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Abstract: In this set of five Lectures we present a basic toolbox to discuss the dynamics

of four dimensional supersymmetric quantum field theories. In particular we overview the

program of geometrically engineering the four dimensional supersymmetric models as com-

pactifications of six dimensional SCFTs. We discuss how strong coupling phenomena in four

dimensions, such as duality and emergence of symmetry, can be naturally imbedded in the

geometric constructions. The Lectures mostly review results which previously appeared in

the literature but also contain some unpublished derivations.
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1 Introduction

Quantum field theory is a framework to study the dynamics of a wide variety of quantum

systems. One of the interesting open problems in understanding the predictions of this frame-

work is the question of strong coupling. Strong coupling problems have numerous avatars.

For example, we can start from a free field theory and turn on relevant deformations flowing

to strong coupling in the infra-red (IR). We then can ask questions about the deep IR physics

which are hard to answer directly using the UV weakly coupled starting point.

Such issues become more tractable once we introduce enough supersymmetry. In 4d,

which will be the focus of these Lectures, enough means four supercharges, i.e. minimal

N = 1 supersymmetry. With this amount of supersymmetry one can use a wide variety of

techniques, ultimately related to holomorphy of various quantities [1], to deduce non pertur-

batively certain conclusions about strongly coupled phases of QFTs. Typically the power of

holomorphy gives us a variety of quantities we can count: most, if not all, of the exact results

one can obtain about supersymmetric QFTs can be related to counting problems.1

Dualities and emergence of symmetry

As an example of a strong coupling effect one can discuss is the notion of duality. A given

CFT A in the UV deformed by a relevant perturbation can flow in the IR to a theory (which

can be free, gapped, or interacting CFT) which is equivalent to a theory obtained by staring

with another CFT B and some relevant deformation. When an RG flow is involved we will

refer to such dualities as IR dualities. In case the deformations preserve conformality, that

is they are exactly marginal, we will refer to these effects as conformal dualities. See Figure

1. In the last 25 years, following in particular [2], numerous examples of such dualities have

been conjectured using a wide variety of exact supersymmetric techniques. The canonical

1The counting problem might be in the theory of our interest or maybe in a higher dimensional theory

reducing to it. For example the Sd partition functions in d dimensions can be related to various indices,

Sd × S1 partition functions, in d+ 1 dimensions.
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Figure 1. On the left we have a depiction of IR duality: two different UV QFTs flowing to the same

conformal manifold in the IR. In this paper we will refer to theories differing by exactly marginal

deformations as equivalent. On the right we have a depiction of the notion of UV duality: two

different QFTs in the IR obtainable as two different deformations of a single CFT in the UV. This

notions becomes very useful once one considers flows starting with a strongly coupled CFT leading to

weakly coupled QFTs in the IR. Examples of these include compactifications on a circle of 6d SCFTs.

example is the IR equivalence (in a certain range of parameters) of SU(N) SQCD with Nf

flavors and SU(Nf − N) SQCD with Nf flavors, gauge singlet fields and a superpotential.

The IR fixed point is fully determined (or labeled) by a choice of a pair, UV CFT and the

relevant deformation. The statement of the duality is that this labeling is not unique and

moreover might be not unique in an interesting way (e.g. the UV theories having different

gauge groups). A canonical example of a conformal duality is the statement that N = 4

SYM with gauge groups G and LG (the Langlands dual of G) reside at two cusps of the same

conformal manifold (see e.g. [3] for a detailed discussion).

Another interesting strong coupling effect is the emergence of symmetry in the IR. The

global symmetry of the IR fixed point can be larger than the one of the UV starting point

and the interesting question is whether this can be understood directly in the UV. A simple

example is SU(2) withNf flavors and symmetry SU(2Nf ) describing in the IR the SU(Nf−2)

SQCD with Nf flavors with only the SU(Nf )
2×U(1) symmetry visible in the UV of the latter,

see e.g. [4]. Other examples involve emergence of supersymmetry in the flow: e.g. using

Intriligator-Seiberg duality [5]2 the SU(2) N = 4 SYM can be obtained by starting from

SU(2)× SU(2) N = 1 SQCD with the charged matter consisting of three bi-fundamentals.3

An interesting question is thus to bundle all of the scattered instances of interesting strong

coupling dynamics into some uniform framework which will give some sort of an explanation

2See also [6] for recent discussion.
3Let us mention in passing here for the experts that this duality has a class S [7, 8] interpretation. One can

take two TN trinions and glue them together with N = 1 vector multiplets; flip the two maximal punctures;

close then one of the two punctures completely and the other one to a minimal puncture. This theory has the

same geometric data as the one of genus one with a single minimal puncture and N = 2 preserving flux, which

is N = 4 SYM with a decoupled hypermultiplet. The N = 2 case is then the Intriligator-Seiberg duality while

for higher N one has novel strongly coupled generalizations of this. In our Lectures we will review the notions

needed to understand the statements in this footnote.

– 2 –



IR

UV

QFT4d

CFT4dℳc

CFT6d

4d

6d
"g , ℱ

GF

RG

IR

UV

QFT4dℳc

QFTA

4d

6d

"2
A

QFTB

"2
B

IR

UV

QFT1

QFT3 = T4d

QFT2

ℳc

QFT0 = T6d

"2

5d1 5d2

IR

UV

QFT1

QFT3 = T4d

QFT2

ℳc

QFT0 = T6d

"2

IR

UV
QFT1

QFT3
D̃ − ΔD

D̃
QFT2

ℳc

QFT1

QFT2 QFT3

Figure 2. Depiction of a duality across dimensions. Here we give an example of a duality between

6d flow and a 4d flow. The 4d theory might be UV complete (asymptotically free) or UV completed

by the 6d theory.

or an understanding of when and how these phenomena occur. Yet another motivation for

such a framework can be found by asking a sort of an inverse question: given a strongly

coupled SCFT with given properties to find a weakly couple UV theory which flows to it.

The UV theory might exhibit less symmetry than the IR one, and in fact it often has to do

so. For example, listing all the 4d N = 2 Lagrangians leading to interacting SCFTs [9] one

just does not find candidate descriptions of many of 4d N = 2 SCFTs which can be obtained

using a variety of more abstract techniques, e.g. coming from string theory.

Dualities across dimensions

Typically one considers dualities between QFTs starting from two theories in the same number

of dimensions and ending in the same number of dimensions. However, in recent years,

following the seminal work of [8], it has been realized that much can be achieved, in particular

answering the questions posed above, if one discusses flows across dimensions. Let us first then

define the notion of an IR duality across dimensions. We can start from a higher dimensional

CFT, in this paper we will start in D̃ = 6, and deform the theory by placing it on a compact

geometry of dimension D, e.g. a Riemann surface with D = 2. Studying this setup at low

energy, i.e. much lower than the scale set by the compact geometry, we will arrive at an

effective D̃ −D dimensional QFT. An interesting question is whether there exists a D̃ −D

dimensional weakly coupled QFT flowing to the same effective theory in the IR. If such a

theory exists we will refer to the D̃ deformed theory and the D̃ − D one as being IR dual

across dimensions. See Figure 2.

Here we thus can also label the IR D̃−D dimensional QFT by a pair (CFT, deformation)

but this might involve a higher dimensional CFT and a geometric deformation. As we will be

mainly interested in 4d physics our starting points will be in 6d (and 5d) where interesting

SCFTs are all strongly coupled and do not have a simple field theoretic definition, see e.g.
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Figure 3. 4d dynamics from different decompositions of the compactification geometry.

[10]. As the starting point is strongly coupled, such geometric constructions often lead to

4d theories with properties which are hard or impossible to engineer directly in 4d insisting

on all the symmetries being manifest. This in particular led to many such theories being

referred to as non-Lagrangian. Across dimensional duals, if existing, thus would provide for

a Lagrangian definition of such SCFTs. An example of such a duality is a geometric, class S
[7, 8], construction as compactification on punctured spheres of a (2, 0) 6d SCFT of certain

N = 2 Argyres-Douglas SCFTs [11], and an alternative description of these SCFTs starting

with a N = 1 weakly coupled gauge theory in 4d [12].

As with in-dimension dualities some of the symmetries of the IR QFT might be explicit

in the UV in one description but emergent in the other. Systematically understanding such

across dimensional dualities will give us a handle over understanding of emergence of sym-

metry. In fact the appearance of geometry in the construction gives us a useful knob to start

and build a systematic framework to understand emergence of symmetry and duality.

4d dynamics from across dimensional dualities

The main idea behind deriving 4d dualities and emergence of symmetry phenomena from 6d

stems from the following factorization property of the constructions. One considers compact-

ifying a given 6d SCFT, T6d, on surface C such that the surface can be written as,

C = C1 ⊕ C2 ⊕ · · · ⊕ Cℓ . (1.1)

Here Ci are punctured surfaces and ⊕ is the geometric operation of gluing two surfaces along

a puncture. The compactification might be parametrized by additional geometric data, such

as flux for a global symmetry supported on the surface. The operation ⊕ then associates

to the combined surface a sum of these fluxes. We will call a set of surface Ci complete

if any surface C can be constructed using these. We then first seek for across dimensional

dualities associating a pair of 4d weakly coupled CFTs and deformations (TCi , ∆i) to (T6d, Ci).
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Assuming that such a dictionary between a complete set of surfaces Ci and 4d theories could

be found one can find a theory dual across dimensions to (T6d, C),

(TC ,∆) = (TC1 , ∆1)⊗ (TC2 , ∆2)⊗ · · · ⊗ (TCℓ , ∆ℓ) . (1.2)

Here ⊗ is a field theoretic operation in 4d. This can involve gauging symmetry associated

with punctures (in a way we will discuss in detail in the paper), adding fields, and turning

on various superpotentials couplings. The precise meaning of ⊗ will depend on the 6d SCFT

and various other choices. For example, the complete set of Ci might not be unique; one can

have different types of punctures (following from UV dualities exemplified in Figure 1), etc.

In the statement (1.2) we have several RG flows, and thus hidden in it there is an assumption

that these types of flows commute. Commutativity of flows is a non-trivial statement (see

e.g. [13] and discussion below). However, assuming it and the statement (1.2) one can arrive

at a large web of consistent results which supports the validity of the assumption.

The fact that such a construction exists is highly non-trivial: however as we will discuss

in this review in various examples it can be worked out explicitly and by now somewhat sys-

tematically. An example of such a construction is the derivation of all compactifications of the

A1 (2, 0) 6d SCFT using tri-fundamentals of SU(2) as across dimensional duals to compactifi-

cations on certain three-punctured spheres [8]. Given such a structure one can then generate

various examples of dualities and instances of IR emergence of symmetry systematically. For

example, if a given surface can be decomposed in more than one way,

C = C(1)
1 ⊕ C(1)

2 ⊕ · · · ⊕ C(1)
ℓ = C(2)

1 ⊕ C(2)
2 ⊕ · · · ⊕ C(2)

ℓ′ , (1.3)

we will obtain different field theoretic descriptions of (TC ,∆) which should be IR equivalent

by construction,

(TC ,∆) = (TC(1)
1

, ∆
(1)
1 )⊗ (TC(1)

2

, ∆
(1)
2 )⊗ · · · ⊗ (TC(1)

ℓ

, ∆
(1)
ℓ ) (1.4)

= (TC(2)
1

, ∆
(2)
1 )⊗ (TC(2)

2

, ∆
(2)
2 )⊗ · · · ⊗ (TC(2)

ℓ′
, ∆

(2)
ℓ′ ) .

Moreover the geometry C might preserve more symmetry than some of the Ci building blocks.

Then the corresponding theories (TCi , ∆i) would have less symmetry than (TC , ∆). However

combining them together using (1.2) should give in the IR the expected symmetry, if the

construction is correct. Building the necessary toolkit to discuss such correspondences and

discussing the systematics of these constructions will be the main goal of this review.

We will discuss two explicit instances of collections of across dimension dualities, one

starting with T6d which is described by pure SU(3) SYM on its tensor branch and another with

T6d being the rank one E-string. These two cases turn out to be rather simple and amenable

to a variety of ad hoc techniques, which we will discuss in detail. The systematic treatment of

compactifications starting with a large class of more general T6d can be done understanding

first compactifications on two punctured spheres. The problem of understanding reductions

on such surfaces can be directly related to understanding duality domain walls in 5d [14].

We will discuss this procedure using again E-string as an explicit example. Understanding

systematically compactifications on surfaces with more punctures can be done studying the

interplay between 6d flows and across dimension flows, which we will soon describe.
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Figure 4. A depiction of a 6d duality. Starting from two different theories in 6d and deforming them

by different geometries one can flow to equivalent theories in 4d.

6d dualities

Of course once we allow for across dimensional dualities we can consider starting and finishing

in different combinations of dimensions. There has been a lot of work for example on com-

pactifying 6d theories down to three dimensions and constructing 3d Lagrangians for these,

see e.g. [15]. However, there is another interesting phenomenon that we want to mention

here. One can start from two different 6d SCFTs, TA
6d and TB

6d, deform by placing them on

different geometries, CA and CB, and consider the resulting four dimensional theories. In cer-

tain cases the 4d theories might be IR equivalent and we thus can refer to the pairs (TA
6d, CA)

and (TB
6d, CB) as being 6d dual to each other. By now there are numerous examples of such

dualities, though there is no systematic understanding of these. It is likely that to gain such

an understanding one would need to exploit various string/M-theoretic constructions. For

example, various compactifications of (2, 0) theories on spheres with punctures leading to

N = 2 theories in 4d turn out to be equivalent to compactifications on tori of different (1, 0)

theories [16–18]; compactifications on certain punctured spheres of N5 branes probing A-type

singularity is 6d dual to compactifications on tori with flux of M5 branes probing D-type

singularity [19]. We will discuss yet another example of this phenomenon (Rank-one E-string

on genus two surface without flux is the same as minimal SU(3) 6d SCFT on a four punctured

sphere).

Interplay between flows in different dimensions

6d theories do not possess interesting supersymmetric relevant or marginal deformations [20].

However, given a 6d SCFT one can trigger an interesting flow by exploring the moduli space

of vacua, i.e. turning on vacuum expectation values for some operators. One then can

wonder how flows in six dimensions and across dimensions are interrelated. It turns out

that the answer to this question is rather interesting and understanding it gives an explicit

tool to derive compactifications on surfaces with more than two punctures. The basic idea

is depicted in Figure 5. Let us consider two QFTs in 6d related by a flow triggered by a

vev to some operator O6d, QFT1 and QFT2. Next we compactify QFT1 on some surface CA

– 6 –
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Figure 5. Commuting diagram of flows in 4d and in 6d triggered by vevs, and across dimensions

triggered by geometry.

with some value of flux for the 6d global symmetry. Usually one can find the 4d analogue,

O4d, of the operator O6d, the vev of which connects QFT1 and QFT2 in 6d. Turning on

a vev to O4d we flow then to a new QFT in 4d. A natural question is whether there is a

surface CB (and some value of flux) such that the same 4d QFT can be reached starting with

QFT2 in 6d. It turns out that the answer is positive but CB differs from CA by the number

of punctures: the difference being determined by the value of flux for symmetries under

which O6d is charged. Thus understanding say compactifications on two punctured spheres

for QFT1 we can systematically derive compactifications on spheres with higher number of

punctures for QFT2. We will discuss in detail this procedure for a sequence of 6d SCFTs

called (DN+3, DN+3) minimal conformal matter theories: (1, 0) SCFTs residing on a single

M5 brane probing DN+3 singularity in M-theory. Models with different values of N are

related by RG flows reducing the value of N . The simplest model with N = 1 turns out to

be the rank one E-string. In particular this will give us yet another derivation of the three

punctured spheres for the E-string theory.

Outline of the paper

The idea of these Lectures is to allow a reader familiar with the basics of supersymmetric

dynamics in 4d (e.g. at the level of first chapters of [21]) to familiarize themselves in detail,

and in a self contained way, with the techniques and results used to geometrically construct

4d dynamics. We tried to either explicitly review all the needed material, or to cite a paper

discussing manifestly and in detail the needed points. Although string/M/F-theoretic con-

siderations are very useful in understanding various aspects of our discussion, we restricted

to purely field theoretic exposition for the sake of the Lectures being self contained. These

Lectures are not intended to be an exhaustive review of the subject but rather a pedagogical

and self contained exposition of a particular slice of recent developments.

The paper is structured as follows. In section 2 we overview the basic techniques to

deal non-perturbatively with N = 1 supersymmetric QFTs in 4d. This involves in particular
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the review of exact tools to extract information about the IR fixed point in 4d flows. In

section 3 we discuss in detail examples of IR dualities, conformal dualities, and IR emergence

of symmetry. We discuss several test cases to illustrate the applications of the techniques

of section 2. Parts of Lecture II are mainly based on results reported in [22, 23]. Next

in section 4 we analyze in full detail the compactification of 6d minimal SU(3) SCFT to

4d. In particular we will discuss the 6d SCFT itself, its reduction to 5d, and the resulting

4d theories. This is a very tractable case (e.g. the analysis is simplified by the 6d theory

not having continuous global (non-R) symmetry). We will illustrate various understandings

following from compactifications using this example. This section is based on results of [24]. In

section 5 we discuss in detail compactifications of the rank one E-string. Here we will use non

generic but simple techniques to get to the result in a non-cumbersome manner. This section

is mainly based on [25] as well as [22, 26]. In section 6 we discuss a systematic approach of

studying 5d duality domain walls and commutative diagrams of RG flows. Here the discussion

mainly follows the results derived in [27]. We use these techniques to arrive at the 4d models

obtained in compactifications of the E-string theory. Finally in section 7 we discuss some

generalities of geometrically engineering 4d SQFTs starting from 6d SCFTs, comment on

subjects not covered in the Lectures, and make general remarks. Several appendices include

pedagogically various topics in 4d/5d/6d supersymmetric physics as well as give more details

of some of the computations in the bulk of the paper.

2 Lecture I: The basic toolbox

We wish to understand the following general set of question. Starting from a CFT in the UV

(CFTUV ) and deforming it by introducing a scale, we trigger an RG flow. The properties of

the deformed QFT depend on the energy scale at which we probe the physics. We are then

interested to understand what happens when we go to extremely low energies, far below the

energy scale set by the deformation, see Figure 6 for an illustration. This question is often hard

to answer, since as we lower the energy scale at which we probe the physics the description in

terms of the degrees of freedom of CFTUV can become strongly coupled. For example, as we

will review soon, if we start from a free theory as CFTUV and turn on a relevant deformation,

a variety of interesting behaviors can emerge in the IR: the theory can flow to an interacting

strongly coupled conformal theory, it might flow to a weakly coupled gauge theory, and the

flow can also be gapped with no propagating degrees of freedom remaining in the IR.

2.1 Symmetry, anomalies, and ’t Hooft anomaly matching

Without simplifying assumptions, such as supersymmetry that we will soon introduce, an-

swering the posed questions is rather hard. Nevertheless, we do have certain tools which we

can use quite generally. Not surprisingly they have something to do with symmetry. Let us

assume that after deforming CFTUV the global symmetry of the resulting QFT is GUV . Here

we will focus on zero-form continuous symmetries, though one can consider generalizations of

the discussion to higher form symmetries [28] and higher group structures [29]. Typically the

deformation breaks explicitly some of the symmetry of CFTUV and some of the symmetry

– 8 –



CFTUV

CFTIR

RG Flow

!UV

!IR

CFTUV + Δ

CFTUV1

CFTIR

RG Flow

!UV1

!IR

CFTUV1 + Δ1

CFTUV2

RG Flow

!UV2CFTUV2 + Δ2

CFTUV

CFTIR

QFTIR

6d SCFTUV

4d SCFTIR

RG Flow

!UV

!IR

6d SCFTUV + Δ

Δ = 4d SCFTUV

!′ UV4d SCFTUV + Δ′ 

Figure 6. A depiction of an RG flow. We start with some CFT in the UV. This CFTUV can be a free

theory or some non trivial strongly coupled theory. We deform it by a relevant deformation ∆: it can

be e.g. a relevant interaction, a vacuum expectation value, or turning on a non trivial background.

We denote the symmetry of the theory after the deformation as GUV . In the IR the model flows to a

new fixed point CFTIR. The global symmetry of the fixed point GIR might or might not be the same

as GUV .

might also be spontaneously broken: let us assume GUV is the surviving fraction of the sym-

metry. This symmetry will be preserved during RG flow. Thus, we expect that the symmetry

of the theory in the IR should be GUV . There are however two caveats. First, GUV might not

act faithfully in the IR. In particular in an extreme case it might not act at all, for example

when the theory develops a gap in the IR. In this case, GUV will not act manifestly in the IR.

Second, the symmetry in the IR can actually be bigger than GUV . Intuitively, some of the

interactions/degrees of freedom which break a certain larger symmetry group, of which GUV

is a subgroup, might be washed away/gapped in the IR. In such situations we will say that

there is an enhancement (or emergence) of the symmetry in the IR and the symmetry group

GIR might be bigger than GUV . We will denote by GIR the symmetry group of the IR fixed

point if the theory flows to an SCFT, or the symmetry of the weakly coupled gauge theory if

it flows to such a theory.

Importantly, we can say something more about the symmetry. If a theory possesses a

global symmetry with a corresponding conserved current4 Jµ, we can turn on background

gauge fields Aµ, valued in the Lie algebra of some sub-group of the symmetry group, coupled

to this conserved current, and compute the effective action Γ[A]. As the current is conserved

4One can make this discussion more general and abstract by thinking about the conserved charge corre-

sponding to a zero-form symmetry as certain co-dimension one topological operators in the QFT (and higher

co-dimension when the symmetry is of a higher form) [28].
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the gauge field comes with a gauge symmetry,

A→ Ag ≡ g ·A · g−1 + (dg) · g−1 , (2.1)

where g is an element of the symmetry (sub)group. Then we can try to promote Aµ to be

dynamical fields. However, there might be an obstruction to doing so, which goes under the

name of ‘t Hooft anomaly. The obstruction comes about as the effective action of the theory

might or might not be invariant under (2.1),

Γ [Ag]
?
= Γ [A] . (2.2)

If the equality does not hold we say that the (sub)group of the symmetry has a ‘t Hooft

anomaly. In particular this means that the symmetry cannot be gauged, i.e. the gauge fields

Aµ cannot be promoted to dynamical fields. See [30] for a comprehensive introduction to the

subject of anomalies and [31] for a more recent and general discussion. The important fact

about ‘t Hooft anomalies is that they are quantifiable. There are various ways to understand

this and let us here mention two of them. First, the anomaly of a continuous symmetry

can be captured in D = 2n dimensions by an n + 1 point one loop amplitude involving the

conserved currents. In particular, say in D = 4, this is proportional to,

aG1,G2,G3 ≡ TrRG1G2G3 . (2.3)

Here R is the representation of the chiral fermions of the model (if we have a description of the

theory in terms of a Lagrangian) under the product of the three groups G1×G2×G3, which are

the groups corresponding to the three currents. The trace is taken over this representation.

For example, if Gi all correspond to the same U(1) symmetry then the ‘t Hooft anomaly is

just given by
∑N

l=1 q
3
l , where ql are the charges of the N Weyl fermions of the model.

Another way to think about the anomaly is as follows. The failure of the effective action to

be invariant cannot take any form and is constrained by Wess-Zumino consistency conditions

to be related to what is known as the anomaly polynomial ID+2 (where D is the number

of space-time dimensions which is assumed to be even). ID+2 is a homogeneous polynomial

of degree D + 2 in characteristic classes built from gauge fields (including gravitational)

corresponding to the symmetries of the system. The coefficients of the polynomial encode the

‘t Hooft anomalies of the theory. For example a term of the form,

n123
aG1,G2,G3

6
Tr F1 ∧ F2 ∧ F3 ⊂ I6 , (2.4)

captures the anomaly aG1,G2,G3 defined in (2.3). Here n123 is a simple numerical factor

depending on how many of the three Fi correspond to different groups. If all are the same

then n123 = 1, if two are the same n123 = 3 and if all are different it is equal to 6. See

Appendix E for more details on the 6d anomaly polynomial.

‘t Hooft anomalies are useful for us since they don’t change during the RG-flow and

thus are the same in the UV and the IR: this fact goes under the name of ‘t Hooft anomaly

matching condition. There are various ways to see this. First, we can add to the theory a

number of Weyl fermions (called spectators), such that the combined anomaly of the theory
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of interest and the additional fermions is zero. Then we can weakly gauge the symmetry: that

is turn on infinitesimally small gauge couplings. Assuming we can always stay in a regime

where the gauge coupling is small, we can flow to the IR where we decouple the spectators.

As there is no obstruction to the gauging in the IR, and we decouple the same fermions, the

anomaly should not change in the process. Yet another argument for the non-renormalization

is through what is called anomaly inflow. One way to render the symmetry non-anomalous is

to realize the theory on the boundary of a D+1 dimensional space with a background field A

living in D + 1 dimensions. Then, we can add a Chern-Simons term in the bulk that cancels

the anomaly of the boundary theory. This will again remove the obstruction from gauging

the symmetry which should hold in the UV as well as in the IR.

Thus, we learn that the anomaly polynomial I6 computed in the UV should be the same

as the one computed in the IR, no matter what is the IR behavior of our deformation. This

is true for the symmetries we can identify in the UV. At the IR fixed point new symmetries

can emerge and as we cannot identify them in the UV their anomalies do not have to be

zero. One way to understand this is that we can move out of the IR fixed point by irrelevant

deformations which explicitly break the emergent symmetries and thus invalidate the ‘t Hooft

anomaly matching argument. On the other hand, if a sub-group of the symmetry group does

not act faithfully in the IR its anomaly has to be zero also in the UV due to the ‘t Hooft

anomaly matching argument5.

2.2 a-maximization and superconformal R-symmetry

Until now our discussion did not involve supersymmetry at all. Indeed, without supersym-

metry we do not have at the moment useful robust tools beyond matching symmetries and

anomalies to understand the physics in the IR. However with supersymmetry there are more

things that we can say. Let us start the discussion of supersymmetric theories in D = 4 with

what the interplay between the supersymmetry and ‘t Hooft anomalies can give us.

We will assume throughout these Lectures that we are dealing with N = 1 supersym-

metric theories in 4d . Moreover we will assume that these theories possess an R-symmetry.6

A U(1) R-symmetry is a necessary ingredient of the N = 1 superconformal group, as for ex-

ample it appears on the right-hand side of anti-commutation relations between supercharges

Qα and their superconformal counterparts Sα. See Appendix A for a summary of the N = 1

superconformal group in 4d. The SCFT in the UV thus has an R-symmetry which is part of

the superconformal group. We will only discuss deformations which preserve N = 1 super-

symmetry. We will also assume that some combination of this R-symmetry and an abelian

subgroup of the global symmetry group of CFTUV is not broken by the deformation, though

of course as we introduce a scale the conformal symmetry is broken. In the IR, if we ar-

rive to a conformal fixed point, we again acquire the superconformal R-symmetry. However,

the superconformal symmetry in the UV and in the IR might not be the same symmetry.

5Note that this is not true for the case of spontaneous symmetry breaking. A symmetry with a non-trivial

‘t Hooft anomaly in the UV can be spontaneously broken in the IR.
6The R-symmetry can be broken by superpotentials or be anomalous in the UV. We thus will not deal with

such situations.
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Nevertheless, under certain assumptions that we will detail, the fact that the R-symmetry is

intimately related to the superconformal group allows us to determine it in the IR.

Any conformal theory, supersymmetric or not, in four dimensions has two important

numbers associated to it: these are referred to as the a and the c conformal anomalies. The

conformal anomalies measure, among other things, the failure of the expectation value of the

trace of the stress-energy tensor to vanish when the theory is placed on a curved background

with metric gµν ,

⟨Tµ
µ⟩ =

c

16π2
W 2 − a

16π2
E4 , (2.5)

whereW is the Weyl tensor and E4 is the Euler density, both built from certain combinations

of the metric gµν and its derivatives [32].7 In superconformal theories, as the stress energy

tensor and the R-symmetry are part of the same symmetry algebra the various anomalies

are interrelated. It is possible for example to utilize these relations to arrive at the following

extremely useful statements [35],

a =
9

32
TrR3 − 3

32
TrR , c =

9

32
TrR3 − 5

32
TrR . (2.6)

Here it is important that R is the R-symmetry in the superconformal group. TrR3 is the

‘t Hooft anomaly corresponding to TrF 3 term in the anomaly polynomial we have discussed

above, with F being the field strength for the R-symmetry background gauge field. Whereas

Tr R is the mixed R-symmetry gravity anomaly, which in the anomaly polynomial appears

as a coefficient of a term involving TrF and a certain Pontryagin class computed using the

background metric.

Exploiting the interplay between supersymmetry and the R-symmetry in a conformal

theory one can also arrive at the conclusion that the mixed ‘t Hooft anomalies between any

global U(1) symmetry (which is not an R-symmetry) and the superconformal R-symmetry

are also related to the mixed gravitational-U(1) anomaly [36],

Tr U(1) = 9Tr U(1)R2 . (2.7)

Moreover, the positivity of the two point function of the currents of the global U(1) symmetry

can be related to the negativity of yet another ‘t Hooft anomaly,

TrU(1)2R < 0 . (2.8)

Combining all these observations Intriligator and Wecht arrived at a very simple procedure to

determine the R-symmetry of the IR fixed point by knowing all the abelian symmetries and

the R-symmetry preserved along the RG-flow [36]. One defines the following trial a anomaly,

a({α}) = 9

32
Tr(R+ αiU(1)(i))3 − 3

32
Tr(R+ αiU(1)(i)) . (2.9)

7In any conformal theory the a conformal anomaly is smaller at the IR fixed point relative to the UV fixed

point [33, 34].
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Here αi are arbitrary real numbers associated to the i-th U(1) symmetry: the summation

over i is implied in the equation. Now we notice that,

32

3

∂

∂αj
a({α}) = 9Tr(R+ αiU(1)(i))2U(1)(j) − TrU(1)(j) = 0 . (2.10)

The last equality holds if (R+ αiU(1)(i)) is the superconformal R-symmetry following (2.7).

On the other hand,

16

27
βj

∂

∂αj
βk

∂

∂αk
a({α}) = Tr(R+ αiU(1)(i))βjU(1)(j)βkU(1)(k) < 0 , (2.11)

where βi are arbitrary real numbers and the last inequality follows from (2.8) assuming again

R+ αiU(1)(i)) is the superconformal R-symmetry. This thus implies that:

The superconformal R-symmetry maximizes the trial a({α}).

The procedure of obtaining the superconformal R-symmetry discussed here is called a-

maximization. This statement however has an important caveat. We assume that we have

identified all the U(1) symmetries that can possibly mix with the R-symmetry to produce

the superconformal one. However, as we already discussed some of these symmetries can only

emerge in the IR. This possibility should always be kept in mind, as it is usually hard to rule

it out. In some cases, certain indications that this has to be the case can be derived. For

example, using certain unitarity bounds, superconformal representation theory implies that

the R-charge of any chiral operator in the theory has to be bigger or equal to 2
3 . The R-charge

saturates this bound only if the operator is a free chiral field. If using a-maximization leads

to certain chiral operators violating these bounds, then some of the assumptions going into

the computation have to be wrong. A natural way for this to happen is if some of the abelian

symmetries in the IR have been missed [37].

Using the relation (2.6) we can compute the conformal anomalies of free fields, which

will be useful for us in what follows. A free chiral superfield Q has an R-charge of 2
3 . This is

the R-charge of the scalar component of the superfield. The R-charge of the Weyl fermion is

shifted8 by −1 and thus the conformal anomalies of the free chiral field are,

a =
9

32
(
2

3
− 1)3 − 3

32
(
2

3
− 1) =

1

48
, c =

9

32
(
2

3
− 1)3 − 5

32
(
2

3
− 1) =

1

24
. (2.12)

For the free vector superfield the R-symmetry is zero, and thus the R-symmetry of the gaugino

is +1. This implies the following anomalies,

a =
9

32
− 3

32
=

3

16
≡ av , c =

9

32
− 5

32
=

1

8
≡ cv . (2.13)

For future convenience we also define the contributions to the conformal anomalies of chiral

fields of general R-charge r to be,

aR(r) =
9

32
(r − 1)3 − 3

32
(r − 1) , cR(r) =

9

32
(r − 1)3 − 5

32
(r − 1) . (2.14)

8In superspace notations this is due to the fact that the superspace coordinates have a unit charge under

the R-symmetry.
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Exercise: Show that if the free R-charge assignment is consistent with all the superpotentials

and is anomaly free in a general gauge theory, it solves the a-maximization problem.

We assume that a gauge group G is given, the number of chiral fields is dimR, and that

the assignment of R-charge 2
3 to all chiral superfields is consistent with superpotentials and

anomalies. We also assume that the theory has L U(1)ℓ symmetries under which the i-th

chiral superfield has charges Qℓ
i . Then we define a trial superconformal R-symmetry to be,

Rtr
i ({α}) =

2

3
+Qℓ

iαℓ , (2.15)

with αℓ arbitrary real parameters. Computing the trial a-anomaly,

ã({α}) ≡ 32

3
a({α})− av dimG =

dimR∑
i=1

(
3(
2

3
+ αℓQ

ℓ
i − 1)3 − (

2

3
+ αℓQ

ℓ
i − 1)

)
(2.16)

=
2

9
dimR+ 3

dimR∑
i=1

(
αℓ αℓ′ αℓ′′Q

ℓ
iQ

ℓ′
i Q

ℓ′′
i − αℓ αℓ′Q

ℓ
iQ

ℓ′
i

)
,

we immediately see that the term linear in αℓ cancels out. This implies that taking αℓ = 0 is

a stationary point and it is then trivial to show that it is a local maximum. One way to see

this is to take some arbitrary direction in {α} space parametrized as αℓ = nℓ t and see how

ã({α}) changes with t,

ã({α}) = 2

9
dimR+ 3

(
dimR∑
i=1

∆R3
i

)
t3 − 3

(
dimR∑
i=1

∆R2
i

)
t2 , (2.17)

where we defined ∆Ri = Qℓ
inℓ. Obviously then t = 0 is a maximum for any choice of direction

nℓ unless ∀ i ∆Ri = 0. However the latter case implies that Rtr
i ({n t}) = 2

3 , and thus the

R-symmetry is still the free one.

□

2.3 Beta functions, deformations, and conformal manifolds

An important question regarding CFTs is what is the collection of relevant and exactly

marginal deformations of a model leading to an inequivalent fixed point. In particular for

SCFTs we will be interested in such deformations which preserves N = 1 supersymmetry.

One type of supersymmetric deformations one can add to an SCFT is the following

superpotential term,

W = λO

∫
d4xd2θO + c.c. , (2.18)
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where O is a chiral operator and λO is a complex number. Relevant supersymmetric defor-

mations are given by chiral operators O with scaling dimension smaller than 3. For such

deformations λO has a positive mass dimension and thus grows with the RG-flow to the IR.

Remember that dθ has mass dimension +1
2 . Note also, that for chiral operators the super-

conformal algebra relates the dimension to the superconformal R-charge, ∆ = 3
2 R; thus, the

R-charge of relevant deformations O is smaller than 2.

The marginal superpotential deformations are given by chiral operators O of dimension

exactly 3, or equivalently superconformal R-charge of exactly 2, and as we will soon discuss

these can be either marginally irrelevant or exactly marginal.

Given an SCFT with a subgroup G of the global symmetry group with vanishing ’t Hooft

anomaly we can couple it to dynamical gauge fields in the standard way. In particular we

introduce the superpotential term,

W = τG

∫
d4xd2θWαW

α + c.c. , (2.19)

with τ being the complexified gauge coupling and Wα the chiral superfield with the field

strength Fµν as one of its components. As with other superpotential couplings τ can be either

a relevant deformation, irrelevant, or marginal. To determine which of the three possibilities

holds one needs to perform a one loop computation of the gauge beta-function: classically

gauge-couplings are marginal in 4d. In supersymmetric theories the result of this computation

can be expressed in an elegant form [38],9

βG ∝ −TrRP G
2 , (2.20)

where P refers to the fixed point under consideration. That is the beta function is propor-

tional to minus the ’t Hooft anomaly of the superconformal R-symmetry, denoted here by

RP , and two currents of the gauged symmetry. The proportionality coefficient is a positive

number which will not play a role for us (and can be easily fixed by computing it for sim-

ple Lagrangians). The reason this expression can be derived is because the superconformal

R-symmetry is in the same multiplet as the stress-energy tensor. In particular, if TrRP G
2

is positive the gauging is UV free, if TrRP G
2 is negative the gauging is IR free, and if

TrRP G
2 = 0 the gauging is marginal. Note that this way of determining relevance of a gaug-

ing does not rely on a description of the theory in terms of weakly coupled fields and thus

will turn out to be useful also for strongly coupled SCFTs. Note also that the marginality

of gauging is determined by whether the superconformal R-symmetry at the fixed point is

anomalous or not: that is whether it is consistent with the gauging. This is very analogous

to marginality of superpotentials: marginal superpotentials do not break R-symmetry.

Finally, we need to determine whether the marginal deformations we discussed are exactly

marginal, marginally irrelevant, or marginally relevant. In fact for supersymmetric theories

with supersymmetry preserving deformations the last option is not possible. The reason

is as follows [40]. When deforming a theory by a supersymmetric marginal operator, in

order for the deformation to cease being marginal its dimension needs to change after the

9See also [39] for an important discussion.
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Figure 7. A depiction of the conformal manifold Mc and three deformations from the point P. The

exactly marginal deformation is related to λiÕi
P , the marginally irrelevant deformation is related to

µiOi
P , and the relevant deformation is related to νiRi

P .

RG-flow. However, such deformations are chiral and as such form shortened, protected,

representations of the superconformal symmetry group. The only way for such a deformation

to cease being marginal is for it to recombine during the flow with another shortened multiplet

to form a long multiplet. Studying the representation theory of the superconformal group it is

possible to show that the only multiplet with which the marginal deformations can recombine

are conserved currents [41], see Appendix A. The primaries of the resulting long multiplet

have dimensions which must be larger than three. As such, after such a recombination the

dimension of the marginal deformation, which was 3 since it was the chiral primary of the short

multiplet, must increase and thus it is marginally irrelevant. This implies in particular that

there are no supersymmetric marginally relevant deformations. Another simple implication

of this logic is that if a deformation does not break any symmetry it is exactly marginal. See

Figure 7 for a depiction of exactly marginal, marginally irrelevant, and relevant deformations.

Also, see Figure 8 for interesting cases of RG-flows.

A careful analysis of the above logic [40] (see also [42]) leads to the following conclusion.

Given an SCFT P with a space of marginal operators Oi
P and couplings λiP , the set of exactly

marginal deformations is given by the following Kähler quotient,

{λiP}/(GP)C , (2.21)

where GP is the global symmetry of the SCFT P and (GP)C is its complexification. When

the marginal deformations involve also gauge couplings of some gauge group, we need to

include in GP also the symmetries which exist before the gauging but are anomalous once the

gauging is introduced. The coupling which transforms well under the anomalous symmetry is

exp(2πiτ) with τ being the complexified gauge coupling. Note that in the exponentiation we

– 16 –



took τ with the positive sign.10 This procedure is very abstract and has again the advantage

that it does not rely on having a description of a theory in terms of weakly coupled fields.

One way to compute this quotient is to list all the (GP)C invariant independent combinations

of the couplings: though often this is practically hard to do. We refer the reader to [48]

for a detailed analysis of such quotients in many examples as well as a discussion of how to

approach the problem in a general case.

Example 1: SU(N) SQCD with 3N flavors

First, a free R-symmetry assignment to all the matter fields is non anomalous,

Tr RPSU(N)2 = N +
1

2
(
2

3
− 1) 3N +

1

2
(
2

3
− 1) 3N = 0 . (2.22)

Thus, according to the previous exercise it is also the superconformal one. Moreover, since this

is also the superconformal R-symmetry of the free collection of chiral fields before gauging,

the gauging is marginal. Since the superconformal R-charges at the free UV fixed point is
2
3 we can turn on marginal superpotentials using chiral operators with R-charge 2 which are

built from cubic combinations of the basic fields. However, for N ̸= 3 no such operators exist.

For N = 3 the operators B = ϵijkQ
i
(aQ

j
bQ

k
c) and B̃ = ϵijkQ̃

(a
i Q̃

b
jQ

c)
k are singlets under the

gauged SU(3) symmetry: these are the baryons and the anti-baryons. The analysis thus is

different for N ̸= 3 and N = 3. We start with the former.

The symmetry of the free fixed point is GP = U(6N2). We choose G = SU(N) subgroup

which we gauge. The commutant of G in GP is GP|G = U(3N)×U(3N). The Kähler quotient

we need to compute is thus,

{exp(2πiτSU(N))}/(U(3N)× U(3N))C . (2.23)

The gauge coupling is not charged under the SU(3N) × SU(3N) × U(1)B non-anomalous

symmetry, but transforms under the U(1)A anomalous symmetry, with exp(2πiτSU(N)) having

charge 3N . Thus this quotient is empty and there are no exactly marginal deformations. The

gauge coupling is marginally irrelevant and the theory is free.

Next we analyze the case of N = 3 where we have additional marginal operators B

and B̃. These transform in (84,1)+3,+3 and (1,84)+3,−3 under GP|G which we parametrize

as (SU(9), SU(9))U(1)A,U(1)B , where U(1)A is the symmetry under which both quarks and

anti-quarks have charge +1 while U(1)B is the baryonic symmetry under which they are

oppositely charged (that is with charges ±1). The representation 84 is the three index

10Usually in computations of Kähler quotients both signs are allowed. However, here taking the negative

sign might lead to solutions with imaginary YM coupling. Formally in perturbation theory this would give a

line of exactly marginal non-unitary SCFTs (See for similar effects e.g. [43]). However it is not clear whether

this would make sense non perturbatively. In some cases, e.g AGT correspondence [44, 45] or 5d gauge theories

[46, 47] (where gauge coupling is related to real mass for instanton symmetry), going to lower half plane for τ

is allowed but it is interpreted as going to infinite coupling (and “beyond”) where the gauge theory description

breaks down. In our analysis we are dealing with weakly coupled gauge fields and thus will restrict to upper

half-plane for τ . We thank Z. Komargodski for discussions of this subtlety.
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Figure 8. Several interesting RG flow patterns. (A ) Example of a dangerously irrelevant deformation.

Turning on only gb we flow back to the original CFT. Turning on both ga and gb, during the flow

ga increases while gb decreases. However, once ga is large enough we cannot trust low orders in

perturbation theory, and gb might start increasing again and we might flow to a new fixed point. We

call gb in such a case a dangerously irrelevant deformation. (B) An example of “dangerously relevant

operator”. Turning on either ga or gb we flow to a new CFT and thus these are relevant. However, if

we first turn on gb and flow to the fixed point, ga then becomes an irrelevant deformation at the new

fixed point (This is sometimes related to the so called chiral ring stability [49, 50].) (C ) Turning on

either ga or gb we flow to a new CFT and thus these are relevant. Also if we turn on the deformations

sequentially they are still relevant at each step.

completely antisymmetric irrep of SU(9). The gauge coupling transforms as (1,1)9,0. The

charge of the gauge coupling τ , or rather of exp(2πiτ), is given by the ’t Hooft anomaly

Tr U(1)AG
2. In this case it is +1× 1

2 × 18 = 9. Note that the baryonic couplings have charge

−3 as all the matter fields have charge +1. In particular this implies that we always can solve

for the quotient with the anomalous U(1)A. Thus the quotient we need to compute is,

{(84,1)+3, (1,84)−3}/(SU(9)× SU(9)× U(1)B)C . (2.24)

One way to construct the quotient is by finding all the independent monomial holomorphic

combinations of the couplings invariant under the symmetries. In general this is a well defined

group theoretic question which is nevertheless tricky to solve.

A way to proceed is to find a deformation which is exactly marginal. Understand what

symmetry it breaks. Deform the theory by this deformation and repeat the process. In the

given case a simple deformation which was found by Leigh and Strassler [51] (See Appendix

B.) in the seminal paper on conformal manifolds is,

W = λ
(
Q1Q2Q3 +Q4Q5Q6 +Q7Q8Q9 + Q̃1Q̃2Q̃3 + Q̃4Q̃5Q̃6 + Q̃7Q̃8Q̃9

)
. (2.25)

This deformation breaks U(1)B and each SU(9) is broken to SU(3)3. Note that under this
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breaking,

84 → 1 + 1 + 1 + 313233 +
3∑

i,j=1; i ̸=j

3i3j , (2.26)

80 → 1 + 1 + 81 + 82 + 83 +
3∑

i,j=1; i ̸=j

3i3j .

Note that the components of the currents (the 80) in representation
∑3

i,j=1; i ̸=j 3i3j recombine

with the same components of the marginal operators (the 84). Moreover the currents of the

four U(1)s in the decomposition of SU(9)2 to SU(3)6×U(1)4 as well as the current of U(1)B
recombine with five out of the six singlets in the decomposition of the two 84s. We are thus

left with marginal deformations in,

1 + 313233 + 343536 , (2.27)

with the singlet being the exactly marginal deformation. We thus deduce that there is one

direction on the conformal manifold on which the symmetry is SU(3)6. Next we can turn

on the marginal deformation 313233. This will break SU(3)3 down to diagonal SU(3). Note

that under this decomposition,

313233 → 1 + 10+ 8+ 8 . (2.28)

In particular the two 8 recombine with two of the three SU(3) currents leaving only SU(3)

symmetry and marginal operators in,

1 + 1 + 101 + 343536 . (2.29)

Thus we have a two dimensional conformal manifold on which the symmetry is SU(3)4. Next

we can break in the same manner using 343536 another triplet of SU(3) symmetries down

to diagonal SU(3). We will obtain a three dimensional conformal manifold with symmetry

SU(3)2 and marginal operators in,

1 + 1 + 1 + 101 + 102 . (2.30)

In Lecture III we will have a geometric interpretation of this conformal manifold as corre-

sponding to complex structure moduli of a sphere with six marked points. We can next continue

exploring the conformal manifold by turning on operators in the 10. As from 10 one can

build two independent invariant (the fourth and the sixth symmetric powers contain singlets),

each gives two exactly marginal directions on which the relevant SU(3) is completely broken.

All in all we obtain a seven dimensional conformal manifold on which all the symmetry is

broken.

Instead of starting with (2.25) we can start with the following,

W = λ
(
Q1

[iQ
2
jQ

3
k] + Q̃1

[iQ̃
2
j Q̃

3
k]

)
. (2.31)
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Figure 9. The necklace quiver of length n.

Here we think of the nine quarks as forming 3 × 3 representation of the SU(3) × SU(3)

subgroup of SU(9). The lower flavor indices in (2.31) are antisymmetrized as well as the

gauge indices are. This superptential is exactly marginal. This can be understood either

performing the LS analysis (all the fields have same anomalous dimensions but we have two

couplings: gauge coupling and λ), or performing the Kähler quotient. The two terms are

charged oppositely under the U(1)B symmetry and we note that,

84 → 101 + 102 + 81 × 82 , (2.32)

80 → 81 + 82 + 81 × 82 .

Moreover the characters of 10 and 8 are given by

χ10 = χ8 − 1 + z31 + z32 +
1

z31z
3
2

, χ8 = 1 + 1 +
∑
i ̸=j

zi/zj . (2.33)

Using these observations we can conclude that (2.31) breaks the symmetry to SU(3)×SU(3)×
U(1)4 where the abelian symmetries are the Cartan generators of the SU(3)s broken by

(2.31),11

1 + 84+ 8̃4− 1− 1− 80− 8̃0 → (2.34)

1 + 101 + χ3((z
2
1)

3, (z22)
3) + 1̃01 + χ3((z̃

2
1)

3, (z̃22)
3)− 81 − 8̃1 − 1− 1− 1− 1 .

Here z2i are fugacities for the Cartan of SU(3)2 and z̃
2
i are fugacities for the Cartan of S̃U(3)2.

We can further break the rest of the symmetries. For example, the two z2i can be broken

together by turning on the three operators in χ3((z
2
1)

3, (z22)
3) and the SU(3)1 can be broken

first to the Cartan and then completely by turning on operators in 101.

□

Example 2: N = 2 necklace quiver: Consider the quiver gauge theory of Figure 9. It is well

known that this theory has n exactly marginal deformations preservingN = 2 supersymmetry

(show it). Show that it also possesses an additional independent exactly marginal deformation

preserving only N = 1 supersymmetry.

11This is very reminiscent of the N = 1 β deformation of N = 4 SYM, see e.g. [52].
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The matter content is conformal, i.e. the one loop beta function vanishes, and thus all

the fields have free R-charges. Let us start by discussing the symmetries of the theory. We

have n anomalous symmetries U(1)Ai under which the adjoint fields Φi have charge +1 and

all the other fields are not charged. We have n U(1)αi symmetries under which Qi has charge

+1 and Q̃i charge −1 with all the rest of the fields not charged. Finally we have n U(1)ti
symmetries under which fields Qi and Q̃i have charge +1, Φi and Φi+1 charge −1 while the

other fields are not charged. The U(1)α and U(1)t symmetries are not anomalous. Let us

consider the following superpotentials,

W =
∑
i=1

λiΦiQiQ̃i + λ′iΦiQi−1Q̃i−1 . (2.35)

Note that the couplings λi have charges encoded in fugacities as A−1
i t−1

i ti−1 while λ′i have

charges A−1
i tit

−1
i−1. Then λiλ

′
i dressed with appropriate power of exp(2πiτi) is a singlet for

each i. These thus give us n independent exactly marginal parameters preserving in fact

N = 2 supersymmetry. Along these directions the U(1)ti symmetries are broken to a diagonal

combination. Note that as all of the couplings are charged under the anomalous symmetries

with negative charge these can be taken care of by exponents of gauge couplings.

Above we turned on λ and λ′ couplings in pairs. Now consider turning on only λ couplings.

Then the combination
∏n

i=1 λi (dressed by appropriate power of all exp(2πiτi)) is also a singlet

of all the symmetries. and thus turning on only λi gives us an exactly marginal deformation.

Here also the U(1)ti symmetries are broken to a diagonal combination. This deformation is

only N = 1 supersymmetric. Note that turning on only λ′ couplings also is exactly marginal,

but it is a combination of the above and the N = 2 exactly marginal couplings.

Note that (2.35) is not the most general cubic superpotential we can write. Specifically,

for N > 2, we can also add the terms
∑

i=1 λ̂iΦ
3
i , where we use the fully symmetric cubic

invariant polynomial of SU(N) to contract the gauge indices and form a gauge invariant. The

couplings λ̂i then have the charges A−3
i t3i t

3
i−1. We can cancel the U(1)Ai charges by dressing

with appropriate powers of the gauge couplings, but we cannot cancel all the U(1)ti charges.

As such, for generic N , these operators are marginally irrelevant. However, for N = 3, we

further have the baryonic superpotential
∑

i=1 λ
B
i Q

3
i +λ

B̃
i Q̃

3
i , where we use the epsilon tensor

to contract the SU(3) indices to a singlet. The λBi have the charges t−3
i α3

i while λB̃i have the

charges t−3
i α−3

i . We then see that the λBi λ
B̃
i combination of couplings is uncharged under

U(1)αi and together with λ̂i and the gauge couplings, can be used to form flavor symmetry

singlets. Thus, we see that for N = 3 there are additional exactly marginal deformations that

preserve only N = 1 supersymmetry.

□

– 21 –



3 2

2

4

6

3 4

QL QR

qL qR

Φ

ϕ

W = QL qL Φ − QR qR Φ

3 24

6
QL

qL

3 24

6
QL

qL

Φ
3 4

QR

qR

Φ

W = QL qL Φ W = QL qL Φ − QR qR Φ

SL SR

SL SL SR

Figure 10. A quiver theory with the SU(2) IR free gauge node in the UV.

Exercise: Dangerously irrelevant deformations – Consider the quiver theory of Figure 10.

The circles inscribing an integer N denote SU(N) gauge groups. The squares inscribing an

integer N denote SU(N) flavor groups. The lines denote bifundamental chiral superfields:

fundamental representation of the group they point to and anti-fundamental of the group

they emanate from. The theory has a superpotential denoted on the Figure. Note that the

SU(2) gauge group has 14 fundamental fields and thus naively is IR free. By sequentially

analyzing the flows starting with the fixed point of the SU(3) SQCD with six flavors and

turning on first the superpotentials, show that the SU(2) gauging becomes asymptotically

free.

We start with the SU(3) SQCD with six flavors. This theory is asymptotically free,

TrRSU(3)2 = 3 +
1

2
(
2

3
− 1)× 2× 6 = 1 > 0 , (2.36)

where we used the free assignment of R-charges. Assigning R-charge 1
2 to all the chiral fields

is anomaly free,

TrRSU(3)2 = 3 +
1

2
(
1

2
− 1)× 2× 6 = 0 , (2.37)

and in fact this is the superconformal R-symmetry at the fixed point. We have one abelian

U(1) symmetry which is non-anomalous under which the fundamentals and the antifunda-

mentals have opposite charges. We thus define a trial a-anomaly,

a(α) = av × 8 + aR(
1

2
+ α)× 18 + aR(

1

2
− α)× 18 =

3

64

(
41− 324α2

)
, (2.38)

and the maximum is at α = 0. Next we add the 12 fields Φ and couple them with superpo-

tential as on the left of Figure 11. This interaction breaks some of the nonabelian symmetry.

– 22 –



3 2

2

4

6

3 4

QL QR

qL qR

Φ

ϕ

W = QL qL Φ − QR qR Φ

3 24

6
QL

qL

3 24

6
QL

qL

Φ
3 4

QR

qR

Φ

W = QL qL Φ W = QL qL Φ − QR qR Φ

SL SR

SL SL SR

Figure 11. We analyze the flow in three steps. First, we start with the IR fixed point of SU(3) SQCD

with six flavors, add 12 chiral fields Φ and turn on a superpotential (left figure). Then we couple a

second copy of SU(3) SQCD with six flavors to the theory through a superpotential (right figure).

Finally, we add four more chiral fields ϕ and gauge the SU(2) symmetry as in Figure 10.

The R-charge of the superpotential at the UV fixed point is 1
2 + 1

2 + 2
3 < 2 and thus it is

relevant and the theory flows in the IR to a fixed point where there is a non-anomalous R-

symmetry under which the R-charges of qL, SL and QL are still 1
2 but that of Φ is 1 (such

that the R-charge of the superpotential is 2). We are still left with finding the superconformal

R-symmetry at that IR fixed point. The theory has two non anomalous abelian symmetries

(U(1)La , U(1)b) so that the charges of the various fields are,

qL : (1, 2), SL : (1,−1), QL : (−1, 0), Φ : (0,−2) . (2.39)

We thus compute the trial anomaly depending on two parameters αa and αb correspond-

ing to the two symmetries,

a(αL
a , αb) = av × 8 + aR(1− 2αb)× 12 + (2.40)

aR(
1

2
+ αL

a − αb)× 12 + aR(
1

2
+ αL

a + 2αb)× 6 + aR(
1

2
− αL

a )× 18 .

Here in the first line we have the contribution of the vectors and Φ and on the second line

the charged matter fields. The charges of Φ are fixed by the superpotential as stated above.

We compute the maximum of a(αL
a , αb) to be at

(αL
a , αb) = (0.0045, 0.0672) ,

approximately. Now we couple the second copy of the SU(3) SQCD to the theory through a

superpotential as on the right of Figure 11. The additional term in the superpotential at the

new fixed point has R-charge

1

2
+

1

2
+RΦ = 1 + (1− 2× 0.0672) = 1.8657 < 2 ,

and thus it is relevant. The second copy of the SQCD adds another U(1) symmetry and we

compute the new trial a-anomaly to be,

a(αL
a , αb, α

R
a ) = av × 8× 2 + aR(1− 2αb)× 12 + (2.41)

aR(
1

2
+ αL

a − αb)× 12 + aR(
1

2
+ αL

a + 2αb)× 6 + aR(
1

2
− αL

a )× 18 +

aR(
1

2
+ αR

a − αb)× 12 + aR(
1

2
+ αR

a + 2αb)× 6 + aR(
1

2
− αR

a )× 18 .
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Here we used the fact that the superpotential identifies U(1)Lb with U(1)Rb . We find the

maximum of a(αL
a , αb, α

R
a ) to be at,

αL
a = αR

a = 0.00135 , αb = 0.03669 .

Finally we compute the beta function of the SU(2) gauging at the new fixed point,

Tr RSU(2)2 = 2 +
1

2
(Rϕ − 1)× 2 +

1

2
(RΦ − 1)× 6 +

1

2
(RqL/R

− 1)× 6 . (2.42)

Now Rϕ = 2
3 as these are free fields we add at this point and

RqL/R
=

1

2
+ αL/R

a + 2αb = 0.5747 , RΦ = 1− 2αb = 0.9266 .

We thus deduce that the anomaly in (2.42) is

Tr RSU(2)2 = 0.1707 > 0 ,

and thus at the new fixed point the SU(2) gauging is asymptotically free although it has 14

fundamental fields.

This conclusion holds under the assumption that no emergent abelian symmetries appear

in neither step of the flow invalidating the a-maximization argument. An indication that this

assumption is wrong would be if some of the chiral operators violated the unitarity bounds

at some of the steps. However, it is easy to verify that none do. For example the field Φ

has R-charge 0.8657 > 2
3 after step one (I), and R-charge 0.9266 > 2

3 after step two (II). The

mesons and baryons have the following charges,

I: SQ = 0.9328 , qQ = 1.1343 , q3 = 1.9165 , Q3 = 1.48647 , S3 = 1.31205 ,

II: SQ = 0.9633 , qQ = 1.0734 , q3 = 1.7242 , Q3 = 1.4960 , S3 = 1.3940 ,

(2.43)

all of which are above the unitarity bound.

A famous example of dangerously irrelevant deformations is the case of SU(N) SQCD

with Nf fundamental flavors and a chiral field in adjoint representation Φ with superpotential

W = TrΦn+1. For n > 2 the superpotential is irrelevant in the UV. However, first flowing

with the gauge coupling and then turning on the superpotential it can be relevant with n > 2

for a range of choices of N and Nf [53, 54].

□
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2.4 Supersymmetric RG-flow invariants

We have discussed an invariant of RG flows which does not need supersymmetry, the anomaly

polynomial. The supersymmetric flows have in fact many more RG-flow invariants. These

invariants typically take a form of some version of the Witten index. Here we will discuss the

simplest example of these, the supersymmetric index [55].

Let us briefly review the general construction of a Witten index. Consider the situation

that we have two supercharges Q and Q† such that,

{Q, Q†} = δ , (2.44)

with δ being a combination of bosonic charges. Now consider Vδ0 to be the subspace of the

linear space of states of the theory with |ψ⟩ ∈ Vδ0 satisfying δ · |ψ⟩ = δ0 |ψ⟩ with δ0 > 0. Now

from (2.44) it follows,

|ψ⟩ = 1

δ0
{Q, Q†} |ψ⟩ . (2.45)

From here, since Q and Q† are nilpotent it follows that any state in Vδ0 is a linear combination

of a state annihilated by Q and a state annihilated by Q†, a fact we denote as Vδ0 = V Q
δ0
⊕V Q†

δ0
.

The supercharges Q and Q†/δ0 are a one to one map and its inverse from V Q†

δ0
to V Q

δ0
. From

here it follows that the index defined as the following trace over the space of states of the

system H ,

I({u}) = TrH (−1)F e−β δ
n∏

i=1

uqii , (2.46)

is independent of β as only states in H with δ vanishing contribute to it. Here qi are

the charges under the Cartan generators of the n dimensional maximal bosonic subgroup of

the symmetry group commuting with Q and Q†. Moreover, this index is invariant under

continuous deformations of the theory, and in particular is invariant under the RG flow as

long as the symmetries used to define it are preserved along the flow. Let us now discuss a

concrete example of such an index.

Consider an N = 1 SCFT. It possesses a superconformal algebra and in particular one

of the commutation relations defining the algebra reads (see Appendix A)

2
{
Q̃α̇, S̃

β̇
}
= δβ̇α̇

(
H − 3

2
R

)
+ 2 (J2)

β̇
α̇ , (2.47)

where α̇, β̇ = ±̇ are spinorial indices. We think of the space as being S3×R. H is the operator

whose eigenvalue is the scaling dimension ∆, and which generates translations along R. The
operators Ji=1,2 are the generators of the SU(2)×SU(2) isometry of S3. Finally, the Q̃’s are

supercharges and the S̃’s are their conformal counterparts, with R being the superconformal

R-symmetry. Now in radial quantization the hermitian conjugate of the Q̃ supercharges are

the S̃ supercharges, S̃α̇ = Q̃†α̇. We take Q = Q̃−̇, such that under the Cartan generators
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(ji) of Ji it has charges (0,−1
2) and has R-charge +1. The commutation relation above thus

becomes,

2{Q, Q†} = H − 2j2 −
3

2
R ≡ δ . (2.48)

The operators which commute with Q and Q† are in addition to δ, ±j1 + j2 +
1
2R and the

Cartan generators of any global symmetry the theory might have (which we denote by Qi).

We then can define the superconformal index to be,

I(q, p; {u}) = TrS3(−1)F e−β δq−j1+j2+
1
2
Rpj1+j2+

1
2
R

RankGF∏
i=1

uQi
i . (2.49)

By the general logic of the Witten index described above this index is invariant under contin-

uous deformations of the theory preserving the superconformal algebra, that is, it is invariant

on the conformal manifold Mc as long as we use only fugacities ui preserved by the exactly

marginal deformations.

On the other hand we also want a quantity which is an invariant of RG-flows. The above

definition of the index relies on the superconformal symmetry which is broken once the RG-

flow is initiated and thus we cannot use it verbatim. However, there is a simple redefinition

of the setup which allows us to define the same index without relying on superconformal

symmetry [56] (See [21] Section 7.1 for a nice summary). Instead of thinking about the

index as a counting problem we can compute it as a partition function on S3 × S1 with

supersymmetric boundary conditions along the S1. This is a curved background and analyzing

carefully the supersymmetry algebra on it, one can find a supercharge Q which satisfies

the commutation relation (2.48). The charge ∆ in this setup is a suitable combination of

the R-symmetry and the translation along the S1. The construction needs to have an R-

symmetry. The index defined in this way is sometimes called the supersymmetric index and

it is invariant under the RG-flow as long as we use the R-symmetry which is preserved by

the deformations used to start the flow. This R-symmetry does not have to be the one which

becomes superconformal at the fixed point. Nevertheless, if we choose the R-symmetry which

coincides with the superconformal symmetry in the IR, the supersymmetric index computed

this way in the UV coincides with the superconformal index of the IR fixed point. The index

as an invariant of RG-flows was first discussed in [57, 58].

The supersymmetric index captures a lot of very interesting RG-flow invariant informa-

tion about the QFT. For example, let us understand in more detail what the index is counting.

As the index is independent of β the only states that actually contribute to it have δ = 0.

This implies that {Q, Q†} annihilates these states and thus by unitarity both Q and Q† also

annihilate it. States which are annihilated by some supercharges form short representations

of the supersymmetry group. The number of short multiplets of a given type might change

during the RG flow. However this only can happen if a collection of short multiplets forms

a collection of long ones, or if a long multiplet decomposes into short ones. The index is an

invariant under such recombinations [55]. We can then think of the index at the fixed point as

a sum over the representations of the superconformal symmetry group Rℓ and representations
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of the global symmetry group GF denoted by m,

I(q, p; {u}) =
∑
ℓ,m

nℓ,m χRℓ
(q, p)χm({u}) , (2.50)

with the integers nℓ,m giving the multiplicities of these representations. These multiplicities

can change with the flow or when one moves on the conformal manifold but the index is

such that one can reorganize this sum in terms of equivalence classes of representations: two

representations are in the same equivalence class if they contribute to the index the same

way, possibly up to a sign. This analysis was carefully performed in [41] Section 3. The

conclusion is that in each equivalence class there is a finite number of representations and one

can decompose the index in terms of net degeneracy numbers n̂ℓ,m where we now sum over

the equivalence classes denoted by [R],

I(q, p; {u}) =
∑
ℓ,m

n̂ℓ,m χ[R]ℓ(q, p)χm({u}) . (2.51)

Although in general we can extract information from the index only about these net degen-

eracies, it so happens that if one thinks of the index in terms of an expansion in the q and p

fugacities, at low order in the expansion the multiplets which can contribute are very simple.

As we are making use of the superconformal symmetry group the statements below are only

true if one uses the superconformal R-symmetry to compute the index and we assume that

the theory does not contain free fields.

• The only states that can contribute at order (q p)n with n < 1 are chiral operators of

R-charge R = 2n. As n < 1 these are the relevant operators. Thus we can cleanly read

off from the index the spectrum of relevant superpotential deformations.

• The only states which can contribute at order q p are marginal operators, contributing

with positive sign, and certain fermionic components from the conserved current mul-

tiplet, which contribute with a negative sign. Thus at this order we can extract the

combination,

χMarginals({u})− χadjointGF
({u}) . (2.52)

In particular any negative contribution to the index at this order comes from conserved

currents and has to be a part of the character of the adjoint representation of the global

symmetry group. This is extremely useful to identify the symmetry of the IR fixed point.

As we discussed this symmetry might be emergent and assuming we have identified the

R-symmetry correctly the index computation can tell us reliably what that symmetry

is.

We thus learn that the index provides us with a very non trivial probe about the deformations

and the symmetry of the fixed point. As an aside comment, in fact the index also encodes

some other non-trivial properties such as ‘t Hooft anomalies. To extract the anomalies one

can send all of the fugacities, {q, p, ui}, to 1 and study the leading divergent behavior of the

– 27 –



index in this limit [13, 59–62] which turns out to neatly encode the ‘t Hooft anomalies of

various symmetries. We know that the anomalies alone do not uniquely specify a CFT. The

index is a rich observable however it also does not uniquely specify a theory, as for example

different models on the same conformal manifold Mc will have the same index.12

The discussion till now was very general but the technology of computing the index is

rather simple. We will not derive it here and only quote the results. The details can be found

e.g. in [21, 65, 66]. The technology consists of two main ingredients.

• The index of a chiral field Q with R-charge R and representation R of GF is given by,

IR,R(q, p; {u}) = exp

{ ∞∑
m=1

1

m

(qp)
R
2
mχR(u

m)− (qp)
2−R
2

mχR(u
m)

(1− qm)(1− pm)

}
. (2.53)

Here χR is the character of the representation R. In particular this can be neatly

written in terms of the so called elliptic Gamma functions [58],

Γe(z; q, p) = exp

{ ∞∑
m=1

1

m

zm − (qp)mz−m

(1− qm)(1− pm)

}
=

∞∏
i,j=0

1− qi+1pj+1z−1

1− qipjz
, (2.54)

which can thus be interpreted as the index of a chiral field with R-charge zero and

charge one under the U(1)z symmetry.

• Given an index of some SCFT I1(q, p; {u, v}) with global symmetry Gu × Gv we can

compute the index of the theory with the Gv symmetry gauged,

I2(q, p; {u}) =
((q; q)(p; p))RankGv

|WGv |

∮ RankGv∏
i=1

dvi
2πivi

I1(q, p; {u, v})
I0,(adj.Gv−rankGv)(q, p; {v})

.

(2.55)

Here WGv is the Weyl group of Gv. We also define (z; y) =
∏∞

i=0(1 − zyi). The

contribution 1/I0,(adj.Gv−rankGv) comes from the vector multiplets. It is equivalent to

one over the contribution of chiral superfield with R-charge zero in adjoint representation

without the contribution coming from the Cartan generator, χadj.Gv−rankGv = χadj.Gv −
rank Gv.

The superpotentials only effect the index through the restrictions they impose on flavor sym-

metry and R-symmetry. This index can be computed with any R-symmetry but it becomes

the superconformal index of the fixed point only if the superconformal R-symmetry is used.

Exercise: Consider the simplest QFT, two chiral superfields Q and Q̃ coupled with the su-

perpotential mQQ̃. Compute the supersymmetric index and interpret it.

12Theories differing solely by their higher form symmetries also might have the same index, say SU(N) and

SU(N)/ZN N = 4 SYM. However this difference can be captured by other types of partition functions, e.g.

the Lens index [63, 64].
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First we need to determine the symmetries and the charges of the model. At the free

point the two chiral fields can be rotated by U(2) but the superpotential breaks it to U(1)

under which the two fields have an opposite charge. We chose to normalize the charges to be

±1. The R-symmetry of the superpotential is 2 and thus the sum of the R-charges of the two

fields is RQ +R
Q̃
= 2. We then use the first entry in the technology of computing the index

above to write the index of the system to be,

IRQ,+1(q, p;u) I2−RQ,−1(q, p;u) = Γe((q p)
RQ
2 u; q, p) Γe((q p)

2−RQ
2 u−1; q, p) = 1 . (2.56)

The last equality is derived by direct evaluation using the definition of the elliptic Gamma

function (2.54). Let us try to interpret the result. The fact that the index is 1 means that

only the identity operator corresponding to the vacuum contributes to it and there are no

other protected operators (or to be more precise the spectrum of operators is such that all

protected ones can recombine into long ones). The theory is massive and thus it is gapped and

in the IR we will not have any propagating degrees of freedom. The theory has a single state,

the vacuum, and thus the index is consistent with this. Note that this is a trivial example

where the UV U(1)u symmetry does not act faithfully in the IR. For this reason it is also

not important what the superconformal R-symmetry is. In particular the trial a-anomaly is

identically zero,

a(α) = aR(RQ + α) + aR(2−RQ − α) = 0 . (2.57)

This is a trivial example, however in the more interesting cases the computations are not

much more complicated and the physics can be extracted in a similar manner.

□

We are now ready to study interesting physical systems using the simple toolkit of non-

perturbative techniques we have reviewed.

3 Lecture II: Examples of strong coupling dynamics

Let us start our discussion of the dynamics of supersymmetric field theories with several

examples of interesting strongly coupled behavior. We will review the phenomenon of IR

duality, discuss the interplay between duality and emergence of symmetry in the IR, and

discuss a simple algorithm to look for different weakly coupled theories residing conjecturally

on the same conformal manifold. The purpose of this Lecture is to introduce various possible

physical scenarios and effects. In later Lectures we will discuss a way to more systematically

discuss such effects using geometric constructions.

3.1 IR dualities

Let us consider some of the basic examples of IR dualities discovered by Seiberg [2]. First,

let us consider N = 1 SU(N) gauge theories (SQCD) with Nf fundamental chiral fields and
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Nf antifundamental ones: this is referred to as the theory having Nf flavors. The matter

content is non-anomalous for any N . For N > 2 we should worry about cubic anomalies

TrSU(N)3, which vanishes because the matter representation is real. For N = 2 there is no

difference between fundamentals and antifundamentals but we have to have an even number

of these so that the theory will be free of a Witten anomaly [67]. For Nf ≥ 3N (Nf > 9 for

N = 3) the theory is IR free and thus we need to worry about UV completing the theory, as

the couplings grow when we flow back to the UV. For Nf < 3N (Nf ≤ 9 for N = 3) these

models are asymptotically free and thus can be thought of as deformations of Gaussian fixed

points in the UV. The beta function is such that when flowing to the IR the gauge coupling

grows and we are interested in understanding what is the effective description in the IR. We

will be in particular interested in the case of Nf > N as here the dynamics turn out to be

rather interesting.13 Here is the basic statement.

• For 3
2N < Nf < 3N SU(N) SQCD with Nf flavors, Qi and Q̃i, and no superpotential

flows to an interacting SCFT in the IR. Moreover, the SU(Nf − N) SQCD with Nf

flavors, qi and q̃i, and N
2
f gauge singlet chiral fields, Mij , with a superpotential W =

M · q · q̃, flows to exactly the same fixed point. The phenomenon of two different UV

theories flowing to the same IR fixed point is called IR duality. See Figure 12 on the

left for an illustration. This range of parameters is called the conformal window.

• For N+1 ≤ Nf ≤ 3
2N SU(N) SQCD with Nf flavors, Qi and Q̃i, and no superpotential

flows to an IR free theory. The effective description in the IR is that of SU(Nf −
N) SQCD with Nf flavors, qi and q̃i, and N2

f gauge singlet chiral fields, Mij , with a

superpotential W = M · q · q̃. Note that the latter theory satisfies in the given range

of parameters Nf > 3(Nf − N) and thus the theory is IR free. In other words the

SU(Nf −N) SQCD is UV completed here by the SU(N) SQCD. See Figure 12 on the

right for an illustration. In addition, see Figure 13 for a quiver description of Seiberg

duality.

Let us discuss some evidence for these statements. First, one can check the ‘t Hooft anomalies

of the various symmetries: in the first case of the two different UV theories and in the second

case of the weakly coupled theories in the UV and in the IR. We leave this as a simple exercise.

Second, one can check that the supersymmetric indices of the relevant theories agree. In fact,

there is a mathematical proof due to Rains that they do [68]. The proof is rather non trivial

so let us here quote a simple computation for the simplest duality, SU(2) SQCD with Nf = 3

dual to a WZ model (See Figure 14). Following the general rules we have outlined the duality

implies the following identity of indices,

(q; q)(p; p)

∮
du

4πiu

∏6
i=1 Γe((qp)

1
6u±1ai; q, p)

Γe(u±2; q, p)
=
∏
i<j

Γe((qp)
1
3aiaj ; q, p) . (3.1)

On the left we have the index of SU(2) SQCD. The numerator comes from the six fundamental

fields which have anomaly free R-charge of 1/3. The symmetry is SU(6) and ai parametrize

13For Nf ≤ N the dynamics becomes trickier, e.g. it involves effects such as runaway vacua and quantum

deformed moduli spaces, that we will not discuss here [2]. See [21] for an excellent review.
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Figure 12. A depiction of IR dualities. On the left we have two different UV CFTs deformed to

flow to the same IR fixed point. On the right we have a UV CFT deformed (e.g. a weakly coupled

asymptotically free gauge theory) flowing in the IR to a QFT which close to the IR fixed point can be

described by yet another weakly coupled theory (e.g. an IR free gauge theory).

Nf Nf Nf NfN Ñ

Q Q̃ q̃q

M

W = M ⋅ q ⋅ q̃

N+1

1
N + 2

1
N + 2

1
N + 1
N + 2

N + 1
N + 2

2
N + 2

N+2 N+2

U(1)B

N+2 N+2

Figure 13. A depiction of Seiberg duality with SU(N) gauge groups.

the Cartan of this symmetry,
∏6

i=1 ai = 1. The denominator comes from the vector superfield.

The ± in the integral is a shorthand notation for the following, f(x±1) ≜ f(x) · f(x−1). On

the right hand side we have a WZ model with 6×5
2 = 15 chiral fields with R-charge 2/3

which are coupled with a cubic superpotential. The SU(2) SQCD with Nf = 3 flows in

the IR to a WZ model of 15 chiral fields with cubic superpotential, which flows to a free

theory. The identity above was originally obtained by S. Spiridonov [69] and dubbed elliptic

Beta function as in certain degeneration limits of parameters it becomes the well known Beta

function integral identity.

Next consider a duality in the conformal window, SU(2) SQCD with Nf = 4 dual to

SU(2) SQCD with Nf = 4 and a collection of 16 chiral fields. The index of the two dual
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Figure 14. When the number of flavors is one more than the number of colors the theory in the IR

is a WZ model with a superpotential q q̃ M +MN+2 term. This phenomenon is called S-confinement.

In the IR the WZ models flows to a collection of free chiral fields.

theories is,

(q; q)(p; p)

∮
du

4πiu

∏8
i=1 Γe((qp)

1
4u±1ai; q, p)

Γe(u±2; q, p)
=

4∏
i,j=1

Γe((qp)
1
2aia4+j ; q, p) (3.2)

×(q; q)(p; p)

∮
du

4πiu

∏4
i=1 Γe((qp)

1
4u±1aa−1

i ; q, p)
∏8

i=5 Γe((qp)
1
4u±1a−1a−1

i ; q, p)

Γe(u±2; q, p)
.

Here the superconformal R-charge on both sides is 1
2 for all the fundamental chiral superfields.

The symmetry on the left is SU(8) parametrized by ai,
∏8

i=1 ai = 1. On the right the

symmetry in the UV is SU(4)×SU(4)×U(1). The U(1) is paramterized by a
1
2 ≡

(∏4
i=1 ai

) 1
4
.

The two SU(4)’s are parametrized by {a
1
2a−1

i }4i=1 and {a−
1
2a−1

i }8i=5. Note that SU(4) ×
SU(4)×U(1) is a subgroup of SU(8) and thus if this duality is correct the symmetry has to

enhance to SU(8) in the IR. This is a simple example of emergence of symmetry. As we have

discussed the supersymmetric relevant operators are invariant under RG flows and thus have

to match across the duality. Indeed the operatots QiQ̃j match with Mij , QiQj match with

qiqj , and Q̃iQ̃j match with q̃iq̃j .

Exercise: Compute the index of the Nf = 4 SU(2) SQCD up to order q p using the supercon-

formal R-symmetry. What is the representation of the marginal operators under the SU(8)

global symmetry? This theory is extremely interesting. In fact it has (at least) 72 different

dual descriptions [70]: (The number 72 is interesting: it is the ratio of the dimension of the

Weyl group of E7 and SU(8). There is an E7 lurking behind this theory. To see it one needs

to do some work [71] (See also [72]).) The two Seiberg dual theories here are just 2 out of the

72 different duality frames. Can you find another 34?

We can use the integral expressions for the index above to compute the contribution at

order qp,

χ336({a})− χ63({a}) . (3.3)
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Here 336 irrep of SU(8) appears in decomposition of Sym228 = 336 + 70. The 28 is the

representation of Q ·Q and the marginal operators come from (Q ·Q)2. We note in passing

that SU(8) is a maximal subgroup of E7 with 133E7 = 70 + 63. The above can be written

as,

χSym228({a})− χ70({a})− χ63({a}) = χ336({a})− χ63({a}) . (3.4)

The E7 is not however a symmetry of the theory in the IR, the−χ70 comes from trace relations

and not from a conserved current. We see that E7 is lurking under the surface, and in the

next Lecture we will see some geometric importance of this.14 The positive contributions

are the marginal operators and the negative are the conserved currents. Note that we can

here identify the positive and the negative contributions as these have to be characters of

representations of SU(8). Note also that there is no direction on the conformal manifold

preserving the full SU(8) symmetry as the marginal operators lack a singlet of this group.

Regarding the second part of the question: note that to construct the dual theory we

need to split the eight fundamentals into fundamentals and anti-fundamentals, which is an

arbitrary procedure for SU(2). We thus have 1
2 × (8!/4!2) = 35 different ways to do so. This

immediately gives us 35 inequivalent possibilities of Seiberg duality. There are in fact another

35 + 1 dualities which were discussed in [74, 75].

□

The SU(2) SQCD with various amounts of flavors are probably the simplest supersym-

metric gauge theories and already these exhibit extremely rich dynamics. We will now analyze

yet another interesting strong coupling effect that can be derived starting from SU(2) SQCD

with Nf = 4 [23].

3.2 Emergence of symmetry in the IR

Let us consider SU(2) SQCD with Nf = 4. We split the eight chiral fields into six (Q) and

two (Q̃). We also introduce gauge invariant operators M coupling through a superpotential

as,

W =Mabϵ
ijQa

iQ
b
j . (3.5)

Note that this superpotential is relevant as at the SQCD fixed point the R-charge of the

quarks is 1
2 and the R-charge of the gauge singlets, which are free fields at the fixed point,

is 2
3 . The quiver theory is depicted in Figure 15 and charges of the various fields under the

symmetries of the model are detailed in the table below. The gauge singlet fields M and the

superpotential break the symmetry of the model from SU(8) down to SU(6)×SU(2)×U(1)h.

We will show eventually that this symmetry enhances to E6×U(1)h. We also note that SU(8)

is not a subgroup of E6.

14There is an interesting interplay between kinematic constraints, more generally chiral ring relations, and

enhanced symmetries which we will not review here [73].
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Figure 15. On the left SU(2) SQCD with eight fundamental fields. On the right a relevant deforma-

tion thereof.

Field SU(2)G SU(2) SU(6) U(1)h U(1)r̂
Q 2 1 6 1

2
5
9

Q̃ 2 2 1 −3
2

1
3

M 1 1 15 −1 8
9

M̃ 1 1 1 3 4
3

In the table U(1)r̂ is the superconformal R-symmetry obtained by a-maximization [76]

and the conformal anomalies are c = 29
24 , a = 13

16 . Note that the operator Q̃Q̃ has supercon-

formal R-symmetry 2
3 and thus is a free field in the IR. This means that in particular we have

an emergent U(1) symmetry under which this field, and only it, is charged. Emergence of

abelian symmetries might invalidate the a-maximization, however this is not the case here.

The operator does not violate the bound but rather saturates it and thus following a version

of one of the previous exercises taking into account the emergent symmetry will not violate

the conclusion. We are interested however only in the interacting part of the IR SCFT and

thus we can remove the free field simply by “flipping” it [77] (See also [50].). The operation

of flipping [15] an operator O is preformed by introducing a chiral field ΦO and turning on a

superpotential

W = ΦO O .

In our case since O = Q̃Q̃ is a free field the flipping is just a mass term for O, both ΦO = M̃

and O become massive and decouple in the IR. Using this superconformal R-symmetry we

compute the index after introducing M̃ (see Figure 16),

1 + 27h−1(qp)
4
9 + h3(qp)

2
3 + ...+ (−78− 1)qp+ ... . (3.6)

The bold-face numbers are representations of E6 as we will elaborate momentarily, and h

is the fugacity for U(1)h. We remind the reader that the power of qp is half the R-charge

for scalar operators and we observe that all the operators are above the unitarity bound.

Let us count some of the operators contributing to the index. The relevant operators of the

model are QQ̃ and M which comprise the (2,6) and (1,15) of (SU(2), SU(6)), which gives

27 of E6. We also have M̃ , a singlet of non abelian symmetries. At order q p, as we have

discussed, assuming the theory flows to an interacting conformal fixed point, the index gets

contributions only from marginal operators minus conserved currents for global symmetries.
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Figure 16. The model with E6 × U(1) global symmetry.

The operators contributing at order q p are gaugino bilinear λλ ((1,1)), QψQ ((1,35 + 1)),

Q̃ψ
Q̃
((3+ 1,1)): these operators give the contribution,

1− (1,35)− 1− (3,1)− 1,

which gives the conserved currents for the symmetry we see in the Lagrangian. Here ψF is

the complex conjugate Weyl fermion in the chiral multiplet of the scalar F . We also have

operators ψMM , ψ
M̃
M̃ , M̃Q̃Q̃, andQQM , which cancel out in the computation since the first

two are fermionic while the second two are bosonic, but are both in the same representation

of the flavor symmetry pairwise. Finally we have Q3Q̃ ((2,70)) and QψM Q̃ ((2,20 + 70)).

These two contribute

−(2,20)

to the index, which, combined with the above, forms the character of the adjoint represen-

tation of the E6 × U(1)h symmetry. We emphasize that the fact we see −78 at order qp

of the index is a proof following from representation theory of the superconformal algebra

that the symmetry of the theory enhances to E6 (See the discussion around (2.52).), where

the only assumption is that the theory flows to an interacting fixed point. We also observe

that the conformal manifold here is a point as we do not have any positive contributions to

the index. As the index at order q p has positive contributions from marginal operators and

negative from conserved currents, cancellations can occur. However, this would imply that

the symmetry of the IR fixed point is even bigger: adding marginal operators we have to add

also currents. We cannot rule out this possibility but we have no evidence for its existence.

So, under the assumption that we have identified the IR symmetry correctly the conformal

manifold is a point.

The enhancement of symmetry to E6 follows from Seiberg duality of SU(2) SQCD with

Nf = 4. Note that we can reorganize the gauge charged matter into two groups of four

chiral fields. We take four out of the six Qs and call them fundamentals and combine the

other two with Q̃ and call those anti-fundamentals. This also decomposes the symmetry

SU(6) to SU(4)×SU(2)×U(1)h′ with a combination of U(1)h′ and U(1)h being the baryonic

symmetry, see Figure 17. IR duality [2] without the gauge singlet fields will then map the

baryonic symmetry to itself while conjugating the two SU(4) symmetries and adding sixteen

gauge singlet mesonic operators. With our choice of gauge singlet fields, the flipper fields of
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Figure 17. Explanation of SU(6)× SU(2) → E6 enhancement from Seiberg duality.

17 are flipping eight of the baryons and the bifundamental gauge invariant operators form half

of the mesons. Thus, the duality removes half of the mesons which connect SU(2) with SU(4)

and attaches the other half between the SU(4) and the other SU(2). This transformation

acts only on the symmetry leaving the quiver structurally unchanged. The action on the

symmetry is as the Weyl transformation which enhances SU(6) × SU(2) symmetry to E6.

Note that in general dualities take two different UV theories to the same conformal manifold

in the IR, but here as the conformal manifold is a point they actually are part of the symmetry

group of the IR theory.

This is an example of a generic phenomenon of the interplay between symmetry and

duality which we will encounter in several guises in what follows. In the last Lecture we will

have a geometric explanation of the enhancement of the symmetry to E6 in this example.

3.3 Conformal dualities

Next, we consider yet another interesting strong coupling phenomenon, which however does

not involve an RG-flow. We want to consider the case when a given SCFT T1 resides on a

non trivial conformal manifold. We assume that there is an interesting/useful definition of

this particular point of the conformal manifold. The conformal manifold is then spanned by

exactly marginal deformations at T1. One thing that can happen, and often does happen, is

that there is another locus of the conformal manifold, T2, where we have a completely different

description of the theory. The theory T1 then can be thought of as an exactly marginal

deformation of T2, and vice versa. This multitude of descriptions is called a conformal duality.

A prototypical example is N = 4 SYM with gauge group G which has N = 4 preserving one

dimensional conformal manifold parameterized by complexified gauge coupling τ . At strong

coupling a dual weakly coupled description emerges in terms of N = 4 SYM, but now with a

Langlands dual gauge group LG [3] (for SU(N) the dual is SU(N)/ZN ). In general, such a
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duality might relate two weakly coupled gauge theories as in the case of N = 4 SYM, a weakly

coupled gauge theory and a strongly coupled one defined in a certain way (say geometrically),

or two strongly coupled theories which have certain independent definition (see Figure 18).

We will be interested in addressing the following question [22]. Given a conformal theory

T1 which has a conformal manifold Mc we can define certain observables of T1 which are

invariant on Mc. For example, we have already discussed that the ‘t Hooft anomalies of sym-

metries preserved on the conformal manifold are such an invariant, and for supersymmetric

theories also the a and c anomalies, and various indices are invariant.15 In particular the

dimension of the conformal manifold dimMc and the symmetry preserved on a generic locus

of the conformal manifold GF , are such invariants.16 Given T1 and the set of its Mc invariants

we will systematically seek for a dual conformal gauge theory T2. Following our discussion

we will be either able to prove that such a dual does not exist, or find a conjecture for such

a dual. The conjecture will be supported by comparing robust supersymmetric properties

and various anomalies. Even given that these agree the conjecture might in principle still be

wrong.

The algorithm for seeking for a dual proceeds as follows. We first write down the a and

the c anomalies of the theory T1. These are quantities which for supersymmetric theories do

not change on the conformal manifold. We parametrize the result as,

a = avdimG + aχdimR , c = cvdimG + cχdimR . (3.7)

On the right hand side of each expression we have denoted by (aχ, cχ) = ( 1
48 ,

1
24) and (av, cv) =

( 3
16 ,

1
8) the contributions to the a and c anomalies of free chiral and vector fields respectively.

The anomalies of the free chiral field are computed assigning to it R-charge 2
3 . Next, the

variables dimG and dimR can be thought of as the “effective number” of vector multiplets

and chiral multiplets of our theory. The a and c anomalies are two independent numbers

which we can parametrize uniquely by the two independent numbers dimG and dimR.

The putative dual conformal gauge theory T2 should have the same number of vector and

chiral fields as we assume it is a weakly coupled conformal deformation of a free theory. If a

and c imply that these numbers are fractional, a conformal dual gauge theory does not exist.

Moreover, the number of vector fields dimG must be a sum of dimensions of non-abelian

gauge groups. Given the solution to the above problem exists, we then write down all the

conformal gauge theories with the given number of free vectors and free chiral fields with an

additional demand that the one loop beta function of all gauge couplings is zero. Importantly,

the number of theories in this step is finite. If we find theories which have (one-loop) marginal

gauge couplings we need to understand whether these theories are free or possess a non trivial

conformal manifold. This conformal manifold also has to have the same dimension, dimMc,

and same symmetry on a generic locus, GF , as T1. Here the computation is performed

by computing the Kähler quotient [40] as we have discussed in the previous Lecture: the

number and properties of holomorphic combinations of couplings which are singlets under

15For non supersymmetric theories as there is no relation between ‘t Hooft and conformal anomalies and

the c anomaly in principle can change on the conformal manifold [78] (see also [79]).
16As we have discussed the exactly marginal operators correspond to certain short multiplets, number of

which cannot change as we vary continuous parameters.
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Figure 18. Conformal dualities. Theories residing on the same conformal manifold are usually called

conformal dual to each other. A theory T1 can have its own description or can be thought of as an

exactly marginal deformation of T2, and vice versa. This tautological definition of duality becomes

interesting when indeed the two theories Ti have a rather different independent definition. For example,

one, or both, are given by a weakly coupled gauge theory. We denote here weakly coupled points on

the conformal manifolds as cusps as these are singular loci on the conformal manifold.

the full global symmetry group. The final step of the algorithm is to take all the theories

with matching conformal manifolds and symmetries on the general locus and do finer checks:

these can include, but are not limited to, various supersymmetric partition functions and

‘t Hooft anomalies. Any theory passing the last step qualifies as a conjecturally conformal

dual model to T1. Importantly if a conformal dual to T1 exists we are guaranteed to find it

using this procedure.

We will now discuss in detail a simple application of this algorithm to produce a duality

between two weakly coupled conformal gauge theories [22]. As theory T1 we will take N = 1

SQCD with gauge group G2, three fundamental fields (7) Qi, and one chiral field in the 27,

Q̃ (see Figure 19). The irrep 27 of G2 appears in Sym27 = 27+ 1. The one loop gauge beta

function of this model vanishes,

Tr R (G2)
2 = 4 + 1× (

2

3
− 1)× 3 + 9× (

2

3
− 1) = 0 , (3.8)

which determines then the superconformal R-charges of all the chiral fields to be the free

ones. In the above computation 4 is the Dynkin index of the adjoint representation coming

from the gauginos, 1 is the Dynkin index of the fundamental representation coming from the

Qi’s, and 9 is the Dynkin index of 27 and coming from Q̃.

The non-anomalous global symmetry of the free locus of this SQCD is U(1) × SU(3).

The fundamental fields Qi are in a three dimensional representation of SU(3) (with no loss

of generality we can take it to be the fundamental) and we will assign these U(1) charge −3.

The field in 27 is the assigned charge +1, which renders the U(1) symmetry non anomalous,

Tr U(1) (G2)
2 = 1× (−3)× 3 + 9× (+1) = 0 . (3.9)

– 38 –



3G2Q̃ Q

SU(2)

!

q

SU(2)

SU(3) !̃

φ φ̃

GF = SU(2)

GF = SU(3) GF = SU(3)SU(2)2
ℳc

G2 SQCD SU(2)2SU(3) quiver
Figure 19. The G2 conformal SQCD.

Next, we analyze the marginal operators. The fundamental irrep of G2 contains a singlet

in its cubic antisymmetric power. Thus, operator γ ϵijkQiQjQk is gauge invariant and is a

marginal one. Moreover, this operator is a singlet of the SU(3) global symmetry and has

U(1) charge −9. We can also build marginal operators from Q̃: an interesting group theory

fact is that Sym327 has two independent invariants. These two then provide two additional

marginal operators which we will denote as γ1 (Q̃)31 and γ2 (Q̃)32. Both of these operators

are of course singlets of SU(3) and have U(1) charge +3. We have one additional marginal

operator which contains both types of fields, γij Q̃Q[iQj]. Unlike the other operators this

transforms under SU(3) in the symmetric six dimensional representation. The U(1) charge

of this operator is −5. This theory has one gauge coupling and an anomalous symmetry under

which all the fields can be chosen to have the same positive charge. Thus all the marginal

operators will have a positive charge, implying that the associated coupling all have negative

charge. However, the gauge coupling carry positive charge. Thus, in computations of the

conformal manifold in this case we can always account for the anomalous symmetry by an

appropriate factor involving the gauge coupling and we will not discuss this further.

Next we analyze the dimension and properties of the conformal manifold of this SQCD.

To do so we need to compute the Kähler quotient [40],

{γ, γ1,2, γij}/(SU(3)× U(1))C.

First let us take the couplings which preserve the SU(3), {γ, γ1, γ2}. From these three we

can construct two independent singlets (γ3i γ) giving rise to two exactly marginal directions.

The conformal manifold is thus not empty and on this two dimensional locus we break the

U(1) symmetry while preserving the SU(3) one.

We have however an additional exactly marginal direction which involves also the op-

erator charged under the SU(3) symmetry. For example let us consider exploring the two

dimensional manifold above. Now as only the SU(3) symmetry is preserved we need to find

whether we can build a singlet from powers of γij . A natural singlet is a determinant of this

symmetric matrix,

ϵi1i2i3ϵj1j2j3γ
i1j1γi2j2γi3j3 .

Since the γij transforms under the SU(3) symmetry it is broken along this direction. However,

it is not completely broken: there is an SO(3) symmetry preserved. We can deduce this for

example by noting that if we imbed SO(3) in SU(3) such that the adjoint of the former is the

fundamental of the latter the six dimensional irrep of SU(3) decomposes into a singlet and

a five dimensional irrep of SO(3). The adjoint of SU(3) decomposes into a five dimensional

irrep and the adjoint of SO(3). Thus, the five dimensional fraction of the conserved current
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Figure 20. A quiver theory which is conjectured to be conformally dual to the G2 SQCD. The

superpotential of this model includes all gauge invariant marginal terms one can construct from the

fields.

can combine with the five dimensional part of the marginal operator to leave behind the

adjoint of SO(3) (the conserved current) and the singlet exactly marginal deformation. The

only ’t Hooft anomaly involving the SO(3) symmetry we need to compute is,

Tr RSO(3)2 = (
2

3
− 1)× 7× 2 = −14

3
. (3.10)

Here 2 is the Dynkin index of the adjoint of SO(3) of which we have 7 coming from the

fundamentals of G2. All in all we thus have a three dimensional conformal manifold on

general locus of which the GF = SO(3) symmetry is preserved.

We next ask whether we can find a conformal gauge theory T2 with exactly same prop-

erties as above. Since T1 itself is conformal gauge theory we know that any such conformal

dual has to have

dimG = dimG2 = 14 , dimR = 27 + 3× 7 = 48 .

The only combinations of dimensions of simple compact Lie groups which give us 14 are the

G2 and SU(3)×SU(2)×SU(2). We will seek a dual with the latter choice. We need to build

a theory with SU(3)×SU(2)×SU(2) gauge group and total of 48 chiral fields forming some

representation of the gauge group. The matter content should be such that the one loop beta

function for the gauge couplings vanishes. One of the finite number of choices accomplishing

this is depicted in Figure 20. The fields X and X̃ are in the 6 and 6 representations of

SU(3). We will next argue that it is plausible that the quiver theory of Figure 20 is in fact a

conformal dual to the G2 SQCD.

To support our claim we need first to compute the dimension of the conformal manifold

and the symmetry on the generic locus of this manifold. At the free locus the quiver theory

has SU(3)×SU(2)2×U(1)2 as its non-anomalous global symmetry group. The non-anomalous

U(1)2 can be chosen as follows: we assign charges (+1, 0) to the bifundamentals (the q fields)
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between the two SU(2)’s; the fields ϕ and ϕ̃ are assigned charges (−1, 0); and finally the X

and X̃ fields have charges (45 ,±1) respectively. One can verify that this charge assignment

is not anomalous with respect to all three simple gauge group factors. Let us also comment

in detail on the anomalous symmetries. We have three such symmetries which we denote

by U(1)Ai . Under U(1)A1 and U(1)A2 the fields q have charge +1 while (φ, φ̃) has charge

(+1/−1,−1/+1) for the former/latter. Uner U(1)A3 the fields q have charge −1 while φ and

φ̃ have charge +1. The fields in the symmetric representation are not charged under these

symmetries. Note then that the gauge coupling of the SU(2) on the left of Figure 20 only

transforms under U(1)A1 . Similarly the gauge coupling of the SU(2) on the right transforms

only under U(1)A2 , and the SU(3) gauge coupling transforms only under U(1)A3 . The gauge

couplings are charged positively under the anomalous symmetries.

Having analyzed the symmetries we discuss next the marginal operators. First one,

which we will denote by λ, is built from triangles in the quiver. These marginal operators

are in (3,2,2)(−1,0) of (SU(3), SU(2), SU(2))U(1)2 . The second type of marginal operators,

which we will denote by λ±, corresponds to X3 and X̃3, which have charges (1, 1, 1)( 12
5
,±3)

respectively. The third and last type of operators, which we will denote by λ′±, are Xϕ
2

and X̃ϕ̃2 which have charges (1, 1, 1)(− 6
5
,±1). Under all three anomalous symmetries the λ

couplings have charge −1 and the λ± couplings are not charged. The λ′± couplings are charge

−2 under U(1)A3 , ±2 under U(1)A1 and ∓2 under U(1)A2 .

Let us first consider turning on only marginal deformations λ± and λ′±. These couplings

are singlets under the non-abelian symmetries. Under the non-anomalous symmetries the fol-

lowing two independent combinations of the couplings are not charged, x+ = (λ′+)
12(λ+)(λ−)

5

and x− = (λ′−)
12(λ−)(λ+)

5. Considering the anomalous symmetries the combination x+x−
is charged only under U(1)A3 negatively and thus this can be offset by an appropriate power

of the exponent of the gauge coupling of the SU(3) gauge group. We thus have a one dimen-

sional conformal manifold on which only SU(3) gauge coupling is non vanishing and λ± and

λ′± are turned on. These deformations break all the non-anomalous abelian symmetries as

well as U(1)A3 and an off-diagonal combinations of U(1)A2 and U(1)A1 . Along this direction

the non-abelian SU(3)× SU(2)2 symmetry is preserved.

We can build two additional exactly marginal operator using the deformation λ. This

will break all the symmetry but the diagonal combination of the two SU(2)s and SO(3) in

SU(3). This comes about again as the decomposition of the representation of the marginal

operator is (3,2,2) → 2 × 3 + 5 + 1 and the decomposition of the conserved currents is

(8,1,1) + (1,3,1) + (1,1,3) → 3 × 3 + 5. Two of the three 3 and the 5 recombine with

the relevant components of the marginal operators leaving behind a single singlet of SU(2).

We have broken all the abelian symmetries but the diagonal combination of the anomalous

symmetries U(1)A2 and U(1)A1 by turning on λ± and λ′± and the SU(3) gauge coupling.

Under this diagonal combination λ has a negative charge which can be offset by appropriate

powers of the exponents of one of the two SU(2) gauge couplings giving two additional exactly

marginal deformation.

Thus, as we obtained for T1, also T2 has a three dimensional conformal manifold with

GF = SO(3). Note that both duality frames have loci with enhanced symmetry which are
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however different. This is not a contradiction of the duality as the two do not have to intersect.

Let us next do finer checks of the duality. First we can compute the ‘t Hooft anomaly

involving the SO(3) symmetry on the quiver side,

Tr RSO(3)2 = (
2

3
− 1)(6× 2× 1

2
+ 4× 2) = −14

3
. (3.11)

Here 1
2 is the Dynkin index of the fundamentals and 2 is the index of the adjoint. The adjoint

comes from the triplet of SU(2) bi-fundamentals (there are thus four adjoints), while the

fundamentals come from the bi-fundamentals of SU(2) and SU(3) (and thus there are 6× 2

of those). Note that this precisely matches (3.10): the matter is very different but anomaly

is exactly the same providing a rather non-trivial check of the proposed duality.

Finally, we can try to match the supersymmetric indices on the two sides of the putative

duality. Following the general technology of computing the index detailed in the previous

Lecture we have for the G2 SQCD,

IG2 = 1 + (h2 +
1

h6
6SU(3))(pq)

2
3 +

(
2h3 +

1

h5
6SU(3) +

1

h9
− 8SU(3) − 1

)
p q + · · · ,

where we have refined the index with the full non-anomalous symmetry of the free theory. The

fugaicty h is the fugacity for the single U(1) symmetry while the bold face numbers encode

irreps of SU(3). To compute the index we need the characters of various representations of

G2 and for completeness we give them here,

χ7({z}) = z1 + z2 +
1

z1z2
+

1

z1
+

1

z2
+ z1z2 + 1 , (3.12)

χadj.=14({z}) =
1

2
(χ7({z})2 − χ7({z2}))− χ7({z}) , χ27({z}) =

1

2
(χ7({z})2 + χ7({z2}))− 1 .

On the other hand the index of the putative quiver dual is,

Iquiver = 1 + (a
8
5 + a26SU(3)) (pq)

2
3 + (3.13)(

a
12
5 (b3 +

1

b3
) +

1

a
2SU(2)12SU(2)23SU(3) +

1

a
6
5

(b+
1

b
)− 3SU(2)1 − 3SU(2)2 − 8SU(3) − 2

)
p q + · · · .

We again computed the index at the free locus of the quiver refining it with the full non-

anomalous symmetry group. The a and b fugacities parametrize the two non-anomalous

U(1)s while the bold face numbers denote irreps of the corresponding non-abelian groups.

The indices of the two theories at the free locus, (3.12) and (3.13), look rather different: this

is to be expected as at these points new non-generic symmetries emerge. We should make

a comparison only refining the index with symmetries appearing on a generic locus of the

conformal manifold. In our case this is the SO(3) symmetry. This implies that we need to

set to 1 the fugacities for all the abelian symmetries and furthermore take,

3SU(3) → y2 + y−2 + 1 = 3SO(3) , (3.14)

2SU(2)1 = 2SU(2)2 = y + y−1 = 2SO(3) . (3.15)
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With this the two indices match on the nose,

IG2 = Iquiver = 1 + (2 + 5SO(3))(pq)
2
3 + (3− 3SO(3)) p q + · · · . (3.16)

This equality had to hold if the duality claim is correct.17 We emphasize that this is not a

proof of a duality. One can perform more checks (one of which is detailed in [22]). The two

different gauge theories are expected to describe two different weakly coupled cusps of the

same conformal manifold.

In the following Lectures we will see additional examples of such conformal dualities.

Those examples will have a simple geometrical explanation, though for the duality presented

here no such interpretation exists at the moment.

3.4 Exercise: Lagrangian dual of a class S theory

Exercise: Given an SCFT in 4d with a = 15
4 and c = 17

4 , 26 supersymmetric relevant de-

formations, and 33 dimensional conformal manifold on a generic locus of which there are no

global (non-R) symmetries, find a candidate conformal Lagrangian description. (In A2 class

S [7, 8] these are the properties of an N = 2 theory corresponding to a sphere with three

maximal and one minimal punctures. See Appendix D.)

The conformal anomalies are such that dimR = 63 and dimG = 13. The only choice of gauge

group which gives dimG = 13 is su(2)×usp(4). Then going over possible matter content such

that dimR = 63 and the one loop gauge beta functions vanish a candidate quiver theory is

depicted in Figure 21. Let us count the supersymmetric relevant deformations. As the theory

is free the relevant deformations are the ones given by quadratic gauge singlets,

Q2 : (15,1,1)2, 2
3
,2, Q̃2 : (1,1,6)0,2,0, q2 : (1,3,1)0,−1,0, (3.17)

Φ2 : (1,1,1)−2,0,0, X2 : (1,1,1)0,0,−6 .

Here (R1,R2,R3)q1,q2,q3 are representations/charges under the global symmetry of the free

theory, (SU(6), SU(2), SU(4))U(1)1,U(1)2,U(1)3 . Note that the total number of relevant opera-

tors is 26 as needed.

Next, we write the most general marginal superpotential,

W = λ1Φ
2X + λ2Q

2X + λ3Q
2Φ+ λ4q

2Φ+ λ5q
2X + λ6QqQ̃ . (3.18)

17We do not have a proof of this equality to all order in expansion in parameters but rather this has been

checked to some high but finite order. We need to stress here that matching the indices to any finite order in

expansion in fugacities does not constitute a proof of matching the indices precisely. There is a plethora of

examples, see e.g. [80, 81], where the indices of two theories match to arbitrary high order but the theories

are different.
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Figure 21. The conformal dual theory, where X is in the traceless antisymmetric representation (5)

and Φ is in the symmetric representation (10) of USp(4).

We then list the representations under the global symmetry of the operators the couplings λi
couple to (the couplings are in the conjugate representations),

λ1 : (1,1,1)−2,0,−3, λ2 : (15,1,1)2, 2
3
,−1, λ3 : (21,1,1)1, 2

3
,2,

λ4 : (1,1,1)−1,−1,0, λ5 : (1,3,1)0,−1,−3, λ6 : (6,2,4)1, 5
6
,1 . (3.19)

We also have two symmetries U(1)SU(2) and U(1)USp(4), which are anomalous under the

corresponding gauge symmetries. We define the charges under these as,

U(1)SU(2) : [Q] = −1

3
, [q] =

1

2
, [Q̃] = 1 , (3.20)

U(1)USp(4) : [Q] =
1

3
, [q] =

1

2
, [Q̃] = −1 .

First, assuming the symmetry is completely broken on the conformal manifold, the dimension

is given by the number of marginal operators minus the number of currents,

1 + 15 + 21 + 1 + 3 + 6× 2× 4− 35− 3− 15− 1− 1− 1 = 33 , (3.21)

which is the needed dimension of the conformal manifold. Let us now compute the Kähler

quotient

{λi, e2πiτSU(2) , e2πiτUSp(4)}/(SU(6)× SU(2)× SU(4)× U(1)3 × U(1)SU(2) × U(1)USp(4))C .

(3.22)

First,

Λ0 ≡ λ1λ4λ5(λ3)
3 , (3.23)
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has charge zero under all the non-anomalous abelian symmetries and under U(1)SU(2). Under

U(1)USp(4) it has a negative charge and thus dressing this with appropriate power of e2πiτUSp(4)

this charge can be offset to be zero. Moreover Λ2
0 is a singlet of all the non-abelian symmetries

also. This follows from the fact that Λ0 involves only couplings which are singlets of SU(4);

the symmetric square of adjoint of SU(2) contains a singlet; the sixth symmetric power of 21

of SU(6) contains a singlet. Thus we establish that the Kähler quotient is not empty and the

theory is a non trivial SCFT. Along this direction the SU(2) gauge coupling is zero. What is

the symmetry preserved by the USp(4) gauge couplings and λ1,3,4,5? All the non-anomalous

abelian symmetries and the U(1)USp(4) are broken as the couplings are charged under all of

them. The SU(4) symmetry is preserved. The Cartan of the SU(2) is preserved as the only

deformation charged under the SU(2) is a single adjoint. Finally, the SU(6) symmetry is

broken to SO(6) such that 6 → 6. In particular the 21 decompose to 20′ + 1 and adjoint

to 15+ 20′ and thus 20′ of the marginal operators recombines with the same representation

of the conserved currents and we are left with a singlet of SO(6). All in all we have one

dimensional conformal manifold the marginal operators are in representations,

(1,1)0 + (6,4)+1 + (6,4)−1 + (15,1)0 , (3.24)

and in addition we have SU(2) gauge coupling. Here we write representations/charges in

terms of the preserved (SO(6), SU(4))U(1) subgroup of the global symmetry, with the U(1)

being the Cartan of the SU(2) at the origin of the conformal manifold.

We have gauge coupling for the SU(2) left as well as the deformations λ2 and λ6. We

can build an invariant under SU(4) taking the baryonic combinations (λ±6 )
4 which are in the

adjoint of the SO(6). As λ6 has opposite charge under anomalous symmetry U(1)SU(2) to

the SU(2) gauge coupling we then can build an invariant (λ+6 )
4(λ−6 )

4 (dressed with a proper

factor of gauge coupling) under all symmetries. This deformation will break the anomalous

symmetry U(1)SU(2), the remaining Cartan of the SU(2) symmetry, as well as the two non

abelian symmetries SU(4) and SO(6). The couplings λ2 will be exactly marginal. We thus

are left with conformal manifold of dimension 33 with all the symmetry broken on a generic

locus. This completes the solution of the exercise.

□

The algorithm detailed here for the search of conformal dualities can be generalized to

search for non-conformal dualities involving flows, as long as we can assume that the spectrum

of R-charges is constraints. For examples of such generalizations see [82, 83] where a variant

of the algorithm was applied to find IR duals of an E6 Minahan-Nemeschansky model [84]

and of some N = 3 theories.

4 Lecture III: Across dimensional dualities, an example

In the previous Lecture we have discussed several scattered observations about IR physics of

simple gauge theories. The question we want to ask now is whether this scattered plethora of
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Figure 22. A 6d CFT can be placed on a compact geometry. At energy scales far below the scale set

by the geometry the theory should be effectively described by a four dimensional model, which would

then flow to some fixed point in the IR. The geometry can be thought of as a deformation ∆ of the 6d

fixed point and triggers an RG flow across dimensions. The resulting IR SCFT in 4d might or might

not be a fixed point of an RG flow starting from a Gaussian fixed point in 4d deformed by a relevant

deformation. If such a theory exists we have an IR duality between deformations of a 6d theory and

a 4d one.

facts has any interesting organizing principle. We will show that such an underpinning can

be found by thinking about 4d QFTs geometrically. The logic is as follows.

One can consider discussing higher dimensional SCFTs. Following the notorious theorem

of Nahm [85] (see also [86]) the maximal number of dimensions in which an interacting

superconformal theory can reside is six dimensions. In higher dimensions a superconformal

algebra (with no higher spin currents) just does not mathematically exist. There are two types

of superconformal algebras in 6d, (1, 0) and (2, 0), differing by the amount of supersymmetry:

the former one having 8 real supercharges and the latter 16 real supercharges. The (2, 0)

SCFTs are conjectured to be classified by an ADE algebra. A type (2, 0) theories can be

engineered for example as the low energy effective theory residing on M5 branes in M-theory

constructions. On the other hand there is a quite huge plethora of (1, 0) SCFTs. Here

also there are various classification approaches [87, 88] (See [10] for a recent review.). One

important fact about the 6d SCFTs is that all of these are strongly coupled. In particular,

due to dimensional analysis the gauge couplings and all superpotential interactions in 6d are

irrelevant; thus, gauge theories flow to free theories in 6d. Phrasing this more abstractly, 6d

SCFTs do not possess any Lorentz preserving supersymmetric relevant or exactly marginal

deformations [20].

As we are interested here in SCFTs in 4d we can then start from some given 6d (1, 0)

theory (with the (2, 0) being just a more supersymmetric special case) and place it on a

compact two dimensional space. Such compact spaces are called Riemann surfaces and are
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classified by their genus g. We will also allow to decorate the surfaces with marked points

(which will have certain physical meaning in terms of either defects or boundary conditions).

Although such a space is curved for g ̸= 1 and thus breaks supersymmetry, it is possible

to perform the compactification with a certain twist, which we will soon review, such that

half of the supersymmetry is preserved. Half of eight supercharges of (1, 0) will lead to

four supercharges, see Appendix F. One way to think about the geometry is as a certain

deformation of the 6d SCFT. In the IR, far below the energy scale set by the geometry, the

theory becomes effectively four dimensional. Preserving four supercharges we will obtain an

N = 1 theory in four dimensions. This effective theory might be a strongly coupled SCFT, a

theory of free chiral fields, a weakly coupled gauge theory, or a combination of these options.

An interesting question then is whether we can find a description of this effective theory

directly in four dimensions. That is whether there is a four dimensional Lagrangian which

either flows to this theory or directly describes the conformal fixed point. Such a geometric

engineering of the four dimensional models produces a huge plethora of theories. Some of these

theories have properties such that no four dimensional model is known to produce directly,

and thus sometimes these are called non-Lagrangian. If a Lagrangian description is found

one can think of the setup then as a novel type of an IR duality between a 6d theory deformed

by geometry and a 4d Lagrangian theory, see Figure 22. One way to think about such a set of

dualities is as map, a dictionary, between the set of 6d SCFTs and two dimensional geometries

into the set of four dimensional supersymmetric quantum field theories,

T 4d
[
T 6d, C

]
, (4.1)

where C collectively labels the geometry and T 6d the choice of the 6d starting point. The

whole program can be of course imbedded in the larger structure of M-theory and there is a lot

of benefit to be extracted from this, but we will concentrate on working within the paradigm

of local quantum field theory. Our goal in the following two Lectures will be to derive some

entries in this dictionary and exemplify the utility of the procedure for understanding non

trivial physics in four dimensions.

The fact that there is a geometry behind the construction leads to numerous very powerful

understandings about the four dimensional physics: e.g, many of the dualities and emergence

of symmetry phenomena of the type we have discussed can be explained, and in fact pre-

dicted, from such constructions. The prototypical example of the geometric constructions is

compactifications of (2, 0) theories leading to N = 2 theories in 4d. A lot has been under-

stood about such models following the seminal work of Gaiotto [8]. Here, however we will

concentrate on some simple (1, 0) examples. Let us first consider the compactification of one

of the simplest interacting 6d SCFTs, the so called SU(3) minimal SCFT [89, 90] (or SU(3)

non-higgsable cluster [91]). We will mainly follow the discussion in [24].

4.1 Six dimensions

One way to construct an SCFT in six dimensions is as follows. We consider a gauge

theory, which as we mentioned is necessarily IR free. Without going into many details (see

– 47 –



Appendix E and the review [10] for more details), a generic such theory can be built from

three types of (1, 0) multiplets: a vector multiplet, a tensor multiplet, and a hyper-multiplet.

We will not need the hypermultiplets for our discussion but let us mention that the vector

multiplet contains of course a gauge field and a fermion: in terms of representations of the little

group SU(2)×SU(2) these massless states are in (12 ,
1
2) and (0, 12), while the tensor multiplet

contains a tensor field (in irrep (1, 0) which is a two-form with self-dual field strength), a

fermion (in irrep (12 , 0)), and importantly a scalar (in irrep (0, 0) of course). The scalar in the

tensor multiplet (See Appendix E for discussion of the multiplets.) can be naturally coupled

to the field strength (schematically), ∫
d6xϕF ∧ ⋆F , (4.2)

and thus the gauge coupling in six dimensions can be thought of as an expectation value

of the scalar field residing in the tensor multiplet, ⟨ϕ⟩ ∼ 1/g2YM . In particular one can ask

what happens if this vev is set to zero. In certain cases it is believed that the theory one

obtains is a strongly coupled CFT. Conversely, a strongly coupled SCFT might contain a

moduli space of vacua, called the tensor branch, on which certain scalar operators acquire a

vev and the effective description in the IR is in terms of an IR free gauge theory consisting of

vector multiplets, tensors, and maybe hypermultiplets. This is very reminiscent of the N = 2

dynamics in four dimensions. There an N = 2 vector multiplet contains a scalar (which in

terms of N = 1 language corresponds to an adjoint scalar in an N = 1 chiral superfield in the

N = 2 vector superfield), and giving a vev to this scalar we move on the Coulomb branch of

the theory on which typically the description is in terms of abelian, IR free, gauge theories.

Switching off the vev would take us back to the SCFT point.

The effective gauge theory description on the tensor branch is constrained to be non-

anomalous. As the vector multiplet contains fermions, for example, just taking (1, 0) vectors

usually leads an anomalous theory. However, the theory with a vector and a tensor in some

cases can be made to be non anomalous. This comes about as naturally due to supersymmetry

the term of the form (4.2) is accompanied by,

α

∫
d6xB ∧ TrF ∧ F , (4.3)

with B being the tensor (see Appendix E) and α being some real constant. Such a term

actually contributes to the eight-form anomaly polynomial of the 6d theory due to the Green-

Schwarz mechanism [92, 93] a term of the form (see Appendix E for more details)

α2 (TrF ∧ F )2 , (4.4)

and this can be used to cancel the term of a similar structure coming from the vector multiplet.

Now let us then consider a gauge theory in 6d with a simple gauge group G and a tensor

multiplet. The contribution to the eight form anomaly polynomial with four field strengths

can come in two different forms,

Tr F ∧ F ∧ F ∧ F , and (Tr F ∧ F )2 , (4.5)
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with the difference being different contractions of the indices. Specifically, the second term

contracts the indices using the Cartan form squared, while the first terms uses the quartic

Casimir, which is a completely symmetric invariant polynomial of order four. For most groups,

the two terms are independent, but there are some groups that do not possess an independent

quartic Casimir, in which case the two terms become equivalent and there is only one type of

gauge anomalies. The groups for which this happens are: SU(2), SU(3), G2, F4, E6, E7 and

E8.

For a theory to be non-anomalous both types of anomalies must vanish. The second

type of structure can be canceled by the introduction of a Green-Schwarz term of the form

(4.4), provided the contribution of the vector multiplet to the anomaly polynomial comes

with a negative coefficient, as in fact it does. However, the first type of structure can only

be canceled by matter contributions, specifically, by introducing charged hypermultiplets. As

such, if we insist on a theory containing only tensor and vector multiplets, we must limit

ourselves to gauge groups that either: a) don’t have an independent quartic Casimir or b) the

contribution of an adjoint fermion to this anomaly is zero. We have already listed the options

realizing a) and it turns out that there is a single option realizing b), SO(8) 18. Additionally

we also have to worry about the existence of a Witten anomaly [67] related to π6(G) being

non-trivial, which is the case for SU(2), SU(3) and G2. This anomaly leads to the pure

SU(2) and G2 theories being inconsistent, though miraculously, an adjoint fermion of SU(3)

turns out to contribute trivially to the anomaly so a pure SU(3) gauge theory is consistent

[90]. Overall, the pure gauge theories with a single tensor that do not suffer from anomalies

and thus can be consistent tensor branch descriptions of some SCFT, are: SU(3), SO(8), F4,

E6, E7 and E8 [89, 90]. These theories are sometimes called minimal SCFTs in 6d.

We expect that the resulting SCFTs do not have continuous flavor symmetries as on the

tensor branch we do not see any. We can evaluate the ’t Hooft anomalies of these SCFTs,

using the gauge theory description, and collect the results in an anomaly polynomial 8-form.

The ’t Hooft anomalies receive contributions from three sources: the chiral fermion in

the vector multiplet, the self-dual tensor and chiral fermion in the tensor multiplet, and the

Green-Schwarz term required to cancel the Tr(F ∧ F )2 terms (including the mixed gauge-

gravity anomalies). Let us quote the contributions of the vector multiplet for gauge group G

[94],

−
Tr(F 4)Adj

24
−
C2(R)Tr(F

2)Adj

4
− dGC

2
2 (R)

24
− dGC2(R)p1(T )

48
− (4.6)

Tr(F 2)Adjp1(T )

48
− dG

(7p21(T )− 4p2(T ))

5760
.

Here we use C2(R) for the second Chern class of the SU(2) R-symmetry bundle in the doublet

representation, and p1(T ), p2(T ) for the first and second Pontryagin classes of the tangent

bundle respectively. The constant dG stands for the dimension of the group G. Since we do

18SO(8) has the unique property of having two different independent quartic Casimirs. As such in this case

there are actually three different anomaly structures. The existence of the two structures and the reason why

the contribution to both for an adjoint fermion vanishes is related to the special triality automorphism of

SO(8), see the discussion in [24].
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not have a quartic Casimir the Tr(F 4)Adj can be expressed as,

Tr(F 4)Adj = λG Tr(F
2)2Adj . (4.7)

We will be interested here only in the group G = SU(3) for which dG = 8 and λG = 1
4 . The

tensor multiplet contributes,

C2
2 (R)

24
+
C2(R)p1(T )

48
+

(23p21(T )− 116p2(T ))

5760
, (4.8)

and to cancel all gauge anomalies we need to introduce the Green-Schwarz term which con-

tributes,

λG
24

(
Tr(F 2)Adj +

3

λG
C2(R) +

1

4λG
p1(T )

)2

. (4.9)

Summing up all the terms, we find that the eight-form anomaly polynomial is,

I6d =
1

24
(
9

λG
− dG + 1)C2

2 (R) +
1

48
(
3

λG
− dG + 1)C2(R)p1(T )

+
( 15
λG

− 7dG + 23)p21(T ) + (4dG − 116)p2(T )

5760
. (4.10)

4.2 Compactification to 4d

Given the 6d SCFT which on the tensor branch is described by the SU(3) gauge theory, we

want to understand what happens when we compactify it on a closed Riemann surface. The

compactifications on lower genus surfaces, g = 0 and g = 1, do not follow the general pattern

we will want to discuss and thus we will refrain from discussing these here. Compactifying

on g > 1 surfaces we will be able to derive some very general statements.

As the Riemann surface with g > 1 is curved, supersymmetry is naively broken. To avoid

this, we twist the SU(2) R-symmetry bundle so as to cancel the curvature of the Riemann

surface for some of the supercharges which are charged under it. The supercharges transform

under the Lorentz group and under the R-symmetry so we need to turn on a certain R-

symmetry bundle so that at least some supercharges will not feel the curved background and

thus will remain invariant. We can do so preserving at most 4 supercharges, corresponding to

N = 1 in 4d. The twist, the non-trivial bundle for the R-symmetry, also breaks the SU(2) R-

symmetry to its U(1) Cartan sub-group, which becomes an R-symmetry in 4d. See Appendix

F for more details on the twisting procedure.

Next we will want to deduce the various ‘t Hooft anomalies of the 4d theories. We have

an RG flow across dimensions and thus we need to deduce the six-form anomaly polynomial

of the 4d theory from the eight-form anomaly polynomial of the 6d theory. The way to

do so is to integrate the anomaly polynomial of the six dimensional SCFT on the compact

Riemann surface in the presence of all the non-trivial bundles we have turned on [38] (see

also Subsection 3.1 of [95]),

I4d =

∫
C
I6d [F ] , (4.11)
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where by F we collectively denote the values of the background fields. In the current case

the only such fields are due to the non-trivial bundle for the R-symmetry due to twisting,

but in more general cases one also might have non trivial bundles for the global symmetries.

This should lead to the anomaly polynomial of the 4d theory, which contains the ’t Hooft

anomalies of the 4d theory, at least those for symmetries descending from 6d.

In our case, we need to integrate (4.10) on the Riemann surface, but first we need to

take the twist into account. This is done by setting (see Appendix F) C2(R) = −C1(R)
2 +

2(1 − g) t̂ C1(R) + ..., where C1(R) is the first Chern class of the U(1) Cartan of the SU(2)

R-symmetry and t̂ is a unit-flux 2-form on the Riemann surface. Inserting this into (4.10)

and integrating we find,

I4d =
1

6
(
9

λG
− dG + 1)(g − 1)C3

1 (R)−
1

24
(
3

λG
− dG + 1)(g − 1)C1(R)p1(T ). (4.12)

From the coefficient of C3
1 (R) we deduce the Tr R

3 anomaly and from the 1
24C1(R)p1(T ) term

we deduce the Tr R anomaly,

Tr R3 = (
9

λG
− dG + 1) (g − 1) , Tr R = (

3

λG
− dG + 1) (g − 1) . (4.13)

Finally using the relation between ’t Hooft anomalies of the R-symmetry and the conformal

anomalies (2.6) we deduce that these are,

a =
3

16
(
12

λG
− dG + 1)(g − 1) , c =

1

8
(
33

2λG
− dG + 1)(g − 1). (4.14)

In particular for the SU(3) case at hand we get,

a =
123

16
(g − 1) , c =

59

8
(g − 1) . (4.15)

We thus have a prediction for the existence of 4d theories labeled by g with the above

conformal anomalies. These models are also expected not to have any global symmetries.

Of course global symmetries might emerge in principle in the IR, invalidating both of these

statements. We will assume that this does not happen and will seek the corresponding four

dimensional theories.

Let us here perform a quick computation: we assume as in the previous Lecture that

these 4d theories have a conformal gauge theory description. This might or might not be

true, and we will eventually argue that it is true. With this assumption we now deduce what

would be the dimension of the gauge group in 4d and the dimension of the representation of

the matter fields. We need to solve,

av dimG+ aχ dimR =
123

16
(g − 1) , cv dimG+ cχ dimR =

59

8
(g − 1) , (4.16)
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to get dimG = 32(g − 1) and dimR = 81(g − 1). We note that these numbers are integer

and thus the conjecture might be correct.19 Moreover, a natural interpretation of 32 is as

four factors of SU(3) and of 81 as three tri-fundamentals of SU(3). We will soon see how to

construct such a gauge theory. However, first it will be worthwhile to understand what one

would expect from compactifications on punctured Riemann surfaces, and that entails going

through an intermediate step between 6d and 4d, a reduction to 5d.

4.3 Reduction to 5d and punctures

Let us discuss how one can think about punctured Riemann surfaces. As the 6d theory at

the CFT point, which we compactify, is strongly coupled it is hard to analyze the punctures

directly in 6d. However, one way to think about the punctures is to elongate the region near a

puncture to a long thin cylinder and first analyze this region. This amounts to compactifying

first on an infinite cylinder of small radius and obtaining an effective 5d theory, and then

cutting the cylinder with a specification of a boundary conditions in 5d. If the 5d theory

is still strongly coupled we did not achieve much. However, in certain cases, starting with

certain 6d SCFTs and compactifying on a circle to 5d with certain holonomies/twists, it is

conjectured that one obtains an effective theory in 5d which is a gauge theory.20 As in 6d

these gauge theories are IR free and there are two possibilities for their UV completion: first,

it is possible that they are relevant deformations of non trivial CFTs in 5d, and second, the

UV completion might be given by a 6d SCFT. A canonical example is the ADE (2, 0) theory

which is conjectured to give the N = 2 ADE SYM when compactified to 5d with no twists

[108, 109].

If one indeed obtains a gauge theory in 5d with gauge group G5d, one next can study

supersymmetry preserving boundary conditions at the four dimensional boundary of the ge-

ometry. The details of the choices of the boundary conditions depend on the 5d theory,

however there is a canonical set of choices, which is usually called maximal, giving a Dirichlet

boundary condition to all the vector fields of the 5d theory and then whatever supersymmetry

demands for the other fields. See Appendix G for more details, as well as [26, 110] (and recent

similar discussion in 3d in [111]). Importantly, since the Dirichlet boundary condition breaks

the gauge symmetry to the one which is constant along the boundary, we acquire a global

symmetry which is given by the gauge group G5d associated with each boundary component,

that is with each puncture.

Let us specialize now this general discussion to the case at hand. It is conjectured [112]

that a pure N = 1 SU(3) gauge theory with CS term at level ±9 is obtained by compactifying

the minimal SU(3) SCFT in 6d on a circle with a twist by the complex conjugation symmetry

in 6d, see Figure 23.21 Twisting here means that upon compactification of the circle (defined

19If one repeats the same exercise for other groups for some the dimensions turn out to be integer while for

others they do not. For example for F4 (λG, dG) = ( 5
108

, 52) and (dimG,dimR) = ( 798
5
, 2187

5
)(g − 1) but for

E6 (λG, dG) = ( 1
32
, 78) and (dimG, dimR) = (235, 648)(g − 1).

20There is an ongoing vigorous research into classifying such effects, see e.g. [16, 17, 96–107] for a partial

list of references.
21The fact that the theories in 6d and in 5d are associated to the same group SU(3) is not a generic feature.

For example minimal SO(8) SCFT upon compactification with certain twist reduces to an SU(4)±8 gauge
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5d

6d

5d SU(3)±9 ! = 1 SYM"
∂"

5d

6d

5d SU(2)0 Nf = 8 ! = 1 SQCD"
∂"

Figure 23. Compactifying the 6d SU(3) minimal SCFT on a circle with the complex conjugation

twist is conjectured to be described in 5d by an effective theory which is SU(3) SYM with level ±9

CS term. The UV completion of the 5d theory is the 6d SCFT. Here C is the Riemann surface and

∂C is non empty, that is we have a puncture. Each puncture is associated with a global symmetry

corresponding to the 5d gauge symmetry, which is SU(3) in this case.

by angle θ ∈ [0, 2π]) we identify the configurations at θ = 0 and θ = 2π with an action of the

discrete symmetry. Note that the 6d theory does not have any continuous global symmetries

and thus barring accidental appearance of symmetry in 5d, upon compactification we do not

expect to obtain any symmetry beyond the one associated to the KK symmetry of the circle:

the latter symmetry is identified with the topological (instantonic) symmetry of the 5d gauge

theory. Thus we expect a pure gauge theory in 5d. Matching the moduli spaces of the 6d

and 5d theories we obtain that if there is a gauge theory in 5d it should be SU(3): in 6d

the moduli space is three dimensional but the twist by complex conjugation reduces it to

two (projecting out the dimension three Coulomb branch operator of the SU(3)), while in 5d

SU(3) has a two dimensional Coulomb branch. Finally, we need to fix the level of the SU(3)

gauge group; following various string theoretic arguments [112], for levels smaller than ±9 it

is believed that the theory is a deformation of a 5d SCFT, for level ±9 it is UV completed

by the 6d SCFT, and for higher level the theory might not have a UV completion.22

Finally, we need to specify the maximal boundary conditions for the theory at hand. As

we are preserving N = 1 4d supersymmetry on the boundary, we decompose the 5d fields on

the boundary in terms of the 4d multiplets: which are N = 2 4d vector fields as the number

of supersymmetries in 5d is eight. We choose Dirichlet for the vector fields and Neumann

for the adjoint chiral (see Appendix G). This will imply that we have Dirichlet boundary

conditions for chiral fermions and Neumann for anti-chiral. From this we can compute the

anomaly inflow contribution of the puncture to four dimensions. This comes from several

sources: the anti-chiral fermions with Neumann boundary conditions and the CS term. The

former are in the adjoint of the 5d gauge group SU(3), have R-charge −1, and contribute

theory in 5d [24].
22The consistency of our analysis below can be viewed as additional evidence in favor of the conjecture that

level nine theory is UV completed in 6d.
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half of the contribution of four dimensional fermions.23 This gives the anomaly contributions

Tr R = −1× 1

2
× dimSU(3) = −4 , Tr R3 = (−1)3 × 1

2
× dimSU(3) = −4 ,

and Tr RSU(3)2 = −1× 3× 1

2
= −3

2
,

coming from every puncture. To compute the full anomaly polynomial we also need to take

into account the computation of the integral of the 6d anomaly polynomial on the Riemann

surface which is the same as above but with g − 1 → g − 1 + s/2 where s is the number of

punctures, and we specialize to the case of the 6d SU(3) SCFT. These give for surfaces with

punctures the anomalies,

a =
123

16
(g − 1 +

s

2
) +

(
9

32
(−4)− 3

32
(−4)

)
s =

3

32
(82 (g − 1) + 33 s), (4.17)

c =
59

8
(g − 1 +

s

2
) +

(
9

32
(−4)− 5

32
(−4)

)
s =

1

16
(118 (g − 1) + 51 s) .

In addition the CS term contributes Tr SU(3)3 = ±9, where the sign is determined by the

sign of the CS term.

Next we consider how we should glue two punctures in 4d. Gluing punctures geometrically

corresponds to bringing two cylinders with boundaries together and un-doing the boundary

conditions, identifying in some way the fields in the two cylinders. Field theoretically thus

we need to gauge in 4d the symmetry associated to the punctures, SU(3) in our case. Note

that the R-symmetry is non anomalous as far as this gauging is concerned as

Tr RSU(3)2 = 3 + (−3

2
) + (−3

2
) = 0 , (4.18)

where the first term comes from the vector fields and the second and third come from the two

punctures. Moreover, as the gauging should be non-anomalous, Tr SU(3)3 = 0, we should

glue a puncture with +9 CS term to the one with −9 CS term. Note that the anomalies (4.17)

are of course self-consistent under this gluing: adding anomalies with (g1, s1) and (g2, s2),

and a vector multiplet anomalies gives anomalies with (g1 + g2, s1 + s2 − 2). Conversely, we

could have derived the anomalies of the surface with a pair of punctures and genus g starting

with surface without them and genus g + 1 and subtracting the contribution of the vector

multiplet of SU(3).

Note that we have already discussed that the anomalies on a closed surface might be

consistent with free fields, and in particular SU(3) gauge groups and tri-fundamentals. The

anomalies of punctures support this observation. The Tr SU(3)3 = ±9 anomaly is consistent

with having 9 (anti)fundamentals of SU(3), which is the number of free flavors needed for a

conformal gauging of SU(3). Also Tr RSU(3)2 = −3
2 = 1

2×(23−1)×9, and thus interpretable

as an anomaly of 9 (anti)fundamental free fields. We will momentarily turn to constructing

23A way to see that the half is needed is that if we compactify a 5d fermion on a finite interval with Neumann

boundary condition on both ends, we will get a fermion in 4d. Thus, each boundary will contribute half of the

anomaly.
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Figure 24. The four punctured sphere and its field theoretic description. The three bifundamental

fields in the middle link of the quiver have a baryonic superpotential (which is encoded in the quiver

by the fact the corresponding line is wavy). The various quiver notations are further explained in

Figure 25. We have four factors of SU(3) global symmetry we associate to the four punctures.

in detail the 4d theories, but let us comment here on the implications of the twist we have

performed upon compactification to 5d.

The twists in general can be turned on along any cycle on the surfaces. These particularly

include those surrounding the punctures. For the special case of a sphere with s punctures,

these are the only cycles. Furthermore, the twists around different punctures and cycles are

not independent: on a sphere the holonomy around s − 1 punctures should be the inverse

of that around the remaining puncture. In our case, since the punctures we consider must

incorporate a twist, this leads to constraints on the possible theories. As the punctures have a

Z2 (complex conjugation) twist, we cannot have a sphere with odd number of such punctures.

In principle there might be punctures without a twist associated to them, however as we

defined punctures above using a 5d gauge theory description the untwisted punctures have

to be of a different nature. We will say more about this when discussing the 4d theories. On

Riemann surfaces without punctures, the twists can still be incorporated on the cycles of the

Riemann surface. When the latter is built from punctured spheres then whenever we glue

two twisted punctures we get the associated twist along the cycle spanned by the punctures.

4.4 Four dimensions

We want to find four dimensional models which will match the predictions coming from

six dimensions we discussed above. In particular, these models should have factors of SU(3)

global symmetry, which we will associate to punctures, and the anomalies of these symmetries

are Tr SU(3)3 = ±9, Tr RSU(3)2 = −3
2 . As we already mentioned we will conjecture that

we can build such theories from free fields and conformal gaugings. We have discovered that

constructing field theories such that they have nine free chiral fields in the fundamental of

SU(3) produces the right anomalies. The question is then how we build models from these

collections of fields. We will next discuss some conjectures which reproduce the expectations

we have derived from six dimensions.
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The main conjecture is depicted in Figure 24: we associate to the four punctured sphere

a quiver theory with two SU(3) gauge groups, three tri-fundamental fields, and a baryonic

superpotential. We have a single superpotential term which is charged under the baryonic

symmetry: thus following [40] (which we reviewed in previous sections) this interaction is

marginally irrelevant if we perturb the free theory with it. We can turn on additional bary-

onic superptentials rendering the theory conformal, but these will break some of the SU(3)

symmetries associated to the punctures. As we have discussed in Example 1 (discussion

around (2.31)), SU(3) SQCD with nine flavors has a locus on its conformal manifold preserv-

ing (SU(3)1 × (U(1)2)2)× SU(3)3 symmetry where the (U(1)2)2 is the Cartan of an SU(3)2
such that the 9 of SU(9) flavor symmetry is (3,3) under the two SU(3)1×SU(3)2 symmetries.

Our four punctured sphere thus has directions on the conformal manifold along which we can

preserve two SU(3) symmetries explicitly and the two other ones are broken to the Cartan.

The baryonic symmetry is also broken. We then conjecture that somewhere on the conformal

manifold the Cartan symmetry enhances again to SU(3)s but the baryonic symmetry does

not appear. We will soon give evidence for this conjecture.

Once we defined the four-punctured sphere we can construct theories corresponding to

arbitrary surfaces by gauging puncture symmetries, as we have discussed. For example in

Figure 26 we depict theories corresponding to genus two surface with no punctures. As

we have an explicit field theoretic description of the models one can verify explicitly that

the conformal anomalies derived from six dimensions (4.17) match the anomalies of the four

dimensional models. Note that as we conjectured above, the four punctured sphere has all the

SU(3) puncture symmetries only at some strongly coupled locus of the conformal manifold,

to construct general theories we thus need to gauge emergent symmetries. We also stress

that as we constructed a four punctured sphere but not a three punctured one, we only can

construct surfaces with even number of punctures.24

As a further check of the conjecture we can compute the supersymmetric index and

determine from it the supersymmetric relevant and marginal operators. For generic surfaces

the index takes the following general form,25

Ig,s({ai}) = 1 + ((3g − 3 + s) +
s∑

j=1

(−χ8j (aj) + χ10j (aj))) q p+ · · · . (4.19)

Here ai are fugacities for the SU(3) symmetries associated to the punctures. There are no

powers of q p smaller than one and thus there are no supersymmetric relevant operators. At

order q p we have the marginal deformations minus the conserved currents. We have 3g − 3 + s

terms with positive sign which are singlets of the flavor group associated to the punctures

and thus these correspond to exactly marginal deformations: we expect such deformations to

correspond to the complex structure moduli of the compactification surface. One way to think

about these operators is to consider the reduction on a surface of the 6d stress-energy tensor.

A careful application of the Riemann-Roch theorem then determines that the stress-energy

24See [24] for further discussion of this issue and its relation to the fact that in order to define punctures we

have compactified the 6d SCFT to 5d with twist lines.
25For low numbers of punctures and low genus there might be deviations from this structure.
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Figure 25. Two types of tri-fundamental chiral fields we use in our constructions. First we have

the tri-fundamental with no superpotential, and then trifundamental with one of the three SU(3)

symmetries broken by a baryonic superpotential.

tensor will lead to 3g − 3 exactly marginal deformations on a closed Riemann surface [113],

and the above is a natural generalization including the punctures. We have −χ8j (aj) factors

corresponding to the conserved currents of each puncture. Finally, for each puncture we have

marginal operators in the ten dimensional (symmetric three index) representation of SU(3)

puncture symmetry. Turning these on we can break completely the puncture symmetry and

acquire two additional exactly marginal directions. The spectrum of protected states that

our four dimensional theories possess is thus also consistent with the expectations from 6d.

We have discussed what is the theory corresponding to a four punctured sphere and how

to glue two theories corresponding to two surfaces together along a puncture. The resulting

theories are labeled by the combined surface. However, one can combine the same surface by

performing gluings in different ways. For example, there are two different ways to glue the

punctures of a four-punctured sphere together to obtain a genus two surface, see Figure 26.

The fact that we conjecture that all the different ways to glue surfaces so that the topology

will be the same correspond to compactifications on the same surface implies that the different

ways to glue should be equivalent. More precisely these should reside on the same conformal

manifold. In other words, the different quantum field theories corresponding to the different

ways to construct the same surface are expected to be conformally dual to each other.
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Usually this fact is phrased as equivalence of different pairs-of-pants decomposition of a

surface, even though here we decompose into four punctured spheres. The geometric con-

struction thus systematically produces a collection of theories which are conformally dual to

each other. This does not explain the duality directly from the 4d point of view, but rather

by imbedding the theories in the higher dimensional setup it renders the dualities a trivial

consequence of the geometrical construction, if this is correct.

The anomalies of the different decompositions are the same by construction. However,

the indices of the different decompositions a priori might be different as these might be

very different looking theories. For the conjecture to be correct combining the four puncture

spheres to form surfaces of the same topology in different ways should give equivalent theories

up to the action of dualities. In particular, the protected spectrum of the theory has to be

invariant under the exchange of the different factors of SU(3) symmetries associated to the

punctures. This is a highly non obvious fact. In particular if this holds for the four puncture

sphere it will hold for any surface. One can check this by explicit evaluation of the index in a

series expansion. In fact we find that a stronger statement from that which we need appears

to hold true. Namely, gluing two tri-fundamentals and ignoring the baryonic symmetry,

which is broken for general surfaces on the conformal manifold, the index is invariant under

exchanging the four SU(3) symmetries. The index is given by,

(q; q)2(p; p)2
1

6

∮ 2∏
ℓ=1

dzℓ
2πizℓ

∏3
i,j,ℓ=1 Γe((q p)

1
3a1i a

2
j z

−1
ℓ )Γe((q p)

1
3a3i a

4
j zℓ)∏

ℓ1 ̸=ℓ2
Γe(zℓ1/zℓ2)

. (4.20)

Here
∏3

ℓ=1 zℓ = 1 with zℓ being the parameters of the gauged SU(3). Also
∏3

j=1 a
I
j = 1 with

aI parameterizing the four SU(3) flavors associated to the punctures. Although we do not

have a mathematical proof, the above can be found to be invariant under permutations of

the four aI in perturbative expansion in the fugacities q and p.

Let us next make several comments on the theory corresponding to the four punctured

sphere. We can count the dimension of the conformal manifold of the theory near weak cou-

pling. This is a special theory: the full symmetry of the theory is broken on the conformal

manifold and the dimension is 252 . The large dimension of the conformal manifold is due

to the fact that in addition to the baryons, which are marginal, we have marginal operators

winding from one end to the other on the quiver.26 We have already mentioned that the su-

perpotential we turn on preserving the puncture symmetries is built from fields having some

baryonic charge and it is marginally irrelevant at weak coupling and thus there is no confor-

mal manifold passing through zero coupling and having the symmetries we are interested to

have, four SU(3)s and no baryonic symmetry present. However, we have conjectured that

somewhere on the conformal manifold the required symmetries do appear. We can utilize the

supersymmetric index to check this conjecture. In particular, as we can explore the conformal

manifold preserving the Cartan generators of all the puncture symmetries we do not loose

26In the next Lecture we will recover the same model in a completely different way and there this large

conformal manifold will have a different meaning giving us an example of a 6d duality.
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Figure 26. The two duality frames corresponding to genus two surface without punctures. If the

conjecture is correct the two models have to be dual to each other on their conformal manifold. Note

that the theory on the left has an interesting structure. The two gauge groups on the edges have

matter content which is comprised of three adjoint fields, N = 4 SYM. Then, one gauges an SU(3)

subgroup of the N = 4 SU(4) R-symmetry with the addition of extra fields. This theory has non

generic features, in particular the conformal manifold has a non-generic structure.

any parameters we would want to have at the locus where all the SU(3) symmetries appear.

The index assuming the symmetry we are interested in takes the following form,

1 + q p

3 (31,32,33,34) + 1 +
4∑

j=1

(−8j + 10j)

+ · · · .

(4.21)

Let us count the exactly marginal deformations then assuming we have the SU(3) symmetries:

we can break completely the symmetry on the conformal manifold as 10 of SU(3) has non

trivial invariants. This means that we obtain 252 exactly marginal deformations. This is

consistent with our conjectures.

We expect to have a duality acting on the line of the conformal manifold we find. This

duality should permute different symmetry factors. How this duality acts on the couplings is

a very interesting question to try and answer.

Exercise: Consider the two different ways to construct genus two surface starting with a four

punctured sphere. See Figure 26. The two models should be dual to each other. Analyze the

superpotentials in the two frames, show that the theories are conformal, that all the symmetry

is broken on the conformal manifold. Compute the dimension of the conformal manifold

and check that the superconformal index in the two duality frames agrees in expansion in

fugacities.

This is a special case so let us analyze it in detail. We start with the ”Θ” shaped quiver

on the right of Figure 26. We have three tri-fundamentals of SU(3), the top Qt, the bottom
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Figure 27. An equivalent way to depict the dumbbell quiver. The two shaded subquivers are N = 4

SYM. As 3 × 3̄ = 8 ⊕ 1 two trifundamental fields split to (8,3) and (1,3) of SU(3) × SU(3). The

dotted lines represent a triplet of adjoints of SU(3).

Qb, and the middle Qm. We also have three U(1) symmetries. We define U(1)t such that Qt

is charged −1 and Qm,b +1. Similarly we define two additional symmetries U(1)b and U(1)m.

Note that U(1)m is anomalous under the two SU(3) gauge symmetries on the sides of ”Θ”.

The U(1)t is anomalous under the bottom SU(3) and U(1)b is anomalous under top SU(3).

The fields Qm form a triplet under flavor SU(3). The marginal operators are the baryon

λQ3
m (which form a 10 of flavor SU(3)) and the product of all three fields, λ̃ QtQmQb (which

forms a 3 of flavor SU(3)). The latter has charge +1 under the three anomalous symmetries.

We need to build a singlet out of the couplings under all symmetries. However, note that

there are five independent singlets we can build, {λ4, λ6, λ3λ̃3, λ̃3λ5, λ̃6λ4}. All of these have

positive charge under U(1)m and thus we cannot form a singlet under it as the exponent of the

gauge couplings is also charged positively. Thus we deduce that this theory has no conformal

manifold in the vicinity of the weak coupling. However, we have conjectured that the four

punctured sphere has a locus with four SU(3) symmetries and no baryon symmetry. We can

thus gauge these symmetries in pairs to form the ”Θ” shape. As we do not have any other

flavor symmetries except for the puncture ones we obtain an SCFT with a conformal manifold

dimension of which is simply given by counting marginal operators minus the currents at zero

coupling: 10 λ plus 3 λ̃ plus 4 gauge couplings minus the currents of SU(3) × U(1)3. This

gives us a six dimensional conformal manifold with no symmetries preserved. Note that for

genus 2 we would generally expect 3g−3 = 3 deformation but here we find twice that amount.

Let us now analyze the dumbbell quiver on the right of Figure 26. The analysis is

rather different than the above. Note that we can think of this model as two copies of

SU(3) N = 4 SYM glued to a tri-fundamental with additional two fundamental chiral fields,

where we gauge SU(3) subgroup of the SU(4) R-symmetry. Here the two copies of N = 4

SYM give an exactly marginal deformation each preserving the SU(3) flavor (the N = 4

coupling). We gauge two additional SU(3) symmetries under which the tri-fundamental in

the middle and the two chiral fields are charged. We have three U(1) symmetries: U(1)left
under which one fundamental is charged +1, the trifundamental is charged +1/9, and the

other fundamental charged −1; U(1)right reversing the roles of the two fundamentals; and

finally U(1)M under which the two fundamentals have charge +1 and the trifundamental has
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charge −1/9. The U(1)left/right symmetries are anomalous under the left/right SU(3) gauge

symmetries respectively, while U(1)M is non anomalous. The marginal deformations are the

baryon built from the tri-fundamental and the operator built from the product of the two

fundamentals and the tri-fundamental. Under the two anomalous symmetries both operators

are charged positively and under the non-anomalous symmetry they have charges of opposite

signs, −1/3 and +17/9. Moreover some of the five singlets of SU(3) detailed above have

positive and some negative charge under the non anomalous symmetry. We thus can form a

singlet under all symmetries obtaining a conformal manifold under which all the symmetries

are broken: we have ten couplings from the baryon, three from the other deformation and

two gauge coupling with eleven currents (coming from SU(3) of the tri-fundamental and the

three U(1) symmetries). This gives us 10 + 3 + 2 − 8 − 3 = 4 which together with the two

deformations coming from the N = 4 pieces gives us a six dimensional conformal manifold as

expected.

The two models then behave in a strikingly different manner, where while for the dumbbell

quiver the conformal manifold passes through weak coupling, it does not do so for the ”Θ”

shaped quiver. We can understand the difference in this behavior as follows. To get the quiver

associated with the genus two surface from the four punctured sphere we need to gauge two

SU(3) gauge groups that are embedded as diagonal symmetries in the SU(3)4 ⊂ SU(9)2

subgroup of the flavor symmetry of the quiver associated with the four punctured sphere.

The two distinct quivers correspond to two different ways to perform this gauging. In one we

embed the two SU(3) groups as 9SU(9)1 → (3SU(3)1 ,3SU(3)2), 9SU(9)2 → (3SU(3)1 ,3SU(3)2).

Gauging SU(3)1 and SU(3)2 now leads to the ”Θ” shaped quiver. Alternatively, we can

embed the two SU(3) groups as 9SU(9)1 → 3SU(3)1 × 3SU(3)1 → 1 + 8SU(3)1 and similarly

for SU(9)2 and SU(3)2 groups27. Gauging SU(3)1 and SU(3)2 now leads to the dumbbell

quiver. It is possible to show that there is a subspace of the conformal manifold passing

through weak coupling, that preserves the symmetries gauged in the second embedding. This

suggests that the dumbbell quiver indeed sits on the conformal manifold of the genus two

compactifcation. However, that is not the case for the first embedding, as shown by the

analysis done here. In that case the Lagrangian ”Θ” shaped quiver is an IR free theory and

is not really a compactification of the 6d SCFT on a genus two surface. To preform the

gluing in this case, we need to go to the locus on the conformal manifold where only the four

SU(3) groups associated with the punctures are preserved. This occurs at strong coupling

and requires breaking some of the flavor symmetry that is to be gauged to get the ”Θ” shaped

quiver, and hence the lack of a 6d interpretation in this case.

□

Closing punctures

27There is also a U(1) that commutes with the SU(3) group for each SU(9) group, but that would not play

a role here.
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Figure 28. Closing a puncture of the four punctured sphere. The squares are SU(3) punctures and

crosses are empty ones. On the conformal manifold at most two SU(3) symmetries are preserved. On

a general locus all symmetry is broken and the model can be interpreted as a model with ten empty

punctures.

We have understood what is the geometric interpretation of gauging SU(3) factors of

the global symmetry. We can also discuss other operations, such as turning on relevant

deformations (which are absent here), or exactly marginal ones (which we discussed), and

giving vacuum expectation values for various operators. Let us turn our attention now to the

latter operation.

We will discuss turning on vacuum expectation values (vevs) for operators in a manner

that preserves the R-symmetry: we only consider R-symmetry preserving geometric construc-

tions since we wish to find a geometric interpretation of the vev. This in particular implies

that the operator we give a vev to should be charged under some global symmetry. The only

such symmetry is the puncture symmetry. We have thus a natural candidate for such an

operator: these are the marginal operators in the 10 of the puncture symmetries. Such flows

will break the symmetry of the puncture and will leave us with punctures of different type.

Since the construction of the punctures we have discussed involves twists, it is not possible

to close them completely: the twist has to be supported on some cycle.

As we have concrete Lagrangian QFTs corresponding to the geometric construction we

can analyze such vevs in complete detail. Parametrizing the character of the fundamental of

SU(3) as 3 = b1 + b2 + b3, with b1b2b3 = 1, we have (see Appendix C)

10 =
∑
i ̸=j

bi/bj +

3∑
i=1

b3i + 1 . (4.22)

In index notations we give expectation value to operator contributing with weight q p b31
setting this combination of fugacities to one, that is we give a vacuum expectation value to

a single bi-fundamental field. The effect of the flow is simple, the trifundamental associated

to our puncture is removed from the theory with the symmetry, to which we gave a vacuum

expectation value, and the two additional SU(3) groups are identified: the vev is to a baryonic

operator which Higgses one of the gauge SU(3) symmetries. We interpret this procedure as
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Figure 29. Closing SU(3) puncture of Fig. 5 we obtain a Wess-Zumino theory with two SU(3) and

two empty punctures.

closing a puncture to a different puncture which has no flavor symmetry and we will refer to

that as an empty puncture.

Let us add s′ empty punctures by starting from a theory with s′+s punctures and closing

s′ of those. The anomaly is easy to compute and we obtain that empty punctures behave as

one third of the SU(3) puncture. We have,

a =
3

32
(82(g − 1) + 33s+ 11s′), (4.23)

c =
1

16
(118(g − 1) + 51s+ 17s′) .

We can also compute the index and find that it is,

1 +

3g − 3 + s+ s′ +
s∑

j=1

(−8j + 10j)

 q p + · · · . (4.24)

The dimension of the conformal manifold preserving puncture symmetries is 3g − 3 + s+ s′

which is the number of complex structure moduli, as expected. Note that the above results

also imply that triplets of empty punctures are equivalent on the conformal manifold to a full

puncture. To break maximal punctures into empty ones we turn on the most general baryonic

superpotentials. For example, the theory of Figure 28, the SU(3) SQCD with nine flavors,

then can be re-interpreted as a compactification on a sphere with ten empty punctures. Thus

it is expected to have 3g − 3 + s = 3 × 0 − 3 + 10 = 7 dimensional conformal manifold, as

indeed it does [40, 51].

The final picture is thus as follows. Turning on the most general exactly marginal su-

perpotentials in the theories we have constructed corresponds to surfaces of some genus and

some number of empty punctures. On special loci of the conformal manifold the empty punc-

tures can collide in groups of three and form a maximal puncture with an SU(3) symmetry
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associated to it.28 Let us comment in passing that this picture can be further checked by

giving vacuum expectation values to derivatives of the operators in 10 which will introduce

surface defects into the theory [119]. Such constructions are related intimately to integrable

models, and the corresponding indices should satisfy interesting sets of properties [120] which

can be mathematically proven [121] providing more evidence for the conjectures.

In this Lecture we have discussed a derivation of the dictionary between a theory in

6d with no continuous global symmetry and 4d Lagrangians. Next we will discuss such a

dictionary once the 6d theory does possess continuous global symmetry, which introduces

more knobs and handles to produce interesting interplays between geometric constructions,

emergence of symmetry and duality.

5 Lecture IV: Compactifications of the E-string

We will now repeat the analysis of the previous Lecture but in a richer setup of compactifi-

cations of the rank one E-string theory.

5.1 Six and five dimensions

Let us consider one of the simplest and most studied 6d SCFTs, the rank one E-string theory.

This model can be engineered in string theory in various ways. One of them is by taking a

single M5 brane to probe the end of the world M9 brane. Another way is by taking a single

M5 brane to probe a C2/D4 singularity. Instead of taking a single brane, taking N branes, in

the former description one obtains the rank N E-string. In the latter description taking one

M5 brane to probe C2/DN+3 singularity one obtain what is called minimal (DN+3, DN+3)

conformal matter. Thus the N = 1 case is a starting point of several sequences of theories and

in fact is one of the basic building blocks of constructing most general 6d SCFTs [87]. The

rank one theory has a rank one tensor branch on which we have a single tensor multiplet: so

in this respect this model is even simpler than the one we discussed in the previous Lecture.

There is only a limited amount of information we will need about this model. One

piece of information is that the theory has an E8 global symmetry. Another is the anomaly

polynomial, which was computed by now using a variety of techniques [80, 94, 122]. Lastly, we

will need the conjecture that upon compactification to 5d, with a certain holonomy breaking

the E8 symmetry, one obtains an effective 5d description as an N = 1 SU(2) SQCD with 8

fundamental hypermultiplets [123]. This effective theory is UV completed by the 6d SCFT.

We remind the reader that an holonomy corresponds to a non-trivial background, here for a

connection to a global symmetry, such that F is zero but A has a non-trivial integral over

a closed cycle, here the compactification circle. The value of the integral of A gives some

element of the group, and its presence leads to the breaking of the group to the subgroup

commuting with the given element. For instance, the holonomy diag(eiθ, e−iθ, 1, 1, ..., 1) in

SU(N) generically breaks the group to U(1)2 × SU(N − 2).

28The fact that collisions of punctures of one type can form punctures of different type has appeared in

various contexts [25, 114–118]. For example in [116] such effects were dubbed a-typical degenerations.
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We will use this 6d information, as in the previous Lecture, to come up with a prediction

for the existence of a class of 4d theories: in particular we will predict their anomalies and

symmetries. The anomaly polynomial of the 6d theory is [94, 122]29 (we use notations of

[26]),

I6d =
13

24
C2
2 (R)−

11

48
C2(R)p1(T )−

1

60
C2(R)C2(E8)248 +

1

7200
C2
2 (E8)248

+
1

240
p1(T )C2(E8)248 + 29

7p1(T )
2 − 4p2(T )

5760
. (5.1)

We use the notation C2(R) for the second Chern class in the fundamental representation of

the SU(2)R 6d R-symmetry. We also employ the notation C2(G)R for the second Chern class

of the global symmetry G, evaluated in the representation R, and p1(T ), p2(T ) for the first

and second Pontryagin classes respectively.

The anomaly polynomial of the 4d theory compactified on a closed Riemann surface

of genus g > 1 with no flux for subgroups of E8 is obtained by twisting the theory, defining

C2(R) = −C1(R)
2+2(1−g) t C1(R)+... as before, and integrating the 6d anomaly polynomial

on the surface. The result is [26],

a =
75

16
(g − 1) , c =

43

8
(g − 1) , Tr R (E8)

2 = −(g − 1) . (5.2)

All the rest of the anomalies vanish.

Now, we can compactify while also turning on fluxes for various abelian subgroups of

E8. For a flux in a single U(1) ⊂ E8 this entails substituting C1(U(1)) = −z t + C1(U(1)F )

which naturally generalizes to many U(1)s. Here z is the value of the flux,
∫
C C1(U(1)) = −z,

and by U(1)F we denote the first Chern class of the corresponding symmetry in 4d . This

leads to a variety of theories in 4d labeled by fluxes to the various abelian symmetries. We

will not quote the most general results here. Let us just mention that the most general

compactification will be labeled by the flux for the Cartan generators of the E8 symmetry.

To specify this flux we should choose some basis of U(1) symmetries. It is convenient to do so

by considering the SO(16) maximal subgroup of E8, 248 → 120 + 128. The choice of such

an SO(16) subgroup will be later discussed in more details. Then we parametrize the flux by

stating its values for the natural SO(2) subgroups of SO(16) and encode it in a vector, an

octet, of fluxes we denote by F .

Turning on fluxes will break the E8 symmetry to the subgroup commuting with the

choice of flux. In particular we will have abelian symmetries in 4d. As usual in such cases

the superconformal symmetry of the 4d fixed point will be some mixture of the Cartan of the

6d R-symmetry, preserved by twisting, and all the abelian symmetries in 4d.

Finally let us discuss the punctures. We specify the maximal boundary conditions giving

the 5d SU(2) gauge fields Dirichlet boundary conditions. Here, unlike in the pure SU(3) case

of the previous section, we also have matter fields. In terms of N = 1 4d supersymmetry

these are an octet of hypermultiplets, that is 16 chiral fields. We give eight of the chiral

fermions in this multiplet Neumann boundary conditions and the remaining ones get Dirichlet

29See Appendix E.3.
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Figure 30. Compactifying the 6d rank one E-string on a circle with a certain holonomy breaking the

E8 symmetry to SO(16) is conjectured to be described in 5d by an effective theory which is SU(2)

SQCD with eight flavors. The UV completion of the 5d theory is the 6d SCFT. Here C is the Riemann

surface and ∂C is non empty, we have a puncture.

boundary condition. These fermions are not transforming under the SU(2)R R-symmetry

coming from six dimensions: this becomes the SU(2)R R-symmetry of 4d N = 2 under which

the fermions in the hypermultiplet do not transform. Thus the inflow contribution to the

anomalies involving the R-symmetry only comes from the vector multiplet and gives,

Tr R = −1× 1

2
× dimSU(2) = −3

2
, Tr R3 = (−1)3 × 1

2
× dimSU(2) = −3

2
,

and Tr RSU(2)2 = −1× 2× 1

2
= −1 . (5.3)

The matter fields do contribute to the anomalies of the subgroups of E8 global symmetry. The

octet of hypermultiplets transforms as a fundamental of the U(8) subgroup of SO(16) ⊂ E8.

Thus the anomalies of a given U(1) will be determined by the inflow of each one of the

fermions which obtained Neumann boundary condition. Say we choose a U(1) ⊂ E8 such

that the eight fermions with Neumann boundary condition have charges qa=1···8, Then, the

contribution to the anomaly of this U(1) from the inflow is,

Tr U(1) =
1

2
×2×

8∑
a=1

qa , Tr U(1)3 =
1

2
×2×

8∑
a=1

(qa)
3 , Tr U(1)SU(2)2 =

1

2
× 1

2
×

8∑
a=1

qa .

Here the source of 1
2 is explained in footnote 23, the 2 comes from the fact that the fermions

are doublets of the puncture SU(2), and the additional factor of 1
2 in the last anomaly comes

from Tr SU(2)2 in the fundamental representation. Let us mention here that we have a choice

of which eight out of the sixteen chirals gets a Neumann boundary condition. All these choices

are in principle equivalent up to the action of the Weyl group of SO(16). However if we have

different choices for different punctures on the same surface, the relative difference becomes

physically significant. These different choices when defining the types of punctures will be

referred to as different colors of punctures.
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The octet of the fundamental chiral fields with Neumann boundary conditions is expected

to give rise to an octet of chiral operators in the fundamental representation of the SU(2)

puncture symmetry in 4d. These operators will have R-charge +1 under the R-symmetry

inherited from 6d. We will refer to such operators as “moment maps”. The name is motivated

by analogy with compactifications of the (2, 0) theory. If one repeats this procedure in the

case of compactifications of the (2, 0) theory, say AN−1 type, the model in 5d is SU(N) N = 2

SYM, and in 5d N = 1 language the matter content has an adjoint hypermultiplet. We again

give Neumann boundary conditions to a chiral half and Dirichlet to the other one. In 4d the

symmetry associated to the puncture is SU(N) (the gauge symmetry of the 5d theory) and

the chiral in the adjoint representation with the Neumann boundary condition becomes the

moment map operator in the N = 2 flavor current multiplet in 4d. In the case at hand there

is only N = 1 supersymmetry in 4d, but the appearance of the “moment map” operators has

the same origin, and hence the name.

Let us use the above to construct the anomalies with punctures,

a =
75

16
(g − 1 +

s

2
) +

(
9

32
(−3

2
)− 3

32
(−3

2
)

)
s =

3

16
(25 (g − 1) + 11 s), (5.4)

c =
43

8
(g − 1 +

s

2
) +

(
9

32
(−3

2
)− 5

32
(−3

2
)

)
s =

1

8
(43 (g − 1) + 20 s) .

Note that in general since the punctures break the symmetry and introduce a U(1) ⊂ U(8),

and fluxes also introduce U(1)s, the above are not the superconformal anomalies but rather

the ones computed with the 6d R-charge, and these can be viewed just as encoding the

‘t Hooft anomalies of the 6d R-symmetry using (2.6),

Tr R3 = −13 (1− g) + 5 s , Tr R = 11 (1− g)− 7 s . (5.5)

With this concrete information about the 6d and the 5d theories we are ready to search

for the 4d theories corresponding to the compactifications.

5.2 4d theories from genus g Riemann surface with zero flux

Let us now conjecture that the 4d theories obtained by compactifying the rank one E-string

on a closed genus g > 1 surface with no flux can be described by a conformal Lagrangian.

From the anomalies (5.2) we obtain that,

a =
75

16
(g − 1) = (16 av + 81 aχ) (g − 1) , c =

43

8
(g − 1) = (16 cv + 81 cχ) (g − 1) . (5.6)

The number of vectors is thus dimG = 16 (g − 1) and the dimension of the representation is

dimR = 81 (g−1). These numbers are integers and thus there is a chance that the conjecture

is correct.

The above value for dimG for genus two surface can be obtained by taking either two

SU(3) groups or an USp(4) and two SU(2) groups: we will find a candidate dual with the

former option. See Figure 31. Note that this is the same model we obtained in Section 4.4 to

– 67 –



correspond to a four punctured sphere compactification of minimal SU(3) SCFT, and here

we give it a different interpretation as genus g = 2 compactification of rank one E-string with

no flux.30

99 3 3 1010 3 3

! !

3 3

9 9

3 3

9 9

Figure 31. The conformal dual of rank one E-string compactified on genus two surface with no flux.

We can turn on any exactly marginal superpotential.

We already have discussed properties of this model in previous sections, so let us here just

remind that this theory has a 252 dimensional conformal manifold: a fact that we will soon

relate to various geometric objects, such as complex structure moduli of the corresponding

Riemann surface and the dimension of the space of flat connections on that surface.

3

3

33

3 3

9

Figure 32. The conformal dual of rank one E-string compactified on genus g surface with no flux.

The number of gauge nodes is 2g − 2. Here we have the example of g = 4. The Figure is taken from

[25].

For genus g > 2 we will seek a simple generalization of the above, and the simplest guess

is to have 2g − 2 SU(3) gauge groups which will amount to dimG = 16(g − 1). The quiver

theory is depicted in Figure 32. The number of fields is as expected, dimR = 81 (g− 1). The

marginal operators can be built from baryons and gauge invariant triangles on the quiver.

The Kähler quotient computing the dimension of the conformal manifold is not empty: on

a generic locus of the conformal manifold all the non-R global symmetry is broken and the

30Such equivalences of compactifications are common but deep understanding of them is lacking at the

moment. For example, the rank N E-string on a torus with no flux is the E8 Minahan-Nemeschansky theory

[124] which can be interpreted as an A6N−1 (2, 0) theory compactified on a sphere with three punctures of

certain types [17]. Spheres with punctures of 2 M5 branes probing a Zk singularity [125] can be mapped to tori

compactifications with flux of minimal (DN+3, DN+3) conformal matter with the number of punctures and k

on one side maps to certain combinations of flux and N on the other side [19, 126].
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dimension of the conformal manifold is

dimMc = 251(g − 1) = 3g − 3 + 248(g − 1).

This general counting fails for the case of the genus two quiver and has to be done more

carefully: we obtain an additional accidental marginal deformation as above, see [22].

The above expression for the dimension of the conformal manifold is what one would

expect from 6d. First, we have the 3g − 3 deformations we would associate to complex

structure moduli. Second, we have 248(g − 1) additional deformations which have a natural

meaning. Note that 248 is the dimension of E8. These deformations then can be associated

with flat connections for the E8 global symmetries one can turn on upon compactification on

the surface. These flat connections are parameters of the compactification, which in this case

turn out to be exactly marginal. A different way to phrase this is that we can consider the

proper “KK” reduction of the conserved current of the E8 symmetry in six dimensions, and

performing the Riemann-Roch analysis one gets the 248(g−1) exactly marginal deformations

[113].31

Thus we conjecture that the quiver of Figure 32 describes the compactification of rank one

E-string on genus g surface with zero flux. In particular we expect the symmetry to enhance

to E8 somewhere on the conformal manifold.32

Although on generic locus of the conformal manifold all the symmetry is broken, turn-

ing on non-generic superpotentials we can preserve some symmetry on sub-manifolds of the

conformal manifold. For example, turning on cubic superpotentials corresponding to various

triangles in the quiver identifies the various SU(9) symmetries. To have a non vanishing

Kähler quotient we also turn on baryonic superpotentials for the bifundamental fields. This

breaks all the symmetries but a diagonal combination of all the SU(9)s. The Kähler quotient

is not empty as the baryons and the triangle superpotentials have opposite charges under the

baryonic U(1). The baryons charged under the SU(2)s of the free point are in 4 and thus

have a singlet in the fourth symmetric power. Finally, the triangle superpotentials are in a

bifundamental of two SU(9) groups and thus a di-baryon of these is an invariant. We note

that under these deformations only, the marginal operators minus the conserved currents take

the form,

3g + 3 +
(
84+ 84+ 80

)
(g − 1) , (5.7)

31In the g = 2 case we have one additional deformation which is not explained by the general geometric

logic: we do not know what the origin of it might be, but one possible explanation is that the 6d SCFT has

certain surface operators which we can wrap on the Riemann surface and obtain local operators in 4d. For low

genus these operators might have low charges and for example be exactly marginal. It will be very interesting

to understand these issues in detail.
32There are other constructions of these models in 4d [26, 118]. The other constructions are not completely

Lagrangian as they rely on gauging certain emergent symmetries in the IR. Nevertheless they can be used to

compute protected quantities such as indices, and one can check that the indices in all the descriptions agree.

This serves as a consistency check of the various conjectures.
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where g − 1 84 and 84 come from baryons and g − 1 80 coming from operators winding

between SU(9) groups. We note that SU(9) is a maximal subgroup of E8 such that

248E8 → 84SU(9) + 84SU(9) + 80SU(9).

All the representations of SU(9) appearing in the index are expected to combine into E8

representations under this branching rule. This can be verified at least in expansion of the

index in the fugacities. We thus obtain as expected (g− 1)248E8 exactly marginal operators.

Furthermore,

Tr RSU(9)2 =
1

2
× (

2

3
− 1)× 3× (2g − 2) = −(g − 1) ,

which matches the result expected from the strongly coupled theory where the SU(9) is

embedded inside E8 (5.2) (Note that the imbedding index of SU(9) in E8 is 1). Note that

actually if the theory has an E8 point on the conformal manifold, or rather a 3g−3 dimensional

locus of such, with (g−1)248E8 marginal operators, we cannot go out of it preserving SU(9),

but rather only the Cartan subgroup: this is what the Kähler quotient tells us, we can

construct invariants out of powers of the adjoint which preserve the Cartan but break the

non-abelian structure. Thus, all we can say is that the SU(9) preserving sub-manifold of

the conformal manifold passing through the weak coupling point might intersect the Cartan

preserving submanifold passing through the E8 point.

99 3 3 1010 3 3

! !

3 3

9 9

3 3

9 9

Figure 33. A conformal duality which we want to interpret as two different pair of pants decomposi-

tions of a genus two surface. The fields denoted by X and X are in two index symmetric representation

of SU(3).

Finally, one can wonder whether the quiver theory we have found is the only conformal

gauge theory corresponding to the given compactification. The answer is actually that there

are more, and all of these are conformal dual to each other. Let us give here the example

of genus two in some detail. We can match the anomalies with the two quivers in Figure

33: the one on the left we have already discussed, but also the one on the right fits the bill.

The conformal anomalies work simply because it is again a conformal theory with two SU(3)

gauge groups and the number of fields is 2 × 3 × 10 + 2 × 6 + 3 × 3 = 81. The gauge nodes
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are indeed conformal as the beta functions vanish,

TrSU(3)3 = (−1)× 10 + (+1)× 3 + (+7) = 0 , (5.8)

Tr RSU(3)2 = 3 +
1

2
× (

2

3
− 1)(10 + 3) +

5

2
× (

2

3
− 1) = 0 .

We used the fact that the cubic Casimir of the two index symmetric representation of SU(N)

is 4 +N and the Dynkin index is N+2
2 . We can turn on baryonic superpotentials, the cubic

symmetric power of the fields X and X and the deformation running across the quiver. We

leave the analysis of the Kähler quotient as an exercise. We just mention that the symmetry

can be broken completely on the conformal manifold. The number of marginal operators at

the free point is 120× 2 + 1 + 2 + 55× 2 + 10× 10 = 453. The non-anomalous symmetry at

the free point is SU(10) × SU(10) × U(1)3, dimension of which is 99 + 99 + 3 = 201. All in

all the dimension of the conformal manifold is then 452 − 201 = 252 as expected. We thus

conjecture that the two quivers are dual to each other.33 Note that as in the G2 SQCD dual

to a quiver theory we discussed in Lecture II, the two weakly coupled cusps are very different:

they have different symmetry and different number of marginal operators. However going on

the conformal manifold of both there is a chance that we can get from one to the other, and

that is what the conjecture of the duality is about.

In fact there is a natural interpretaion of the two theories being two different pair of pants

decompositions of the genus two surface, as depicted in Figure 33. The point is that we can

think of a line ending on the same gauge node with same orientation as a two index symmetric

plus an antifundamental, 3 × 3 → 6 ⊕ 3 (this is in contrast to a bi-fundamental ending on

the same node which is an adjoint and a singlet). This duality thus suggests that we should

be able to “cut” the bifundamental lines in the quiver and obtain theories corresponding to

pairs-of-pants: three puncture spheres. This is what we will do next, and by doing so we will

discover how to compactify the rank one E-string on an arbitrary surface with an arbitrary

amount of flux.

5.3 Decomposing the surface into pairs of pants

Let us start with the quiver in Figure 31 and try to decompose it into a gluing of two three

punctured spheres. We have discussed that a puncture of rank one E-string compactifications

should correspond to an SU(2) symmetry. Thus we should rewrite the quiver as an SU(2)3

gluing of two SCFTs. It is straightforward to do so using the S-confining Seiberg duality of

Figure 14. We detail this rewriting in Figure 34. The quiver contains triangular blocks with

superpotential terms of the form, h · h̃ · Qi + Q3
i . Such triangular blocks can be exchanged

using the S-confining duality by an SU(2) SQCD with Nf = 3. We have three such blocks

corresponding to the three bi-fundamental fields Qi, and thus can perform this procedure for

each one of them. In the end we obtain the last quiver in the chain of dualities of Figure 34

having a superpotential which is a combination of quartic and sextic terms.

Next we conjecture that each one of the two SU(3) Nf = 6 SQCD blocks, which are

glued together by gauging the SU(2)3 subgroup of their global symmetry and turning on

33This duality can be related to a sequence of Seiberg dualities [127].
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the superpotential, corresponds to a three punctured sphere compactification with a certain

amount of flux to be determined soon. Let us then discuss these SQCD models in detail.
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Figure 34. Cutting the edges of the quiver step by step employing the S-confining Seiberg duality of

Figure 14. In the first step, going from the first to the second quiver, the field h9 maps to s21, h̃9 to

s̃21, and Q1 to s1s̃1. The superpotential of the second quiver involves terms of the form (s1s̃1)
2Qi +

(s1s̃1)Q
2
i +s

2
1s̃

2
1(Q1+Q2)+s1s̃1hih

i. In the second step we exchange yet another triangle in the quiver

with an SU(2) Nf = 3 sector, and similarly in the last step. The final superpotential has quartic terms

of the form (sihj)(s̃
ihj) and sextic terms of the form (sis

2
j )(s̃

i(s̃j)2). The numbers in red denote a

choice of R-symmetry. As this is the superconformal R-symmetry for the first quiver and it follows

from duality for the rest, it is the superconformal choice here for all the quivers.

The three punctured spheres

We analyze next the N = 1 SU(3) Nf = 6 SQCD interpreted as a compactification of

the rank one E-string on three punctured sphere. The model is depicted in Figure 35. The

global symmetry of the model is SU(6) × SU(6) × U(1). However, following our disucssion

in the previous section we should think about this symmetry in terms of specific sub-groups.

In particular, taking one of the SU(6) factors (say the one rotating the fundamentals) we

decompose it into SU(2)3 × U(1)2 maximal subgroup. We then associate the three SU(2)

factors with the three maximal punctures. The three remaining U(1)s (two coming from the
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decomposition of SU(6) and the baryonic one) together with the remaining SU(6) will form

a maximal sub-group of the six dimensional E8 symmetry. This statement is motivated by

the discussion in the previous section and we will test it more soon, but here let us mention

that the embedding of this subgroup in E8 is as follows,

E8 → E7 × U(1) → (SU(6)× SU(3))× U(1) → (SU(6)× U(1)2)× U(1) . (5.9)

3 22

2
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x y
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u6 v6

w6

1
u2v2w2

1
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2
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1
3
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F

Figure 35. The SU(3) SQCD in the middle of the conformal window reinterpreted as a 4d theory dual

across dimensions to the rank one E-string placed on a three punctured sphere with a particular value

of flux. The assignment of R-charges (denoted in red) follows from the decomposition of higher genus

surfaces into trinions. This also can be identified with the Cartan of the six dimensional R-symmetry.

The Figure is taken from [25].

The superconformal R-symmetry of all the chiral fields is 1
2 . However this is not the

R-symmetry which we obtained decomposing the genus two surface into trinions. The R-

symmetry we will use is obtained by mixing the baryonic U(1) symmetry with the supercon-

formal one. In particular, we assign an R-charge 1/3 to the fundamentals and 2/3 to the

anti-fundamental chiral fields. As this is the R-symmetry we obtained decomposing higher

genus surfaces with zero flux it coincides with the Cartan generator of the su(2) R-symmetry

of the six dimensional E-string theory.

If we are to interpret the SU(2) symmetries identified above with puncture symmetries

we also need to find the associated octet of moment map operators. As we have discussed in

Subsection 5.1, we expect the moment map operators to be in the fundamental representation

of only one SU(2) puncture symmetry and have R-charge +1. Indeed we have a variety of

operators with these properties: for each puncture SU(2) we have six mesons and two baryons

with these properties. In more detail, the charges of the moment map operators (encoded in
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terms of their fugacities) are given by,

Mx = 2x ⊗
(
6u4/v2w2 ⊕ 1u6v12 ⊕ 1u6w12

)
,

My = 2y ⊗
(
6v4/u2w2 ⊕ 1v6u12 ⊕ 1v6w12

)
, (5.10)

Mz = 2z ⊗
(
6w4/u2v2 ⊕ 1w6u12 ⊕ 1w6v12

)
.

We denoted the three octets of moment maps by Mx,y,z with x, y, and z denoting the Cartan

generators of the corresponding SU(2) puncture symmetries. Further, 6 denotes the character

of the fundamental representation of the SU(6) symmetry. The sextets of the SU(6) are built

from the mesons and the singlets from baryons. The baryon which has charges 1u6v12 is built

from two quarks charged under SU(2)y and one quark charged under SU(2)x. Importantly,

as can be seen from (5.10) the three punctures of the trinion have moment map operators

charged differently under the various symmetries. These punctures thus are of different types:

such types of punctures are usually called colors and, as we have discussed in Subsection 5.1,

can be attributed to different choices in defining the boundary conditions in 5d.

Finally, let us compute the various ‘t Hooft anomalies of the model involving the R-

symmetry,

Tr R = 8 + (
2

3
− 1)× 18 + (

1

3
− 1)× 18 = −10 ,

Tr R3 = 8 + (
2

3
− 1)3 × 18 + (

1

3
− 1)3 × 18 = 2 , (5.11)

Tr RSU(2)2x,y,z =
1

2
× (

1

3
− 1)× 3 = −1 .

These anomalies match the predictions for a three punctured sphere in (5.3) and (5.5). As the

anomalies above are insensitive to the choice of flux we can match them without specifying

the flux associated to the three punctured sphere we discuss.

Gluing back to closed surfaces: S-gluing

We have obtained a 4d theory dual across dimensions to the E-string compactified on a three

punctured sphere with some value of flux, value of which we need still to determine. Let us

now discuss how to combine these trinions to obtain theories corresponding to more general

surfaces, and in particular closed surfaces. We know what needs to be done as we obtained

three punctured spheres by decomposing a closed surface, but it is worth to understand the

gluing more systematically. The gluing we discuss first is called an S-gluing following the

nomenclature of [26].34

The basic idea of gluing is to undo the 5d boundary conditions. This amounts to turning

the background vector fields coupled to the flavor symmetry at the boundary to be dynamical.

This corresponds to the gauging of the puncture SU(2) symmetry here. However we also have

the matter fields of the 5d theory, some of which we lost due to Dirichlet boundary conditions

34S-gluing can be defined for compactifications of any 6d SCFTs, as long as we have a notion of the maximal

puncture: see e.g. [117, 125, 128, 129].
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5d

6d
!

∂! = ∂!′ 

SU(2)(MN, M̃D) (M′ N, M̃′ D)

W = MN ⋅ M′ N !′ 

M̃D = M′ N, M̃′ D = MN

Figure 36. Explanation of S-gluing in 5d. We have the 16 fields on the left (MN , M̃D) and on

the right, (M ′
N , M̃

′
D). We gave eight of these Dirichlet (label D) and eight Neumann (label N)

boundary conditions. Now we are undoing the boundary conditions by gauging the SU(2) symmetry

and identifying M ′
D with MN and MD with M ′

N , and thus having the full set of dynamical fields at

the four dimensional boundary given by MN and M ′
N .

and thus need to reintroduce. In S-gluing we identify the operators of one puncture as the

ones corresponding to the fields obtaining the Dirichlet boundary condition in the other

puncture, and vice versa. The fields obtaining Dirichlet and Neumann boundary conditions

have opposite charges and that is exactly what the superpotential above does for us. See

Figure 36 for detailed illustration.

The S-gluing procedure for the E-string is thus performed as follows. Given two maximal

punctures one gauges the diagonal combination of the two puncture SU(2) symmetries and

couples the moment maps of the two punctures (the octets of operators M and M ′ ) with a

superpotential,

W =M ·M ′ ≡
8∑

i=1

MiM
′
i . (5.12)

Our field theoretic construction some of the moment maps are mesonic (quadratic in fields)

and some are baryonic (cubic in fields). Thus the superpotential above has quartic and sextic

interactions in fields. As the moment maps have R-charge one the superpotential is consistent

with our choice of R-symmetry. Moreover, it is easy to verify that this R-symmetry is also

not anomalous.

If we take two identical theories and S-glue them to each other because of the superpo-

tential the charges of the moment maps of the two theories are identified with conjugation. In

particular that means that if we associate some flux to one of the theories we need top asso-

ciate a negated flux to the other one. The flux of the associated to the surface after S-gluing

is zero. Here there is an important assumption that the flux associated to the combined

surface is the sum of fluxes associated to the ingredients: this is an assumption motivated by

consistency of the arguments following from it.
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Figure 37. On the left we have two trinions S-glued to each other. There are various superptential

terms consistent with the charges denoted on the Figure. On the right we utilize the S-confining

Seiberg duality of SU(2) SQCD with three flavors to simplify the quiver theory. The Figure is taken

from [25].

Exercise: Analyze the dynamics of gluing the two three punctured spheres (trinions) into a

genus two surface.

As the gluing procedure contains quartic and sextic superpotential terms one shoul won-

der whether these are relevant interactions or not. One can study this problem step by step,

as we have done in Lecture II is by turning on only a single interaction at each step so that

this interactions is relevant. We will not do this in detail here and leave the analysis as an

exercise. The solution can be found in [25]. Let us just mention that the sequence of interac-

tions is: gauging the puncture symmetry first, quartic superpoential second, and finally the

sextic superpotential. See Figure 37 for the illustration of S-gluing. We then can continue

gluing the rest of punctures in pairs to obtain a genus two surface. One needs to be careful

to glue together punctures so that no global stmmetry is broken by the interactions: this

implies S-gluing together punctures so that the corresponding moment maps have opposite

charges under global symmetries. Gluing two different surfaces together this can be always

done as the procedure simply amounts to identifying the symmetries of the two surfaces in

certain way. However when we glue punctures on the same surface we have no room any-

more for arbitrary identifications: we need to glue punctures of the same “color” together.

Field theoretically one can flue different punctures together, however in this case some of

the symmetries will be broken. The geometric reason for this can be traced to issues with

discrete fluxes and twists [26, 130]: we will not discuss such issues here. The procedure can

be generalized to constructing general genus g surfaces as depicted in Figure 38.

□
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Figure 38. S-gluing trinions into a genus g surface with no flux (g = 4 in this example). The Figure

is taken from [25].

Gluing back to closed surfaces: Φ-gluing

The gluing we have discussed identifies the charges of the moment map operators of the two

glued punctures with conjugation. Let us now discuss a different gluing, the Φ-gluing in the

nomenclature of [26], which in particular identifies the symmetries of the moment maps of

the two punctures without conjugation. In particular when Φ-gluing two theories of the same

kind together the corresponding fluxes are summed and not subtracted.

The Φ-gluing includes gauging the puncture SU(2) symmetry and identifying the moment

map operators of the two punctures using the superpotential,

W =
8∑

i=1

(
Mi −M ′

i

)
Φi , (5.13)

where Φi is an octet of fields in the fundamental representation of the gauged symmetry which

are added to the model. The 5d explanation of this procedure is as follows. In this gluing

the missing fields, the ones which obtained Dirichlet boundary conditions, are the octet of

fundamental chiral fields Φ while the fields obtaining the Neumann boundary condition are

the moment maps of the two punctures which are identified, see Figure 39. Note that Φ

and the moment maps have opposite charges as should be the case for chiral halves of the

hypermultiplet in 5d. The Φ-gluing is analogous to the N = 2 gluing in the compactifications

of (2, 0) theory [8]. This field there can be viewed as the N = 1 chiral adjoint superfield in

the N = 2 vector multiplet.

Let us make here two comments. First, from the discussion above it is clear that there

is a simple and useful way to relate the two types of gluings, and in fact generalize them.

First, let us consider taking a theory with a puncture and corresponding moment maps M

and deform the theory with the superpotential,

W = ΦM ·M , (5.14)
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5d

6d
!

∂! = ∂!′ 

SU(2)(MN, M̃D) (M′ N, M̃′ D)

W = (MN − M′ N) ⋅ Φ !′ 

M̃D = M̃′ D = Φ, M′ N = MN

Figure 39. Explanation of Φ-gluing in 5d. We have the 16 fields on the left (MN , M̃D) and on

the right, (M ′
N , M̃

′
D). We gave eight of these Dirichlet (label D) and eight Neumann (label N)

boundary conditions. Now we are undoing the boundary conditions by gauging the SU(2) symmetry

and identifying M ′
D with MD and Φ and MN with M ′

N , and thus having the full set of dynamical

fields at the four dimensional boundary given by Φ and MN =M ′
N .

where ΦM is an octet of chiral fields in the fundamental representation of the puncture

SU(2) symmetry. This superpotential removes M from the chiral ring of the theory and the

procedure is usually called “flipping M” (with the field ΦM being the flip field) [15]. Now

notice that the field ΦM has opposite charges to M and becomes the moment map of the new

theory.35 In particular the procedure of say S-gluing two punctures can be thought of as first

flipping one of the punctures and then Φ-gluing them,

W = ΦM ·M +Φ ·
(
M ′ − ΦM

)
→ W =M ·M ′ , (5.15)

where in the last step we have integrated out the massive fields Φ and ΦM . In a similar way

the Φ-gluing can be thought of as first flipping one of the punctures and then S-gluing.

Finally, the procedure can be generalized when we Φ-glue some of the components of

the moment maps and S-glue the remaining ones. That is we glue by gauging the puncture

SU(2) symmetry and turn on the superpotential,

W =

k∑
i=1

MiM
′
σ(i) +

8∑
i=k+1

Φi ·
(
Mi −M ′

σ(i)

)
, (5.16)

where k is some number between zero and eight and σ ∈ S8 is a permutation of the eight

moment maps. This procedure is subject to some global obstructions having to do with

consistency of various fluxes of the glued theories. In field theory these obstructions will

appear concretely as the demand that gaugings should be free of Witten or chiral anomalies.

We will not discuss these subtleties here.

35Such flips of punctures, or “signs” of punctures, are very common in various geometric constructions. See

for example [12, 131].
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Let us note that if the vector of fluxes of the two glued theories is F and F ′, the compo-

nents of the vector of fluxes of the glued theories are Fi + (−1)ind(i)F ′
σ(i) where ind(i) is zero

if the component i is Φ-glued and 1 if it is S-glued.
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Figure 40. The field theoretic description of two trinions Φ-glued to each other. The fields Φi

flipping the moment maps are denoted by red lines: The dotted lines flip the baryonic operators with

charges v6u12 and v6w12. The notation is that the dotted fields are in the singlet representation of the

symmetry they point to and in the fundamental representation of the symmetry they emanate from.

There are two sets of flipped baryon operators coming from each one of the two glued trinions with

the superpotential given in (5.16). Note the way the quiver is drawn it might appear that the dotted

fields couple asymmetrically to the two trinions, however because of (5.16) the coupling is symmetric.

The Figure is taken from [25].

Exercise: Analyze the dynamics of the Φ-gluing of two three punctured spheres into a four

punctured sphere.

The dynamics of the Φ-gluing is more intricate than that of the S-gluing. For example

gauging the puncture SU(2) symmetry we have fourteen fundamental chiral fields which

naively renders it IR free. However, one again can seek for a particular sequence in which

to turn on all the interactions so that at each step the interactions will be relevant. In fact

we have already analyzed most of this dynamics in an exercise in Lecture I (see Figures 10

and 11), and we will leave the rest as an exercise. See [25] for more details. Let us stress

that in principle it might happen that the interactions turn out to be irrelevant: this by itself

does not invalidate the identification of the across dimension duals. What that would imply

is that the field theoretic description in 4d is an effective one and we should think of the 6d

construction as of its UV completion.
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□

Using the Φ-gluing we can identify what is the flux we should associate to the theory we

conjectured is obtained by a compactification on the three punctured sphere. We can Φ-glue

the punctures of two three punctured spheres in pairs and obtain a genus two surface. Doing

so we obtain that the superconformal R-symmetry of the theory is,

Rsc = R+
1

54
(
√
5− 1) (qu + qv + qw) , (5.17)

where qu,v,w denote charges under U(1)u,v,w. This is done by performing a-maximization and

assuming as usual that there are no accidental emergent U(1) symmetries in the IR. Here the

a-maximization gives a non-trivial result, as opposed to S-gluing, since the charges of various

abelian symmetries in the field theory do not appear symmetrically to conjugation. Using

this R-symmetry we can compute the conformal anomalies,

a =
5
√
5

4
+

47

16
, c =

3
√
5

2
+

27

8
. (5.18)

One can wonder whether there is a compactification of the E-string theory on a genus two

surface with some value of flux giving these conformal anomalies after a-maximization. In

fact there is: we can take the anomaly polynomial of the E-string theory and integrate it over

genus two surface with one unit of flux in a U(1) which breaks the E8 global symmetry of

the 6d SCFT to E7 × U(1). We will not perform the detailed analysis here as it requires a

significant build up, but it can be read off easily from the 6d results in [26] (See Appendix

F.3.). It is then natural to associate half a unit of this flux to each three punctured sphere

we have obtained.

Finally we should detail what is the combination of the abelian symmetry explicitly

visible in the Lagrangian of our SQCD model which corresponds to the U(1) with the flux.

A natural such combination is a diagonal U(1) of U(1)u, U(1)v, and U(1)w. This is also

supported by the structure of mixing of the three symmetries with the R-symmetry in (5.17).

Then two other combinations of the abelian symmetries together with the SU(6) should build

the E7. In fact E7 has an SU(3) × SU(6) maximal sub-group and the precise imbedding of

various symmetries is,

E8 → E7 × SU(2)u6v6w6 → SU(6)× SU(3) u8

w4v4
, v8

w4u4
× SU(2)u6v6w6 , (5.19)

with the U(1)s in (5.9) being the Cartan generators of SU(3) and SU(2). The flux we have

derived preserves the E7 × U(1) subgroup of E8, however the three punctured sphere only

manifests a subgroup of this. The reason is that we have punctures and these come also

with a choice of a subgroup of E8: choice of U(1) × SU(8) under which the moment maps

are charged. This choices comes about, as we discussed, since we need to specify boundary

conditions of the puncture in 5d. The choice of the boundary conditions breaks further the

symmetry of the surface. However, if we consider surfaces without punctures, the symmetry

of the theory should be the one consistent with the choice of flux: in our genus two case we
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thus would expect an E7 × U(1). This symmetry is not manifest in the Lagrangian but we

expect the conformal manifold of the IR theory to have a locus with this symmetry. One

way to test this is to compute the supersymmetric index from the explicit field theoretic

description. Computing the index of a genus two surface using Φ gluing for all punctures we

obtain,

Ig=2,FU(1)×E7
=1 = 1 +

(
3 + {1 + 133E7}+ 3

1

u12v12w12
+ 2

1

u6v6w6
56E7

)
q p+ · · · .(5.20)

This expression is written using the 6d R-symmetry. Because the superconformal R-symmetry

is different, see (5.17), the operators with negative uvw charge are actually relevant and

contributions with zero charge are marginal. We observe that all the contributions combine

into E7 representations in the index. This is a rather non-trivial further evidence that our

identification of the three punctured sphere and the flux is correct. Let us note in passing

that in addition to having representations of E7 the multiplicities of the various operators

(e.g. 1
u12v12w12 appearing thrice above) can be also predicted from six dimensions [113] and

for general genus the field theoretic computations agree with such predictions.

Finally, a theory corresponding to a four punctured sphere is expected to have a duality

group acting on its conformal manifold exchanging punctures of the same type. These are

the different pairs of pants decompositions we already discussed in the previous Lecture. One

way to check that the duality holds is to consider the index of the four punctures sphere

and verify that it is invariant under exchanging fugacities parametrizing the symmetries of

punctures of the same type. This exercise can be performed for both S- and Φ−gluings, and

indeed at least in expansion of fugacities (as was also done in the previous Lecture) the result

is consistent with such dualitis. We leave this as an exercise here and the reader can also

consult [25] for more details.

5.4 Closing punctures and comments

As we have discussed in Lecture III there is yet another field theoretic operation which has a

natural geometric meaning: giving vevs to operators charged under puncture symmetries and

closing the punctures. Before addressing this issue here let us expand a bit on the definition

of the flux. To specify the flux of the system in a more general way than we have done so

far we need to specify the flux of all the Cartan generators of E8. There are many choices

of this octet of U(1) symmetries. Given a puncture a natural choice is in terms of the eight

U(1)s rotating each one of the components of the moment map. Thus the flux is specified by

a vector F which has eight components. A natural choice of these eight U(1) symmetries is to

take the Cartans of U(8) ⊂ SO(16) ⊂ E8. The choices of these U(1)s depend on the choices

of the punctures. Different choices are related by an appropriate linear transformations of

the U(1)s.

Given the octet of fluxes we can understand what is the sub-group of E8 that it pre-

serves. The preserved symmetry is generated by the roots of E8 which are orthogonal to the
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vector of flux. See e.g. Appendix A of [132] for a detailed discussion. In our parametriza-

tion we write the flux in terms of the SO(16) maximal subgroup of E8 with the roots of

the SO(16) subgroup being 1
2(±1,±1, 0, 0, 0, 0, 0, 0) and permutations thereof. To find the

symmetry we also need to complete the SO(16) to E8 by adding the spinor weights, which are
1
4(±1,±1,±1,±1,±1,±1,±1,±1) : here we need to make a choice and either allow only even

number of minus signs (corresponding to a spinor) or only odd number (corresponding to a

co-spinor). For the constructions we discuss here all odd turns out to be the relevant choice.

We will soon discuss this more and here proceed with making this choice. We then check

which of the roots of SO(16) and which spinorial weights are orthogonal to the given vector

of fluxes: these roots and weights will build the root system of the preserved symmetry.

Let us give a relevant example. Consider the vector of fluxes,

F = (−1,−1, 0, 0, 0, 0, 0, 0) . (5.21)

The roots of SO(16) ±1
2(1,−1, 0, 0, 0, 0, 0, 0) and (0, 0, · · · ) (with ellipses standing for any

possible choice) are orthogonal to F . These roots span an SU(2) × SO(12) subgroup of

SO(16). The spinorial weights which are orthogonal to F are of the form ±1
4(1,−1, · · · )

with odd number of minuses. These form the representation (2,32) of (SU(2), SO(12)). Such

spinorial weights, along with the Cartan generators, build the root system of E7×U(1). Thus

the flux vector (5.21) preserves E7 × U(1) subgroup of the E8 symmetry of the 6d theory.

Exercise: Show that the flux F = (−1,−1, 2, 0, 0, 0, 0, 0) preserves E6 × SU(2) × U(1) and

F = (12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2) preserves E7 × U(1) . The latter vector of fluxes is equivalent by

Weyl transformation to (5.21).

The roots of SO(16) orthogonal to F = (−1,−1, 2, 0, 0, 0, 0, 0) are 1
2(0, 0, 0,±1, 0, · · · ,±1, · · · )

which span SO(10), as well ±1
2(1,−1, 0, · · · ) which span SU(2). The co-spinor weights or-

thogonal to F are ±1
4(1, 1,−1,±1, · · · ) where in the brackets we have an even number of

negative choices of ± signs. These weights form a 16 and a 16 of SO(10) charged oppositely

under a U(1)a symmetry. The adjoint of the preserved symmetry thus is in the following

representation of (SU(2), SO(10))U(1)a,U(1)b ,

(1,1)0,0 + (1,1)0,0 + (3,1)0,0 + (1,45)0,0 + (1,16)+1,0 + (1,16)−1,0 , (5.22)

where we added all the Cartan generator. The (1,1)0,0+(1,45)0,0+(1,16)+1,0+(1,16)−1,0

builds the 78 representation of E6 and thus the symmetry is E6 × SU(2)× U(1).

Let us look at F = (12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2). The roots orthogonal to it are±

1
2(1,−1, 0 · · · , 0)

and all permutations excluding the last element as well as ±1
2(1, 0 · · · , 1) and all permutations

excluding the last element. This spans the roots of SU(8). The spinorial weights orthogonal

to the flux are ±1
4(±1,±1, · · · , 1) with three negative choices of ± signs. This builds the

2×7!/(4!3!) = 70 dimensional representation of SU(8). The representations 63+70 compose

the adjoint representation of E7. The symmetry preserved by the flux is thus E7 × U(1).
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□

In fact we claim that the vector of fluxes associated to the three punctured sphere is

(5.21). To make this statement meaningful we need to make a choice of puncture which will

determine the basis of U(1) symmetries. However, since the three punctures appear rather

symmetrically the statement above is true for any choice of one out of the three punctures of

the trinion. The flux is −1 for U(1) symmetries coming from the baryonic components of the

moment maps and the 0s to the mesonic ones. As we saw above this flux preserves E7×U(1)

symmetry, consistently with our previous discussion.

Let us perform a consistency check of this claim. We assume that the flux is (5.21) when

computed using the Mx moment maps of (5.10) and show that the same also holds for My

(and by symmetry also forMz). To show this we translate the fluxes into the SU(6)×U(1)u×
U(1)v × U(1)w basis,

6Fu + 12Fw = −1 , 6Fu + 12Fv = −1 , 4Fu − 2Fw − 2Fv = 0 , (5.23)

which gives Fu = Fv = Fw = − 1
18 . By the symmetry of this result it is immediate that (5.21)

is also the flux computed with respect to the other two punctures.

With this understanding of the fluxes let us discuss closing a maximal puncture. A

general idea already discussed in the previous Lecture is that given a puncture we can “close”

it by turning on a vacuum expectation value to one of the components of the moment map

operator. We might also need to introduce certain fields and superpotential terms to match

the anomalies with the expectations from the theory associated to the surface without the

puncture. Intuitively, the puncture is removed as the vacuum expectation value (vev) breaks

the symmetry associated to the puncture.36 In addition the flux associated with the surface

we obtain after giving the vev will be shifted. The value by which we shift the vector of

fluxes depends on the charges of the moment map component which obtains the vev. For the

E-string the precise procedure of closing a puncture was derived [26]. We will not repeat the

computation here but rather state the result.

Let us assume that the charges of the octet of moment map operators are ui x
±1 where

the ui are combinations of fugacities for the Cartan of E8 and x is the Cartan of the puncture

SU(2) symmetry. Let us then label the components of the moment map operator charged

ui x
±1 as M±

i . We can give the vev to any component and for concreteness we will choose to

turn on a vev to M+
1 . Following the derivation in [26] we will need also to introduce chiral

superfields, which we will denote by Fi, and couple them with the following superpotential,

W =M−
1 F1 +

8∑
i=2

M+
i Fi . (5.24)

36More precisely it breaks one combination of U(1) symmetries, the Cartan generator of the puncture

symmetries and symmetries coming from six dimensions. We can always choose to parametrize the broken

symmetry by the one associated with the puncture.

– 83 –



A natural choice for the basis of U(1) symmetries is in terms of the moment maps of the

puncture being closed. In this basis the flux of the theory in the IR is shifted,

∆F = (2, 0, 0, 0, 0, 0, 0, 0) .

This vector of shifts is determined by (in fact proportional to) the vector of charges of the

operator which received the vev.

Let us apply this procedure choosing different components of the moment maps. We

have two different types of components, baryonic and mesonic, and we will discuss them

separately. First, we close a puncture giving a vev to a baryonic component of the moment

map. Following our rules above the flux of the resulting theory is,

F +∆FB = (1,−1, 0, 0, 0, 0, 0, 0) .

This in fact is equivalent to the flux in (5.21) by action of the Weyl group of E8 and thus

preserves the same symmetry. However, if we turn on a vev to one of the mesonic compenents

of the moment map and follow the same rules we obtain,

F +∆FM = (−1,−1, 2, 0, 0, 0, 0, 0) .

As we have seen this flux preserves an E6 × SU(2)× U(1) subgroup of E8.

Given the above procedure, since we have field theoretic constructions of the trinions,

we can explicitly study the procedure of closing punctures. For example, a baryonic vev will

Higgs completely the SU(3) gauge symmetry of the trinion. We will be left with a WZ model

in the IR. On the other hand, the mesonic vev Higgses the SU(3) gauge symmetry of the

trinion only to SU(2). See Figure 41 for an illustration. We will soon discuss this case in

detail in an exercise.

Before proceeding with the detailed discussion of closing punctures let us make an ad-

ditional comment. Given a puncture with an octet of moment maps Mi we can introduce

for example a single chiral field Φ and flip one of the components, say by ontroducing the

superpotential,

W = Φ ·M1 . (5.25)

This procedure will remove M1 from the chiral ring and replace it with Φ. Importantly the

charges of Φ, which is the new moment map component, are opposite to M1. This flipping of

the moment map component does not alter the flux associated to the surface: it just changes

the color of puncture. Here let us comment again on the choice of spinor versus co-spinor

to compute the flux. Flipping even number of components of the moment map indeed is

consistent with our prescription to determine the flux as it is part of the Weyl symmetry of

SO(16). However, flipping odd number of components does naively change the flux. This can

be remedied by declaring that if we flip odd number of components we compute the flux using
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Figure 41. On the left we have the model obtained by closing a puncture with a mesonic vev with

no flip. On the right we have the model obtained by closing a puncture with a mesonic vev with a

flip. Both theories correspond to a tube with flux breaking E8 to E6 ×SU(2)×U(1). The crosses are

flip fields flipping the baryons built from the bi-fundamentals. The Figure is taken from [25].

the spinor and not the co-spinor. Notice that the SU(2) punctures of the trinion theory have

odd number of fundamentals and thus have a Witten anomaly [67]. Flipping even number of

moment maps will keep the anomaly while flipping odd number will remove it. Thus we can

just say that if we compute the flux relative to puncture symmetry with Witten anomaly we

use the co-spinor and if the puncture has no Witten anomaly we compute the flux with the

spinor.

Let us now analyze what happens if we close punctures with a flip. Say we flip a mesonic

component. Then the vector of fluxes is unchanged as F of (5.21) has zeros at the location

of the mesonic components. Turning on the vev, the flux is shifted to,

F +∆FM = (−1,−1, 2, 0, 0, 0, 0, 0) ,

which is the same E6 × SU(2)× U(1) preserving flux as we obtained without flipping. Note

however that the vev here is turned on to the flip field which is a singlet under the gauge

symmetry. Thus, we do not have any Higgsing but rather generate various mass terms for

gauge non-invariant fields. We will then obtain again an SU(3) SQCD albeit with smaller

number of flavors, namely Nf = 5 SU(3) SQCD. This theory should be then related to the

one obtained without the flipping (as the flux and the surface are the same). The latter is

SU(2) SQCD with Nf = 5, see Figure 41. The two theories are indeed related in a non-trivial

way due to a Seiberg duality.

Exercise: Closing a puncture by giving a vev to a mesonic moment map, with and without flip,

derive the theories with fluxes F = (−1,−1,+2, 0, 0, 0, 0, 0) and F = (−1,−1,−2, 0, 0, 0, 0, 0).

Applying Seiberg duality to the theory with the flip compare the two models.

We will perform the analysis of the flows triggered by vevs using the supersymmetric

index. The basic observation [119] is as follows. Given an operator O in a 4d theory that
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contributes to the index with weight X ≡ q−j
(O)
1 +j

(O)
2 + 1

2
R(O)

pj
(O)
1 +j

(O)
2 + 1

2
R(O)∏

i u
Q

(O)
i

i and O
can acquire a vev, the index will have a pole when we tune the various fugacities so that

X = 1. The residue of the pole, removing the Goldstones for the symmetry broken by the

vev, is the index of the theory obtained in the IR. Let us apply this for the theories at hand.

The supersymmetric index of the trinion is,

I(trinion)(x, y, z) =
(q; q)2(p; p)2

6

∮
dt1
2πit1

dt2
2πit2

1∏3
i ̸=j Γe(ti/tj)

× (5.26)

3∏
i=1

Γe((qp)
1
6u6tix

±1)Γe((qp)
1
6 v6tiy

±1)Γe((qp)
1
6w6tiz

±1)
6∏

j=1

Γe((qp)
1
3 (uvw)−2cjt

−1
i ).

Here ci parametrize the SU(6) symmetry group (
∏6

j=1 cj = 1). Let us close the puncture

symmetry of which is parameterized by y. First we give a vev to the moment map (denote it

as M+
3 ) with weight X+ = (qp)

1
2

v4

w2u2 c1 y
+1. Note that the integrand of (5.26) does not have

a pole when we tune X+ to be 1. However, the integration contour is pinched leading to a

divergence. Let us look at the following poles of the integrand in ti,

Outside: ti = (qp)−
1
6 v−6y±1 (5.27)

Inside: ti = (qp)
1
3 (uvw)−2c1

Outside/Inside stand for poles outside/inside the unit circle integration contour. Here we

assume first that the fugacities for flavor symmetries are on the unit circle and |q|, |p| < 1.

This determines which poles are inside the unit circle contour for ti integration variables and

which are outside. Setting now X+ = 1 we can take y = (qp)−
1
2
w2u2

v4
a−1
1 . Then we have,

Outside: ti = (qp)
1
3 (uvw)−2c1 ti = (qp)−

2
3 (uw)2v−10c−1

1 (5.28)

Intside: ti = (qp)
1
3 (uvw)−2c1

Note then that the poles in say t1 at t1 = (qp)−
1
6 v−6y−1 and t1 = (qp)

1
3 (uvw)−2c1 collide

from both sides of the t1 contour pinching it and leading to a divergence. We can consider

poles in t2 or t3 which will be related to the above by the action of Weyl symmetry giving

an equivalent result. Let us then plug the value X+ = 1 and t1 = (qp)
1
3 (uvw)−2c1 in the

integrand of (5.26) to compute the residue,

(q; q)(p; p)× ResX+→1I
(trinion)(x, y, z) → (q; q)(p; p)

2

∮
dt

2πit

1

Γe(t±2)
× (5.29)

Γe(u
7vwc

− 1
2

1 t±1x±1)Γe(uvw
7c

− 1
2

1 t±1z±1)Γe((qp)
1
2 (uw)−1v11c

1
2
1 t

±1)

6∏
j=2

Γe((qp)
1
2 (uvw)−3cjc

1
2
1 t

±1)

×

Γe(qp
v8

u4w4
c21)

6∏
j=2

Γe(cj/c1)

Γe((qp)
1
2
u4

v2w2
c1x

±1)Γe((qp)
1
2
w4

v2u2
c1z

±1) .

Here we have defined t = t2(qp)
1
6 (uvw)−1c

1
2
1 . The multiplication of the residue by (q; q)(p; p)

is to remove the Goldstones. Now, notice that the contribution of the last line in the square
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brackets of (5.29) is from moment mapsM−
3 and the mesonic components ofM+

j (j = 4 · · · 8)
which are removed by adding additional terms to the superpotential (5.24) when closing the

puncture. We also add flip fields for the two baryonic moment maps M+
1,2 and thus the index

of the theory we obtain after closing a puncture with the mesonic vev is,

I
(tube)
1 (x, z) =

(q; q)(p; p)

2

∮
dt

2πit

1

Γe(t±2)
× (5.30)

Γe(u
7vwc

− 1
2

1 t±1x±1)Γe(uvw
7c

− 1
2

1 t±1z±1)Γe((qp)
1
2 (uw)−1v11c

1
2
1 t

±1)
6∏

j=2

Γe((qp)
1
2 (uvw)−3cjc

1
2
1 t

±1)

×Γe(qp
1

u4v4w14
c1)Γe(qp

1

w4v4u14
c1)Γe((qp)

1
2
u4

v2w2
c1x

±1)Γe((qp)
1
2
w4

v2u2
c1z

±1) .

This is an SU(2) gauge theory with Nf = 5 with additional gauge singlet fields and a super-

potential. The quiver is depicted in Figure 41. The flux of this model in terms of the moment

map symmetries of the puncture we close is F = (−1,−1, 2, 0, 0, 0, 0, 0).

Next we can first flip the moment mapsM±
3 by adding a field M̃±

3 with the superpotential

W =M±
3 · M̃∓

3 ,

and then close the puncture by giving a vev to M̃+
3 . This operation simply amounts to turning

on a mass term to the quarks buildingM−
3 . The resulting pole in the index comes solely from

the contribution of M̃+
3 which is X̃+ = (qp)

1
2
w2u2

v4
c−1
1 y+1. The index of the theory in the

IR is then just the one obtained by taking (5.26), setting X̃+ = 1 and adding the flip fields

determined by (5.24),

I
(tube)
2 (x, z) =

(q; q)2(p; p)2

6

∮
dt1
2πit1

dt2
2πit2

1∏3
i ̸=j Γe(ti/tj)

× (5.31)

3∏
i=1

Γe((qp)
1
6u6tix

±1)Γe((qp)
− 1

3
v10

u2w2
tic1)Γe((qp)

1
6w6tiz

±1)
6∏

j=2

Γe((qp)
1
3 (uvw)−2cjt

−1
i )×

Γe((qp)
w2

v10u10
c−1
1 )Γe((qp)

u2

v10w10
c−1
1 )

6∏
j=2

Γe((qp)
u4w4

v8
c−1
j c−1

1 ) .

This is an SU(3) gauge theory with Nf = 5 with additional gauge singlet fields and a super-

potential. The flux of this model in terms of the moment map symmetries of the puncture

we close is F = (−1,−1,−2, 0, 0, 0, 0, 0). Let us perform Seiberg duality for this theory. The

dual theory of SU(3) with Nf = 5 is an SU(2) with Nf = 5 with the mesons flipped. The

baryonic symmetry is identified between the two duality frames while the mesonic symmetries
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are conjugated. The resulting index is,

I
(tube)
2 (x, z) =

(q; q)(p; p)

2

∮
dt

2πit

1

Γe(t±2)
× (5.32)

Γe(
v5w5

u
c
1
2
1 t

±1x±1)Γe((qp)
1
2
u7w7

v5
t±1c

− 1
2

1 )Γe(
v5u5

w
c
1
2
1 t

±1z±1)
6∏

j=2

Γe((qp)
1
2 (uvw)−3c−1

j c
− 1

2
1 t±1)×

Γe((qp)
w2

v10u10
c−1
1 )Γe((qp)

u2

v10w10
c−1
1 )

6∏
j=2

Γe((qp)
1
2
u4

w2v2
cjx

±1)Γe((qp)
1
2
w4

u2v2
cjz

±1) .

Note that although I
(tube)
1 and I

(tube)
2 are very similar they are not exactly the same. They have

exactly the same types of punctures as both are obtained by closing a puncture of a different

theory in different ways. However let us compute the flux in terms of the symmetries of say

the x puncture. In the basis of the y puncture we started from, as we mentioned above, the

flux is F = (−1,−1, 2, 0, 0, 0, 0, 0). Let us compute this flux in terms of the basis {u, v, w, ci},

6Fv + 12Fu = −1, 6Fv + 12Fw = −1, (5.33)

4Fv − 2Fu − 2Fw + Fc1 = 2, 4Fv − 2Fu − 2Fw − 1

5
Fc1 = 0 .

This gives us

{Fu,Fv,Fw,Fc1} = {− 1

12
, 0,− 1

12
,
5

3
}. (5.34)

From here the flux in terms of the moment maps of the x puncture (5.10) is,

F1 = (−1

2
,−3

2
,
3

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
) . (5.35)

Let us repeat now the exercise with flux F = (−1,−1,−2, 0, 0, 0, 0, 0),

6Fv + 12Fu = −1, 6Fv + 12Fw = −1, (5.36)

4Fv − 2Fu − 2Fw + Fc1 = −2, 4Fv − 2Fu − 2Fw − 1

5
Fc1 = 0 .

This gives us

{Fu,Fv,Fw,Fc1} = {− 1

36
,−1

9
,− 1

36
,−5

3
}. (5.37)

From here the flux in terms of the moment maps of the x puncture (5.10) is,

F2 = (−3

2
,−1

2
,−3

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
) . (5.38)

Note that although the punctures are the same the fluxes F1 and F2 are different. Both

fluxes preserve E6×SU(2)×U(1) and are related by Weyl transformation exchanging the two
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Figure 42. On the left we have the theory resulting in Φ-gluing together either two copies of first or

the second tube. The quiver can be thought of as drawn on a sphere with the two half-squares identifies

as the same SU(2) symmetry on a pole of that sphere. This theory is associated to the E6 × SU(2)

preserving flux. On the left we Φ-glued first and second tube to obtain a theory preserving E7 ×U(1)

flux. The explicit quiver drawn is obtained by using Seiberg duality relating SU(2) with three flavors

to a WZ model.

baryonic symmetries and flipping the signs of the mesonic symmetries.37 However there is no

redefinition of symmetries which will make both punctures and fluxes of the two theories the

same. Φ-gluing two copies of each one of the tube theories into a torus, and thus getting rid of

the punctures, we will obtain two completely equivalent models preserving E6×SU(2)×U(1)

symmetry (related by simple redefinitions of symmetries), as is expected. Summing the fluxes,

F1 + F2 = (−2,−2, 0, 0, 0, 0, 0, 0) we obtain E7 × U(1) preserving vector and thus Φ-gluing

tube one to tube two we will obtain a different theory preserving this symmetry. See Figure

42 and we will discuss these models in more detail in the next Lecture.

Let us see explicitly how the gluing of the two different tubes works. The index of the

Φ-glued theory is,

IE7 torus =

[
(q; q)(p; p)

2

]2 ∮ dx

2πix

1

Γe(x±2)

∮
dz

2πiz

1

Γe(z±2)
I
(tube)
1 (x, z)I

(tube)
2 (x, z)×(

Γe((qp)
1
2u−6v−12x±1)Γe((qp)

1
2u−6w−12x±1)

6∏
i=1

Γe((qp)
1
2
v2w2

u4
c−1
i x±1)

)
× (5.39)(

Γe((qp)
1
2w−6v−12z±1)Γe((qp)

1
2w−6u−12z±1)

6∏
i=1

Γe((qp)
1
2
v2u2

w4
c−1
i z±1)

)
.

37The fact that E6 × SU(2) × U(1) is preserved follows from (− 3
2
,− 1

2
,− 3

2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2
) being obtained

from (−1,−1,−2, 0, 0, 0, 0, 0) by change of basis, while for the latter we established the symmetry already. It

is though instructive to rederive this fact. Taking the roots of SO(16) the former flux preserves explicitly

SU(2)×SU(6)×U(1)2. The co-spinorial weights enhance one of the U(1)s to SU(2) while also giving (2,20)

of (SU(2), SU(6)) enhancing it to E6.
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The contributions from the second and third lines are for the Φ fields introduced in gluing the

two punctures. Let us first perform the x integral. Collecting all the fields and using (2.56)

identity (index of a couple of fields which can form a mass term is equal to 1) we get

Ix =
(q; q)(p; p)

2

∮
dx

2πix
× (5.40)

Γe(u
7vwc

− 1
2

1 t±1x±1)Γe(
v5w5

u c
1
2
1 t̃

±1x±1)Γe((qp)
1
2u−6v−12x±1)Γe((qp)

1
2u−6w−12x±1)

Γe(x±2)
.

Here we distinguish the fugacities of the SU(2) gauge groups of the tube theories by denoting

one as t and another as t̃. This is an SU(2) SQCD with Nf = 3 and thus is dual using Seiberg

duality to a WZ model of the gauge invariant mesons and baryons (3.1),

Ix = Γe(u
6v6w6t±1t̃±1)Γe((qp)

1
2
uw

v11
c
− 1

2
1 t±1))Γe((qp)

1
2
uv

w11
c
− 1

2
1 t±1)× (5.41)

Γe((qp)
1
2
w5

u7v7
c
1
2
1 t̃

±1))Γe((qp)
1
2
v5

u7w7
c
1
2
1 t̃

±1)Γe(u
14v2w2c−1

1 )Γe(
v10w10

w2
c1)Γe(qpu

−12v−12w−12)

Performing the z integration we obtain the same expression but with w and u exchanged.

Combining everything together we obtain the following index,

IE7 torus =

[
(q; q)(p; p)

2

]2 ∮ dt

2πit

1

Γe(t±2)

∮
dt̃

2πit̃

1

Γe(t̃±2)

(
Γe(u

6v6w6t±1t̃±1)Γe(qpu
−12v−12w−12)

)2 ×
Γe((qp)

1
2
wu

v11
c
− 1

2
1 t±1)Γe((qp)

1
2
vw

u11
c
− 1

2
1 t±1))Γe((qp)

1
2
uv

w11
c
− 1

2
1 t±1)

6∏
j=2

Γe((qp)
1
2 (uvw)−3cjc

1
2
1 t

±1)×

Γe((qp)
1
2
v5

u7w7
c
1
2
1 t̃

±1)Γe((qp)
1
2
u5

w7v7
c
1
2
1 t̃

±1))Γe((qp)
1
2
w5

u7v7
c
1
2
1 t̃

±1))

6∏
j=2

Γe((qp)
1
2 (uvw)−3c−1

j c
− 1

2
1 t̃±1) .

The quiver description of this theory is depicted on the right of Figure 42. On the first line we

have the bifundamentals of the two SU(2) gauge groups and the flip fields (denoted by crosses

on the figure), the second line give an octet of fundamentals under one SU(2) and the last line

an octet under the other SU(2) group. Computing the index of this theory one can observe

that the protected states form representations of E7 × U(1) with the U(1) parametrized by

u6v6w6. For example, taking antisymmetric squares of the octets and building invariants we

can obtain operators in 28+28 which build the fundamental representation 56 of E7. Let us

now consider simplifying this theory by deforming it. Consider giving a vev to the flip fields

denoted by crosses in the quiver. These are not charged under the SU(8) and thus we do not

break the E7 structure. These vevs give mass to the bifundamental fields and we remain with

two copies of SU(2) Nf = 8 SQCD coupled together through a superpotential W =M1×M2

with Mi being the 28 mesons/baryons of each copy. This theory was discussed in detail in

[71] and dubbed the the E7 surprise as it was shown to exhibit E7 symmetry. The discussion

here shows this surprise in a geometric context.38

38The more precise statement is that on some locus of the IR conformal manifold of this theory the SU(8)

symmetry enhances to E7. In fact it was argued in [72] that on that locus (point) the symmetry is actually

E7 × U(1). The U(1) is accidental in our discussion.
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Figure 43. On the left the theory obtained by gluing two punctures of the E6 × SU(2)× U(1) tube

together. On the right we give vev to the flip fields and use Seiberg duality of SU(2) with Nf = 3 to

obtain a simple theory with E6 symmetry. The cross is a field flipping the mesons/baryons in the 15

of SU(6) built from the bifundamental field.

Let us now consider taking one of the E6 × SU(2) × U(1) tubes and Φ-gluing the two

punctures to each other. The two punctures are of different types and thus we will break a

part of the symmetry doing so.39 In Φ-gluing the moment map symmetries of the punctures

are identified through the superpotential. The moment map symmetries of our two punctures

differ by exchanging u and w and thus these two symmetries are broken to a diagonal one.

The broken u/w parametrizes the SU(2) part of the E6 × SU(2) × U(1) symmetry. To see

that let us discuss how to derive the character of the adjoint of the preserved symmetry

from the vector of fluxes. Let us take the weight of the moment maps of the puncture in

terms of which we compute the flux to be {ai}8i=1. These can be thought of as fugacities

for the Cartan of SO(16) subgroup of E8. For concreteness let us take the flux (5.38). The

components a−1
2 +a4+a5+a6+a7+a8 is the character of the preserved U(6) = U(1)a×SU(6)

while a−1
1 + a−1

3 is the character of preserved U(2) = U(1)b × SU(2). The E6 is built from

SU(2) × SU(6). One combination of the U(1)a/b enhances to SU(2). Looking at the co-

spinorial weights preserved by the flux, (a1a3/(a
−1
2

∏8
i=4 ai))

1
2 parametrizes the U(1) while

z = (a1a3(a
−1
2

∏8
i=4 ai))

1
2 the preserved SU(2). Plugging in the values of the ai for the

moment maps of the x puncture we obtain that z = (w/u)12 while all the other characters

are independent of u/w. The resulting theory is depicted in Figure 43. The quiver has

explicitly SU(6)×SU(2)×U(1)h symmetry with the SU(6)×SU(2) expected to enhance to

39This has an interesting interpretation in 6d. The flux associated with this tube is not properly quantized,

and so to be consistent must be accompanied by certain non-trivial connections in the non-abelian flavor

symmetry, here in the SU(2) part. These lead to the breaking of this symmetry once the tube is closed to a

torus, see [26, app. C].
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E6. The superpotential of this theory is,

W = Q1Q2Φ
2
3 +Φ1Φ2Q1 +Φ1Φ2Q2 +Q2

1ϕ1 +Q2
2ϕ2. (5.42)

We can derive the superconformal R-symmetry by parametrizing the trial R-symmettry

as R+ h qh to compute,

a(h) =
27

2
h (1− 9 h2) , (5.43)

which is minimized for h = 1
3
√
3
. We note that all the operators are above the unitarity bound

evaluating their R-charges using this R-symmetry. Let us write the supersymmetric index.

We will use the more convenient rational value of h = 2/9 to write the expression, which is a

good approximation to the superconformal one:

IE6 torus = 1 + 3h−6(qp)
1
3 + 27E6h

−4(qp)
5
9 + (6h−12 + h6)(qp)

2
3 + (5.44)

+27E6h
−2(qp)

7
9 + 3h−6(q + p)(qp)

1
3 + 3× 27E6h

−10(qp)
8
9 + 10h−18(qp) + · · ·

Here we have defined,

27E6 = 6SU(6) × 2SU(2) + 15SU(6) . (5.45)

First we see that the states form representations of E6. Second, we notice that at order q p

using the superconformal R-symmetry we have 0.40 This implies in fact that the number

of exactly marginal deformations is 7. This follows as we have explicitly preserved SU(6) ×
SU(2)× U(1) symmetry which would contribute corresponding currents with negative signs

at this order (see discussion around (2.52)). To obtain zero we need to have marginal operator

in the adjoint of this group. Such single marginal operator will contribute exactly marginal

operators number of which is the rank of the group (computing the relevant Kähler quotient

this follows immediately). Moreover assuming that somewhere on that conformal manifold

the symmetry enhances to E6 ×U(1) we will have to have a marginal operator in the adjoint

of this group which again would give a 7 dimensional conformal manifold: consistently with

the above.

Let us now try to simplify the theory of Figure 43 by deforming it but preserving the

E6 symmetry. One way to do so is to give a vev to the flip fields ϕi. These fields are only

charged under U(1)h and thus the deformation should preserve the E6 symmetry. Doing so

the bifundamental fields Qi acquire a mass and decouple in the IR. Note also that on a general

point of the conformal manifold we would also expect the fields Φ3 to acquire a vev. One way

to see this is by noting that giving a vev to ϕi we are demanding that h−6qp = 1. However

the weight of the field Φ3 is h−3(qp)
1
2 and thus it will be also weighed as +1 in this limit.

The fact that this vev can be generated also follows from the exactly marginal superpotential

term Q1Q2Φ
2
3 that we have here: this superpotential breaks no symmetry. Let us assume

that however the vev for Φ3 is not generated (say when the above quartic superpotential is

40With h = 2/9 we have at that order 10 states but these are charged under U(1)h and thus will move away

once we stick to the superconformal R-symmetry.
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not turned on). Then, as Qi acquire mass the SU(2) gauge group on the left has only six

fundamentals in the IR and thus is dual to a WZ model of the gauge invariants M = Φ2
2.

These fields couple to the rest throughW = Φ2
1M+M3 which preserves the SU(6) symmetry

(and also the E6). The resulting quiver is depicted on the right of Figure 43. Note that this is

the theory we analyzed in Section 3.2 as an example of emergence of E6 symmetry. The two

models differ by the superpotential term M3 which does not break the E6 symmetry as it is

a singlet of SU(6) and SU(2): moreover we expect this superpotential term to be irrelevant

and vanish in the deep IR.41 Yet again thus we have derived geometrically an instance of

emergence of IR symmetry in 4d. Finally if we do generate a vev for Φ3 this will just lead

to a WZ model of fields Φ1 (bifundamental of SU(2) × SU(6)) and M (15 of SU(6)) with

superpotential W = Φ2
1M +M3, which again preserves E6. The superpotential is marginally

irrelevant in the IR but if we compactify to 3d it would be relevant leading to an SCFT with

E6 global symmetry [133, 134].

□

Finally, let us comment that the fact that we can interpret the SU(3) SQCD in the

middle of the conformal window as a trinion of the E-string theory gives us a geometric

way to understand its Seiberg (self)duality [2]. See [25] for details. We will see in the next

section that one can also find a geometric meaning for SU(N + 2) SQCD in the middle of

the conformal window: the case of N = 1 is the E-string theory discussed here, while higher

N cases correspond to generalizations to compactifications of the minimal (DN+3, DN+3)

conformal matter. The bottom line is that the Seiberg duality of SU(N + 2) SQCD in the

middle of conformal window can be directly related to the Weyl group of SO(4N + 12) [25].

6 Lecture V: An algorithm for deriving across dimensional dualities

In the previous Lectures, we discussed how one can try to conjecture various N = 1 four

dimensional field theories that result from compactifications of 6d SCFTs. The method used

there was to determine the expected ’t Hooft anomalies of the model, from integrating the

anomaly polynomial of the 6d SCFT on the compactification surface, and then search for a

4d model having the same anomalies. To actually make progress usually one also needs some

additional assumptions, like that the model is conformal with a conformal manifold passing

through weak coupling. An interesting aspect in this approach is that we do not attempt to

tackle the reduction directly. Rather our aim here is to build a 4d model that flows to or sits

on the same conformal manifold as the 4d theory expected from the 6d reduction, without

the relation between the two being immediately apparent.

This method was used to great effect in the previous Lectures. Nevertheless, it has several

shortcomings. First, as we mentioned, it usually requires additional assumptions regarding

41This can be argued for by first turning on the gauge coupling, then the MΦ2
1 superpotential and then M3

superpotential.
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the nature of the 4d N = 1 theory42 that may be wrong. Also the reliance on anomalies, while

very convenient, is restricted to spacetimes of even dimensions. As such it is appealing to

also look for other methods by which 4d N = 1 theories, resulting from the compactification

of 6d SCFTs, can be determined.

Here we shall present a different method that can be used to conjecture such 4d N = 1

theories. Unlike the previous method, here we shall actually try to follow the reduction process

to determine the 4d theories. However, the reduction itself is in general quite complicated

and difficult to follow. Nevertheless, here we can use an observation we made in the previous

Lecture. Specifically, we noted that the resulting 4d theories are usually sensitive only to

very rough properties of the surface, e.g. its genus and total flux. Other properties, e.g. the

explicit metric of the surface or field strength of the flux, usually affect the result at worst

through marginal operators, and in many cases only through irrelevant ones. We can exploit

this for our purpose, and choose these to take a very special form for which we can follow the

reduction.

We shall next discuss the method, which consists of two parts. In the first one we shall

discuss a general method to conjecture the 4d theories resulting from the compactificaion

of 6d SCFTs on flat surfaces, that is tori and tubes, with flux. This method follows our

previous discussion and relies on following the reduction process in a specific limit where it

is easy to analyze. After that, we shall introduce a method that allows us to exploit this to

also understand the compactificaion of 6d SCFTs on more generic surfaces, notably spheres

with more than two punctures.

6.1 The general idea

Consider the compactification of a 6d SCFT on a tube, which is just a sphere with two

punctures. To set the stage, we take the coordinates of our 6d spacetime to be x1, x2, ..., x6,

with x6 being the circle direction and x5 the interval direction of the tube. We shall also take

the bounaries of the interval to be at x5 = ±a. We want to determine the reduction of the

theory to four dimensions. We can analyze this by first reducing along the circle spanned by

x6, to get a 5d theory on the 4d spacetime spanned by x1, x2, x3, x4 and the interval spanned

by x5. As we noted in the previous sections, when compactified to 5d, 6d SCFTs can flow

to 5d gauge theories if a proper holonomy is introduced. Here we shall assume that such

a holonomy is incorporated. We shall later on see that it plays an important role in the

introduction of flux. We can then reduce along the circle to get the 5d gauge theory on the

4d spacetime times an interval. At the boundaries of the interval we need to put boundary

conditions, which can be expressed as boundary conditions on the 5d bulk fields as these

approach the boundary, as done in Lectures III and IV. Throughout this Lecture we shall

take the boundary conditions to be of the same type as those used in the previous Lecture,

that is the ones associated with maximal punctures. As the theory now is just an IR free 5d

42The specific nature of the assumption is usually the R-charges of the chiral fields under the superconformal

R-symmetry, from which the a and c central charges of the theory can be determined in terms of the number

of vector and chiral fields. The simplest assumption is that all chiral fields have R-charge of 2
3
, that is the

theory is conformal at weak coupling. It is also possible to explore other choices where there are chiral fields

with more than one value of R-charge, see for instance [82, 83].
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gauge theory, we can then reduce along the interval and get the 4d theory, which is just built

from the 5d matter that is consistent with the boundary conditions.

So far we have discussed the case without flux. However, to deal with interesting cases

requires the introduction of flux. It turns out that we can make progress by representing

the flux as a variable holonomy. Specifically, we pointed out that we usually need to turn

on an holonomy on the circle so that the 6d SCFT reduces to a 5d gauge theory. However,

this holonomy is not unique, where in general we can have many different holonomies leading

to a 5d gauge theory. For instance, say the holonomy is in a non-abelian flavor symmetry.

In that case, it breaks the flavor symmetry to a U(1) group, where the holonomy resides,

plus its commutant in the non-abelian group. We can now act on this holonomy with Weyl

transformations of the broken group that are not part of the commutant. This should map

the holonomy to an equivalent one, but which does not commute with the original holon-

omy. As such the space of holonomies leading to 5d gauge theories is in general quite large.

Additionally, it is possible that a single 6d SCFT can reduce to multiple different 5d gauge

theories, depending on the holonomies chosen, and indeed we shall present examples of such

behavior later on.

We can consider introducing a variable holonomy. That is we introduce a background

vector field coupled to the flavor symmetry and give it the particular profile,

A =

(
M2 + (M1 −M2)θ(x5)

)
δ(x6)dx6,

with M1 and M2 being some matrices in the adjoint representation of the flavor symmetry of

the 6d SCFT. This suggests that we have holonomy of Tr(M1) around the circle direction x6
for x5 > 0, but a holonomy of Tr(M2) for x5 < 0. As such the holonomy essentially jumps at

x5 = 0 between the two values. Finally we note that the presence of the variable holonomy

implies the presence of flux on the surface as F = (M1−M2)δ(x5)δ(x6)dx5 ∧ dx6.43 The idea

now is to take our flux on the surface to be generated by such a variable holonomy, with M1

and M2 chosen so that the holonomy at both x5 > 0 and x5 < 0 is such that the 6d SCFT

flows to a 5d gauge theory.

The advantage of this approach is that we can now make progress on analyzing the

reduction to 4d by first reducing to 5d. This is as our system in 5d now reduces to an IR

free gauge theory living on the region x5 > 0, and another IR free gauge theory living in

the region x5 < 0. These two gauge theories are separated by a domain wall at x5 = 0.

The reduction to 4d is now straightforward for the regions in the bulk, and we just expect

to get the part of the 5d IR free gauge theory matter that is consistent with the boundary

conditions. These should be supplemented by the fields living on the domain wall, and as

such the main problem is reduced to understanding domain walls between 5d gauge theories

that are UV completed by 6d SCFTs.

Let’s consider the domain walls in a bit more detail. As we mentioned we expect there to

be some 4d QFT living on the domain wall. We will assume that we can derive a description

43We can smear the δ-functions here to make the F continuous. Moreover, later on we will also relate certain

constructions with fluxes to punctured surfaces.
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Figure 44. Illustration of a flux domain wall. the horizontal axis is the 5th dimension, x5 and the

vertical axis denotes the value of the holonomy on the circle around x6. The holonomy interpolates

between two asymptotic values which give rise to effective gauge theory description in 5d.

of this QFT in terms of an explicit gauge theory construction. Additionally there should also

be boundary conditions on the bulk 5d fields as these approach the domain wall. One operator

that we expect to generically exist is a chiral operator in the bifundamental representation

of the 5d gauge symmetries on the two sides of the domain wall. This is as the domain wall

should extrapolate between the two symmetries. Specifically, say our 5d gauge theory has

matter hypermultiplets which transform under the flavor symmetry. We should have such

hypermultiplets at both sides of the domain walls. However, there should be only one flavor

symmetry, so there should be some mechanism that identify the symmetries acting on the two

sides of the domain wall. The presence of the bifundamenal operator gives such a mechanism.

Specifically, let us denote such a chiral operator by B, and break the hypermultiplets to two

chiral fields in conjugate representation which we denote as X+, Y+ for one side of the domain

wall and X−, Y− for the other. Then for a hypermultiplet in the fundamental representation

of the gauge group, the superpotential X+BY− does the job. For higher representations, we

need the superpotential X+B
nY−

44. The components X−, Y+ can also be coupled to B with

similar superpotentials.

As such, we see that we generically expect to have a bifundamental chiral operator on

the domain wall. However, we may have many more fields and such a chiral might actually be

a composite. In fact we expect that most domain walls will have rather complicated matter

living on them. To illustrate this, consider the case where we have two domain walls. That

is we take a variable holonomy such that it has one value for say −a < x5 < −b, another for
−b < x5 < b and another for b < x5 < a. We then have two domain walls, located at x5 = ±b.
Now we can consider the limit where b → 0. In this limit the two domain wall collapse to a

single domain wall directly extrapolating between the holonomy at the two edges. We expect

the fields living on this domain wall to be the same as the fields living on the two domain

44There are some subtle issues here for SO groups with spinor matter that we shall ignore here.
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walls from which it is made, as well as the fields living on the bulk between the two. We

expect the latter to contribute the gauge fields of the 5d theory, and as such we expect the

single domain wall to contain gauge fields.

To make progress, it is convenient to make the following assumption. Specifically, we shall

assume that there exist a domain wall such that the fields living on it can be described solely

in terms of chiral fields interacting through superpotential terms. Of course this assumption

may be wrong, and such a domain wall may not exist. However, making this assumption

allows us to make progress in analyzing the reduction and as such we shall make it. This

assumption will later be checked by a detailed study of the anomalies of the resulting model.

Once we determined one domain wall, we can determine more complicated ones by gluing

together this basic domain wall. Finally, we need to consider the flux associated with this

tube. In principal the flux should be related to the difference in the holonomies at the two

sides of the domain wall. However, in this approach we don’t actually control the holonomies,

rather the domain wall is selected such that the fields living on it are particularly simple. As

such we in general don’t apriori know what the flux is, and will generally determine it by

matching anomalies and symmetries.

Next, we shall illustrate this method with various examples.

6.2 Compactification of the rank one E-string SCFT

As our first example, we consider the case of rank one E-string SCFT that we discussed in

the previous Lecture, but now from the domain wall point of view. First, recall that the

rank 1 E-string is a 6d SCFT with E8 global symmetry. It can be compactified to 5d with

a suitable holonomy such that it flows to the SU(2) gauge theory with eight fundamental

hypermultiplets. Here we shall rely on this fact to study the dimensional reduction of this 6d

SCFT on tubes with flux.

We proceed as outlined previously. Specifically, we first reduce on a circle to 5d. As

previously explained, we expect to be able to represent the flux as a variable holonomy, which

we take to be such that the theory flows to an SU(2) gauge theory with eight fundamental

hypermultiplets on the subspace x5 > 0, a different SU(2) gauge theory with eight funda-

mental hypermultiplets on the subspace x5 < 0 and a domain wall at x5 = 0. The theory

away from the domain wall is thus an IR free 5d gauge theory and its reduction can be easily

analyzed.

Here we also need to consider the boundary conditions at the two punctures. Recall

that these give Dirichlet boundary conditions to the 4d N = 1 vector multiplet component

of the 5d N = 1 vector multiplet at the boundary. Therefore, as before, we expect the

SU(2) gauge symmetry to become non-dynamical at the boundary leading to an SU(2) global

symmetry that we associate with the punctures. Additionally we have the eight fundamental

hypermultiplets. Close to the boundary we can decompose them to two 4d N = 1 chiral fields

in opposite representations which we shall denote as Xi, Yi, with i = 1, 2, ..., 8 denoting the

chosen hypermultiplet. We then need to give Dirichlet boundary conditions to one of them

and Neumann to the other for each i. The exact choice doesn’t matter too much, as we can

transform between them by flipping the fields as explained previously, but for presentational
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purposes, it is convenient to take the boundary conditions to be such that the fields Yi receive

the Dirichlet boundary conditions for x5 > 0 while the fieldsXi receive the Dirichlet boundary

conditions for x5 < 0.

Finally we need to address the fields living on the domain wall. For the case at hand these

types of domain walls were studied in [135], and we can in principle just use the results found

there. However, here we shall take a slightly different approach. Specifically, as we explained

previously, we shall assume that the fields living on the domain wall can all be expressed in

terms of free chiral fields. These should contain at least a chiral field in the bifundamental

representation of the two SU(2) groups at the sides of the domain wall, interacting with the

hypermultiplets as we outlined previously. As we shall soon see when we study the anomalies

of this model, this is not enough to match the anomalies and we must add one more chiral

field, which turns out to be a singlet flipping the quadratic SU(2) × SU(2) invariant made

from the bifundamental. For now, we shall add it to the matter content, but will return to

this issue later.
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Figure 45. The basic tube theory for the compactifications of the rank one E-string. The SU(2)

symmetries correspond to the two punctures; the two fundamental octets come from the bulk fields

in the two domains separated by the wall; and the bifundamental field with the flip field come from

degrees of freedom residing on the domain wall.

The resulting 4d theory we obtain is shown in Figure 45. Here the two global SU(2)

symmetry groups are the ones associated with the punctures and the SU(8) is the subgroup of

the 6d global symmetry that rotates the fields Xi and Yi. The SU(2)×SU(8) bifundamentals

on the two sides comes from the part of the bulk hypermultiplets receiving Neumann boundary

conditions. Finally, the SU(2)×SU(2) bifundamental and singlet field come from the domain

wall. The fields interact trough various cubic superpotentials.

The theory has several global symmetries. First it has the SU(2) × SU(2) non-abelian

symmetries coming from the punctures, and an SU(8) which is a subgroup of the 6d global

symmetry. Additionally, we can define two U(1) global symmetries consistent with the su-

perpotential, one of which, denoted as U(1)t is also associated with the 6d global symmetry.
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It is defined such that the fields X+ and Y− have the same charge under it. There is another

U(1) global symmetry, under which the fields X+ and Y− have opposite charges, but it is

in general anomalous once we glue the tubes to closed surfaces.45 Finally, there is a U(1)

R-symmetry, which is convenient to define as the one coming from the Cartan of the 6d SU(2)

R-symmetry. Since the fields X+ and Y− came from components of the 5d hypermultiplets,

they should have R-charge 1 under it. The superpotential then forces the bifundamental, B,

to have R-charge 0 and the flip field to have R-charge 2.

Exercise: consider the anomalies of the tube and check that these match the 6d expectation.

Note that we have not determined the flux associated with this tube yet. However, are there

anomalies that are independent of the flux? If so do these match the 6d expectations?

As we mentioned there are two sources of contributions to the 4d anomalies from the 6d

ones. One is from the integration of the anomaly polynomial on the surface and the other

is from the punctures. The latter are independent of the flux so we are led to consider the

former. The only non-trivial contribution can come from the flux, and as such must come

from the integration of the C2(E8) term. As such there are several anomalies that will not

receive contribution from it, and so are independent of the flux. These are the Tr(U(1)R),

Tr(U(1)3R) and Tr(U(1)RF
2) for F some flavor symmetry. The contribution to all these

anomalies will come only from the punctures for which we can evaluate:

Tr(U(1)R) = Tr(U(1)3R) = −3

2
− 3

2
= −3, (6.1)

Tr(U(1)RU(1)2t ) = Tr(U(1)RSU(8)2) = 0.

Now let’s consider comparing them with the anomalies we observe in the tube. For the

ones only involving the R-symmetry we have that:

Tr(U(1)R) = Tr(U(1)3R) = −4 + 1 = −3, (6.2)

where the first term is the contribution of the bifundamental B and the second term is the

contribution of the flip field.

For the one involving the flavor symmetry we have that:

Tr(U(1)RU(1)2t ) = −22 + 4 = 0 , T r(U(1)RSU(8)2) = 0 , (6.3)

where again the first term in the first equation is the contribution of the bifundamental B

and the second one is the contribution of the flip field.

45Closing the two punctures and obtaining the theory corresponding to a sphere with flux, this U(1) sym-

metry can be identified [136] with the Cartan generator of the SU(2) isometry of the sphere which becomes a

global symmetry in 4d (see [95, 137]).
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We see that the anomalies indeed match. However, note that for this matching to work

it is important that we have the flip field. This is one way to understand why we must add

it, as otherwise the anomalies won’t match. Furthermore, this necessitates that it has U(1)R
R-charge of 2 and U(1)t charge of 4. The requirement that the charges have this value then

also determines the superpotential.

□

Gluing two tubes to form a torus

Having formed a conjecture for the 4d theory associated with the compactification of the

6d E-string SCFT on a tube with flux, we next want to test this conjecture and in the

process determine the flux. To do this it is convenient to work with closed surfaces with no

punctures, and as such we shall take two such tubes and glue them together. The gluing

process is done as we explained in the previous Lectures. Specifically, here the moment map

operators associated with the punctures are the SU(2) × SU(8) bifundamentals. We first

note that these are charged differently under the 6d global symmetry for the two punctures

so the punctures then have different colors. What we shall do is take two tubes and glue the

punctures of same color of each tube together. As we are gluing punctures with same color,

the gluing we need to perform is Φ gluing, so we gauge the SU(2) global symmetry of the two

punctures with an N = 1 SU(2) vector multiplet with eight fundamental chiral fields, the

fields Φ. These are then coupled to the moment map operators associated with the two glued

punctures via a quadratic superpotential. The latter just becomes a mass term, leading to

the fields Φ and some of the moment map operators being integrated out. We end up with

the theory shown in Figure 46.

We can next study the resulting theory. We first note that the U(1) R-symmetry giving

free R-charge to all the chiral fields is anomaly free, suggesting that the theory might be a

conformal theory at weak coupling. As such, we could have in principle arrived at this theory

using our previous strategy. We can then ask whether it is actually conformal or not. We first

note the two flip fields should decouple as there cannot be any quotient for the symmetries

acting only on them. Using the same methods as in the previous Lectures, one can show that

the remaining theory has a non-trivial quotient so we get a 4d SCFT and two decoupled free

fields.

The first thing we want to do is check whether this theory has the right properties to

indeed be the dimensional reduction of the 6d E-string SCFT on a torus with flux, and if

so to determine the flux. To do so we first evaluate the superconformal index. As we are

mainly interested in matching with expected properties from 6d, we shall calculate the index

including the flip fields and refining only with respect to symmetries existing in 6d, that is

we shall ignore the fact that the flip fields should decouple. The result we find is,
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Figure 46. The theory corresponding to gluing two basic tubes into a torus. Note that this is the

same model we have obtained on the right side of Figure 42 using a different method.

1 + 2t4(pq)
1
3 + (pq)

2
3 (

1

t4
+ 3t8 + t2(28+ 28)) + 2t4(pq)

1
3 (p+ q) (6.4)

+2pq(2t12 + t6(28+ 28)) + ...

One thing we note in this index is that it forms characters of E7. Specifically, we have that

56E7 → 28+28. As such it is tempting to assign to it a flux of value 1 preserving the U(1)×E7

subgroup of E8. Indeed we have the branching rules: 248E8 → 10E7
+ 1±2

E7
+ 56±1

E7
+ 1330E7

.

This suggests that the 6d global symmetry is related to the symmetry we see in 4d by:

248E8 → (t4 + 1 + 1
t4
)1+ (t2 + 1

t2
)(28+ 28) + 63+ 70.

The claim can be further supported by looking at the ’t Hooft anomalies of the model.

Specifically, we can calculate the ’t Hooft anomalies of the model finding:

Tr(U(1)R) = Tr(U(1)3R) = Tr(U(1)RU(1)2t ) = 0 , T r(U(1)2RU(1)t) = −8, (6.5)

Tr(U(1)t) = 24 , T r(U(1)3t ) = 96 , T r(U(1)tSU(8)2) = 2.

with the rest vanishing trivially. These anomalies indeed match the anomalies expected

from the compactification of the rank one E-string on a torus with unit flux preserving the

U(1) × E7 subgroup of E8 (which can be read off from Appendix F.3). Here we use the

expected embedding of the 4d symmetries in the 6d global symmetry suggested by the index,

and the following embedding index: ISU(8)→E7
= 1.

All this is consistent with the flux being of value 1 preserving the U(1)×E7 subgroup of

E8. Since we got this theory from gluing together two copies of the tube we introduced, we
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are lead to associate with the tube a flux of 1
2 preserving the U(1)×E7 subgroup of E8. We

can write this flux in our flux basis as 1
2(1, 1, 1, 1, 1, 1, 1, 1)

46.

Combining domain walls

We have seen how our method can be used to conjecture 4d theories associated with the

compactification of 6d SCFTs on tubes by relating the problem to the behavior of domain

walls in 5d and assuming there exist a particularly simple type of the latter. Next, we want

to build on that and also get models corresponding to the compactification on tubes with

other values of flux. We can do so by combining two domain walls to form more complicated

domain walls.

Specifically, consider the configuration where we now have two domain walls, that is we

take our holonomy to have the value M1 on one side of the interval, M2 in the middle of the

interval, and M3 on the other side. As we explained previously, we can also view this as one

domain wall extrapolating directly between M1 and M3, though it is easier to analyze this

if we instead view it as multiple domain walls.47 In particular, as we have determined one

domain wall, we can ask how can we combine that one domain wall to form more general

ones.

2

8

y

1

0
2

2 2
Z

0

1 1

2

Figure 47. Combining two basic domain walls. This domain wall corresponds to flux which is twice

the one for the basic tube.

The most straightforward way to do so is to simply chain them together. That is we

take the two domain walls to be identical. If we do this then we can repeat our previous

analysis and arrive at the theory shown in Figure 47. Here as before, the SU(2) × SU(8)

bifundamentals at the two edges come from the component of the bulk hypermultiplets that

receive Neumann boundary conditions. The SU(2) × SU(2) bifundamental and its flip field

come from the domain walls, where now we have two of them. In the middle however, we now

46Here we are using the basis of the roots of E8 were its SO(16) spinor roots are taken to have an even

number of minus signs. This is as the puncture SU(2) symmetry of the tube theories here does not have

Witten anomaly.
47If M1 = M3 the combined domain wall becomes trivial.
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have a gauge SU(2) group, as the N = 1 vector receives Neumann boundary conditions at

the domain wall. This suggests that the adjoint chiral receives Dirichlet boundary conditions

there, explaining its absence. Finally, we again have the SU(2) × SU(8) bifundamental

that comes from the component of the bulk hypermultiplets that receive Neumann boundary

conditions, now at the domain wall. The end theory is just the theory we get if we glue two

tubes to themselves. This of course is as expected as the resulting surfaces would indeed be

itself a tube, but now with two domain walls. As such the flux associated with this tube is

just twice the flux of the original tube, which in our basis is (1, 1, 1, 1, 1, 1, 1, 1).

The more interesting case is when we glue the tubes with a Weyl symmetry twist. We

noted that the flux associated to the tube should be such that it breaks E8 into U(1) × E7.

We have many different choices on how to embed this flux inside E8. For instance, consider

one such choice. Then we can get an equivalent, yet different choice by acting on the flux with

part of the Weyl group of E8 that is broken by the flux. Since these are equivalent fluxes,

the tube theories that we have presented will be the same for both of them, and so also if

we glue each one of them to another copy of itself. However, if we glue together two tubes

preserving a different E7 inside E8, then the resulting tube will be different. In particular,

it will no longer preserve an E7 subgroup. We shall next illustrate how this is done with an

example.

We first consider breaking the SU(8) global symmetry to U(1)y × SU(4) × SU(4) as

follows: 8 → y41 +
1
y42. To see why this is interesting it is convenient to also break E8 into

these symmetries, where we have:

248E8 → (t4 + y4 + 2 +
1

y4
+

1

t4
)1+ (t2 +

1

t2
)(y2 +

1

y2
)(61 + 62) + (6.6)

(t2 +
1

t2
)(4142 + 4142) + (y2 +

1

y2
)(4142 + 4142) + 6162 + 151 + 152 .

The interesting property that we shall soon make use of, is that the adjoint of E8 is symmetric

under the exchange t ↔ y, 41 ↔ 41. This is part of the Weyl group of E8. To illustrate

this, consider the SO(16) subgroup of E8. This decomposition induces also a decomposition

of SO(16) → U(1)t × U(1)y × SU(4) × SU(4) such that 16 → ty42 + t
y41 + 1

ty42 + y
t 41.

This implies that this transformation reduces to the Weyl transformation acting as charge

conjugation on four out of eight SO(2) independent subgroups of SO(16).

Let’s consider two copies of the tube we presented, which we have included in Figure 48.

Here we have used different fugacities for the symmetries of the two theories to stress the

fact that we have not yet identified the symmetries between the two theories. The simplest

identification is to take: ỹ → y, t̃ → t, 4R1 → 4L1 and 4R2 → 4L2 . This makes the two tubes

identical and we can glue them to get the tube we previously mentioned.

However, in light of what we have seen from the decomposition of the adjoint of E8, we

can also make the identification: ỹ → t, t̃ → y, 4R2 → 4L2 and 4R1 → 4
L
1 . This will still map

the E8 symmetry of the underlying 6d SCFT to itself, but with some action of the Weyl

symmetry of E8. The two tubes are then not completely identical, as can be seen from the

fact that the matter representation under the symmetries are slightly different. Specifically,

we note that while the SU(2)×SU(8) bifundamental on the lower right of Figure 48 (a) and
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Figure 48. Combining two basic domain walls with non trivial identification of symmetries between

the two copies.

lower left of Figure 48 (b) have the same charges, the ones on the upper right of Figure 48

(a) and upper left of Figure 48 (b) have opposite charges.
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Figure 49. The two domain walls of Figure 48 combined together with half of the boundary conditions

being Neumann and half Dirichlet.
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We can next glue the two tubes together. Here the gluing is done with Φ gluing for the

four SU(2) × SU(8) bifundamental chiral fields with the same charges, and with S gluing

for the four SU(2) × SU(8) bifundamental chiral fields with opposite charges. This leads

to the tube shown in Figure 49. We can also understand this tube as follows. Recall that

the SU(2) × SU(8) bifundamental chiral fields come from the bulk eight hypermultiplets

consistent with the boundary conditions. As such, if they have the same charges, then that

suggests that the same component of the hyper receives Neumann boundary conditions on

both ends, while if they have opposite charges then different components receive boundary

conditions at the two ends. As the boundary conditions at the edges should be the same

as on the domain wall, this suggests that fields with the same charges will receive Neumann

boundary conditions on the two domain walls, and so survive the 4d reduction, while for those

with opposite charges every component should receive Dirichlet boundary conditions at least

on one of the domain walls.

We next want to determine the flux associated with the new tube in Figure 49. This

should be given by the sum of the fluxes of both tubes, when evaluated in the same basis.

For the first tube we can take the flux to be 1
2(1, 1, 1, 1, 1, 1, 1, 1). For the second one the

flux is the same, but in a different basis related to the one of the other tube by the Weyl

transformation. As the latter is of order two we can undo it by performing it again. Recall

that we determined that the Weyl action we consider here should act on the eight SO(2)

subgroup of SO(16) by charge conjugating four and leaving the rest invariant. This suggests

that in the basis of the first tube, the flux of the second tube is 1
2(1, 1, 1, 1,−1,−1,−1,−1).

We then conclude that the flux of the tube in Figure 49 is (1, 1, 1, 1, 0, 0, 0, 0), which is a half

flux preserving the U(1)× SO(14) subgroup of E8.

These results can be checked by gluing two copies of this tube and studying its anomalies

and superconformal index. This method can also be generalized to build many more domain

walls, and as such 4d theories associated with compactifications on tubes, for many other

values of flux. We refer the reader to [26] for more information on both subjects.

6.3 Compactification of minimal (D,D) conformal matter theories

Having illustrated the basic idea by studying the compactifications of the E-string SCFT, we

next wish to further elaborate on interesting phenomena and considerations that can appear in

this construction. For this we consider another example, now involving the compactification

of the 6d SCFT known as the minimal (DN+3, DN+3) conformal matter on a torus with

global symmetry fluxes. For brevity, we shall usually refer to this SCFT as minimal D type

conformal matter.

The minimal D type conformal matter

The D type conformal matter theories is a family of 6d SCFTs. This family can be engineered

in string theory as the theories living on nM5-branes probing a C2/DN+3 singularity [10, 138].

The specific case of n = 1 is known as the minimal case and is the one we will consider here.

We note that for N = 1, this SCFT is just the rank one E-string theory that we have discussed
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in detail. As such, we can think of this family as a generalization of the previous case.48 One

advantage of this generalizations is that as we still have only one M5-brane, the tensor branch

of these theories is still one dimensional.

These theories have a convenient field theory realization that we shall next study. Specif-

ically, starting from the SCFT point we can deform it by giving a vacuum expectation value

to the scalar in the tensor multiplet, that is by going to the tensor branch. This initiates an

RG flow that in many cases ends with a 6d IR free gauge theory, whose coupling constant is

identified with the scalar vev, see Appendix E. For the case at hand, this 6d tensor branch

theory turns out to be a USp(2N−2) gauge theory with 2N+6 fundamental hypermultiplets.

As such we can also think of this 6d SCFT as a UV completion of this 6d gauge theory. The

gauge theory as an SO(4N + 12) global symmetry algebra rotating the 2N + 6 fundamental

hypermultiplets, which turns out to also be the global symmetry algebra of the 6d SCFT.49

We can next consider the compactification of this theory to 5d. From our previous discus-

sion, we shall be mainly interested in possible 5d gauge theory descriptions that can emerge

from such a reduction with a suitable holonomy. One intriguing property that this family of

6d SCFTs has is that there are actually three different possible 5d gauge theories one can ob-

tain [96, 97]. The first has gauge group USp(2N) and 2N + 6 fundamental hypermultiplets,

the second has gauge group SU(N + 1), no Chern-Simons term and 2N + 6 fundamental

hypermultiplets, and the last has gauge group SU(2)N , bifundamental hypermultiplets con-

necting the groups into a linear quiver, and four fundamental hypermultiplets for each of the

SU(2) groups at the ends of the quiver. Note that these all degenerate to SU(2) + 8F for

N = 1.

This phenomena has profound implications on the study of 4d compactification. First,

we noted that punctures can be associated with boundary conditions of the 5d gauge theory,

but what happens when there are multiple such theories? In that case it appears that we can

associate a family of punctures to each 5d gauge theory description. Specifically, we can use

the boundary conditions to define a maximal puncture associated with each 5d gauge theory

description. Each puncture will have the gauge symmetry of the 5d theory has its associated

global symmetry, and carry its own type of moment map operators. We can then choose to

partially close the puncture by giving a vev to the moment map operators. This creates a

family of punctures starting from each maximal puncture.50

48There are other possible generalizations. For instance, we can keep N = 1, and take n to be arbitrary,

leading to non-minimal D4 type conformal matter theories. Alternatively, we can use the constructions of the

E-string as the theory living on one M5-brane in the presence of an M9-plane, and generalize to the case of N

M5-branes. This class of theories is known as the rank N E-string theories. We note that all theories in the

three families are distinct, save for the rank one E-string.
49As the 6d SCFT and 6d gauge theory are related by flow, the usual caveats regarding the relation between

their symmetries apply. Interestingly, in this case, while the two share the same global symmetry algebra, they

don’t share the same global symmetry group. Specifically, the gauge theory has an SO(4N + 12)/Z2 global

symmetry group. However, the 6d SCFT has a Spin(4N + 12)/Z2 global symmetry group, see the discussion

in [19]. This comes about as the 6d SCFT has a Higgs branch operator in a chiral spinor representation of

SO(4N + 12), which becomes massive once we go on the tensor branch. Finally, we note that for N = 1

this Higgs branch operator actually becomes a conserved current multiplet, leading to the enhancement of

SO(16) → E8.
50It is an open question whether each family is entirely disconnected from the other or rather whether some
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Naturally, we can also use the three possible descriptions to construct different boundary

conditions. As before we can try to build domain wall theories for domain walls between

the same description, as we did for the E-string case, for each of the three gauge theory

descriptions. Furthermore, we can consider domain walls where there are entirely different

gauge theory descriptions on each side. This leads to six different possibilities. We can then

try to conjecture the resulting 4d theories by assuming that the theory living on such domain

walls is made of chiral fields, and check whether or not such a conjecture can reproduce the

properties expected from theories corresponding to the compactifications of these 6d SCFTs.

This analysis has been carried out for this family of theories, and out of the six possibilities

only three yield sensible results:51 SU(N + 1) − SU(N + 1), SU(N + 1) − USp(2N) and

SU(2)N − SU(2)N . Next we shall further illustrate the use of the domain wall method

by performing this analysis for the SU(N + 1) − SU(N + 1) case. For the analysis of the

SU(N+1)−USp(2N) case, and for more details on the analysis of the SU(N+1)−SU(N+1)

case, we refer the reader to [19], while for the analysis of the SU(2)N −SU(2)N case, we refer

the reader to [126].

The SU − SU tube

Following the previously outlined procedure, we can attempt to conjecture a 4d model asso-

ciated with the compactification of the minimal D type conformal matter theory on a torus

with punctures. Here we shall concentrate on the cases built from the SU −SU domain wall,

so we take the punctures at the two ends to be SU(N + 1) maximal punctures. Following

our previous discussion, we then make the ansatz for the theory shown in Figure 50. Here

we have the SU(N +1) global symmetries associated with the two maximal punctures at the

two ends of the tube. These come from the 5d gauge symmetry in the bulk that becomes a

global symmetry as the vector receives Dirichlet boundary conditions. Additionally, we have

the 2N + 6 fundamental hypermultiplets. Half of the chiral fields in them receives Neumann

boundary conditions, while the other half receives Dirichlet boundary conditions. As the

representation for generic N are complex, the representation under the SU(N + 1) puncture

global symmetry of the surviving hypermultiplets depends on which component receives the

Neumann boundary condition. As we do not know this a priori52, we shall leave this question

open for now and answer it soon. As such we shall assume that we have n+ hypermultiplets

where the fundamental receives Neumann boundary condition on one side, and n− hypermul-

sub-maximal punctures are shared between the different families.
51For the other three cases it seems the domain walls are more complicated. Specifically, we can form

USp(2N) − USp(2N) tubes by gluing two SU(N + 1) − USp(2N) tubes along the SU(N + 1) punctures.

These tubes will then contain gauge fields from the gluing. Tubes realizing the SU(N + 1) − SU(2)N or

USp(2N)− SU(2)N combinations have not been worked out to our knowledge, though one should be able to

do this using the results of [118].
52Technically, we can choose the boundary conditions at the punctures to be what ever we want. However,

to maintain the similarity to the previous case, we want to choose the boundary conditions for the bulk

hypermultiplets at the punctures to be the same as the one at the domain wall. The issue then stems from

our lack of knowledge regarding the boundary conditions on the domain wall for domain walls with only chiral

fields living on them.
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Figure 50. The basic tube theory for the compactifications of the minimal (DN+3, DN+3) conformal

matter theory. The SU(N + 1) symmetries correspond to the two punctures; the two collections

of fundamental fields come from the bulk fields in the two domains separated by the wall; and the

bifundamental field with the flip field come from degrees of freedom residing on the domain wall. The

parameters n+ and n− are fixed to be 2N + 4 and 2 respectively. In the case of N = 1 we reproduce

the domain wall of Figure 45.

tiplet where the antifundamental receives Neumann boundary condition on the same side.

Naturally, we have that n+ + n− = 2N + 6.

Next we consider the domain wall. As before we shall make the assumption that the fields

living on the domain wall can be described using only chiral fields. On general grounds, we

expect there to be an SU(N + 1)× SU(N + 1) bifundamental chiral field. It should interact

with the fundamental and anti-fundamental chiral fields associated with the two punctures

via the superpotentials:

W = XBỸ + Y BNX̃, (6.7)

where here B refers to the bifundamental chiral, and X, Y and X̃, Ỹ refer to the fundamental

or anti-fundamental chiral fields associated with the punctures. There might be additional

fields associated with the domain wall. To get a better understanding of this, it is good to

again consider the anomalies of the tube. Specifically, we want to look at the Tr(U(1)3R),

Tr(U(1)R) and Tr(U(1)2t × U(1)R) anomalies, where U(1)t is defined as in Figure 50. These

anomalies only receive contributions from the punctures and not from integrating the anomaly

polynomial on the surface, and so can be evaluated from the data available to us. The

puncture contribution gives:
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Tr(U(1)3R) = Tr(U(1)R) = −(N2 − 1)

2
− (N2 − 1)

2
= −N2 + 1, (6.8)

Tr(U(1)2t × U(1)R) = 0.

However, the evaluation in the gauge theory gives:

Tr(U(1)3R) = Tr(U(1)R) = −N2 , T r(U(1)2t × U(1)R) = −4(N + 1)2. (6.9)

This suggests that we need to add an additional field. The minimal possible addition

consistent with our assumption regarding the nature of the domain wall is a single free chiral

field with R-charge 2 and U(1)t charge 2(N + 1). This field has a natural interpretation, as

its charges are just right for it to flip the baryon made from the SU(N + 1) × SU(N + 1)

bifundamental. As such we conclude that our conjecture for the tube is the theory shown in

Figure 50.
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Figure 51. The torus theory for the minimal (DN+3, DN+3) conformal matter theory obtained by

gluing together two tube theories.

Testing the tube

We next move to perform more stringent tests on the tube theory that can be used to deter-

mine the flux and to provide supporting evidence that it is indeed a tube theory associated

with the claimed compactification. As before, it is convenient to do this by gluing two tubes

together to form a closed surface. For this case, this leads to the theory show in Figure 51

(a), which we shall next analyze.
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The first thing we need to make sure of is that the resulting theory is consistent. Specif-

ically, as the theory is chiral, we need to worry about gauge anomalies. Indeed for generic

values of n+, n− we have a non-zero gauge anomaly Tr(SU(3)3gauge) = 2N + 2 + n− − n+.

Demanding that this anomaly vanishes, together with the constraint n++n− = 2N+6, forces

n+ = 2N + 4, n− = 2. We therefore see that the consistency of the theory uniquely fixes the

tube theory. Additionally, we would like to make sure that the U(1)t symmetry is anomaly

free as we have made use of it when matching the anomalies between the tube and the 6d

expectation. Indeed U(1)t is anomaly free precisely with these values of n+ and n−. This is

already an indication that we are on the right track.

The concrete torus theory we need to study then is the one shown in Figure 51 (b). We

can next study this theory and compare the results with our 6d expectations. As before the

analysis consists of two steps. One is to compute the superconformal index and the other is

to compute the anomalies. These are then compared to the 6d expectations and are needed

to be consistent with them and with one another. We shall first start with the computation

of the superconformal index, which can be used to determine the flux and the mapping of

symmetries, which facilitates the matching of anomalies. For simplicity, we shall here take the

case of N = 2 and also compute the index of the model without the flip fields, as it appears

the flip fields decouple in the IR. This is seen by looking for the expected superconformal

R-symmetry via a-maximization. We then find for the superconformal index:

1 + t3(pq)
5
82SU(2)(y

38SU(8) +
1

y3
8SU(8)) +

4

t6
(pq)

3
4 (6.10)

+(3SU(2) − 1)pq + t3(pq)
5
8 (p+ q)2SU(2)(y

38SU(8) +
1

y3
8SU(8))

+t3(pq)
9
8 (

1

y9
8SU(8) +

1

y3
56SU(8) + y356SU(8) + y98SU(8)) + ....

One interesting thing to note about this index is that it forms characters of SU(2) ×
SO(16). Specifically, we have that 16SO(16) → y38SU(8) +

1
y3
8SU(8), 128

′
SO(16) → 1

y9
8SU(8) +

1
y3
56SU(8) + y356SU(8) + y98SU(8), so in terms of characters the index reads:

1 + t3(pq)
5
82SU(2)16SO(16) +

4

t6
(pq)

3
4 + (3SU(2) − 1)pq (6.11)

+t3(pq)
5
8 (p+ q)2SU(2)16SO(16) + t3(pq)

9
8128′SO(16) + ....

This suggests that this theory should be associated with the minimal flux preserving a

U(1) × SU(2) × SO(16) subgroup of SO(20), which is the global symmetry algebra of the

6d SCFT for N = 2. We can as before introduce a flux basis for SO(4N + 12) where the

roots are spanned by 1
2(1, 1, 0, 0, ..., 0) + permutations + even number of reflections. In this

basis, we can associate with this theory a flux given by (−2,−2, 0, 0, 0, 0, 0, 0, 0, 0).53 This

53Here it is important that the group is actually Spin(4N +12)/Z2 so this gives the minimal flux preserving

the U(1)× SU(2)× SO(16) subalgebra. Indeed this is further supported using the logic of [113] (which we do
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term arises in the gauge theory from the mesons from the fundamental and antifundamental

chirals at the two sides.

For general N , we expect the enhancement of U(1) × SU(2N + 4) → SO(4N + 8).

This can be seen by again looking at the mesons and noting that we now get a state in

the tN+12SU(2)(y
N+12N+ 4SU(2N+4) +

1
yN+12N+ 4SU(2N+4)). This fits with the minimal

flux preserving a U(1) × SU(2) × SO(4N + 8) subgroup of SO(4N + 12), which is given by

(−2,−2, 0, 0, ..., 0, 0) in our flux basis. This also determines the embedding of the symmetries.

We can next compare anomalies. For this we first need the anomaly polynomial of the

6d SCFT. For the case at hand, this was computed in [94] (see also [19]), and we can just use

their results. Alternatively, it can be computed from the gauge theory description similarly to

the computation in Lecture III, though now we also need to take into account the contribution

of the hypermultiplets (see [94, 117] for the relevant expressions). Either way, we have that,

IDCM =
N(10N + 3)C2

2 (R)

24
− N(2N + 9)

48
p1(T )C2(R)−

N

2
C2(R)C2(SO(4N + 12))4N+12

+
(N + 2)

24
p1(T )C2(SO(4N + 12))4N+12 +

(2N + 1)

24
C2
2 (SO(4N + 12))4N+12 (6.12)

−(N − 1)

6
C4(SO(4N + 12))4N+12 + (29 + (N − 1)(2N + 13))

7p21(T )− 4p2(T )

5760
.

Next we need to introduce the flux. As we mentioned, we expect the theory to be associated

with compactifications having a unit of flux preserving the U(1) × SU(2) × SO(4N + 8)

subgroup of SO(4N + 12). From our study of the index, we can infer that the expected

relation between the 4d and 6d global symmetries should be,

4N+ 12SO(4N+12) → (tN+1 +
1

tN+1
)2SU(2) + yN+12N+ 4SU(2N+4) +

1

yN+1
2N+ 4SU(2N+4).

(6.13)

This induces the following relation among the characteristic classes:

C2(SO(4N + 12))4N+12 = 2C2(SU(2))2 + 2C2(SU(2N + 4))2N+4 − 2(N + 1)2C1(U(1)t)
2

−2(N + 2)(N + 1)2C1(U(1)y)
2, (6.14)

C4(SO(4N + 12))4N+12 = C2
2 (SU(2))2 + C2

2 (SU(2N + 4))2N+4 + 4C2(SU(2))2C2(SU(2N + 4))2N+4

+(N + 1)4C1(U(1)t)
4 + 2(N + 1)2C2(SU(2))2C1(U(1)t)

2 − 4(N + 1)2C2(SU(2N + 4))2N+4C1(U(1)t)
2

−4(N + 2)(N + 1)2C2(SU(2))2C1(U(1)y)
2 − 2(2N + 1)(N + 1)2C2(SU(2N + 4))2N+4C1(U(1)y)

2

+4(N + 2)(N + 1)4C1(U(1)y)
2C1(U(1)t)

2 + (N + 2)(2N + 3)(N + 1)4C1(U(1)y)
4

+2C4(SU(2N + 4))2N+4 − 6(N + 1)C1(U(1)y)C3(SU(2N + 4))2N+4.

not review here) by noting that the index contain the states t3(pq)
5
8 2SU(2)16SO(16), which have the precise

charges to be coming from the broken currents of SO(20) under that subgroup. We also expect states in the

2t6(pq)
1
4 from the broken currents. These are just the flip fields which we have not included in the index.
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Here the flux is inside U(1)t, so we need to take C1(U(1)t) =
1

N+1 t̂+ C1(U(1)4dt ), where

C1(U(1)4dt ) is the 4d part of the characteristic class. Note that the minimal charge under

U(1)t here is N + 1, which leads to the normalization factor in front of t, which ensures that

the flux is of unit value in a normalization where the minimal charge is 1. Inserting all of this

into (6.12) and integrating on the Riemann surface, we arrive at the expected 4d anomaly

polynomial:

I4d =
2(N + 2)(N + 1)3

3
C3
1 (U(1)4dt )− (N + 1)(N + 2)

6
p1(T )C1(U(1)4dt ) (6.15)

−2N(N + 1)C2
1 (U(1)6dR )C1(U(1)4dt ) + 2(N + 2)(N + 1)3C2

1 (U(1)y)C1(U(1)4dt )

−2N(N + 1)C2(SU(2))2C1(U(1)4dt )− 2(N + 1)C2(SU(2N + 4))2N+4C1(U(1)4dt ),

where here we used the decomposition C2(R) → −C2
1 (U(1)6dR ) for the characteristic

classes of the SU(2) R-symmetry bundle in terms of those of its U(1) Cartan.

We can next compare that against the results from the gauge theory. Specifically, we find

that:

Tr(U(1)3t ) = Tr(U(1)t × U(1)2y) = 4(N + 1)3(N + 2) ,

T r(U(1)t) = 4(N + 1)(N + 2) , T r(U(1)t × (U(1)6dR )2) = −4N(N + 1) ,

T r(U(1)tSU(2)2) = N(N + 1) , T r(U(1)tSU(2N + 4)2) = N + 1, (6.16)

with the rest of the anomalies vanishing either trivially or non-trivially. This matches what

we expect from 6d, particularly, the anomalies encoded in (6.15).

6.4 From tubes to trinions

So far we discussed a method to conjecture and test 4d theories associated with the compact-

ification of certain 6d SCFTs on tubes with flux. We have noted how we can capitalize on

the understanding of even just one tube, and build from it a wealth of other tubes leading

to a potentially extensive understanding of the compactification of 6d SCFTs on flat surfaces

with flux, that is tubes and tori. While we shall not discuss this here, we can further extend

our understanding to compactifications on surfaces with positive Euler number, like spheres

with no punctures, by closing down the punctures (See [136, 139–141].). This, however, leaves

the question of understanding the compactification on surfaces with negative Euler number,

notably Riemann surfaces of genus g > 1, a question which we shall try to address next. The

discussion follows the results of [27] (See also [118, 142].).

It turns out that we can make surprising progress on tackling this problem by considering

an altogether different and seemingly unrelated problem. The specific problem turns out to

be understanding the relationship between RG flows of 6d SCFTs and related RG flows of

the 4d theories resulting from their compactifications. As such, we shall next switch gears

and consider this problem, after which we shall elucidate on how this new understanding can

be put to use in tackling the problem of finding trinions.
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A relationship between flows in different dimensions

The problem we wish to consider can be simply stated as follows. We have considered the

compactification of 6d SCFTs. These are field theories in 6d and can be related to one another

via various flows. For flows preserving supersymmetry, we are limited to ones triggered by

giving vevs to various fields. This can be separated into two classes: tensor branch flows and

Higgs branch flows. The former are done by giving a vev to a scalar in the tensor multiplet,

while the latter are done by giving a vev to a scalar in the hypermultiplet. There are no

scalars in the 6d (1, 0) vector multiplet leading to the lack of a ”Coulomb” branch for 6d

(1, 0) SCFTs. The vevs break conformal invariance and initiate an RG flow starting from the

6d SCFT and ending with a new theory, that in some cases is also a 6d SCFT. Let us assume

that is the case and denote the starting 6d SCFT as TUV
6d , the final 6d SCFT as T IR

6d , and the

operator to which we give the vev as O6d.

Now consider compactifying TUV
6d on a Riemann surface to 4d, potentially with flux in its

global symmetry. This should result in a 4d N = 1 theory which we denote as TUV
4d . We know

that the 6d SCFT contains the operator O6d, and we expect that this operator might reduce

to a 4d operator, O4d. Of course this may not always be the case, but let’s for the moment

assume it does.54 Then we can try to give the 4d operator, O4d, a vev as well and thus initiate

a 4d RG flow. Again, there is the possibility that the operator O4d cannot be given a vev,

but we shall for the moment assume that this is not the case. We then expect this to cause

a 4d RG flow between the 4d theory TUV
4d , and the end point of the flow, which is some 4d

theory that we denote as T IR
4d . It is then natural to ask does the theory T IR

4d also has a higher

dimensional interpretation as a compactification of T IR
6d and if so what is the compactification

data? In other words, instead of asking what happens to specific theories upon dimensional

reduction, it is also natural to ask what happens to RG flows upon dimensional reduction.

So far we have been somewhat general regarding our chosen deformation. However, next

we wish to concentrate on a specific class of deformations, the ones associated with Higgs

branch flows. The main reason for that is the special place occupied by the operators whose

vevs cause these flows. Specifically, such operators are short representation of the 6d (1, 0)

superconformal group, that is they are BPS operators, and are in fact the shortest possible

representations. As such, they form a chiral ring. This is in contrast with tensor multiplets

that don’t enjoy any such protection. This is useful as it suggests that the resulting 4d

operator may also be BPS, and as such enjoy some protection. This reduces the chances that

these operators disappear during the flow, and furthermore allows for their detection and

study via the superconformal index, which is very convenient for our purposes as it is not too

sensitive to potential 4d strong coupling phenomena. As such, we shall concentrate here on

the study of the dimensional reduction of such Higgs branch flows.

Consider a 6d SCFT, which can be deformed to a 6d gauge theory by going on the tensor

branch. We can go on the Higgs branch by giving a vev to a scalar field, ϕ, which in the

gauge theory description appears as the lowest components of a hypermultiplet55. Naturally,

54As in any RG flow the spectrum of operator in the IR does not have to be the same as in UV.
55More abstractly, these would be lowest components of Higgs branch chiral ring operators. For simplicity,

we shall phrase things here mostly using the Lagrangian 6d gauge theory, though we expect things to hold
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the vev must be such that it does not change the energy. Due to the kinetic terms, this

necessitates that ∂ < ϕ >= 0, that is the vev is a constant.

So far we have considered the theory in flat spacetime with no background fields. However,

we next want to consider the case where the 6d SCFT is compactified on a Riemann surface

coupled to background gauge fields. For simplicity, we shall first take the Riemann surface

to be a torus supporting non-trivial fluxes associated with global symmetries. The main

difference is that we now expect the standard partial derivatives in the kinetic term to be

replaced with covariant derivatives, ∇, and as such that the requirement that the vev does

not change the energy to be replaced with ∇ < ϕ >= 0. The latter, however, is in general

not satisfied just by < ϕ > being a constant.

Naively then, the presence of the flux eliminates the vev, and we may wonder if such flows

actually have an image in the dimensionally reduced theory. However, we can try and examine

this in more detail by using the domain wall picture. Here we use a specific realization of the

flux, such that it is localized at a discrete number of points, relying on the observation that

the compactification result generally only depends on the total value of flux and not so much

on its explicit realization. We have seen how this can be used to better analyze the reduction

process, and we can employ it again for our purposes here.

5dx5 = 0x5 = − a x5 = a

A6 = − 1
2πr6d

ϕ

A6 = 1
2πr6d

ϕ

"
F ≠ 0

F = 0
∂⟨ϕ⟩ = 0

∂⟨ϕ⟩ ≠ 0

∂⟨ϕ⟩ ≠ 0
F ≠ 0

Figure 52. We consider a 6d SCFT on surface C with some value of flux. We then give a vev to

an operator ϕ charged under a U(1) symmetry with the flux. Assuming the non trivial gauge fields

giving rise to the flux are localized on the surfaces we can turn on a constant vev almost everywhere,

but the regions with non trivial gauge fields. The special loci on the surface with non-constant vev

turn out to be equivalent to inserting minimal punctures in the IR theory in 6d. The number of such

loci is determined by the flux for the U(1) under which ϕ is charged.

The main advantage that we gain from this is that we can now choose the flux con-

figuration so that it is localized at only few points. Away from these points, the solution

< ϕ >= constant should still be valid so we expect that we should be able to turn on such

vevs, with potential modification at the points were the flux is non-vanishing. Such solutions

also for the actual 6d SCFT.
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are actually quite common in physics, and are known as vortex solutions. These are ubiq-

uitous in spontaneously broken U(1) gauge theories, and describe configurations in which

the Higgs field, whose vev triggers the breaking of the U(1) gauge symmetry, approaches

its vev value at infinity, only significantly deviating from it in a localized neighborhood. At

this neighborhood the value of the Higgs field approaches zero. Additionally, the flux of the

U(1) approaches zero at infinity, only significantly deviating from this value at the localized

neighborhood where the Higgs field is nearly vanishing. This neighborhood is then where the

flux is localized, and its size defines the size of the vortex. The solution we are proposing then

can be thought of as such a vortex solution in the limit where the size of the vortex becomes

zero. This analogy is useful as it gives some idea on how these space dependent vevs would

look like if one considers more generic flux configurations

We then expect that these vevs can still be turned on but now instead of being strictly

constant, they should look like a vortex solution, at least in the limit where the flux is localized

around small disjoint patches in space. Now consider the resulting 4d theory. We can look at

it from two different perspectives. Consider first performing the compactification and then

giving the vev. We shall also assume that the operator acquiring the vev desends to an

operator or a collection of operators in the 4d theory. We would then naively expect that

giving a vev to this operator should mimic the effect of the 6d vev. See Figure 52 for an

illustration.

Now let us consider the case where we give the vev already at the 6d level. We then flow

to a new 6d SCFT. We expect that the theory we got by giving a vev to the 4d theory to be

also realizable by the compactification of this 6d SCFT. The subtle issue here is the nature

of the compactification surface. It turns out that this surface is given by the initial surface

with extra punctures, which can be attributed to the points where the vev is not constant. In

other words, it seems that the non-constant vevs are manifested in this reduction as additional

punctures. In addition the flux of the compactification may change.

The picture emerging from this study is as follows. Consider the theories TUV
6d , T IR

6d , TUV
4d

and T IR
4d that we mentioned previously. Recall that TUV

4d is the result of the compactification

of the theory TUV
6d on some Riemann surface with flux. Then we have that T IR

4d is also the

compactification, of now theory T IR
6d , on the same surface, but with potentially more punctures

and a different value of flux. This idea is illustrated in Figure 5 (which we reproduce here in

Figure 53 for convenience).

These results were motivated in [27] by the study of the compactification of the 6d SCFTs

living on N M5-branes probing a C2/Zk singularity. Particularly, these SCFTs possess Higgs

branch flows leading from theories with one value of k to ones with smaller values56, and one

can study these flows. In this class of theories, a string theoretic picture can be used to argue

from the domain wall picture that one indeed gets extra minimal punctures in the theory

after the flow. Finally, this can be explicitly checked in various models. The results are that

indeed the two 4d theories are related as explained with the number of additional minimal

56This class of theories actually possess a very rich structure of Higgs branch flows. Specifically, besides

the flows reducing k, there are also flows that reduce N . Finally, there is a rich structure of additional Higgs

branch flows leading to new 6d SCFTs. We shall not consider such flows here.
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Figure 53. Commuting diagram of flows in 4d, in 6d triggered by vevs, and across dimensions

triggered by geometry.

punctures being proportional to the flux felt by the operator receiving the vev.

Interestingly, this picture suggests a curious connection between punctures and and do-

main walls. Specifically, we noted that if the operator receiving a vev is charged under the

symmetry receiving a flux, which we can insert in 5d through a domain wall, then we should

get a puncture left at the location of the domain wall. We noted that the domain walls

are a specific tractable limit of representing fluxes, and there are in principle various defor-

mations one can take of them. These deformations usually don’t affect the IR, or affect it

only through marginal operators. An example of these types of deformations is the moving

around of the domain walls, where we can even merge several domain walls together to form

a different domain wall. Indeed, we have used this previously to construct more complicated

domain walls from known ones. We can then wonder what these relations imply for the

puncture. Specifically, the motion and union of domain wall is something that also apply to

puncture, where we can move punctures around and even in some cases merge them together

to form different punctures. The exact relation between the two and what can it teach us

about them is something that has not been explored in detail yet. See for related discussion

[24, 25, 116, 118].

Application to the construction of trinions

So far we have discussed what happens to Higgs branch flows under the process of dimensional

reduction. We noted that if two 6d SCFTs are related by a Higgs branch flow then a similar

relation may exist for the compactified theory. Specifically, if the 4d theory, resulting from

the compactification of the 6d SCFT from which the flow is initiated, has a BPS operator

which comes from the 6d Higgs branch chiral ring operator receiving the vev, and if such

an operator can receive a vev, then giving it a vev in 4d should produce the image of this

flow in 4d. This flow should then lead to a new 4d theory which also possesses a higher

dimensional interpretation as the compactification of a 6d SCFT, now the one at the end of

the 6d RG flow. However, the details of the relation are sensitive to the flux, specifically the

one felt by the operator. If the latter is zero then most of the compactification details are
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expected to remain unchanged, up to the fact that part of the symmetry is broken by the

vev. On the other hand, if the flux felt by the operator is non-zero then some of the details

of the compactification will change. Notably, the compactification surface will change by the

addition of punctures, number of which is expected to be the number of flux quanta felt by

the operators, and whose nature may depend on details involving the flux. Additionally, the

flux associated with the compctification will change due to the breaking and identification of

symmetries caused by the vev. This is motivated by the domain wall picture of the flux, and

has been tested in several models, notably the family of A and D type conformal matter 6d

SCFTs, although it is still unclear whether it will hold for arbitrary 6d SCFTs.

This observation has an interesting application that we shall next consider. Say we have

an established conjecture for the 4d theories resulting from the tube compactification with

global symmetry fluxes of a family of 6d SCFTs, which are related to one another via Higgs

branch flows. Such flows are triggered by a vev to a BPS operator in 6d. We can then

consider looking for the 4d operator expected to come from such 6d operator. This can be

done by reading the global symmetry charges of this operator, translating them to the charges

of symmetries in the 4d theories and looking for a chiral operator with the same charges.57

We can then give such 4d operator a vev, assuming this is indeed possible in the 4d theory.

If so then this initiates an RG flow in 4d which should be the image of the 6d RG flow.

This flow should end with a 4d theory associated with the compactification of a different

6d SCFT in this family, but now on a surface with different flux and more puncture. The

latter point is of special interest to us, as it allows us to gain insight into the compactification

of 6d SCFTs in this family on spheres with more than two punctures just from knowledge

of the compactification on spheres with two punctures. This is the main application of this

observation to understanding the compactification on generic surfaces.

We next want to comment on the number and nature of the puncture. In the spirit of the

discussion in this section so far, we shall assume that the 4d theories resulting from the tube

compactification of this family of 6d SCFTs were derived using the domain wall method. This

would then suggest that the basic models here are associated with very simple domain wall

theories, that is ones whose fields living on them are just chiral fields. These domain walls

are then thought of as being somewhat elementary on account of not being separable to two

simpler domain walls. This then first suggests that they should correspond to minimal flux,

and as such it should be possible to get a sphere with three puncture for some tube theory

in this family. Second, the simplicity of such domain walls would also lead us to expect the

resulting puncture to be of minimal type. This is indeed generically what has been observed

in this construction.

More complicated domain walls may lead to other types of punctures. However, in our

57As we previously mentioned, the Higgs branch chiral ring operators, to which we give a vev to start the flow,

are in short representations. Specifically, if the scalar primary is in theR dimensional representation of SU(2)R,

they obey a shortening condition where the application of the supercharge annihilates the state if the SU(2)R
representation of the final state is of dimension R+ 1, see [143] for the details. This suggests that the top

(bottom) SU(2)R component should be annihilated by the SU(2)R component of the supercharge that raises

(lowers) the SU(2)R spin. These components should then descend to N = 1 chiral fields. Additionally, they

should carry the same charges under the flavor symmetry as the primary of the Higgs branch supermultiplet.
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construction, we opted to construct such domain walls by chaining simpler domain walls

together. This has lead to the interpretation where you can represent a flux by a single

domain wall, or by chaining of multiple domain walls corresponding to smaller flux. For the

case at hand, this suggests that the same may be applied to the punctures, that is that it

may be possible to merge multiple punctures to form a puncture of a different type. This all

relies on the observation that only a handful of parameters are relevant in the IR theory.

This method can then be used to get theories corresponding to spheres with more than

two punctures just from knowledge of the theories associated to spheres with two punctures.

However, we don’t have that much control on what type of additional punctures would appear.

Generically, we expect to get two maximal punctures, coming from the original punctures of

the tube and a collection of minimal punctures, roughly associated with the number of basic

domain walls needed to engineer the flux. Nevertheless, it might be possible to merge the

punctures to form more general punctures, which would then be interpreted as coming from

a single domain wall which is the merger of multiple domain walls. In some cases, we can

actually form a maximal puncture using this construction, and thus achieve a derivation of a

trinion theory [118, 142].

We shall next illustrate this method with an example.

From tubes to trinions for D type conformal matter theories

Let us briefly apply the general algorithm of deriving spheres with more than two punctures

by flowing from (DN+3, DN+3) minimal conformal matter tori to (DN+2, DN+2) minimal

conformal matter tori with punctures. We will rederive the results of [25] using the tech-

nology described above and following [118]. We begin by considering the flow in 6d from

the (DN+3, DN+3) minimal conformal matter to (DN+2, DN+2) minimal conformal matter

in flat space. For this, we recall that we can think of the minimal DN+3 type conformal

matter as the UV completion of the 6d gauge theory with gauge group USp(2N − 2) and

2N + 6 fundamental hypermultiplets. The Higgs branch flow in question is described in the

gauge theory by giving a vev to two fundamental hypermultiplets, or more correctly, to the

quadratic gauge invariant made from them. This gauge invariant is indeed a Higgs branch

chiral ring operator, which furthermore is the conserved current supermultiplet.

Next, we look at the 4d theory we associated to the torus compactification of this theory.

Specifically, we take the simple torus model obtained by gluing together two tube theories,

here reproduced in Figure 54.

We next seek the 4d operator expected to descend from the 6d Higgs branch chiral ring

operator in question. In this case, as the operator is just part of the conserved current

multiplet, it is easy to identify a possible choice. Specifically, we noted previously that the

operator Φ′Φ, in the notations of Figure 54, matches the 6d expectation as being an operator

descending from the broken current multiplet, and as such we shall take this operator.

We then consider giving a vacuum expectation value to this operator. As it is a mesonic

operator, it breaks one of the SU(N+1) gauge nodes down to SU(N). We can analyze the flow
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Figure 54. Two tubes Φ-glued together to form a torus with flux (−2,−2, 0, 0, · · · ). Some terms in

the superpotential are irrelevant for general N .

triggered by the vev using a variety of techniques, e.g. the supersymmetric index, as was done

in Section 5.4. We will not do so in full detail but just outline the initial important steps. The

weight of the operator Φ′Φ in the index (which encodes its symmetry) is x = qp
(
h
a

)N+1
b1ϵ

−1.

Here bi (
∏2N+4

i=1 bi = 1) parametrize the SU(2N +4) global symmetry and ϵ the SU(2) global

symmetry. We thus should set x = 1 e.g. by setting ϵ appropriately. We need then to find

the locus of the pinching of the SU(N + 1) contour integral. Parametrizing the SU(N + 1)

gauge fugacities by zi (
∏N+1

i=1 zi = 1) the contour integral setting x = 1 is pinched e.g. at

z1 = (qp)
1
2h a b1.

58 Using these values for z1 and ϵ (following from x = 1) one obtains the

quiver on the left side of Figure 55.59

It is useful to redefine the symmetries in the following way,

u2N+4 = (ab1)
− 1

N+1h−
2N+3
N+1 (qp)−

1
2N+2

− 1
2N+4 , (6.17)

v2N+4 = h−1aN+3(qp)−
1

2N+4 , ϵ̃ = aN+2b−1
1 (qp)−

1
2 .

Here ϵ̃ is a fugacity parametrizing an SU(2) symmetry appearing on the quiver on the right

side of Figure 55: the combination of U(1) symmetries giving ϵ̃ enhances to SU(2) in the IR

of the flow triggered by the vev. One should turn on all the superpotential terms consistent

with the symmetries detailed in Figure 55.

Now we want to interpret the theory on the right side of Figure 55 as a torus compactifi-

cation of (DN+3, DN+3) minimal conformal matter with a single SU(2) minimal puncture. In

particular we want to interpret it as a three punctured sphere, with two maximal SU(N +1)

punctures and one minimal SU(2) puncture, Φ-glued to itself to form the torus. The quiver

of Figure 55 is naturally interpreted as such. The fields M1 and M form 2N + 6-plet of fun-

damental fields which flip the moment maps when Φ-gluing. The SU(2)ϵ̃ is the the symmetry

58To be precise we parametrize the fields Φ′ as (qp)
1
2 hN a−N−2 zi ϵ

±1.
59The preserved SU(N) gauge symmetry is parametrized by ui so that

∏N
i=1 ui = 1 and that zi = z

1
N ui−1

for i > 1.
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Figure 55. On the left the quiver obtained after the flow using the UV fugacities (dropping the gauge

singlet fields). On the right the quiver with redefined (and simplified) definitions of symmetries. We

have also shifted N by one on the right side to switch again to the notations with N = 1 corresponding

to the E-string.

Vev Cutting a 

Cycle

ℱN = (−2, − 2,0,⋯) ℱN−1 = (−2,0,0,⋯) ℱN−1 = (−2,0,0,⋯)

Figure 56. The sequence of operations: We start with a (DN+3, DN+3) torus with flux FN =

(−2,−2, 0, · · · ) preserving U(1)×SO(4N+8)×SU(2) symmetry. We turn on then a vev to an operator

which is charged under all three factors and breaks the symmetry to U(1)punct.× [U(1)×SO(4N +6)]

and corresponds to the following flux of the IR theory, FN−1 = (−2, 0, 0, · · · ). We obtain a torus with

one puncture. The puncture parametrized by a combination of fugacities of the D2N+6 symmetry of

the UV theory, U(1)punct., which are not parametrizing the D2N+4 symmetry of the IR 6d theory.

Finally, we cut the trous along a cycle to obtain a sphere with two maximal and one minimal punctures

with the flux equal to the one of the torus.

we will associate to the minimal puncture: note that this is a combination of 6d symmetries

of the higher N minimal conformal theory we started with. The gauge symmetry SU(N +1)

can be interpreted as gluing the two maximal SU(N +1) punctures. This gives us the quiver

of Figure 57 as a candidate for a three punctured sphere for (DN+3, DN+3) minimal conformal

matter theory.

The trinion we obtain here for N = 1 is directly related to the one we discussed in Section

5.1. The trinion of Figure 35 is simply obtained by taking the trinion of Figure 57 and gluing

to it the two punctured sphere. The gluing is done by S-gluing all the moment maps except
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Figure 57. The three punctured sphere obtained by cutting the cycle of the one punctured torus. We

have a baryonic superpotential Φ̃′
+ · (Q′N+1

1 +Q′N+1
2 ), which is irrelevant but the case of N = 1. The

trinion is associated to flux (−2, 0, · · · ) which preserves U(1) × SO(4N + 10) symmetry. The Figure

is taken partially from [25].

for one of the mesonic ones of Figure 57 to one of the SU(2) moment maps of the tube, see

Figure 58. The fluxes of the various parts are related as,

(−2, 0, 0, · · · ) + (1,−1, 0, · · · ) = (−1,−1, 0, · · · ) . (6.18)

We thus obtain here a trinion theory for general values of N . For more details of the resulting

theory and nature of the minimal puncture see [25].

7 Discussion and Comments

We will briefly discuss the salient features of the geometric constructions of 4d N = 1 QFTs

in 4d by compactifying 6d SCFTs overviewing the relevant literature. We will also comment

on some research directions not covered in our Lectures, but which bare direct relevance to

the subject. We will end with some general remarks.

Across dimension dualities

We have discussed two examples of across dimension dualities, the 6d minimal SU(3) SCFT

[24] and the compactifications of (DN+3, DN+3) minimal conformal matter [19, 25, 26, 118],

with the N = 1 E-string case being our main example. There are several other examples for

which such dualities can be derived systematically. First, one can consider compactifications
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Figure 58. The relations between two trinions. On the left the trinion of Figure 57 glued to the two

punctured sphere. The SU(N + 1) gauging has N + 2 flavors and thus it S-confines to give a WZ

model of mesons anbaryons. The mesons charged under SU(N + 1) puncture symmetry becomes a

bifundamental under puncture and SU(N + 2) gauge symmetry. The meson built from the Φ-field

(denoted by red line) gives mass to one of the 2N + 5 fundamentals. The baryon gives mass to the

field charged under U(1) symmetry (denoted by shaded grey on the quiver). Finally, we have a baryon

built from the bifundamental and the Φ field denoted by red solid line which gets a mass with the

dashed red line. This theory then flows to the one on the right side. The Figure is taken from [25].

of A1 (2, 0) theory analyzed in the seminal work of Gaiotto [8]. One can repeat our analysis

in this case verbatim. For example in this case turning N = 2 preserving flux the 4d theories

turn out to be described by conformal Lagrangians and one can explicitly find them using

the general technology of Section 3.3. One can analyze domain walls in 5d and obtain tube

theories implementing N = 1 preserving flux from which (and the N = 2 trinions) N = 1 A1

class S theories [128] can be constructed.60 The 5d domain walls, and the corresponding 4d

theories obtained by compactifying on two punctured spheres with some value of flux, of 6d

(ADE,ADE) conformal matter SCFTs [19, 126, 130] (see Figure 59 for an example), D-type

(2, 0) theory probing A type singularity [144], and higher rank E-string theory [132, 136, 145]

have been also analyzed giving rise to a large class of across dimension dualities. Using

then flows between these theories one can produce [27] models with two maximal and one

minimal punctures [118, 142], and in particular class S theories with a minimal puncture

can be derived in this way.61 There are many other examples of across dimension dualities

obtained using various methods: e.g. N = 1 deformations of N = 2 Lagrangian theories

leading to strongly coupled N = 2 theories again [12, 146–148]; a large set of N = 2 theories

which have been shown to have weakly coupled conformal Lagrangians, free or interacting,

see e.g. [115, 149, 150]; a search over Lagrangians with restricted set of R-charges to describe

theories with N = 2 [22, 82] and N = 3 supersymmetry [83].

60The tube models were discussed in [131, 139–141].
61Of course historically these models were originally derived using very different methods [8, 125] and these

results have been used as checks of the more sophisticated derivations.
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Figure 59. Compactification of minimal (E6, E6) conformal matter theory on a torus with 1/6 unit of

flux breaking E6×E6 6d symmetry down to U(1)×E6 results in the depicted conformal quiver theory

[126]. This is in fact N = 2 quiver shaped as the affine Dynkin diagram of E6 with four decoupled

free chiral fields (denoted by the crosses).

The evidence that one can derive for dualities across six and four dimensions is similar

in nature to the evidence one typically gives for 4d IR duality. First one can match IR

symmetries. As both start and end dimensions are even one can also match the ‘t Hooft

anomalies for various continuous symmetries. One can also study consistency of various

deformations, and other field theoretic operations, with duality. For example, combining two

theories by gauging some symmetries, such that the fluxes associated to the two theories

are consistent with bigger symmetry, we should observe the enhanced symmetry in the IR.

Certain relevant superpotential deformations in 4d breaking some of the 6d global symmetries

should produce a theory with the flux for the broken symmetry vanishing [113, 117]. Finally

one can try to map operators across the flow [113, 151]. Local operators in 4d come from

local operators and surface operators wrapping the surface in 6d. At least for low quantum

numbers such a map can be performed for local operators [113], and it is plausible that a

more complete procedure can be devised.

Although many 4d theories obtained in compactifications have an across dimensional dual

description, we do not have such a description for the most general compactification. For this

reason theories without known across dimension dual are referred to as being currently non-

Lagrangian. Nevertheless, many of these non-Lagrangian theories are connected to Lagrangian

ones by gauging a subgroup of their global symmetry. The canonical example is the Argyres-

Seiberg duality [152, 153] relating N = 2 strongly coupled SCFTs to cusps of conformal

manifolds ofN = 2 Lagrangians. SuchN = 2 constructions have a geometric interpretation in

terms of pair of pants decompositions of a Riemann surface [8]. Similarly the N = 2 strongly

coupled SCFTs can appear at cusps of N = 1 Lagrangian theories [154]. Such relations

between Lagrangian and strongly coupled theories, though not giving a description of the

strongly coupled SCFT itself, often can be “inverted” to acquire a lot of useful information

about protected quantities, such as indices, of the SCFTs [155]. Such inversion procedures
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have a field theoretical meaning of gauging symmetries emergent at strong coupling [156, 157],

an important procedure we will soon discuss.

Figure 60. Atypical degenerations of the surface. In numerous examples in certain limits of collision

of some types of punctures one can obtain a new type of a puncture. The symmetry of the new

“composite” puncture might be different than the symmetry of the punctures building it. Conversely,

there are examples of exactly marginal deformations breaking the puncture symmetry and not corre-

sponding to naive geometric deformations of the surface.

Atypical degeneration

Analyzing the interplay between 6d and 4d flows one can generate 4d theories corresponding

to compactifications on surfaces with additional minimal punctures as we discussed. However,

an interesting question is whether one can also obtain surfaces with more general punctures

and in particular maximal ones. Maximal punctures are such that we can glue theories to-

gether along these punctures by gauging the symmetry associated to them. Thus this will

allow to construct theories associated to arbitrary surfaces. A useful observation here is that

collections of sub-maximal punctures can collide and form bigger punctures: this effect was

dubbed atypical degenerations in the case of class S in [116]. We have encountered such

an effect in Section 4.4 discussing compactifications of SU(3) minimal SCFT with triplets

of empty punctured building a maximal one. Here the empty punctures have no symmetry

while maximal ones have SU(3) symmetry. Similar effects were observed [24] studying com-

pactifications of minimal SO(8) SCFTs: in both of these cases the rank of the symmetry of

the maximal puncture is emerging at special loci of the conformal manifolds.

In compactifications of (DN+3, DN+3) minimal conformal matter collections ofN minimal

punctures were argued to form a USp(2N) maximal puncture [118]. Similarly, studying next

to minimal Ak conformal matter (2 M5 branes on Zk orbifold) it was argued that collections

of k minimal punctures form a maximal puncture [118] of a novel type: in both these cases

the rank of the maximal puncture is the same as the collection of colliding minimal punctures

but the non-abelian structure is enhanced. The new puncture in the Ak case can be obtained

by studying compactifications on a circle of the Ak conformal matter with no holonomies

turned on [17]. The resulting QFT in 5d can be thought of as a gauging of a strongly coupled

SCFT in 5d. In turn this SCFT has a real mass deformation leading to a gauge theory

description. Thus in terms of the 5d Lagrangian constructions this puncture corresponds to
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gauging an emergent UV symmetry. This underscores the need to understand and classify

all possible 5d effective descriptions of 6d SCFTs when studying compactifications to 4d. To

build higher genus surfaces gauging symmetries of colliding minimal punctures we thus need

to gauge emergent symmetries on special loci of the conformal manifold (or in the IR).

Conversely considering a theory with a puncture (maximal or non-maximal) there might

be exactly marginal deformations which break subgroups of the puncture symmetry. We have

seen an example of this in Appendix D: A2 class S compactifications with minimal punctures

have exactly marginal deformations which break the puncture symmetries. These exactly

marginal deformations preserve onlyN = 1 supersymmetry and do not correspond to complex

structure moduli or the flat connections on the surface.62 It would be interesting to understand

whether these directions on the conformal manifold can be understood geometrically.

Gauging emergent symmetries

An important procedure which appeared several times in our discussion is the utility of

gauging emergent symmetries. In particular some symmetries enhance in the IR of an RG

flow or at some strong coupling loci of the conformal manifold allowing to consider coupling the

emergent conserved currents to dynamical gauge fields. This is a manifestly strongly coupled

procedure. Although the gauge coupling might be weak the starting point of the construction

is strongly coupled. Nevertheless, if the rank of the symmetry is manifest in the UV, or at weak

coupling of the conformal manifold, a lot of the protected information of the gauge theory can

be explicitly computed. This follows from the fact that the supersymmetric partition functions

related to counting problems are independent of the RG flow and the continuous parameters

of the theory. Several of the 4d theory constructions corresponding to compactifications of

6d SCFTs obtained till now involve such gaugings [24, 26, 117, 118, 125, 132, 156, 157].

In some cases the emergent symmetry in one duality frame might be explicit symmetry of

the Lagrangian in another duality frame and thus the gauging would be completely weakly

coupled. An example is (D5, D5) minimal conformal matter where the trinion is constructed

as a four punctured sphere with two maximal SU(3) punctures and two minimal SU(2)

punctures colliding to form a USp(4) maximal puncture somewhere on the conformal manifold

[118]. However, using a sequence of Seiberg dualities one can obtain a description with the the

two SU(3) symmetries and the USp(4) symmetry manifest [127]. An interesting question in

this context is whether there are any fundamental obstructions for having a weakly coupled

description of a given theory with a given symmetry manifest. We have discussed several

examples of theories with weakly coupled descriptions and emergent symmetry in 4d such

that the 6d dual description has the symmetry manifest but is not weakly coupled; and the

question is whether we can or cannot find a description with manifest symmetry in 4d. For

N = 2 theories in 4d many examples of theories with no Lagrangians with manifest symmetry

are known just by listing all the possible manifestly N = 2 supersymmetric Lagrangians [9].

62For more general AN>1 class S compactifications one also has N = 1 preserving deformations when certain

non maximal punctures appear on the surface with the puncture symmetries broken to a subgroup on a general

locus of the conformal manifold [158].
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A related question would be then under which conditions we can find say N = 1 Lagrangians

with manifest global symmetry for such models.63

General types of punctures: 5d UV dualities

A useful knob in constructing 4d theories corresponding to a surface is through gluing theories

corresponding to smaller surfaces with the gluing done along a puncture. A given 6d SCFT

might have a variety of types of maximal punctures along which we can glue.64 Such maximal

punctures correspond as we have discussed to circle compactifications of the 6d SCFT, i.e.

5d gauge theories UV completed by the 6d SCFT. Compactifying on a circle, if the 6d (1, 0)

SCFT has a global symmetry, one has a choice of a holonomy in this global symmetry to be

turned on around the circle. Different such holonomies might lead to different 5d descriptions,

see e.g. [96–98, 112, 164–169]. Such different 5d effective descriptions are UV dual to each

other in the sense that they are different deformations of the same UV SCFT. We have

mentioned above the relatively simple constructions of three punctured spheres e.g. for the

(DN+3, DN+3) minimal conformal matter with two SU(N + 1) maximal punctures and one

USp(2N) puncture, although the trinions with three punctures of the same type are more

complicated (These can be obtained from the former by gluing in two punctured spheres.).

The 5d UV dualities can lead to 4d IR dualities by constructing same surfaces from building

blocks having different types of maximal punctures, see Figure 61 for an example. It is thus

very useful to completely map out all the possible 5d theories UV completed by 6d SCFTs

and interrelations between these.

Integrable models

Yet another interconnection between physics in different dimensions goes through the appear-

ance of quantum mechanical integrable models in various counting problems. The integrable

models have a long history of interconnections with gauge theories in various dimensions,

see e.g. [170]. The connection most relevant to us here goes as follows. One considers a 6d

(1, 0) SCFT (eight supercharges), compactifies to 4d breaking half of the supercharges, and

considers surface defects in the 4d theory. In particular one can count protected operators

(the S3 × S1 partition function, the index) of the 4d theories in the presence of such defects.

Using general considerations the resulting partition function can be obtained by acting on

the partition function of the theory without the defect with an analytic difference operator

[119].65 We have different operators labeled by the surface defect we want to introduce. These

operators can be thought of in general as Hamiltonians of an integrable relativistic quantum

mechanical system. The choices of the defects we are considering are determined by the 6d

SCFT and are the same for all the 4d theories obtained by compactifications of this SCFT.

63Such questions can be phrased also in other dimensions. For example let us mention here a simple example

in 3d where there are (at least) three different descriptions manifesting only two of three symmetries: N = 2

supersymmetry, SU(3) global symmetry, or time reversal symmetry[159–163].
64One might have also more general “fixtures” connecting different types of maximal and non-maximal

punctures. See e.g. [149].
65One can also construct in principle such operators by explicitly coupling 2d degrees of freedom to 4d ones

[171].

– 126 –



In particular these integrable models are thus labeled by a theory with eight supercharges,

which bares a direct relation to the constructions of [172]. These integrable systems can be

explicitly derived by studying analytic structure of the indices. In particular they are obtained

by computing the residues of poles the index can have in presence of minimal punctures and

are acting on the fugacities of a maximal puncture. As such these operators are then also

labeled by the choice of the maximal puncture i.e. the choice of the 5d effective gauge theory

description.

The various duality properties of the 4d theories obtained in compactifications imply

mathematical properties of the operators introducing defects [119].66 For example, the oper-

ators have to commute and the indices themselves give Kernel functions of these operators,

O(6dCFT ;5dQFT 1)
ℓ (x1

5d|y6d) · I(x1
5d,x

2
5d|y6d) = O(6dCFT ;5dQFT 2)

ℓ (x2
5d|y6d) · I(x1

5d,x
2
5d|y6d) .

Here O(6dCFT ;5dQFT 1)
ℓ (x1

5d|y6d) is the operator corresponding to the introduction of a defect

labeled by ℓ acting on a maximal puncture coming from the 5d QFT 1 description of the

6dCFT on a circle. The supersymmetric index I(x1
5d,x

2
5d|y6d) corresponds to a surface with

at least two maximal punctures of types (5d QFT 1) and (5d QFT 2), and y6d label the Cartan

of the 6d global symmetry. Such Kernel functions relations are highly non trivial and thus

give important mathematical checks of the conjectured across dimension dualities.

Explicitly for compactifications of the ADE (2, 0) theories the relevant models turn out

to be elliptic ADE Ruijsenaars-Schneider systems [119, 173]; for the rank N E-string this is

the BCN van Diejen model [127, 174] (this was shown explicitly for N = 1 using the index

methods and conjectured for higher N); for minimal 6d SCFTs with SU(3) and SO(8) gauge

groups these were discussed in [120, 121]; for A type conformal matter the operators were

discussed in [119, 175]; for minimal D type conformal matter the operators were computed

in [127]. These operators can be obtained independently by studying Seiberg-Witten curves

[176, 177] directly in 6d [178]. One way to understand this correspondence between indices

and integrable models is as a version of AGT correspondence where we view the 6d theory on

S3×S1×C (with C being a Riemann surface) and take either C small to obtain the index in 4d,

or the S3 × S1 to be small to obtain a TQFT on C (which should be related to the integrable

model) [179]. In the case of (2, 0) theories and a particularly simple version of the index, the

Schur index [180, 181], the TQFT turns out to be the q-deformed YM [180, 182–187]. The

Schur index then has further relations to beautiful mathematical structures such as chiral

algebras in 2d [188].67

6d dualities

Studying compcatifications of different 6d SCFTs on different surfaces to 4d one at times

obtains same IR 4d theories, or more generally same 4d theories up to decoupled free fields.

Such 6d dualities were analyzed for the relations between (2, 0) compactifications on punctured

66See [127] for a recent overview.
67Let us mention here that in the case that an N = 1 theory is not chiral and has rationally quantized

R-charges one can define a simplified version of the N = 1 index [154] which coincides with the Schur index

for the N = 2 theories.
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spheres and (1, 0) on tori with no flux [16–18]. Let us give here three examples of such dualities

between two (1, 0) theories.

First, let us discuss the example mentioned in the bulk of the paper: rank one E-string on

a genus two surface with no flux is the same as minimal SU(3) (1, 0) 6d SCFT on a sphere

with four maximal punctures (and Z3 twist lines). The resulting theory in 4d has a large

conformal manifold and the statement of the duality is that the two theories reside on the

same manifold. In particular, considering the E-string compactification the number of the

marginal operators minus the conserved currents is given by,

3g1 − 3 + 248E8 (g1 − 1) + 1|g1=2 → dimMc = 252 . (7.1)

Here g1 = 2 is the compactification genus. The first two terms are the expected marginal

operators minus the current coming from complex structure moduli and the flat connections

for the E8 symmetry. The last deformation is accidental for this compactification. On the

other hand considering the same quantity for the SU(3) minimal SCFT on the four punctured

sphere we obtain,

3g2 − 3 + s2 +

s2∑
i=1

(10i − 8i) + 3× (31,32,33,34)

∣∣∣∣∣
g2=0, s2=4

→ dimMc = 252 . (7.2)

Here Ri denotes the representation R of the ith SU(3) puncture symmetry group. The first

term comes from the complex structure moduli and the second from the punctures, while the

last one is accidental for this compactification. Going along this large conformal manifold,

likely including the accidental exactly marginal directions in the two cases, the two theories

can be then connected.

Second example is as follows [19]. Compactifications of conformal matter theories re-

siding on 2 M5 branes probing Zz(N+1) singularity on a sphere with N + 1 minimal and two

maximal punctures and flux F = zN+1
2 in the U(1)t subgroup of the SU(k)×SU(k)×U(1)t ⊂

SU(2k)symmetry of the 6d theory is dual (up to N(N+1) decoupled free fields) to the compact-

ification of (DN+3, DN+3) minimal conformal matter theory on a torus with flux z breaking

the SO(4N +12) symmetry of the 6d SCFT to U(1)×SU(N +1)×SO(10+ 2N) for integer

z. See Figure 61 This duality produces field theories which are 6d dual to each other up to

free fields. The simplest case of this duality is taking N = 1 and z = 1
2 where N = 2 SU(2)

Nf = 4 SCFT with a decoupled chiral field, i.e. A1 (2, 0) theory on a four punctured sphere

(plus a decoupled field), is equivalent to the rank one E-string on a torus with half a unit of

flux breaking E8 to U(1)× SO(8) ⊂ U(1)× E7 [26].68

The last example is as follows. Taking AN−1 (2, 0) theory on a sphere with two maximal

and two minimal punctures (half positive and half negative in the notations of [128]) and zero

flux is dual to compactification of (DN+1, DN+1) minimal conformal matter theory on a sphere

with two maximal and a minimal puncture, and half a unit of flux breaking SO(4 + 4N) 6d

68This compactifcation of the E-string is actually naively consistent with SO(8) exchanged with any rank

four subgroup of E7, e.g. G = F4, USp(8) [26]. This is in particular responsible for the observations that the

protected spectrum of the theory forming irreps of either of these groups, see e.g. [189].
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Figure 61. On the left we have the theory obtained by compactifying (DN+3, DN+3) minimal con-

formal matter theory on a torus with one unit of flux breaking the SO(4N + 12) symmetry of the 6d

SCFT to U(1)× SU(N + 1)× SO(10 + 2N). On the right we have a dual theory [19] (double circles

correspond to USp groups and the lines starting and ending on the same vertex are in antisymmetric

representation). We assume that N is an odd integer. Note the two dual theories manifest different

subgroups of the global symmetry group. The model on the right is obtained by gluing two tubes with

USp(2N) and SU(N + 1) punctures while on the left we glue tubes with SU(2)N punctures. This

duality follows from a 5d UV duality. The theory on the left (removing the free flip fields) can be

alternatively obtained by compactifying the SCFT on two M5 branes probing ZN+1 singularity on a

sphere with two maximal and N + 1 minimal punctures: this is thus an example of a 6d duality.

symmetry to U(1)×SU(2)×SO(4N). In both of these cases we obtain N = 1 SU(N) SQCD

with 2N flavors. Again the explicit symmetry of the theories in the two compactifications is

different: in former the symmetry is SU(N)2 × U(1)3 and in the latter it is SU(N − 1)2 ×
SU(2)×SU(2N)×U(1)3, and the two compactifications are dual to each other exploring the

large conformal manifold.

It will be extremely interesting to understand these and other 6d dualities by embedding

them for example in string theory.

More comments

Let us briefly mention several additional related avenues of research. First, one can consider

compactification scenarios in the holographic regime. In particular when the 6d SCFTs are

obtained on collections of M5 branes one can consider taking the number of branes to be large

and study the corresponding supergravity backgrounds. This for example was done in the

class S context in [128, 190–192] and studying branes on orbifolds in [137, 193, 194]. Another

property which we did not address in this review is the higher form/higher group/categorical

symmetries [28, 29, 195] of the 4d theories derived in compactifications. For some studies of

these issues see [194, 196–199].

It is interesting to consider compactifications to lower dimensions (3d and 2d). This can

be done in a variety of ways. For example, one can consider compactifications on a circle of the

4d theories obtained by first considering 6d SCFTs on a surface C. The dualities following

from the compactifciations in 4d will then give rise to a rich set dualities in 3d [13, 200].

Moreover the resulting 3d theories might have novel 3d dual descriptions which might not
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trivially lift to 4d.69 These typically take the form of mirror duality [201]. The point is

that 3d dynamics is richer than the 4d one: for example abelian gauge theories typically

lead to interesting SCFTs and there is no upper bound on the matter representations to

lead to interacting theories in the IR. Although for compactifications of (2, 0) theories such

mirror dualities are extensively studied, see e.g. [141, 201–206], for compactifications of (1, 0)

theories on C × S1 not much is known.

One can also study compactifications on surfaces starting from 5d [207, 208] or 4d [209–

211]. Similarly we can consider compactifying on circles starting from 5d [212] and 3d [213–

216]. One can motivate through these constructions various dualities in 3d. See e.g. [217].

Finally one can consider compactifications on higher dimensional surfaces. Starting from 6d

we can compactify on three manifolds [15, 218–222] or four manifolds [223, 224].

Final remarks

Let us make several more philosophical remarks. Our discussion of 4d supersymmetric dy-

namics has been performed using standard Lagrangian techniques in 4d and 5d. The starting

point in 6d is a strongly coupled SCFT, and although some field theoretic Lagrangian tools

(such as tensor branch descriptions) can be utilized, at the moment to fully understand such

models one usually includes string theoretic constructions (see [10] for a review). One can

draw several general lesson from our considerations. First, it is often the case that if one

wants to understand a weakly coupled UV description of a given IR physics it is useful to give

up some of the symmetry and let it emerge only in the IR. In our discussion the symmetry

was typically continuous global symmetry, but this can be also supersymmetry. Related to

this there are various suggestions to understand 6d SCFTs themselves by giving up some

symmetry, in this case space-time symmetry. These include engineering 6d SCFTs as limits

of 4d quiver theories through the procedure of deconstruction [225, 226], trying to decode the

full 6d physics from its circle compactifications [108, 109], or DLCQ matrix model [227, 228].70

Giving up symmetry we can gain many insights and it will be interesting to understand the

limits of such an approach. A complimentary way of thinking, at least about the conformal

fixed points, is giving up description in terms of weakly coupled fields completely and making

an emphasis on extracting all the possible physics from symmetries, including the conformal

symmetry. This bootstrap approach has led to many beautiful results in recent years, see e.g.

[230–232]. Another more abstract approach applicable to theories with well defined Coulomb

branches, such as N = 2 theories, is to study the Coulomb branches abstractly without use of

a Lagrangian using the Seiberg-Witten curve associated to them [233–235].71 The program

69However, some mirror dualities have a surprizing lift to 4d. For example, a canonical example of mirror

selfdual theory, the 3d T [SU(N)] model residing on S-duality domain wall of N = 4 SU(N) SYM in 4d, can

be uplifted to 4d [132, 145]. In fact the 4d theory is the one obtained by compactifying rank N E-string on

a two punctured sphere: the mirror duality exchanges the two punctures. One of the puncture symmetries is

emergent in the IR and thus the exchange of punctures is not a trivial operation from the point of view of the

UV Lagrangian.
70See [229] discussing all three approaches.
71This approach can be applied in certain cases also for N = 1 theories [236], which was studied for theories

obtained from M5 branes on A type orbifolds in [237–241].
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of systematically studying the curves and extracting physics from them is pursued e.g. in

[242–245]. Even using the geometric techniques one can search for general expressions of

various quantities describing SCFTs such that the geometry will be manifest and no use of

Lagrangians made. Examples of this are the AGT correspondence [44] (see [246] for a review)

relating the S4 partitions function of N = 2 theories to 2d CFT correlators and the relation of

the supersymmetric index to integrable models and to 2d TQFTs [179] we discussed above.72

Another comment we want to make is that although all of our discussion is N = 1

supersymmetric in 4d, that is relies on having four supercharges, the starting point in 6d

has eight supercharges, that is has N = 2 supersymmetry in 4d counting. By considering

such theories on surfaces and turning on various knobs and levers we can derive a plethora

of N = 1 dynamics. An interesting question is then to what extent all supersymmetric

phenomena have their origin in theories with eight supercharges. This question can be of

course extended by adding more supercharges and imbedding everything in string theory, if

one is willing to leave the cradle of purely QFT discussion.73 A way to phrase a similar

question is to what extent all non trivial dynamics in lower dimensions follows from QFT

constructions involving geometric deformations starting in 6d, and/or going beyond QFT in

string theory: e.g. are there CFTs in lower dimensions which cannot be constructed as limits

and deformations of supersymmetric CFTs in 6d and/or of string theoretic setups?
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A Superconformal algebra in 4d

In this appendix we consider the spacetime symmetry algebra sl (4|1) of four dimensional

conformal field theories with N = 1 supersymmetry, and its representations.

We begin with the bosonic conformal subalgebra. Written using spinorial notation with

α, α̇ = ±, ±̇, the nonvanishing commutators are given by

[
(J1)

β
α , (J1)

δ
γ

]
= δβγ (J1)

δ
α − δδα (J1)

β
γ ,[

(J2)
α̇
β̇
, (J2)

γ̇

δ̇

]
= δα̇

δ̇
(J2)

γ̇

β̇
− δγ̇

β̇
(J2)

α̇
δ̇
,[

(J1)
β
α , Pγγ̇

]
= δβγPαγ̇ −

1

2
δβαPγγ̇ ,[

(J2)
α̇
β̇
, Pγγ̇

]
= δα̇γ̇Pγβ̇ − 1

2
δα̇
β̇
Pγγ̇ ,[

(J1)
β
α ,K γ̇γ

]
= −δγαK γ̇β +

1

2
δβαK

γ̇γ ,[
(J2)

α̇
β̇
,K γ̇γ

]
= −δγ̇

β̇
Kα̇γ +

1

2
δα̇
β̇
K γ̇γ ,

[H,Pαα̇] = Pαα̇ ,[
H,Kα̇α

]
= −Kα̇α ,[

Kα̇α, Pββ̇

]
= δαβ δ

α̇
β̇
H + δαβ (J2)

α̇
β̇
+ δα̇

β̇
(J1)

α
β .

(A.1)

We next turn to the part of the algebra involving fermionic generators. There are eight

such generators, the four Poincare supercharges Qα, Q̃α̇ and the four conformal supercharges

Sα, S̃α̇, with the following nonvanishing anticommutators,

{
Qα, Q̃α̇

}
= Pαα̇ ,{

Sα, S̃α̇
}
= Kα̇α ,{

Qα, S
β
}
=

1

2
δβα

(
H +

3

2
R

)
+ (J1)

β
α ,{

Q̃α̇, S̃
β̇
}
=

1

2
δβ̇α̇

(
H − 3

2
R

)
+ (J2)

β̇
α̇ .

(A.2)
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We are left with the following commutators of the fermionic generators with the bosonic ones,[
(J1)

β
α , Qγ

]
= δβγQα − 1

2
δβαQγ ,[

(J2)
α̇
β̇
, Q̃γ̇

]
= δα̇γ̇ Q̃β̇ − 1

2
δα̇
β̇
Q̃γ̇ ,[

(J1)
β
α , Sγ

]
= −δγαSβ +

1

2
δβαS

γ ,[
(J2)

α̇
β̇
, S̃γ̇

]
= −δγ̇

β̇
S̃α̇ +

1

2
δα̇
β̇
S̃γ̇ ,

[H,Qα] =
1

2
Qα ,

[
H, Q̃α̇

]
=

1

2
Q̃α̇ ,

[H,Sα] = −1

2
Sα ,

[
H, S̃α̇

]
= −1

2
S̃α̇ ,

[R,Qα] = −Qα ,
[
R, Q̃α̇

]
= Q̃α̇ ,

[R,Sα] =Sα ,
[
R, S̃α̇

]
= −S̃α̇ ,[

Kα̇α, Qβ

]
= δαβ S̃

α̇ ,[
Kα̇α, Q̃β̇

]
= δα̇

β̇
Sα ,[

Pαα̇, S
β
]
= −δβαQ̃α̇ ,[

Pαα̇, S̃
β̇
]
= −δβ̇α̇Qα .

(A.3)

Once the superconformal algebra is known, the next natural thing to examine is its

representation theory. That is, we wish to classify the possible multiplets and understand

their properties.

A generic multiplet of the algebra is characterized by the charges (∆, R, j1, j2) of the

superconformal primary state with respect to the generators (H,R, j1, j2), where j1 and j2
are the following Cartans:

j1 = (J1)
+
+ = − (J1)

−
− , j2 = (J2)

+̇
+̇
= − (J2)

−̇
−̇ . (A.4)

The primary state is annihilated by the conformal supercharges Sα, S̃α̇,74 and the multiplet

is constructed by acting on it with the Poincare supercharges Qα, Q̃α̇. In some cases, a com-

bination of these supercharges annihilates the primary as well, resulting in a short multiplet

and a relation between the charges of the primary. These relations are just a saturation of the

corresponding unitarity bounds, derived from requiring the absence of negative-norm states

in the multiplet, and determine the conformal dimension ∆ in terms of the other charges (j1,

j2 and R). This, in turn, means that the conformal dimension is protected against changing

the parameters of the theory. We list the possible such shortening conditions (classified by

the corresponding null state in the multiplet) and their common names in the table below,

as well as the associated unitarity bounds [20, 41, 143].75

74Notice that as a result, the primary state is also annihilated by Kα̇α.
75Notice that we use different conventions for j1 and j2 in comparison to [20, 143], such that jthere = 2jhere.
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Shortening Condition Name Primary Null State Unitarity Bound

– L [j1; j2]
(R)
∆ – ∆ > 2 + 2j1 − 3

2R

– L [j1; j2]
(R)
∆ – ∆ > 2 + 2j2 +

3
2R

ϵαβQα|Primary⟩β = 0 A1 [j1; j2]
(R)
∆ , j1 ≥ 1

2

[
j1 − 1

2 ; j2
](R−1)

∆+1/2
∆ = 2 + 2j1 − 3

2R

(Q)2|Primary⟩ = 0 A2 [0; j2]
(R)
∆ [0; j2]

(R−2)
∆+1 ∆ = 2− 3

2R

ϵα̇β̇Q̃α̇|Primary⟩β̇ = 0 A1 [j1; j2]
(R)
∆ , j2 ≥ 1

2

[
j1; j2 − 1

2

](R+1)

∆+1/2
∆ = 2 + 2j2 +

3
2R

(Q̃)2|Primary⟩ = 0 A2 [j1; 0]
(R)
∆ [j1; 0]

(R+2)
∆+1 ∆ = 2 + 3

2R

Qα|Primary⟩ = 0 B1 [0; j2]
(R)
∆

[
1
2 ; j2

](R−1)

∆+1/2
∆ = −3

2R

Q̃α̇|Primary⟩ = 0 B1 [j1; 0]
(R)
∆

[
j1;

1
2

](R+1)

∆+1/2
∆ = 3

2R

As can be seen, unbarred letters denote shortening conditions with respect to the su-

percharges Qα while barred letters are with respect to Q̃α̇. Moreover, the letters L and L

correspond to the absence of shortening conditions with respect to Qα and Q̃α̇, respectively.

To completely specify a multiplet, one needs to impose both Qα and Q̃α̇ shortening

conditions, and as a result each kind of multiplet is denoted by two letters – an unbarred one

and a barred one. For example, LL [j1; j2]
(R)
∆ corresponds to a long multiplet with charges

(∆, R, j1, j2) for the primary state, while LB1 [j1; 0]
(R)
∆ to a multiplet with a chiral primary.76

The constraints on the charges of the primary state resulting from the various combinations

of shortening conditions are detailed in the following table [143].

L A1 A2 B1

L ∆ > 2 + max
{
2j1 − 3

2
R, 2j2 +

3
2
R
} ∆ = 2 + 2j2 +

3
2
R

j2 ≥ 1
2
, R > 2

3
(j1 − j2)

∆ = 2 + 3
2
R

j2 = 0 , R > 2
3
j1

∆ = 3
2
R

j2 = 0 , R > 2
3
(j1 + 1)

A1
∆ = 2 + 2j1 − 3

2
R

j1 ≥ 1
2
, R < 2

3
(j1 − j2)

∆ = 2 + j1 + j2
j1, j2 ≥ 1

2
, R = 2

3
(j1 − j2)

∆ = 2 + j1
j1 ≥ 1

2
, j2 = 0 , R = 2

3
j1

∆ = 1 + j1
j1 ≥ 1

2
, j2 = 0 , R = 2

3
(j1 + 1)

A2
∆ = 2− 3

2
R

j1 = 0 , R < − 2
3
j2

∆ = 2 + j2
j1 = 0 , j2 ≥ 1

2
, R = − 2

3
j2

∆ = 2

j1 = j2 = 0 , R = 0

∆ = 1

j1 = j2 = 0 , R = 2
3

B1
∆ = − 3

2
R

j1 = 0 , R < − 2
3
(j2 + 1)

∆ = 1 + j2
j1 = 0 , j2 ≥ 1

2
, R = − 2

3
(j2 + 1)

∆ = 1

j1 = j2 = 0 , R = − 2
3

∆ = 0

j1 = j2 = R = 0

To illustrate how these constraints between the charges are obtained from the algebra,

let us consider as an example a multiplet of the type LB1 [0; 0]
(R)
∆ . Here, the superconformal

primary state |χ⟩ has j1 = j2 = 0 and satisfies

Q̃α̇|χ⟩ = Sα|χ⟩ = S̃α̇|χ⟩ = 0. (A.5)

As a result, the expectation value of the fourth equation in (A.2) is given by

⟨χ|{Q̃α̇, S̃
β̇}|χ⟩ = 0 =

1

2
δβ̇α̇

(
∆− 3

2
R

)
, (A.6)

76Note that a chiral free field multiplet is represented by AkB1 [j1; 0]
(R)
∆ .
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implying ∆ = 3
2R. In addition, since the dimension ∆ is greater than 1 (otherwise it would be

equal to the free-state value 1, corresponding to the primary of the multiplet A2B1 [0; 0]
(R)
∆ ),

we have R > 2
3 .

Let us next note that even though the short multiplets are protected in the sense we

mentioned before, most of them are not absolutely protected since they can recombine as we

change the parameters of the theory with other short multiplets to form a long multiplet,

which is no longer protected. This can happen e.g. as we move along a conformal manifold

from one superconformal field theory to another, and short multiplets recombine to form a

long multiplet such that the operators residing in the short multiplets are not protected in the

new theory. In the other direction, a long multiplet at one point of the conformal manifold can

hit the unitarity bound at another point, decomposing into a collection of short multiplets.

As an example, let us consider the long multiplet LL [0; 0]
(R=0)
∆=2+ϵ as ϵ → 0, where it hits the

unitarity bound. It then splits into three short multiplets in the following way,

LL [0; 0]
(R=0)
∆=2 → A2A2 [0; 0]

(0)
2 ⊕B1L [0; 0]

(−2)
3 ⊕ LB1 [0; 0]

(2)
3 , (A.7)

where A2A2 [0; 0]
(0)
2 contains a conserved current while B1L [0; 0]

(−2)
3 and LB1 [0; 0]

(2)
3 contain

a marginal operator.77 This recombination corresponds to the fact that a marginal operator

can fail to be exactly marginal only if it combines with a conserved current corresponding to a

broken global symmetry [40], and is the reason that marginal operators and conserved currents

contribute to the superconformal index with opposite signs (see Eq. (2.52)). In particular,

the difference between the numbers of conserved-current and marginal-operator multiplets is

invariant under a change in the parameters of the theory which might be accompanied by the

recombination (A.7).

For each of the multiplets listed above, one can compute the superconformal index and

use it to extract information about the operator content of a given theory from its index. The

multiplets that contribute nontrivially to the index are collected in the following table, along

with the corresponding expressions for the index.

77Note that in this discussion we refer to operators instead of states, which is possible due to the

state/operator correspondence in theories with conformal symmetry.
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Multiplet Superconformal Index

LA1 [j1; j2]
(R)
∆ (−1)2(j1+j2)+1 (pq)

R
2 +j2+1χj1

(
√

p/q)

(1−p)(1−q)

LA2 [j1; 0]
(R)
∆ (−1)2j1+1 (pq)

R
2 +1χj1

(
√

p/q)

(1−p)(1−q)

LB1 [j1; 0]
(R)
∆ (−1)2j1

(pq)
R
2 χj1

(
√

p/q)

(1−p)(1−q)

A1A1 [j1; j2]
(R)
∆ (−1)2(j1+j2)+1 (pq)

1
3 (j1+2j2)+1χj1

(
√

p/q)

(1−p)(1−q)

A1A2 [j1; 0]
(R)
∆ (−1)2j1+1 (pq)

1
3 j1+1χj1

(
√

p/q)

(1−p)(1−q)

A2A1 [0; j2]
(R)
∆ (−1)2j2+1 (pq)

2
3 j2+1

(1−p)(1−q)

A2A2 [0; 0]
(R)
∆ − pq

(1−p)(1−q)

A1B1 [j1; 0]
(R)
∆

(−1)2j1 (pq)
1
3 (j1+1)

(1−p)(1−q) [χj1(
√
p/q)− (pq)

1
2 χj1− 1

2
(
√
p/q)]

A2B1 [0; 0]
(R)
∆

(pq)
1
3

(1−p)(1−q)

B1A1 [0; j2]
(R)
∆ − (pq)

2
3 (j2+1)

(1−p)(1−q)

B1A2 [0; 0]
(R)
∆ − (pq)

2
3

(1−p)(1−q)

Here, χj(z) is the character of the spin-j representation of SU(2). We can immediately see

from this table that as stated in the two bullets around Eq. (2.52), the only operators that

can contribute at order (pq)n with n < 1 are relevant operators (corresponding to primaries

of LB1 [0; 0]
(R)
∆ multiplets with R < 2) and that at order pq the only operators which can con-

tribute are marginal ones (contributing with a positive sign) and certain fermionic components

from the conserved current multiplet A2A2 [0; 0]
(R)
∆ , which contribute with a negative sign.

As mentioned above, the signs of these contributions at order pq correspond to the recombi-

nation rule (A.7). Note, in addition, that there is no recombination rule involving relevant

operators, meaning that the multiplets LB1 [0; 0]
(R)
∆ with R < 2 are absolutely protected. Let

us finally emphasize that this discussion about the contributions of various operators to the

index excludes free multiplets, that is we concentrate only on interacting theories.

B Leigh-Strassler argument for conformal manifolds

Let us here detail briefly yet another method to study the conformal manifold introduced in

a seminal paper by Leigh and Strassler [51]. This method is very Lagrangian in nature on

one hand but on another hand it is rather intuitive. The basic observation is that as the

superpotential is not renormalized due to holomprphy arguments [1] in a supersymmetric

theory, the beta-function of the superpotential coupling is determined by the anomalous

dimensions of the fields in the superpotential,

βλi
({λ, g}) ∼ ni − 3 +

1

2

ni∑
j=1

γαi(j)({λ, g}) , W =
L∑
i=1

λi

n∏
j=1

Qαi(j) . (B.1)
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Here αi ∈ SL is some permutation of the L chiral superfields Qi. Moreover also the gauge

beta function is related to the anomalous dimensions of the fields transforming under the

gauge symmetry [252, 253],78

βgi ∝ −

3C2(Gi)−
∑
k∈hi

T (Rk) +
∑
k∈hi

T (Rk)γk({λ, g})

 , (B.2)

where the proportionality coefficient depends on couplings, C2(G) is the quadratic Casimir of

the adjoint, T (R) is quadratic Casimir of irrep R, and the set hk is the set of representatives

of fields Qi from every non trivial irrep of Gk. Now say we have L superpotential couplings

λ and M gauge couplings g such that the one loop beta functions for the gauge fields vanish,

3C2(Gi)−
∑

k∈hi
T (Rk) = 0, and the superpotentials are marginal, ni = 3. Then the vanishing

of the beta functions are in general L+M equations for L+M independent variables. As such

they will typically have only isolated solutions. However this is not the case if the equations

are linearly dependent: and this can happen easily here as they are written in terms of

anomalous dimensions corresponding to fields which might be related by symmetries. The

dimension of the conformal manifold is thus given by the number of couplings minus the

number of independent beta functions (modulo global symmetry).

As an example consider the SU(3) SQCD with Nf = 9 with the marginal superpotential

(2.25). because of the symmetry of the superpotential the anomalous dimensions of all the

(anti)fundamental fields are the same. Thus all of the beta functions are proportional to this

anomalous dimension which is a function of two couplings λ and the gauge coupling. We have

one function depending on two parameters which vanishes at the origin, and thus we expect

it in general to have a line of solutions. This gives a one dimensional conformal manifold on

which some symmetry is preserved.

C Computing Kähler quotients with Hilbert series

One can compute in principle in a straight-forward way the Kähler quotients needed for the

determination of the conformal manifold using the Hilbert series techniques.79 Let us assume

that we have an SCFT with global symmetry (commuting with any gauge symmetry, includ-

ing anomalous symmetries) GF and that all marginal operators, including gauge couplings

charged under the anomalous symmetry, are in representation R of GF . Let χR({a}) be the

character of R, the complex conjugate representation of R, and {a} being a set of complex

parameters corresponding to the Cartan generators of GF . We define a plethystic exponential

of a function f({x}) ({x} is some collection of parameters),

PE [f{x}] = exp

( ∞∑
n=1

1

n
f({xn})

)
. (C.1)

78Note that for the free theory the R-charges of all the fields 2
3
and the one loop contribution in this formula

is precisely −3Tr RG2
i .

79See e.g. [254] for uses of the Hilbert series in supersymmetric QFTs.
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Then we compute the following integral,

HSMc(x) ≜
∮ RankGF∏

i=1

dai
2πiai

∆
(GF )
Haar({a}) PE

[
x · χR({a})

]
. (C.2)

Here ∆
(GF )
Haar({a}) is the Haar measure of GF and x is some complex parameter with |x| < 1.

The function HSMc(x) is the Hilbert series associated with the conformal manifold and as

such in particular it captures its dimension. The dimension can be extracted by taking the

limit x→ 1 and is equal to the degree of divergence of HSMc(x) in this limit. By definition

the plethystic exponent generates all the symmetric products of the argument function, and

the integrations with the Haar measure project on GF invariants. Thus HSMc(x) is just given

by a sum of all the symmetrized invariants of the couplings weighed by powers of x. This sum

is generated by the independent such invariants and there might be algebraic relations. The

result thus can in general be written as a rational function in x. The denominator which is

product of terms of the form 1− xni with ni being a power in which some singlet can appear.

The numerator is a polynomial encoding algebraic relations between the various generators.

Although this procedure is mathematically straightforward, technically when the group

GF is large, it is hard to implement. Let us give an example. Consider we have a marginal

deformation in 10 of SU(3). This is a three index completely symmetric representation. First

we compute its character. To compute this we note that the coefficient of xn in the expansion

of PE [x · χR({a})] is precisely the character of the nth symmetric power of R.80 Taking the

character of fundamental of SU(3) to be χ3 = a1 + a2 + 1/(a1a2) we then obtain,

χ10(a1, a2) = 1 + a31 +
1

a31a
3
2

+
1

a1a22
+

1

a21a2
+
a1
a2

+
a2
a1

+
a21
a2

+
a1
a22

+ a32 . (C.3)

Then we compute,∮ 2∏
i=1

dai
2πiai

1

6

∏
i ̸=j

(1− ai/aj),PE
[
x · χ10(a

−1
1 , a−1

2 )
]
=

1

1− x4
1

1− x6
. (C.4)

Here a3 = 1/(a1a2). We find thus that we have a two dimensional conformal manifold as

the degree of divergence is two. We have one singlet in fourth symmetric product and one in

sixths and there are no algebraic relations involving them.

Another example we will compute here is the case of 6, two index symmetric, of SU(3).

Following same procedure as above we have,

χ6(a1, a2) =
1

a1
+

1

a2
+ a1a2 + a21 + a22 +

1

a21a
2
2

. (C.5)

Then we compute,∮ 2∏
i=1

dai
2πiai

1

6

∏
i ̸=j

(1− ai/aj),PE
[
x · χ6(a

−1
1 , a−1

2 )
]
=

1

1− x3
. (C.6)

We get a single invariant which is the determinant of the two-index symmetric matrix defini-

tion of 6.
80The character of nth antisymmetric power is the coefficient of (−1)nxn in expansion of PE [−x · χR({a})].

– 138 –



D Class S interpretation of the exercise

The theory discussed in the exercise of Section 3.4 has a class S origin. We will discuss

the definition of this theory here. We can consider class S theory of type A2, that is three

M5 branes compactified on a Riemann surface. These models have N = 2 supersymmetry.

The building block of the four dimensional theories of this kind is the so called T3 model

corresponding to compactification on a sphere with three maximal punctures. The symme-

try associated to every puncture is SU(3) (as 5d compactification of A2 (2, 0) theory gives

maximally supersymmetric YM theory with gauge group SU(3)) and for the T3 model the

symmetry enhances to E6 such that,

78E6 → (8,1,1) + (1,8,1) + (1,1,8) + (3,3,3) + (3̄, 3̄, 3̄) , (D.1)

where on the right we have the decomposition in terms of SU(3)3 symmetry. This theory has

an additional U(1)t symmetry in N = 1 language coming from the extended R-symmetry of

N = 2. The T3 theory has relevant operators M with N = 1 R-charge 4
3 , U(1)t charge +1,

and in 78E6 : these are the moment map operators. In addition to these there is a marginal

Coulomb branch operator X with U(1)t charge −3 and R-charge 2. These are the only

marginal and relevant operators of T3. One constructs more general theories corresponding

to surfaces with maximal punctures by combining together T3 models gauging diagonal com-

binations of puncture SU(3) symmetries with N = 2 vector multiplets. In N = 1 language

in addition to the N = 1 vector multiplet one adds a chiral adjoint superfield Φ coupling

through a superpotential to the moment maps of the glued punctures, W = ΦM−ΦM ′. This

discussion is the (2, 0) version of the Φ-gluing.

An additional building block of theories in this class is the free trinion, which can be

obtained from T3 by an RG flow giving a vacuum expectation value to one of the SU(3)

moment maps breaking the SU(3) down to a U(1). We thus obtain a theory corresponding

to a sphere with two maximal SU(3) punctures and one U(1) puncture. The theory is just

a bifundamental hypermultiplet of two SU(3) symmetries with the U(1) symmetry charging

oppositely the two half-hypermultiplets. Let us denote these half-hypermultiplets q and q̃.

Gluing the T3 theories together the resulting models have the N = 2 preserving conformal

manifolds parametrized by the N = 2 gauge couplings used to glue the spheres together. If

the surface has at least one minimal puncture one can build also N = 1 preserving conformal

manifolds on which the U(1)t symmetry and the symmetry of one minimal puncture is broken.

We go to a duality frame in which we glue the free trinion to a generic class S theory of type

A2. Then, let us analyze the conformal manifold. The marginal operators involving the

glued puncture operators and the free trinion fields are: the N = 2 gauging (which is exactly

marginal), the Coulomb branch operator Φ3 charged −3 under U(1)t, and the baryons q3

and q̃3 charged +3
2 under U(1)t and ±1 under the minimal puncture U(1) by definition.

Thus we can build a Kähler quotient as (Φ3)(q3)(q̃3) is not charged under any symmetry.

This adds a one dimensional N = 1 preserving conformal manifold. Moreover as U(1)t is

now broken the dimension three Coulomb branch operators coming from the adjoint chirals

involved in gaugings used to construct the theory we glued to the free trinion become also

exactly marginal.
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Figure 62. The T3 model. On the right we have a N = 1 non-conformal Lagrangian flowing to T3
obtained in [82]. (See [255] for a different Lagrangian description.) The fields X form a doublet of

two-index antisymmetrics of SU(4), while Y is adjoint plus a singlet of SU(5). The Lagrangian has

manifest SU(5)×U(1)×SU(2) subgroup of E6 manifest in the UV. The U(1)t symmetry is conjectured

to emerge in the IR.
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Figure 63. The free trinion model corresponding to a sphere with two maximal and one minimal

punctures.

Finally in special cases the conformal manifold is even richer. Let us consider one T3 glued

to one free trinion. We obtain a sphere with three maximal and one minimal punctures. The

conformal anomalies of this theory are a = 15
4 and c = 17

4 . As in the general discussion

above we have exactly marginal deformations corresponding to the N = 2 gluing, X, and the

N = 1 deformation involving the baryons. However here we have additional deformations.

We can take the component of the E6 moment map charged (3,3,3) and contract it with q̃

building a gauge invariant operator H in (3,3,3) of the three maximal punctures of the four

punctured sphere which is marginal. In a same manner by contracting (3̄, 3̄, 3̄) of the moment

map with q we get a marginal operator H̃ in representation (3̄, 3̄, 3̄) of the three maximal

puncture symmetries. In fact as HH̃ is a singlet of all the symmetries we have additional

directions of the conformal manifold on which SU(3)3 is broken to SU(2)3 ×U(1)2 such that

3i → 2iai + 1a−2
i , 8i → 3 + 2(a3i + a−3

i ) + 1, and
∏3

i=1 ai = 1. On this conformal manifold
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we have operators in representation,

4 (1,1,1)0,0 + 2 (2,2,2)0,0 + (1,2,2)±3,0 + (2,1,2)0,±3 + (2,2,1)±1,±1 . (D.2)

We can next turn on the last deformations breaking the two U(1)s to a diagonal one and

locking the two SU(2) symmetries onto each other. This adds another dimension to the

conformal manifold and leaves us with SU(2)2 ×U(1) symmetry and marginal deformations,

5 (1,1)0 + 2 (2,3)0 + 2 (2,1)0 + 2 (2,2)±3 + (3,1)0 . (D.3)

We can break the first SU(2) to the Cartan using the last deformation preserving SU(2) ×
U(1)2 with marginals being,

610,0 + 230,±1 + 210,±1 + 22±13,±21 . (D.4)

Next we break the Cartan U(1) using the next to last operators preserving SU(2)×U(1) and

having marginal operators in,

910 + 430 + 42±3 . (D.5)

We use the second operator to break the remaining SU(2) to the Cartan preserving U(1)2

and having marginal operators in,

1310,0 + 310,±2 + 41±13,±21 . (D.6)

Next second type of the operators is turned on to break the second U(1) with only one U(1)

preserved and marginal operators being,

1810 + 81±3 , (D.7)

and at last the second operators can be used to construct additional 15 exactly marginal

operators breaking all the symmetry to obtain 33 dimensional conformal manifold.

The relevant deformations of the model are the moment maps of the two maximal punc-

tures of the T3, the operator TrΦ2, and qq̃: this gives rise to 8 + 8 + 1 + 9 = 26 relevant

operators. The conformal Lagrangian we derive in the exercise exactly reproduces the fea-

tures of this strongly coupled model. We can compute the supersymmetric index either using

the theory of Figure 64,

IA =
(q; q)5(p; p)5

3!× 4!

∮ 2∏
i=1

dzi
2πizi

∮ 3∏
a=1

dua
2πiua

∏3
i=1

(
Γe((qp)

1
3 z±1

i )
)3 (

Γe((qp)
2
3 z±1

i )
)2

∏3
i ̸=j Γe(zi/zj)

∏4
a̸=b Γe(ua/ub)

× (D.8)

4∏
a=1

(
Γe((qp)

1
6u±1

a )
)2 4∏

a<b

(
Γe((qp)

1
3uaub)

)2 4∏
a=1

3∏
i=1

(
Γe((qp)

1
6 (ua/zi)

±1)
)(

Γe((qp)
2
3 )
)5

,

or the one of Figure 21,

IB =
(q; q)3(p; p)3

8× 2

∮ 2∏
i=1

dzi
2πizi

∮
du

2πiu

∏2
i=1

(
Γe((qp)

1
3 z±1

i )
)6 (

Γe((qp)
1
3 z±1

i u±1)
)2

Γe(u±2)Γe(z
±2
1 )Γe(z

±2
2 )Γ2(z

±1
1 z±1

2 )
× (D.9)

(
Γe((qp)

1
3u±1)

)4 (
Γe((qp)

1
3 z±1

1 z±1
2 )
)2 (

Γe((qp)
1
3 )
)3

Γe((qp)
1
3 z±2

1 )Γe((qp)
1
3 z±2

2 ) ,
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Figure 64. The theory corresponding to a sphere with three maximal punctures and one minimal

puncture obtained by gluing to a T3 the free trinion. On the right we have a non-conformal description

of the theory using the Lagrangian of [82] for the T3. The fields H and H ′ are gauge singlets, and Y

is adjoint of SU(2). One maximal puncture SU(3) and the minimal puncture U(1) are manifest in

the UV, while the remaining two maximal puncture SU(3) symmetries emerge in the IR enhancing

an SU(2)2 × U(1)2 symmetry of the Lagrangian. The U(1)t symmetry is conjectured to emerge in

the IR. One can further turn on marginal deformations consistent with the R-symmetry assignment

in the Figure breaking completely all the global symmetry.

and obtain the same result,

IA = IB = 1 + 26(qp)
2
3 − (q + p)(qp)

1
3 + 33qp+ 25(q + p)(qp)

2
3 + (348− q2 − p2)(qp)

1
3 + · · ·

(D.10)

We do not have a proof of the equality but have checked it to the stated order in expansion

in q and p. As a side remark, we can also compute the so called Schur limit of the index

[180, 181]. The Schur index of the N = 2 theory is a limit of the supersymmetric index

computed using N = 1 superconformal R-symmetry by setting p = q
1
2 [22, 154]. This index

has an alternative description using the geometric data, A2 theory on a sphere with three

maximal and one minimal puncture in our case. The expression is [181],

IC =
(q2; q)2(q3; q)

(q; q)25(q
3
2 ; q)2

∞∑
λ1=0

λ1∑
λ2=0

(dim(λ1, λ2))
3 dim

q
1
2
(λ1, λ2)

(dimq(λ1, λ2))2
.

Here,

dimq(λ1, λ2) =
q−λ1(1− q1+λ2)(1− q2+λ1)(1− q1+λ1−λ2)

(1− q2)(1− q)2
, (D.11)

dim(λ1, λ2) = lim
q→1

dimq(λ1, λ2) =
1

2
(1 + λ2)(2 + λ1)(1 + λ1 − λ2) ,

The sum here is over the finite dimensional representations of A2; three factors of dim(λ1, λ2)

in the numerator come from maximal punctures and the factor of dim
q
1
2
(λ1, λ2) comes from
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the minimal puncture; the power of dimq(λ1, λ2) in the numerator is 2g−2+s = 2×0−2+4 =

2 with g the genus and s the number of punctures. The overall factor involving the q-

Pocchhammer symbols ((z; q) =
∏∞

j=0(1 − zqj)) also is detemined by the geometric data.

Using these expressions and either one of the Lagrangians we obtain in the Schur limit,

IC = IA(p = q
1
2 ) = IB(p = q

1
2 ) = 1 + 25q + 56q3/2 + 403q2 + 1348q5/2 + 5844q3 + (D.12)

19756q7/2 + 70702q4 + 225640q9/2 + 719961q5 + 2155220q11/2 + 6338818q6 + · · · .

Here we do not have a proof of the equality but have checked it to the stated order in expansion

in q. These are additional indications that the proposed duality is correct.

E Basics of 6d SCFTs

In this appendix we will review some aspects of 6d N = (1, 0) theories. First, we note

that due to the fact that spinors are pseudo real in 6d, supercharges of different chiralities

are inequivalent. Thus, we have several possible supersymmetries including the chiral N =

(1, 0), (2, 0) with eight and 16 real supercharges and the non-chiral N = (1, 1) with 16 real

supercharges. The N = (1, 0), (2, 0) can be extended to include also conformal symmetry to

superconformal algebras [85]. For a detailed discussion of 6d superconformal algebra we refer

the reader to [86] as well as the more modern exposition in [143].

Let us summarize the basic facts we need for our discussions. The (2, 0) algebra is a

special case of (1, 0) and we will focus only on the latter. Six dimensional N = (1, 0) theories

have eight real supercharges and contain the following field multiplets,

• Hypermultiplet: The bosonic part of the hypermultiplet contains four real scalar (or

two complex scalars q, q̃† transforming in the doublet of SU(2)R) that parameterize

the Higgs branch of vacua. In addition, its fermionic part contains a Weyl fermion ψα

transforming as a spinor of SO(5, 1).

• Vector multiplet: The bosonic part of the vector multiplet contains only a vector field

A transforming as a vector of SO(5, 1); therefore, these theories don’t have a Coulomb

branch of vacua. Its fermionic part contains a single Weyl fermion λ
α̇
transforming as

a co-spinor of SO(5, 1) and the doublet of SU(2)R.

• Tensor multiplet: The bosonic part of the tensor multiplet contains a two-form B

with a self dual field strength H = dB, H = ⋆H. In addition there is a real scalar ϕ

that parameterizes the tensor branch of vacua. Both the scalar and the two-form are

invariant under the R-symmetry. The fermionic part contains a single Weyl fermion χα

transforming as a spinor of SO(5, 1) and the doublet of SU(2)R.

All Lorentz invariant Lagrangians we can write are IR free in 6d. Nevertheless mainly

due to string theoretic constructions there is strong evidence that 6d interacting SCFTs exist

[89] (see [10] for a review). Let us consider a gauge theory with a simple gauge group, hyper

multiplets, and tensor multiplets. The standard kinetic term for the gauge fields,

1

g2YM

∫
tr (F ∧ ⋆F ) , (E.1)
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in 6d implies that the gauge coupling gYM scales as length, meaning this theory is trivial in

the IR. Regarding tensor multiplet it is problematic to write the kinetic term for the self dual

field strength H as, ∫
H ∧ ⋆H =

∫
H ∧H = −

∫
H ∧H , (E.2)

implying the simple kinetic term vanishes. Nevertheless, we can treat this theory as if it has

a Lagrangian describing the interactions with the constraint H = ⋆H. In this description the

scalar in the tensor multiplet can couple to the gauge field as,

c

∫
ϕ tr (F ∧ ⋆F ) , (E.3)

with constant c. This term allows us to absorb the gauge coupling into a vacuum expectation

value of ϕ with the effective gauge coupling of the theory given by,

1

g2eff
= c⟨ϕ ⟩ , (E.4)

meaning the gauge coupling as well as the BPS instanton tension are controlled by the tensor

modulus and are non-vanishing on the tensor branch. The interpretation of these observations,

mainly coming from string theoretic constructions, is that the underlying UV theory is a 6d

SCFT that has been deformed by a non-zero vev to the scalar in its tensor multiplet. This

initiates an RG flow leading at low-energies to a 6d gauge theory with inverse coupling squared

proportional to the size of the vev.

E.1 The Green-Schwarz mechanism in 6d

The Green-Schwartz mechanism in 6d arises from the interaction term coupling the tensor

multiplet B and the field strength F

c

∫
B ∧ tr (F ∧ F ) . (E.5)

This term is implied form the coupling of ϕ in (E.3) and the fact that ϕ is a part of the tensor

multiplet. The related B equation of motion is81

d ⋆ H = c tr (F ∧ F ) . (E.6)

Using the self-duality constraint then modifies the Bianchi identity of H as

dH = c tr (F ∧ F ) , (E.7)

meaning the instantons are charged under the two-form B. Using the the Dirac quantization

condition for higher forms one finds that c2 must be quantized.

81This equation of motion can be derived using the interaction term together with the kinetic term of H as

if it exists.
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It’s important to note that the B-field is not invariant under gauge transformations. It

is required from H̃ = dB − cI3(A,F ) to be gauge invariant where I3 is the Chern-Simons

3-form. The descent equations together with the modification of the Bianchi identity give

dI3 = I4 = tr (F ∧ F ) , δI3 = dI12 . (E.8)

We find that the invariance of H̃ requires

d(δB) = c δI3 = c dI12 , (E.9)

meaning δB = −cI12 . The contribution of the modified Bianchi identity to the anomaly

polynomial eight-form is then given by

I6 ≡ δ (cB ∧ tr (F ∧ F )) = c δB ∧ tr (F ∧ F ) = c2I12 ∧ tr (F ∧ F ) ,
I7 ≡ dI6 = c2dI12 ∧ tr (F ∧ F ) = c2δI3 ∧ tr (F ∧ F ) ,
I8 ≡ dI7 = c2dI3 ∧ tr (F ∧ F ) = c2δI4 ∧ tr (F ∧ F ) = c2 (tr (F ∧ F ))2 . (E.10)

This means that gauge theories with non-vanishing quadratic part of the 1-loop anomaly

polynomial can be made gauge anomaly free by the addition of a tensor multiplet as long as the

coefficient of the quadratic part is negative definite. In addition, since c2 needs to be properly

quantized, so is the coefficient of the quadratic part of the 1-loop anomaly polynomial.

E.2 The 6d anomaly polynomial eight-form

One way to compute the 6d anomaly polynomial is by considering the description of the 6d

theory on its tensor branch. Such descriptions are given by specifying the gauge symmetry

(with the various GS terms) and the matter content which can consist of three types of multi-

plets: vectors, hypermultiplets, and tensor multiplets. Let us here describe the contributions

of each of the matter multiplets. As usual to do so we will need to identify the contributions

of the Weyl fermions residing in each multiplet.

The computation proceeds as follows.82 The contribution of the Weyl fermion in 6d to

the anomaly polynomial can be shown to be given by the 8-form part of

Â (T ) ch (B) . (E.11)

Here Â (T ) is the so called Dirac A-roof genus. This has the following general structure,

Â (T ) = 1− p1 (T )

24
+

7p21 (T )− 4p2 (T )

5760
+ ... . (E.12)

The characteristic classes appearing in the expression, pi (T ), are the i-th Pontryagin classes

of the tangent bundle T . Concretely, the first two Pontryagin classes are given by

p1 (T ) = − 2

(4π)2
trR2 , p2 (T ) = − 4

(4π)4

(
trR4 − 1

2

(
trR2

)2)
. (E.13)

82See e.g. [30, 94, 256] for more comprehensive discussion. We mainly follow the notations of [117].
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These are given in terms of the curvature two form Ra
b = 1

2R
a
bµνdx

νdxµ defining trR2n =

Ra1
a2 ...R

a2n
c1 . Finally, ch (B) appearing in (E.11) is the Chern character of the entire bundle

for all the gauge and global symmetries that are not included in the Dirac A-roof genus. The

Chern character can be expanded in terms of the B bundle Chern classes as follows

ch (B) = rank (B) + C1 (B) +
C2
1 (B)− 2C2 (B)

2
+
C3
1 (B)− 3C1 (B)C2 (B) + 3C3 (b)

6

+
C4
1 (B) + 4C1 (B)C3 (B)− 4C2

1 (B)C2 (B) + 2C2
2 (B)− 4C4 (B)

24
+ · · · . (E.14)

Here Cn (B) are the n-th Chern classes of the bundle B defined by,∑
n

Cn (B) tk = det

(
itF

2π
+ I

)
(E.15)

= I + i
trF

(2π)
t+

trF 2 − (trF )2

2 (2π)2
t2 − i

2trF 3 − 3trF trF 2 + (trF )3

6 (2π)3
t3 + ... .

Here F is the curvature form of B. The Chern character obeys

ch (B1 ⊕B2) = ch (B1) + ch (B2) , ch (B1 ⊗B2) = ch (B1) ch (B2) . (E.16)

We are then ready to write the polynomial for each one of the three types of multiplets.

First, we need to understand the global symmetries of the 6d (1, 0) SCFTs. These include

the SU(2)R R-symmetry and global symmetry which we will denote by F6d. In addition we

will also need the contribution of the gauge symmetries, which we will denote by G6d. Thus,

according to (E.16) we decompose

ch(B) = ch(R) ch(G6d) ch(F6d) .

Let us start with the hypermultiplet H. This is specified by its representation under

the global symmetry, rF6d
, and the gauge symmetry, rG6d

. The Weyl fermion residing in the

hypermultiplet is a singlet of the 6d R-symmetry. The anomaly polynomial is then given by,

IH8 = drG6d
drF6d

7p1 (T )
2 − 4p2 (T )

5760
+
drF6d

12

(
C2 (G6d)

2
rG6d

− 2C4 (G6d)rG6d

)
+drF6d

p1 (T )C2 (G6d)rG6d

24
− drG6d

p1 (T )

48

(
C1(F6d)

2
rF6d

− 2C2(F6d)rF6d

)
−1

2
C2 (G6d)rG6d

(
C1(F6d)

2
rF6d

− 2C2(F6d)rF6d

)
+

1

2
C1(F6d)rF6d

C3(G6d)rG6d

+
drG6d

24

(
C1(F6d)

4
rF6d

+ 4C1(F6d)rF6d
C3(F6d)rF6d

− 4C1(F6d)
2
rF6d

C2(F6d)rF6d

+2C2(F6d)
2
rF6d

− 4C4(F6d)rF6d

)
. (E.17)

The rB index of the Chern classes indicates the representation in which the corresponding

traces in (E.15) are computed, while drB is the dimension of rB. Note that all the gauge

groups in all our constructions are simple and thus the first Chern class is always zero for us.
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Second, let us discuss the vector multiplet V. The Weyl fermion in this multiplet is now

a doublet of the 6d R-symmetry and its chirality is opposite to the one in the hypermultiplet

(and the one in the tensor multiplet to be discussed next). We then compute the polynomial

to be,

IV8 = −dAdj
7p1 (T )

2 − 4p2 (T )

5760
− 1

12

(
C2 (G6d)

2
Adj − 2C4 (G6d)Adj

)
− dAdj

C2 (R)
2
2

24

−
p1 (T )C2 (G6d)Adj

24
− dAdj

p1 (T )C2 (R)2
48

−
C2 (R)2C2 (G6d)Adj

2
. (E.18)

Note that here the Chern classes for the gauge bundles are computed in adjoint representation.

In addition, note that since we have a single Weyl fermion in the doublet of SU(2)R and not

two Weyl fermions that form a doublet the contribution is divided by 2.

Finally, we compute the contribution of a tensor multiplet T . The tensor contains a

single Weyl fermion in the doublet of the R-symmetry with the same chirality as the one in

the hypermultiplet.83 The tensor multiplet also contains a self dual tensor which is chiral.

Such chiral fields in general also contribute to gravitational anomaly [257]. Collecting all the

contributions we obtain,

IT8 =
23p1 (T )

2 − 116p2 (T )

5760
+
C2 (R)

2

24
+
p1 (T )C2 (R)

48
. (E.19)

As discussed in the previous sub-section to specify the anomaly polynomial we will also need

to account for the contributions of the Green-Schwartz terms.

E.3 Example: The rank one E-string anomaly polynomial

Here we look at the simple, but important example of the rank one E-string theory anomaly

polynomial. The rank Q E-string theory is the low-energy theory on Q M5-branes on top of

the end-of-the-world E8 brane. It was shown in [94] that the anomaly polynomial of the rank

one E-string theory is given by

IE−string
8 =

13

24
C2 (R)

2
2 −

11

48
C2 (R)2 p1 (T )−

1

60
C2 (R)2C2 (E8)248 +

1

7200
C2 (E8)

2
248

+
1

240
p1 (T )C2 (E8)248 +

29 (7p1 (T )− 4p2 (T ))

5760
, (E.20)

The tensor branch description of this theory contains only one tensor multiplet. Thus, we

can write this anomaly polynomial as the contribution of a single tensor multiplet and a

Green-Schwartz term involving global and spacetime symmetries [258],

IE−string
8 = Itensor8 +

1

2

(
C2(R)−

1

60
C2 (E8)248 +

1

4
p1(T )

)2

. (E.21)

83As in the vector multiplet case we will need to divide its contribution by 2.
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F Twisting, fluxes, and integrating anomaly polynomials

In this appendix we will show how one can compactify 6d SCFTs to 4d theories preserving

half the supersymmetry. In general in order to preserve all the supersymmetry when com-

pactifying a supersymmetric theory the compactification surface needs to be flat. Another

option to preserve supersymmetry is to perform a topological twist that preserves part of the

supersymmetry.

F.1 The topological twist and compactification

Topological twisting [259] of a d dimensional supersymmetric theory is performed by a choice

of subgroup of the rotation symmetry SO(d) and mapping it into the R-symmetry group.

Then given a choice of a supersymmetry generator Q which is invariant under the combined

action of SO(d) rotations and the R-symmetry we can consider the subspace of observables

which are in the kernel of Q. This subspace defines a topological field theory.

In our context we will use topological twisting on the compactifying surface to preserve

part of the supersymmetry. We decompose the supersymmetry spinors under SO(d−1, 1)L×
GR → SO(d − p − 1, 1)L × SO(p)M × GR and look for a choice of subgroup inclusion of

SO(p)M into GR that will leave some of the SO(d − p − 1, 1)L spinors invariant under the

new twisted SO(p) symmetry. Specifically for compactifications of 6d N = (1, 0) theories

with OSp(6, 2|2) superconformal group the bosonic subgroup is the 6d N = (1, 0) conformal

group times USp(2) ≃ SU(2) R-symmetry. In particular, the supercharges Q transform as

(4,2) under SO(5, 1)L × SU(2)R. Decomposing the supercharge in terms of 4d symmetries

we obtain,

SO(5, 1)L × SU(2)R → SO(3, 1)L × SU(2)R × SO(2)M

Q : (4,2) → (2,1;2)+ 1
2
⊕ (1,2;2)− 1

2
(F.1)

In this case in order to preserve half the supersymmetry we break SU(2)R → U(1)R and then

twist the SO(2)M = U(1)M as U(1)M ′ = U(1)M − U(1)R. Under the original decomposition

and the twist we find

SO(5, 1)L × SU(2)R → SO(3, 1)L × U(1)M ′ × U(1)R

Q : (4,2) → (2,1)+1,+ 1
2
⊕ (2,1)0,+ 1

2
⊕ (1,2)0,− 1

2
⊕ (1,2)−1,− 1

2
. (F.2)

Thus, the preserved supercharges are Q = (2,1)0,+ 1
2
with conjugate Q† = (1,2)0,− 1

2
which

means we preserve N = 1 supersymmetry. The 4d R-symmetry is identified with twice U(1)R.

When compactifying the 6d (1, 0) theories to 4d there are additional knobs and levers one

can utilize due to the fact that many (1, 0) theories have flavor symmetries. Specifically we

can turn on background configurations for gauge fields for the flavor symmetries supported

on the Riemann surface in a way that preserves N = 1 supersymmetry in 4d. One can

demonstrate this for example by considering a compactification of a free hypermultiplet in 6d

on a torus. Since this is a free field theory the computation can be performed very explicitly.
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Specifically, one reduces the theory first to 5d on a circle with a holonomy for the global

symmetry around the compactification circle that varies along the fifth dimension. Such a

configuration amounts to turning on flux for the global symmetry supported on the torus

and allows analyzing explicitly the preserved supersymmetry. This analysis was performed

by Chan, Ganor, and Krogh in [260] (Section 2), to which we refer the reader interested in

the details of such computations.

F.2 Integrating the anomaly polynomial

When considering the general compactification case on a genus g Riemann surface with non

trivial fluxes to abelian subgroups of the 6d flavor symmetry we need to break the flavor

symmetry as G→ U(1)k ×H with H a subgroup of G commuting with all the U(1)s we give

flux to.

Decomposing the group means we need to decompose a representation of the group R

that appears in the 6d anomaly polynomial as Ci (G)R, to the representations of U(1)k ×H.

Rg →
∑
i

(
Ri

h

)(qi1,...,qik) , (F.3)

where Ri
h and qia are the i-th summand representation of H and charge of U(1)a, respectively,

in the decomposition sum.

Writing the Chern character of the 6d global symmetries up to eight forms using (E.14)

we get

ch (gR) = dim (Rg)− C2 (g)Rg
+

1

2
C3 (g)Rg

+
1

12

(
C2 (g)

2
Rg

− 2C4 (g)Rg

)
, (F.4)

where we set C1 (g)Rg
= 0 as the global symmetries we are interested in 6d have semisimple

Lie algebras. Using the properties in (E.16) we can write the Chern character after the above

decomposition as

ch (gR) → ch

(⊕
i

u(1)qi1
⊗ ...⊗ u(1)qik

⊗ hRi
h

)
=
∑
i

ch
(
hRi

h

) k∏
a=1

ch
(
u(1)qia

)
=
∑
i

(
dim

(
Ri

h

)
− C2 (h)Ri

h
+

1

2
C3 (h)Ri

h
+

1

12

(
C2 (h)

2
Ri

h
− 2C4 (h)Ri

h

)
+ ...

)
k∏

a=1

∞∑
n=0

(
1

n!

(
qiaC1 (u(1)a)

)n)
, (F.5)

where C1 (h)Ri
h
= 0 as H has a semisimple Lie algebra. Comparing forms of equal dimension
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we find how the Chern classes decompose

C2 (g)Rg
→ −1

2

k∑
a,b=1

∑
i

dim
(
Ri

h

)
qiaq

i
bC1 (u(1)a)C1 (u(1)b) +

∑
i

C2 (h)Ri
h

C3 (g)Rg
→ 1

3

k∑
a,b,c=1

∑
i

dim
(
Ri

h

)
qiaq

i
bq

i
cC1 (u(1)a)C1 (u(1)b)C1 (u(1)c)

−2

k∑
a=1

∑
i

qiaC1 (u(1)a)C2 (h)Ri
h
+
∑
i

C3 (h)Ri
h

C4 (g)Rg
→ −1

4

k∑
a,b,c,d=1

∑
i

dim
(
Ri

h

)
qiaq

i
bq

i
cq

i
dC1 (u(1)a)C1 (u(1)b)C1 (u(1)c)C1 (u(1)d)

+3

k∑
a,b=1

∑
i

(
1− 1

6
dim

(
Ri

h

))
qiaq

i
bC1 (u(1)a)C1 (u(1)b)C2 (h)Ri

h

−3

k∑
a=1

∑
i

qiaC1 (u(1)a)C3 (h)Ri
h
− 1

2

∑
i

C2 (h)
2
Ri

h
+
∑
i

C4 (h)Ri
h

+
1

2

−1

2

k∑
a,b=1

∑
i

dim
(
Ri

h

)
qiaq

i
bC1 (u(1)a)C1 (u(1)b) +

∑
i

C2 (h)Ri
h

2

. (F.6)

Next we wish to fix the flux on the compactification Riemann surface Σg of genus g for

the selected U(1) subgroups. Thus we set∫
Σg

C1 (U(1)a) = −za . (F.7)

In addition, we perform the aforementioned topological twist which translates to setting the

R-symmetry Chern class as

C2 (R) → −
(
C1

(
R′)− t

2

)2

, (F.8)

where t is a two form related to the compactification surface symmetry and integrates to∫
Σg

t = 2(1− g) . (F.9)

We also set the Pontryagin classes

p1 (T6d) → p1 (T4d) + t2 , p2 (T6d) → p2 (T4d) + p1 (T4d) t
2 , (F.10)

and to meet the flux constraint

C1 (U(1)i) → −zi
t

2(1− g)
+ ϵiC1 (U(1)R) + C1 (U(1)Fi) , (F.11)
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where the first term gives the required flux, the second term takes into account possible

mixing of the U(1) symmetry with the superconformal R-symmetry, where ϵ is a parameter

to be determined via a-maximization [76], and the third term is the 4d curvature term of the

U(1) symmetry. Note that when we compactify the theory on a generic Riemann surface,

only terms linear in t will contribute to the 4d anomaly polynomial six-form.84

Finally, with the 4d anomaly polynomial at hand one can calculate the anomalies of

various symmetries. For U(1) symmetries one can extract the anomalies from the anomaly

polynomial using the relations

Tr (U(1)x) = −24∂C1(U(1)x)∂p1(T4)I6 ,

T r (U(1)xU(1)yU(1)z) = ∂C1(U(1)x)∂C1(U(1)y)∂C1(U(1)z)I6 . (F.12)

For mixed or cubic non-abelian anomalies one finds the relations

Tr
(
G3
)
= 2Cr∂C3(G)rI6 ,

T r
(
G2U(1)x

)
= −Tr∂C1(U(1)x)∂C2(G)rI6 , (F.13)

where Tr and Cr denote the Dynkin and cubic index of the representation r, respectively.

These relations can be derived by comparing the contribution of Weyl fermions to the anoma-

lies on one side and to the anomaly polynomial on the other side.

F.3 Examples

Here we will examine the E-string theory and its compactification possibilities preserving 4d

N = 1 supersymmtry discussed in this appendix. We start with a simple compactification on

a genus g Riemann surface with no fluxes. We first write the full 6d anomaly polynomial for

a rank Q E-string theory

IE−string
8 =

Q
(
4Q2 + 6Q+ 3

)
24

C2
2 (R) +

(Q− 1)
(
4Q2 − 2Q+ 1

)
24

C2
2 (L)

−
Q
(
Q2 − 1

)
3

C2 (R)C2 (L)−
(Q− 1) (6Q+ 1)

48
C2 (L) p1 (T )

−Q (6Q+ 5)

48
C2 (R) p1 (T ) +

Q (Q− 1)

120
C2 (L)C2 (E8)248

−Q (Q+ 1)

120
C2 (R)C2 (E8)248 +

Q

240
p1 (T )C2 (E8)248

+
Q

7200
C2 (E8)

2
248 + (30Q− 1)

7p21 (T )− 4p2 (T )

5760
, (F.14)

where in our notations Ci(G)rG denoted the i-th Chern class of the G-bundle in the rG
representation, C2(R) ≡ C2(R)2 and C2(L) ≡ C2(L)2, and pi(T ) is the i-th Pontryagin class

of the tangent bundle.

84Terms with higher powers of t can still contribute to other anomalies. Notable examples include: anomalies

in symmetries originating from isometries of the Riemann surface [137], and anomalies associated with couplings

on the conformal manifold [261].
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Since we wish to compactify on a genus g Riemann surface we need to use a topolog-

ical twist to preserve half the supersymmetry as shown previously. This translates to the

assignment

C2 (R) → −
(
C1

(
R′)− t

2

)2

. (F.15)

In addition, we need to set the Pontryagin classes

p1 (T6d) → p1 (T4d) + t2 , p2 (T6d) → p2 (T4d) + p1 (T4d) t
2 , (F.16)

and finally set ∫
Σg

t = 2(1− g) . (F.17)

Effectively this means that in the resulting 4d anomaly polynomial only the terms linear in t

survive. This results in

IE−string
6 =

Q
(
4Q2 + 6Q+ 3

)
6

(g − 1)C3
1 (R) +

Q (6Q+ 5)

24
(g − 1)C1 (R) p1 (T4)

+
2Q
(
Q2 − 1

)
3

(g − 1)C1 (R)C2 (L) +
Q (Q+ 1)

60
(g − 1)C1 (R)C2 (E8)248 .

(F.18)

From the anomaly polynomial we can extract that the only nontrivial anomalies are

Tr
(
U(1)3R

)
= Q

(
4Q2 + 6Q+ 3

)
(g − 1) , T r (U(1)R) = −Q (6Q+ 5) (g − 1) ,

T r
(
U(1)RSU(2)2L

)
= −

Q
(
Q2 − 1

)
3

(g − 1) , T r
(
U(1)RE

2
8

)
= −Q (Q+ 1)

2
(g − 1) .

(F.19)

In the next example we will again compactify the E-string theory only this time on a

torus with flux preserving a U(1) × E7 subgroup of the E8 group. This requires breaking

E8 → E7 × U(1) using the branching rule

248 → 133⊕ 56+1 ⊕ 56−1 ⊕ 1+2 ⊕ 1⊕ 1−2. (F.20)

This translates to the following Chern class assignments using (F.6)

C2 (E8)248 → C2 (E7)133 + 2C2 (E7)56 − 60C1 (U(1))2 = 5C2 (E7)56 − 60C1 (U(1))2 ,

(F.21)

where in the second equality we used the relation implied by (F.13). Since we are dealing

with a torus, no topological twist is required, but due to the flux we still break half the

supersymmetry. This is consistent with the assignments we used in the former example when

taking g = 1. In addition we need to set in accordance with the flux

C1 (U(1)) → −z t

2(1− g)
+ ϵC1 (U(1)R) + C1 (U(1)F ) , (F.22)
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where here we will take the limit of g → 1 after the compactification.

IE−string
6 = z (C1 (F ) + ϵC1 (R))

(
Q

2
p1 (T4) +Q (Q− 1)C2 (L) +

Q

6
C2 (E7)56

)
+Q (Q+ 1) z (C1 (F ) + ϵC1 (R))C

2
1 (R)− 2Qz (C1 (F ) + ϵC1 (R))

3 .(F.23)

In this case since we have an additional U(1) flavor symmetry which can mix with the R-

symmetry in the IR fixed point. The mixing can be calculated using a-maximization, where

the trial a-anomaly is

atrial =
3

32

(
18Qϵ

(
Q− 2ϵ2 + 1

)
z + 12Qϵz

)
. (F.24)

This anomaly is maximized for

ϵ =

√
3Q+ 5

18
sign (z) . (F.25)

For our final example we will consider a compactification on a genus g Riemann surface

with flux preserving U(1) × E7 ⊂ E8. In this case we use the same process as the former

example only without setting the genus to one. The resulting anomaly polynomial setting

the mixing coefficient to zero for brevity is

IE−string
6 =

Q
(
4Q2 + 6Q+ 3

)
6

(g − 1)C3
1 (R) +

Q (6Q+ 5)

24
(g − 1)C1 (R) p1 (T4)

+
2Q
(
Q2 − 1

)
3

(g − 1)C1 (R)C2 (L) +
Q (Q+ 1)

12
(g − 1)C1 (R)C2 (E7)56

+Q (Q+ 1) ztC1 (t)C
2
1 (R) +Q (Q+ 1) (g − 1)C2

1 (t)C1 (R)− 2QztC
3
1 (t)

+
Q

2
ztC1 (t) p1 (T4) +Q (Q− 1) ztC1 (t)C2 (L) +

Q

6
ztC1 (t)C2 (E7)56 . (F.26)

As before one can find the mixing of the U(1) with the R-symmetry in the IR.

G Supersymmetric boundary conditions

In this section we focus on five dimensional quantum field theories withN = 1 supersymmetry

and discuss the most basic boundary conditions that one can impose while preserving half of

the supersymmetry.

Five dimensional N = 1 gauge theories have eight real supercharges and two kinds of

multiplets, a vector multiplet containing a real scalar Φ, fermions Ψ and a vector field A,

and a hypermultiplet containing four real scalars ϕ and fermions ψ. The Lorentz group is

given by SO(4, 1) and there is an SU(2)R R-symmetry. In fact, there is an SO(4) sym-

metry rotating the four real scalars in the hypermultiplet which is the product of SU(2)R
and an additional SU(2)F flavor symmetry. Denoting the representations under the bosonic

SO(4, 1)×SU(2)R×SU(2)F symmetry by (RSO(4,1),RSU(2)R ,RSU(2)F ), the supercharges Q
i
α

transform as (4,2,1), the scalars ϕia and fermions ψa
α of the hypermultiplet as (1,2,2) and
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(4,1,2) (respectively), and the fermions Ψ i
α of the vector multiplet as (4,2,1) (with the real

scalar and the vector field transforming trivially under SU(2)R × SU(2)F ). Here the indices

i, a = 1, 2 and α = 1, ..., 4 correspond to SU(2)R, SU(2)F and SO(4, 1), respectively.

Our goal is to find the most simple boundary conditions one can impose in a 5d N = 1

gauge theory such that half of the supersymmetry, corresponding toN = 1 in four dimensions,

is preserved. Concretely, we will focus on free hyper and vector multiplets which appear in

the low-energy limit of such gauge theories.

We begin with addressing the case of a free hypermultiplet, where the theory is considered

in the domain x4 < 0 and a boundary condition is given at x4 = 0 (where the coordinates are

xM with M = 0, ..., 4). In order to find which kinds of simple boundary conditions preserve

half of the supersymmetry, we first describe the theory in terms of four dimensional N = 1

multiplets. Then, finding boundary conditions that respect this multiplet structure (and

therefore preserve the desired supersymmetry) will be natural.85

The action of a free hypermultiplet is given by

S =

∫
d5x

(
−1

4
ϵijϵab∂Mϕ

ia∂Mϕjb +
1

2
ϵabψ

a
αΓ

Mαβ∂Mψ
b
β

)
, (G.1)

where ΓM are the Gamma matrices in five dimensions. When written using the 4d N = 1 sub-

supersymmetry, such a hypermultiplet decomposes into an SU(2)F doublet of chiral multiplets

(X,Y ). The Cartan of SU(2)R becomes the U(1)R R-symmetry in four dimensions, under

which both X and Y have R-charge 1. We would like to write the action (G.1) in terms of

the chiral multiplets X and Y . It is easy to see that in this description we should include a

superpotential, since the standard kinetic terms,∫
dx⊥d4xd4θ

(
X†X + Y †Y

)
, (G.2)

(where we denote x⊥ = x4) do not reproduce the full action (G.1). As an example, notice that

only the ϵijϵab∂µϕ
ia∂µϕjb part of the scalar-field kinetic term, where µ = 0, ..., 3, is recovered.

In order to obtain the missing piece, ϵijϵab∂⊥ϕ
ia∂⊥ϕjb, it is easy to see that we should add

the following superpotential, ∫
dx⊥d4xd2θY ∂⊥X, (G.3)

that includes it as well as the missing part of the rest of the action (G.1) . Indeed, the

superpotential (G.3) sets the F -term of theX multiplet to be (up to a coefficient) F(X) = ∂⊥Y ,

where Y is the scalar component of the anti-chiral multiplet Y . Similarly, it sets F(Y ) = ∂⊥X

such that the total contribution of the superpotential (G.3) to the scalar-field potential is

given by the missing part, which involves the derivatives of the scalars in the x⊥ direction.

Now that we have expressed the action (G.1) in terms of the chiral multiplets X and Y ,

we can look for simple boundary conditions that preserve the 4d N = 1 sub-supersymmetry.

A common choice is to give the scalar of X a Dirichlet boundary condition, setting it equal to

85Notice that the full 5d N = 1 supersymmetry cannot be preserved since the anti-commutator of some of

the supercharges yields a translation in the x4 direction, which is broken by the boundary condition at x4 = 0.
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zero at x⊥ = 0. By (4d N = 1) supersymmetry, this implies that the rest of the X multiplet

vanishes at the boundary, including the F -term ∂⊥Y . This enforces Neumann boundary

conditions for Y , resulting in

X|x⊥=0 = 0 , ∂⊥Y |x⊥=0 = 0. (G.4)

In a similar way, one can give Dirichlet boundary conditions for Y , enforcing Neumann

boundary conditions for X,

Y |x⊥=0 = 0 , ∂⊥X|x⊥=0 = 0. (G.5)

Let us next turn to discuss vector multiplets, focusing for simplicity on a U(1) gauge

group. As in the case of the hypermultiplet, we would first like to express the theory in terms

of 4d N = 1 multiplets. In this case, the 5d vector multiplet decomposes into a 4d vector

multiplet V and a chiral multiplet S, such that the bottom component of the chiral multiplet

is given by the complex scalar field Φ + iA⊥. Recall that we do not consider the 5d vector

multiplet as coupled to matter in an interacting theory; however, in such a case the covariant

derivative in the x⊥ direction is given by ∂⊥ − S. Notice also that the chiral multiplet S

has an unusual gauge transformation due to the appearance of A⊥ in its scalar component,

given by S → S + i∂⊥Λ for an abelian gauge transformation with chiral-multiplet parameter

Λ. The 5d action is reproduced by the standard kinetic term for V , plus a slightly-modified

kinetic term for S that takes into account its unusual gauge transformation. In contrast to

the previous case of the hypermultiplet, no superpotential for S is needed here (and therefore

its F field vanishes). The kinetic terms of V and S set the D field of V to be (up to a

coefficient) D = ∂⊥Φ, resulting in a contribution to the potential of Φ that reproduces the

part of its kinetic term involving derivatives in the x⊥ direction.

Turning to possible boundary conditions that preserve the 4d N = 1 sub-supersymmetry,

a simple choice would be to give the gauge field A a Dirichlet boundary condition, setting Aµ =

0 at x⊥ = 0 (where recall that µ = 0, ..., 3). Since this condition is only preserved by gauge

transformations with parameters which are constant along the boundary x⊥ = 0, the gauge

symmetry actually breaks to a global symmetry there.86 The (4d N = 1) supersymmetric

completion of this boundary condition simply sets the entire 4d vector multiplet V to zero

on the boundary, including its D-term. This results in the boundary conditions

V |x⊥=0 = 0 ⇒ Aµ|x⊥=0 = 0, λσ|x⊥=0 = 0, ∂⊥Φ|x⊥=0 = 0, (G.6)

where we denoted the fermion of V by λσ.
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[29] F. Benini, C. Córdova, and P.-S. Hsin, “On 2-Group Global Symmetries and their Anomalies,”

JHEP 03 (2019) 118, arXiv:1803.09336 [hep-th].

[30] A. Bilal, “Lectures on Anomalies,” arXiv:0802.0634 [hep-th].

[31] D. S. Freed, “Anomalies and Invertible Field Theories,” Proc. Symp. Pure Math. 88 (2014)

25–46, arXiv:1404.7224 [hep-th].

[32] S. Deser and A. Schwimmer, “Geometric classification of conformal anomalies in arbitrary

dimensions,” Phys. Lett. B 309 (1993) 279–284, arXiv:hep-th/9302047.

[33] J. L. Cardy, “Is There a c Theorem in Four-Dimensions?,” Phys. Lett. B 215 (1988) 749–752.

[34] Z. Komargodski and A. Schwimmer, “On Renormalization Group Flows in Four Dimensions,”

JHEP 12 (2011) 099, arXiv:1107.3987 [hep-th].

[35] D. Anselmi, D. Freedman, M. T. Grisaru, and A. Johansen, “Nonperturbative formulas for

central functions of supersymmetric gauge theories,” Nucl. Phys. B 526 (1998) 543–571,

arXiv:hep-th/9708042.

[36] K. A. Intriligator and B. Wecht, “RG fixed points and flows in SQCD with adjoints,” Nucl.

Phys. B677 (2004) 223–272, arXiv:hep-th/0309201 [hep-th].

[37] D. Kutasov, A. Parnachev, and D. A. Sahakyan, “Central charges and U(1)(R) symmetries in

N=1 superYang-Mills,” JHEP 11 (2003) 013, arXiv:hep-th/0308071.

[38] F. Benini, Y. Tachikawa, and B. Wecht, “Sicilian gauge theories and N=1 dualities,” JHEP 01

(2010) 088, arXiv:0909.1327 [hep-th].

[39] P. Meade, N. Seiberg, and D. Shih, “General Gauge Mediation,” Prog. Theor. Phys. Suppl.

177 (2009) 143–158, arXiv:0801.3278 [hep-ph].

[40] D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa, and B. Wecht, “Exactly Marginal

Deformations and Global Symmetries,” JHEP 06 (2010) 106, arXiv:1005.3546 [hep-th].

[41] C. Beem and A. Gadde, “The N = 1 superconformal index for class S fixed points,” JHEP 04

(2014) 036, arXiv:1212.1467 [hep-th].

– 157 –

http://dx.doi.org/10.1007/JHEP09(2019)046
http://arxiv.org/abs/1906.05088
http://dx.doi.org/10.1103/PhysRevLett.120.071604
http://arxiv.org/abs/1711.02789
http://arxiv.org/abs/1711.02789
http://dx.doi.org/10.1103/PhysRevD.98.066006
http://arxiv.org/abs/1806.09196
http://dx.doi.org/10.1007/JHEP09(2020)028
http://arxiv.org/abs/2006.03480
http://dx.doi.org/10.1002/prop.201700074
http://arxiv.org/abs/1709.02496
http://dx.doi.org/10.1007/JHEP12(2019)108
http://arxiv.org/abs/1907.04870
http://dx.doi.org/10.1007/JHEP02(2015)172
http://dx.doi.org/10.1007/JHEP02(2015)172
http://arxiv.org/abs/1412.5148
http://dx.doi.org/10.1007/JHEP03(2019)118
http://arxiv.org/abs/1803.09336
http://arxiv.org/abs/0802.0634
http://dx.doi.org/10.1090/pspum/088/01462
http://dx.doi.org/10.1090/pspum/088/01462
http://arxiv.org/abs/1404.7224
http://dx.doi.org/10.1016/0370-2693(93)90934-A
http://arxiv.org/abs/hep-th/9302047
http://dx.doi.org/10.1016/0370-2693(88)90054-8
http://dx.doi.org/10.1007/JHEP12(2011)099
http://arxiv.org/abs/1107.3987
http://dx.doi.org/10.1016/S0550-3213(98)00278-8
http://arxiv.org/abs/hep-th/9708042
http://dx.doi.org/10.1016/j.nuclphysb.2003.10.033
http://dx.doi.org/10.1016/j.nuclphysb.2003.10.033
http://arxiv.org/abs/hep-th/0309201
http://dx.doi.org/10.1088/1126-6708/2003/11/013
http://arxiv.org/abs/hep-th/0308071
http://dx.doi.org/10.1007/JHEP01(2010)088
http://dx.doi.org/10.1007/JHEP01(2010)088
http://arxiv.org/abs/0909.1327
http://dx.doi.org/10.1143/PTPS.177.143
http://dx.doi.org/10.1143/PTPS.177.143
http://arxiv.org/abs/0801.3278
http://dx.doi.org/10.1007/JHEP06(2010)106
http://arxiv.org/abs/1005.3546
http://dx.doi.org/10.1007/JHEP04(2014)036
http://dx.doi.org/10.1007/JHEP04(2014)036
http://arxiv.org/abs/1212.1467


[42] B. Kol, “On conformal deformations,” JHEP 09 (2002) 046, arXiv:hep-th/0205141

[hep-th].

[43] V. Gorbenko, S. Rychkov, and B. Zan, “Walking, Weak first-order transitions, and Complex

CFTs,” JHEP 10 (2018) 108, arXiv:1807.11512 [hep-th].

[44] L. F. Alday, D. Gaiotto, and Y. Tachikawa, “Liouville Correlation Functions from

Four-dimensional Gauge Theories,” Lett. Math. Phys. 91 (2010) 167–197, arXiv:0906.3219

[hep-th].

[45] D. Gaiotto, Families of N = 2 Field Theories. 2016. arXiv:1412.7118 [hep-th].

[46] O. Aharony and A. Hanany, “Branes, superpotentials and superconformal fixed points,” Nucl.

Phys. B 504 (1997) 239–271, arXiv:hep-th/9704170.
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