainerman proof of the non-linear stability of Minkowski

space implies NAB = O(u−3/2) [17], while both different stability proofs [61,62] and the work

of Prabhu and Shezad result in less stringent falloff behaviours [23,24]. We can compare such

various proposal with our working hypotheses by noticing that the crucial argument given at

the end of Section 2 still sets to zero Cα
AB in CAB = C0

AB + u−αCα
AB + . . . for any α ∈ (0, 1).

Furthermore, it is clear from our map that Bondi data with non-integer α are mapped to

23



phase spaces at spacelike infinity that differ from the standard Beig-Schmidt phase space

because of necessarily non-integer powers of ρ and τ needed in the map.

Similarly, the vanishing of the O(u−1) term in the shear CAB can be contrasted with

the appearance of an analogous term in linearised gravity in conjunction with logarithmic

corrections to the subleading soft graviton theorem [63, 64]. According to (2.3b), this term

would yield a O(lnu) term in the angular momentum aspect, which is excluded in our non-

polyhomogeneous falloff conditions (2.4). It further appears that such logarithmic tails would

yield divergent Lorentz charges (6.4) in the limit to I +
− .

Connected to this, but not only tied to it, the assumption that the large u expansion is

polynomial both for CAB and the other metric functions that we consider, as well as for all

r-subleading terms of the metric, does not hold in general [65, 66]. While polyhomogeneous

asymptotic expansions in r are believed to be a generic feature of physically relevant asymp-

totically flat systems (of which CK spacetimes are an example) [67–69], although contrasting

results exist (see [70] and references therein), the polyhomogeneous behaviour in u is less

understood. The potential interconnection of the two sources of polyhomogeneity has been

briefly recognised in [65]. It is clear from the present work that more general Beig–Schmidt

data than those we have considered might result in such configurations at null infinity.

Further investigation of all these points are clearly desired. As a guiding principle, one

could hope to deal with the issue of flux divergences in the u-integrals not by imposing ad hoc

conditions, however well motivated, but by developing a suitable renormalization scheme.

This is currently missing.

Independently of the issue of u-renormalization, a typical question within mathematical

general relativity is that concerning the existence of physically relevant configurations that

satisfy given conditions on the asymptotic structure or, somewhat equivalently, the existence

of well-defined Cauchy data that evolve to a given asymptotic structure. The works on the

non-linear stability of Minkowski spacetime are pivotal examples. Recently, Mohamed and

Valiente Kroon studied the interplay between initial data sets of spin-1 and spin-2 fields and

matching of the corresponding asymptotic charges across spatial infinity [19]. In some sense,

the philosophy of this latter work is reverse to ours, as they assess which subset of asymptotic

initial data gives rise to finite charges at the corners of I , while we prescribe conditions

at I such that charges are finite and reconstruct the corresponding data at spatial infinity,

which turns out to have restricted parity properties.

Sub-subleading antipodal matching. The antipodal matching relations provided in

(5.1) do not suffice to derive the sub-subleading soft graviton theorem [10, 11, 60, 71]. For
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this one needs an extra antipodal matching condition on one of the subleading Bondi fields

sitting at order O(r−1) in the angular components of the metric [60]. An obvious continuation

of our work would be to work out the dictionary between Bondi and Beig–Schmidt data to

lower orders in r and u such as to access the relevant field. It seems very likely that the extra

antipodal matching relation would only hold under the stronger assumption NAB = o(u−3)

used in [60].

Extensions of BMS and corresponding phase space. We restricted our attention to

the standard Bondi phase space in which the metric on the sphere S2 is the smooth unit

round sphere metric. This constraint should be relaxed in order to allow for extensions

of the BMS group at I that also include superrotations [6–11]. However it is not known

whether spatial infinity i0 also admits such extensions of the BMS group, and if it exists,

the corresponding extended phase space in Beig–Schmidt gauge is yet to be uncovered. This

is the reason we did not discuss the matching of superrotation charges between I and i0 in

section 6 ; none has been defined at i0 as of yet. Note however that the antipodal matching

relations (5.1) do imply superrotation charge conservation across i0 even without an explicit

matching to conserved charges at i0. We hope to report on extended BMS symmetries at

spatial infinity in the future.
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A Late-time expansions

We work out the behavior of the Beig–Schmidt fields σ , kab and jab in the asymptotic past

and future of the de Sitter hyperboloid H, corresponding to the limits τ → ±∞ in the global

coordinate system (τ, xA).
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Electric potential. The equation of motion (3.8) of σ takes the form(
−∂2

τ − 2 tanh τ ∂τ + cosh−2 τ ∇2 + 3
)
σ = 0 . (A.1)

The corresponding asymptotic solution is found to be

σ(τ, x) = eτ σ(−1) + e−τσ(1) + e−3ττ σ̃ + e−3τ σ(3) + ... , (A.2)

where σ(−1) and σ(3) are free functions that specify a solution to the quadratic differential

equation (A.1), while all other functions can be fully determined,

σ(1) = −
(
∇2 + 1

)
σ(−1) , σ̃ = ∇2

(
∇2 + 2

)
σ(−1) , ... (A.3)

Mathematical interlude. In order to streamline the analysis of kab and jab to come

momentarily, we consider the generic inhomogeneous differential equation for a symmetric

tensor tab,

(D2 − α) tab = Sab , α ∈ R , (A.4)

in the case where not only the source Sab but also the trace taa and divergence Datab are

non-dynamical and pre-determined quantities. This situation will apply to both kab and jab.

The trace and divergence of tab can be written

taa = −tττ + hABtAB, , (A.5a)

Dataτ = − (∂τ + 2 tanh τ) tττ − tanh τ hABtAB + hAB∇AtBτ , (A.5b)

DbtbA = − (∂τ + 2 tanh τ) tAτ + hBC∇BtCA , (A.5c)

or equivalently

hABtAB = tττ + taa , (A.6a)

hAB∇AtBτ = (∂τ + 3 tanh τ) tττ +Dbtbτ + tanh τ taa , (A.6b)

hBC∇BtCA = (∂τ + 2 tanh τ) tAτ +DbtbA . (A.6c)

These equations allow to eliminate the combinations on the left-hand side in terms of tτa

and the non-dynamical quantities taa and Datab. Introducing the differential operators

D1 ≡ −∂2
τ − 6 tanh τ ∂τ − 6 tanh2 τ + cosh−2 τ ∇2 , (A.7a)

D2 ≡ −∂2
τ − 2 tanh τ ∂τ + 2 tanh2 τ + cosh−2 τ (1 +∇2) , (A.7b)

D3 ≡ −∂2
τ + 2 tanh τ ∂τ + cosh−2 τ ∇2 + 2 , (A.7c)
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and making use of (A.6), the equations of motion (A.4) become

(D1 − α) tττ = Sττ + 4 tanh τ Dbtbτ + 2 tanh2 τ taa , (A.8a)

(D2 − α) tτA = SτA + 2 tanh τ ∂Atττ + 2 tanh τ DbtbA , (A.8b)

(D3 − α) tAB = SAB + 2 tanh τ (∇AtBτ +∇BtAτ ) . (A.8c)

They can be solved each one in turn. Indeed (A.8a) is a simple inhomogeneous ordinary

differential equation governing the dynamics of the component tττ , with all quantities on the

right-hand side being pre-determined functions. Once the solution for tττ has been found,

one can go on and solve (A.8b) in order to determine tτA, and then similarly solve (A.8c) in

order to determine tAB .

Magnetic potential. The magnetic potential kab satisfies the equation of motion (A.4)

with α = 3 and vanishing source term, trace and divergence. Solving (A.8) asymptotically

we find

kττ = e−3ττ k̃ττ + e−3τ k(3)
ττ + ... , (A.9a)

kτA = e−ττ k̃τA + e−τ k
(1)
τA + ... , (A.9b)

kAB = eττ k̃AB + eτ k
(−1)
AB + ... , (A.9c)

where all functions appearing are free data which serve to specify a particular solution, while

all subleading terms can be determined order by order. Note that these asymptotics are those

of the homogeneous solutions, while the dependencies on the terms on the right-hand side

of (A.8) appear at subleading order in these expansions.

Subleading field. The subleading field jab satisfies the equation of motion (A.4) with

α = 2 and pre-determined but nonzero source, trace and divergence given in (3.10)-(3.11).

Generic solutions involve superpositions of homogeneous solutions and particular solutions

depending on the pre-determined quantities appearing on the right-hand side of (A.8). The

asymptotic behavior of the homogeneous solutions is straightforward to determine,

jττ = e−2τj(2)
ττ + e−4τj(4)

ττ + ... , (A.10a)

jτA = j
(0)
τA + e−2τj

(2)
τA + ... , (A.10b)

jAB = e2τj
(−2)
AB + j

(0)
AB + ... . (A.10c)

On the other hand, the asymptotic behavior of the particular solutions strongly depends on

the asymptotic behavior of the first order fields σ and kab. Using the data determined from
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the Bondi phase space and given in section 4, we explicitly evaluate the right-hand side of

(A.8),

Sττ + 4 tanh τ Dbjbτ + 2 tanh2 τ jaa = O(e−6τ ) , (A.11a)

SτA + 2 tanh τ ∂Ajττ + 2 tanh τ DbjbA = O(e−4τ ) , (A.11b)

SAB + 2 tanh τ (∇AjBτ +∇BjAτ ) = O(e−2τ ) . (A.11c)

This means that the particular solutions of jab are subleading in τ compared to the homoge-

neous solutions. Thus (3.16) indeed describes the asymptotic behavior of a generic solution

which can be mapped to the Bondi phase space. Note that some of the subleading Bondi

data which we have not explicitly considered in this work would in principle contribute to

(A.11a) at order O(e−4τ ), but for consistency such terms must cancel out.

B Details of the map between Bondi and Beig–Schmidt

data

In this appendix we present the details of the doubly-asymptotic coordinate transformation

used to map the Bondi data of section 2 onto the Beig-Schmidt data described in section 3.

The resulting map is summarised in section 4.

As explained in the main text, the idea is to map the second order Bondi metric (2.1) to

the Beig-Schmidt gauge, to second order in 1/ρ and to leading order in τ . We consider an

appropriate ansatz for the transformation between Bondi coordinates (u, r, xA) and Beig–

Schmidt coordinates (ρ, τ, yA),

u = −ρ e−τ + α(τ, yA) +
A(τ, yA)

ρ
+ ... , (B.1a)

r = ρ cosh τ + β(τ, yA) +
B(τ, yA)

ρ
+ ... , (B.1b)

xA = yA +
pA(τ, yA)

ρ
+
qA(τ, yA)

ρ2
+ ... , (B.1c)

where α,A, κ,B, pA and qA are arbitrary functions on the hyperboloid that are to be de-

termined order by order in ρ by enforcing the Beig-Schmidt gauge. At leading order this

transformation coincides with (4.1), i.e. it relates Minkowski space written in retarded coor-

dinates and in hyperbolic foliation. Note also that although the sphere coordinates xA and

yA differ by terms which vanish in the limit ρ → ∞, they can be swapped at will once the
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mapping of fields at a given order in ρ has been determined. This allows us to write down

the dictionary in a way that is manifestly covariant on the (celestial) sphere S2.

The Beig–Schmidt gauge conditions to be imposed at the relevant order in ρ consist in

gρρ = 1 +
2σ

ρ
+
σ2

ρ2
+ o(ρ−2) , gρa = o(ρ−1) . (B.2)

At first order in ρ, this relates σ to the Bondi mass aspect according to

σ (τ, y) = 2m0e−3τ + ... , (B.3)

while to leading order in τ one finds for the coordinate transformation

α(τ, y) = 8m0

(
τ − 1

3

)
e−4τ + ... , (B.4a)

β(τ, y) = 8m0

(
τ − 1

3

)
e−2τ + ... , (B.4b)

pA (τ, y) = −2∇BC
AB
0 e−3τ + ... . (B.4c)

This entails

kττ =
8

3
m0 (24τ − 17) e−3τ + ... , (B.5a)

kτA = 2∇BC0
AB e

−τ + ... , (B.5b)

kAB =
1

2
C0
AB e

τ + ... . (B.5c)

In a similar way, the functions in the second order transformation are found to be

A(τ, y) =
(
∇EC

0
AB∇ACEB

0 −∇EC
0
AB∇ECAB

0 + 4φ
)
e−5τ + ... , (B.6a)

B(τ, y) = −1

8
C0
ABC

AB
0 e−τ + ... , (B.6b)

qA(τ, y) = 2γAB
(
−4

3
N0
B + CEF

0 ∇BC
0
EF − CEF

0 ∇EC
0
BF

)
e−4τ + ... . (B.6c)

From the resulting Beig-Schmidt metric we can read off the leading data of jab,

jττ = −4
(
∇EC

0
AB∇ACEB

0 −∇EC
0
AB∇ECAB

0 − 16φ0
)
e−4τ + ... , (B.7a)

jτA =
(
4N0

A + C0
AB∇CC

BC
0

)
e−2τ + ... , (B.7b)

jAB =
1

8
C0
EFC

EF
0 γAB +

(
−4

3
∇AN

0
B + 8

(
τ − 1

3

)
m0C0

AB + U0
AB

)
e−2τ + ... , (B.7c)
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where UAB is defined as the following tracefree tensor on the 2-sphere,

UAB = −(∇E∇FCEF )CAB −∇EC
EF∇FCAB +∇ECFA∇BC

EF

+ CEF∇E∇FCAB − CEF∇E∇ACFB − trace ,
(B.8)

and φ0 is the order O(u0) term in

φ =
1

2

(
R(2) −∇Ag(1)uA +∇2g(2)ur

)
≡ uφ−1 + φ0 + o(u0) . (B.9)

The coefficients g(1)uA and g(2)ur are the orders O(r−1) and O(r−2) of the corresponding

metric components (2.2c) and (2.2b), and R(2) = γABR(2)AB−CABR(1)AB + ḡAB(0) R(0)AB is the

order O(r−2) in the asymptotic expansion of the Ricci scalar associated with gAB (ḡAB(0) the

inverse of the order O(r0) in gAB). One can show that R(2) only depends on γAB and CAB

since g(0)AB does not have a CAB-independent trace-free part.

C Vanishing of the leading magnetic Weyl tensor

In this appendix we give the form of kab in case where the leading magnetic Weyl tensor

Bab vanishes, and we work out the corresponding large-τ expansion. This allows us to

demonstrate that the Beig–Schmidt data (4.5) obtained by explicit coordinate transformation

from Bondi gauge is that associated with a vanishing Bab. We also confirm the identification

between the BMS supertranslation Goldstone mode and the Spi-supertranslation Goldstone

mode that was previously made in [50].

The vanishing of the leading magnetic part of the Weyl tensor Bab defined in (3.5) is

equivalent to the condition

D[akb]c = 0 . (C.1)

On the three-dimensional hyperboloid H a symmetric traceless tensor satisfying the above

condition can be written in terms of a scalar potential Φ [25,72,73],

kab = − (DaDb + hab) Φ , (D2 + 3) Φ = 0 . (C.2)

The scalar field Φ is the Goldstone mode of Spi-supertranslations [50]. Proceeding exactly

as we did with the electric potential σ in appendix A, we find its large-τ expansion to be

Φ(τ, x) = eτ Φ(−1) + e−τΦ(1) + e−3ττ Φ̃ + e−3τ Φ(3) + ... , (C.3)

with

Φ(1) = −
(
∇2 + 1

)
Φ(−1) , Φ̃ = ∇2

(
∇2 + 2

)
Φ(−1) , ... (C.4)
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Now we express (C.2) in global coordinates (τ, xA),

kττ =
(
−∂2

τ + 1
)

Φ , (C.5a)

kτA = (−∂τ + tanh τ) ∂AΦ , (C.5b)

kAB =
(
γAB cosh2 τ (tanh τ ∂τ − 1)−∇A∇B

)
Φ , (C.5c)

and plug in the asymptotic expansion (C.3) of the scalar potential Φ. Doing so we find that

the leading order terms for the various components of kab are

k̃ττ = −8 Φ̃ = 8∇A∇BCΦ
AB , (C.6a)

k(3)
ττ = −8 Φ(3) , (C.6b)

k̃τA = 0 , (C.6c)

k
(1)
τA = −2 ∂A(Φ(−1) − Φ(1)) = 2∇BCΦ

AB , (C.6d)

k̃AB = 0 , (C.6e)

k
(−1)
AB = −∇A∇BΦ(−1) − 1

2
γAB (Φ(−1) + Φ(1)) =

1

2
CΦ
AB , (C.6f)

where we have suggestively defined

CΦ
AB ≡ −2∇A∇BΦ(−1) + γAB∇2Φ(−1) . (C.7)

We observe that (C.6) perfectly agree with (4.5) provided that we make the identification

Φ(−1) = C , (C.8)

which in particular also implies CΦ
AB = C0

AB. Building on the work of Troessaert who pointed

out that BMS supertranslations are isomorphic to Spi-supertranslations [39], (C.8) had been

recently argued to hold since both members transform in the same way [50]. Since we

now have the map (4.5) between the large-τ behavior of kab and the supertranslation mode

C, we are able to confirm the identification (C.8) without relying on their transformation

properties, while at the same time proving a consistency check of our findings. Finally, note

that it is known that the subleading mode Φ(3) can always be removed by a pure gauge

transformation [39], and we can therefore set it to zero without loss of generality.

The data k̃ττ , k
(3)
ττ , k̃τA , k

(1)
τA , k̃AB , k

(−1)
AB fully specifies a solution for kab. Since the data

(4.5) obtained in the main text can be written in the form (C.6), we conclude that the full

solution of kab also admits the form (C.2). This further implies the vanishing of the leading

magnetic Weyl tensor whenever the solution can be mapped onto the Bondi phase space,

Bab = 0 . (C.9)
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