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Abstract

We propose a new example of discrete holography that provides a new step towards es-
tablishing the AdS/CFT duality for discrete spaces. A class of boundary Hamiltonians
is obtained in a natural way from regular tilings of the hyperbolic Poincaré disk, via an
inflation rule that allows to construct the tiling using concentric layers of tiles. The models
in this class are aperiodic spin chains, whose sequences of couplings are obtained from the
bulk inflation rule. We explicitly choose the aperiodic XXZ spin chain with spin 1/2 de-
grees of freedom as an example. The properties of this model are studied by using strong
disorder renormalization group techniques, which provide a tensor network construction
for the ground state of this spin chain. This can be regarded as discrete bulk reconstruc-
tion. Moreover we compute the entanglement entropy in this setup in two different ways: a
discretization of the Ryu-Takayanagi formula and a generalization of the standard compu-
tation for the boundary aperiodic Hamiltonian. For both approaches, a logarithmic growth
of the entanglement entropy in the subsystem size is identified. The coefficients, i.e. the
effective central charges, depend on the bulk discretization parameters in both cases, albeit
in a different way.
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1 Introduction

The holographic principle [1,2] is a fundamental paradigm in theoretical physics that states
a deep relation between gravitational theories in (d+1) dimensions and quantum field the-
ories (QFTs) in d dimensions at their boundary. The most tractable and well understood
realization of the holographic principle is the AdS/CFT correspondence [3–5]. It states a
duality between bulk gravity theories in a negatively curved Anti-de Sitter (AdS) spacetime
and conformal field theories (CFTs) defined on the asymptotic boundary of this spacetime.
In recent years, concepts from quantum information theory have been introduced into
the AdS/CFT correspondence, such as entanglement entropy [6–8] and quantum complex-
ity [9–13]. Driven by this fundamental relation between quantum information and holog-
raphy, the complete reconstruction of bulk geometries from information-theoretic data of
the boundary theory has been proposed [14].
Due to its string theory origin, the AdS/CFT correspondence is defined in terms of contin-
uous variables, e.g. quantum fields being smooth functions over continuous spacetimes. On
the other hand in what we collectively denote in this work as discrete holography, discrete
variables are considered and in particular spacetime is taken to be discrete. Interest in
a discrete holographic duality has gained momentum recently. Various approaches have
been proposed in this direction and have shed light onto the properties that such a discrete
duality ought to have. On the one hand, progress in the simulation of hyperbolic space
through experimentally accessible topolectric circuits [15–20], as well as the mathemati-
cal characterization of the underlying discretization of hyperbolic space [21, 22], open a
promising door to realizing holographic predictions in the laboratory. On the other hand,
mathematical investigations of string theory based on discrete number fields such as the
p-adics Qp give rise to p-adic AdS/CFT [23–25], which allows to gain insight into con-
tinuum properties of holography through adelic formulas [26]. A further formal approach
to finding discrete holographic dualities is modular discretization [27–29], where coset con-
structions for AdS1+1 and CFT1 are exploited to construct discrete Hilbert spaces for both
theories. Additionally, tensor network (TN) constructions provide important tools for real-
izing holographic dualities [30–43] in general and for the construction of a discretized bulk
in particular. These reproduce some features of holography, such as the Ryu-Takayanagi
(RT) formula for holographic entanglement entropy [31,34,40,43]. However, an open ques-
tion of tensor network approaches based on regular hyperbolic tilings is the exact nature of
the boundary theory. Recent progress in this direction was obtained in [41] by considering
a disordered Ising chain on the boundary of matchgate tensor networks. This construc-
tion relies on a renormalization in radial direction towards the boundary in order to find
the proper boundary theory, whose ground state is approximated by the tensor network
contraction. However, despite the recent progress, a complete discrete holographic duality
has not yet been realized at the dynamical level, in the sense that an equality of partition
functions based on field-operator maps has not yet been found.

In this work, we propose a new step towards establishing a discrete holographic dual-
ity by investigating a regular discretization of the bulk and aperiodic spin chains on its
boundary. In this construction the bulk discretization gives rise to a dynamical boundary
theory in a natural way. Aperiodic spin chains have attracted a lot of attention after the
discovery of quasicrystals [44] and are very well-known in condensed matter theory [45–50].
Specifically, we start from regular hyperbolic tilings, which are canonical discretizations of
hyperbolic space and have previously been considered in many studies of discrete hyper-
bolic geometry [15,19,21,31,39–41,51–56]. These tilings are characterized by their Schläfli
symbol {p, q}, denoting a tiling where q regular p-gons meet at each vertex. The infinite
set of vertices of these hyperbolic tilings define a discrete geometry that approximates that
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of continuum hyperbolic space. In particular, this discrete geometry can be constructed
using concentric layers of tiles and has a boundary whose fractal, aperiodic structure can
be investigated by means of vertex inflation rules. These classify the vertices using two
letters associated to the number of neighboring edges in the same layer. For all pairs {p, q}
with q ̸= 3, it has been shown that two such letters are sufficient to characterize the entire
tiling [52]. In this way, the tiling and its boundary can be generated by recursive iteration
of an appropriate substitution (inflation) rule on an initial set of vertices (letters). In this
work, we focus only on the properties of “empty” AdS and thus consider solely the hyper-
bolic tilings, without any matter fields. We explain how to define and compute the length
of discrete geodesics in terms of the characteristic lengths of polygons in the tiling.

The construction of the tilings through inflation rules allows us to define an explicit
boundary theory in a natural way that incorporates the aperiodic structure of the bulk.
Specifically, we define an aperiodic XXZ chain on the boundary, whose modulation is
determined by the choice of hyperbolic tiling in the bulk. This means that the couplings
along the XXZ chain are not homogeneous and follow an aperiodic sequence determined
by the inflation rule of the bulk tiling. The spin variables of the XXZ chain are chosen
to be spin 1/2, because in this case the model becomes computationally tractable and
the features of such aperiodic chains are well-understood in the literature [57, 58]. Even
in the presence of aperiodic disorder, this model is critical in a certain regime of the
anisotropy parameter ∆0 that appears in the Hamiltonian of the XXZ spin chain. This
is an attractive property from the point of view of holography, since boundary theories in
AdS/CFT describe physical systems at criticality.

We are aware that choosing spin 1/2 degrees of freedom implies that we are not in
a large N regime required to suppress quantum gravity effects. As our results show, the
structure of discrete holography will be very different than in the continuum case, and it
is yet to be determined how the large N limit will enter. We leave this for future work.
Here we point out that our construction has the new feature that the bulk discretization
itself determines the couplings of the boundary theory, a property that by definition is not
realizable in a continuum setting. It remains an open question how to obtain a precise
mapping between bulk and boundary in discrete holography. However, we expect our
results to be useful in completing this program.

In order to study the critical properties of the model described above, we employ
strong-disorder renormalization group (SDRG) techniques. This tool assumes that we
are working at low energies and that one coupling constant J is much larger than the
other. We argue that the aperiodicities induced by the discrete tilings in the bulk act as
relevant perturbations in the case of the XXX chain (∆0 = 1) on the boundary, in the
sense that the system flows to a new, strong-disorder induced fixed point with respect to
the homogeneous model. Finally, based on this SDRG approach, we construct a tensor
network that exactly reproduces the ground state of aperiodic XXX chains at the boundary
of hyperbolic tilings. The natural holographic structure of TNs allows us to reconstruct
the bulk by embedding this TN onto the Poincaré disk. We find that the structure of this
TN is different from that of the tiling, due to the fact that the TN is constructed through
SDRG which selects a specific direction on the Poincaré disk. We explain how the global
symmetries of the boundary Hamiltonian emerge within our TN construction. Moreover,
we fully characterize the symmetries of the TN graph, finding that they do not match
those of the corresponding tilings. This is in contrast to previous works, where TNs are
constructed on hyperbolic tilings in such a way that each tensor has the same symmetry
as a tile [31, 34,40].

The setup we consider provides an explicit description of dynamical degrees of freedom
on the boundary theory, but does not address any dynamical fluctuations in the discretized
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bulk. In this sense, we do not provide a complete duality. Nevertheless, the natural way in
which the boundary theory can be constructed from the discretized bulk suggests that we
can provide a first step in this direction by considering the behavior of known holographic
quantities in our discrete setup. As a prime example, throughout our analysis, we consider
entanglement entropy as a benchmark of the different setups we investigate, since it is a
well-understood quantity in the context of both quantum spin chains and tensor networks.
Importantly, it has a holographic description due to Ryu and Takayanagi [6,7], which is a
reference point of our analysis. The Ryu-Takayanagi (RT) formula states that the bipartite
entanglement entropy of a region A of the boundary CFT is proportional to the the area
|γA| of the minimal codimension-one hypersurface γA in the bulk that is homologous to A,

SA =
|γA|
4GN

, (1)

with GN being Newton’s constant. It was shown in [6, 7] that evaluating (1) in AdS2+1

reproduces the known behavior for entanglement entropy in two-dimensional CFTs [59–63].
The RT formula (1) for holographic entanglement entropy relies on the large N limit of
the AdS/CFT correspondence, which is equivalent to a low-energy limit and suppresses
quantum gravity effects. This limit is also equivalent to assuming a holographic CFT with
a large central charge c, which is related to bulk quantities through the Brown-Henneaux
formula c = 3R

2GN
, with R being the curvature radius of AdS [64]. The central charge c can

be seen as a measure of the number of local degrees of freedom of the theory. Away from
the large N or large c limit, the RT formula is conjectured to admit higher corrections
originating from entanglement entropy in the bulk [65].

In spite of this, the simple yet fundamental character of the RT formula makes it a use-
ful quantity to kick-start approaches to discrete holography. A central aspect of this work
is to compare different approaches to entanglement entropy in a discrete setup, both by
assuming the validity of the RT formula in a discretized bulk geometry and by calculating
the entanglement entropy directly for the aperiodic spin-1/2 chain. We note that further
proposals for characterizing the RT formula in discrete settings, in particular through ten-
sor networks, can be found in [31,34,40].

The main results of this work are summarized as follows. We provide a natural, simple
and well-defined method for defining an explicit theory with dynamical degrees of freedom
on the boundary of hyperbolic tilings. Our construction relies on a minimal number of in-
gredients, namely the inflation rule associated to each {p, q} tiling. The aperiodic structure
of this boundary allows us to naturally define a boundary theory by aperiodically modu-
lating the couplings in an XXZ chain with spin-1/2 variables according to the asymptotic
sequence generated by each {p, q} inflation rule. We also construct a tensor network that
exactly reproduces the ground state of this model in the regime where the anisotropy pa-
rameter is ∆0 = 1 (XXX chain), and which implements an SDRG flow. We thus obtain a
discrete geometric structure in the bulk based on the Hamiltonian of the boundary theory.
This can be interpreted as bulk reconstruction in the spirit of AdS/CFT.

Let us stress that our TN construction is different from that proposed in [41] in various
aspects: First, our method for defining a boundary theory is independent of a tensor net-
work construction in the bulk, instead relying solely on the inflation rules for {p, q} tilings.
A TN construction is nonetheless possible a posteriori in our setup and provides an exact
description of the ground state of the XXX chain on the boundary rather than an ap-
proximation. Second, the couplings of the boundary model in [41] do not follow the simple
aperiodic sequence of the tiling’s boundary, but are rather determined by a construction de-
noted as multi-scale quasi-crystal ansatz [40,41]. This relies on an RG flow of the couplings
from the center of the tilings (IR regime in the holographic RG sense) to the boundary
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(UV regime). On the other hand, our TN describes an RG flow of the couplings from the
UV to the IR, which is more reminiscent of the standard notions of holographic RG [66–73].

We also obtain results for the entanglement entropy, which we compute via two different
methods. In the bulk, we provide a straightforward geometric argument that approximates
the length of discrete geodesics on the tiling, taking into account the fractal structure of
the boundary. This allows us to derive a discrete form of the RT formula (1), given in (20),
exhibiting a logarithmic growth of entanglement entropy with the subsystem size. For the
boundary theory, we extract the effect of the aperiodicity on the entanglement entropy
of a subsystem of the chain via SDRG. This includes a generalization of previous results
for entanglement entropy in aperiodic chains to a larger class of modulations [74, 75]. We
obtain a piecewise linear behavior of the entanglement entropy (57), with logarithmic en-
veloping functions (58). The proof we provide for these results is applicable to a given
class of {p, q} inflation rules.
For both approaches provided in our work, a logarithmic growth of entanglement entropy
with the subsystem size thus appears. The coefficients of these logarithms can then be
interpreted as effective central charges. Our results exhibit a remarkable dependence of
the effective central charges on the parameters p and q of the tiling in the bulk. While the
functional dependence on p and q is different in both cases, this implies that the geome-
try of the bulk influences the entanglement structure of the boundary theory, similarly to
usual continuum holographic dualities. In one case this dependence directly comes from
the discretization of the RT formula, while in the other case it arises from the fact that
the boundary Hamiltonian depends on p and q by construction.
In order to venture beyond this first naive comparison and to find agreement of the p, q
dependence of the effective central charges in the bulk and boundary computations, it will
be necessary to explore different dynamical degrees of freedom than the spin 1/2 XXZ
chain at the boundary, in particular to understand the role of the large N limit. Both the
discretization of the bulk action and the specific choice of boundary degrees of freedom will
have to be investigated. Let us stress that while our construction focuses on an explicit
Hamiltonian for the boundary theory, the AdS geometry is discretized but so far left with-
out dynamics. Thus, it is promising to pursue generalizations of our setup that include
gravitational fluctuations in the discretized bulk. This could be achieved for example via
introduction of bulk scalar fields, or by allowing for graph fluctuations of the tilings itself.
We provide a more detailed discussion of these future perspectives in Sec. 7.

This work is structured as follows. In Section 2 we introduce Anti-de Sitter spacetime
in 2+1 dimensions and explain how to discretize a constant time slice of it through regular
hyperbolic tilings. A derivation of a discrete version of the RT formula is contained in
this section. Section 3 introduces our proposed dual theory on the boundary of the tilings,
namely an aperiodically disordered XXZ quantum spin chain. Strong-disorder renormal-
ization group techniques are reviewed in this section and used to characterize the relevance
of the aperiodic disorder with respect to the homogeneous case. We follow up with Section
4 where we provide the derivation of the entanglement entropy for the XXX chain, for
which aperiodicity shifts the system to a new, disorder-induced fixed point. Section 5 pro-
vides the detailed construction of a TN that reproduces the ground state of the aperiodic
XXX model, while also providing a reconstruction of a discretized bulk. Symmetries and
properties of the resulting TN are discussed at length in this section. The aforementioned
sections contain a small summary of their content and results at the end. Section 6 is de-
voted to a comparison of the results within this paper with those of previous works [40,52]
studying hyperbolic tilings in a holographic setting. Finally, we conclude in Section 7 with
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AdS2+1

ϕ
t

ρ

Figure 1: AdS2+1 spacetime in the global coordinates (2). The conformal boundary coin-
cides with the surface of the cylinder and is located at ρ → 1. A constant time-slice (blue)
is isomorphic to the Poincaré disk D2. The induced metric on this manifold is given by
(3), which has an equivalent formulation in Poincaré coordinates (5).

a summary of the main results of this paper, as well as with promising perspectives for
future work. Some technical details and additional results are reported in Appendices A-C.

2 Regular hyperbolic tilings

We begin by explaining in detail how regular hyperbolic tilings can be embedded in AdS2+1,
providing a natural discretization for the spatial part of the manifold. We elaborate on the
properties and features of these tilings and show how they can be systematically constructed
via inflation rules.

2.1 From AdS2+1 to hyperbolic tilings

We consider AdS2+1 in global coordinates {ρ, t, ϕ} ∈ {[0, 1),R, [0, 2π)} with invariant line
element

ds2 = R2−(1 + ρ2)2dτ2 + 4 dρ2 + 4ρ2 dϕ2

(1− ρ2)2
. (2)

Here, R is the AdS radius and defines the constant negative curvature K of the manifold
via K = − 1

R2 . The conformal boundary lies at ρ → 1. In the context of the AdS/CFT
correspondence, the CFT whose ground state is holographically dual to the AdS vacuum
is defined at this boundary. More specifically in this case, the dual CFT is defined on a
circle S1 with circumference L. The coordinates in (2) make the cylinder topology R×S2

of AdS2+1 manifest, as shown in Fig. 1.
Cauchy surfaces of (2) at constant time t = const are isomorphic to the Poincaré disk

model D2 = {w ∈ C| |w| < 1} of hyperbolic space in polar-like coordinates w = ρeiϕ. This
can be seen as the Euclidean version of two-dimensional AdS as well, i.e. EAdS2. The
hyperbolic metric induced by (2) on this manifold is

ds2 = (2R)2
dρ2 + ρ2 dϕ2

(1− ρ2)2
. (3)

Geodesics w.r.t. the Poincaré metric (3) are given by circle segments that are perpendicular
to the unit disk and diametric lines. The distance between two points w1 = ρ1e

iϕ1 , w2 =
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ρ2e
iϕ2 ∈ D2 is given by

d(z1, z2) = R arccosh
(
1 +

2(ρ21 + ρ22 − 2ρ2ρ1 cos (ϕ1 − ϕ2))

(1− ρ21)(1− ρ22)

)
. (4)

Equivalently, we can describe the hyperbolic disk D2 via so-called Poincaré patch coordi-
nates,

ds2 = R2dz
2 + dx2

z2
, (5)

with z ∈ (0,∞), x ∈ R.The conformal boundary now lies at z → 0. Since we consider Eu-
clidean AdS space, the Poincaré patch covers the entirety of the spacetime, as opposed to
the Lorentzian case, where it would only cover a patch. These coordinates allow for easier
computations and will be used for the derivation of coordinate-independent quantities in
the following sections. However, we keep the global coordinates description of (3) for a
better visualization.

A canonical way of discretizing the Poincaré disk D2 is through regular hyperbolic
tilings [76,77]. These are gapless fillings of hyperbolic space with regular polygons. General
regular tilings of two-dimensional spaces are characterized by their Schläfli symbol {p, q},
denoting a tiling where q regular p-gons meet at each vertex. The Schläfli symbol further
contains information about the curvature of the space that is being tessellated. Spherical
tilings obey (p− 2)(q − 2) < 4, while Euclidean ones obey (p− 2)(q − 2) = 4, e.g. square
or hexagonal tilings. Tilings of hyperbolic space are obtained whenever (p− 2)(q− 2) > 4,
thus providing an infinite number of different solutions. Some examples of hyperbolic {p, q}
tilings are shown in Fig. 2.

Given that hyperbolic space introduces a natural length scale via its radius of curvature,
the size of the tiles is fixed with respect to this length. Polygon edges are thus geodesic
segments of fixed length and internal angles are given by 2π/q. Moreover, the distance of
the center of a polygon to any of its vertices, the so-called circumradius r0, is also fixed to
be

r0(p, q) =

√√√√√cos
(
π
p + π

q

)
cos
(
π
p − π

q

) . (6)

Using hyperbolic trigonometry [77], we can find the other two characteristic lengths of a
polygon, namely the minimal distance ρ0 from the center to an edge, and the length s0 of
an edge,

ρ0(p, q) = arctanh
(
cos

(
π

p

)
tanh (r0(p, q))

)
,

s0(p, q) = 2 arcsinh
(
sin

(
π

p

)
sinh (r0(p, q))

)
.

(7)

These lengths are expressed in terms of coordinates on the Poincaré unit disk D2, which
has a fixed length scale given by its (unit) radius. Their corresponding hyperbolic length
in units of the AdS radius R is obtained from the distance function d(·, ·) (4) associated
to the Poincaré metric (3). We thus define the following hyperbolic lengths,

d(r0(p, q), 0) ≡ r(p, q,R) ≡ r ,

d(ρ0(p, q), 0) ≡ ρ(p, q,R) ≡ ρ ,

d(s0(p, q), 0) ≡ s(p, q,R) ≡ s ,

(8)

all of which are visualized in Fig. 2.
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(a) {6, 4} tiling. (b) {5, 4} tiling.

(c) {3, 7} tiling. (d) {6, 9} tiling.

(e)

Figure 2: a)-d): Examples of {p, q} regular hyperbolic tilings for all parity combinations of
the Schläfli parameters. The red, blue and yellow dots denote vertices of type a, b and ⊛,
respectively, according to the inflation rules introduced in Sec. 2.2. The different shades
of gray depict successive layers of this inflation procedure. e) Characteristic lengths and
angles of a single polygon in {5, q} tiling, as defined in (8). Due to the intrinsic length
scale given by the curvature radius, these lengths are fixed as a function of p and q and
cannot be varied.

2.2 Hyperbolic tilings through inflation rules

Geometrically, all hyperbolic tilings can be constructed from a central triangle by mirroring
along geodesic edges [76]. This is useful, e.g., for practical implementations that require
the exact positions of the vertices. We are interested in a different construction method,
which generates the bulk layer by layer and highlights the aperiodic, fractal-like structure
arising on the boundary.

Aperiodic sequences

We consider first the properties of general aperiodic sequences before restricting to those
associated to {p, q} tilings. An aperiodic sequence of letters is generated by repeated
application of a substitution or inflation rule to a starting set of letters denoted as seed
word [78]. For binary sequences, meaning that only two different letters a and b appear,
the general inflation rule reads

σ :

{
a 7→ wa(a, b) ,

b 7→ wb(a, b) ,
(9)

where wa(a, b) and wb(a, b) are words made up of a and b. An infinite aperiodic sequence is
generated by the iterated application of the rule (9) an infinite number of times. Inflation

9



SciPost Physics Submission

rules that can be mapped to each other via word conjugation, i.e. wa(a, b) 7→ w′
a(a, b) =

uwau
−1 and wb(a, b) 7→ w′

b(a, b) = uwbu
−1 with a finite word u = u(a, b), are said to be

equivalent and lead to the same infinite aperiodic sequence [78]. Note that two inflation
rules such that one is obtained by applying the other an integer number of times are also
equivalent in this sense. Given two inflation (or later, deflation) rules σ and σ′ we denote
their equivalence by σ ∼ σ′. The properties of the infinite sequence generated by the
inflation rule (9) are encoded in the substitution matrix defined as

Mσ =

(
#a(wa) #a(wb)
#b(wa) #b(wb)

)
, (10)

where #i(wj) is the number of letters of i-th type into the word wj , with i, j = a, b.
Since inflation matrices are real and non-negative by construction, the Perron-Frobenius
theorem guarantees the uniqueness of their largest eigenvalue λ+. This gives the asymptotic
scaling factor of the sequence length after a large number of iterations. The corresponding
statistically normalized right eigenvector (Perron-Frobenius eigenvector) v+ = (pa, pb)

t

determines the frequencies of the letters a and b in the asymptotic sequence. The left
eigenvector u+ = (la, lb)

t associated to λ+ is normalized in such a way that u+ · v+ = 1.
This normalization naturally introduces two length scales, la and lb, associated to the letters
a and b respectively. It is worth stressing that these interpretations for the eigenvalues and
eigenvectors of the inflation matrix presuppose a large number of inflation steps and are
only valid in this asymptotic limit. Only in this scenario is a large finite sequence a good
representative of the aperiodic structure.

Inflation rules for {p, q} tilings

The properties of aperiodic sequences described above are valid for general inflation rules.
To make contact to the hyperbolic tilings that discretize a constant time-slice of AdS2+1,
we restrict ourselves to those inflation rules that generate such tilings. The construction
of a {p, q} hyperbolic tiling from an inflation rule is as follows. Our starting point is a
polygon centered around the origin of the Poincaré disk. This will be the 0th-layer of the
tiling and the vertices represent the seed word. Subsequent layers of tiles are introduced
concentrically around the central polygon. We adapt the notation introduced in [52] and
define two types of vertices: a and b. Given a fixed layer of the tiling, there will be vertices
that are connected to the previous layer and those who are not. The latter will have a lower
effective number of neighbors and we denote it by the letter a. Those vertices connected to
the previous layer have a larger effective coordination number (within this fixed layer) and
will be denoted by the letter b. This exact number of effective neighbors depends on the
specific {p, q} tiling, but the association with a and b letters can always be done. The case
p = 3 requires the introduction of an auxiliary vertex, denoted by the symbol ⊛, which
only appears in the central tile before it disappears from the tiling. With this notation,
the seed word providing the starting point for inflation is given by the sequence aa . . . a of
length p for p > 3 and the sequence ⊛ ⊛ ⊛ for p = 3. The nth layer of the tiling is then
constructed by applying a tiling-dependent inflation rule σ{p,q} to the (n − 1)th layer, as
shown in Fig. 2 for two initial inflation steps. Different types of vertices are color-coded.
The general inflation rules for p = 3 and q ⩾ 7 are given by [40,52]

σ{3,q} =


⊛ 7→ aq−4b ,

a 7→ aq−5b ,

b 7→ aq−6b .

(11)

10
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Since the auxiliary vertex ⊛ disappears from the sequence after the first inflation step, (11)
can be effectively treated as a binary inflation rule. For the more general p > 3 case, the
inflation rule is

σ{p,q} =

{
a 7→ ap−4b(ap−3b)q−3 ,

b 7→ ap−4b(ap−3b)q−4 .
(12)

The q = 3 case is somewhat pathological, in the sense that it requires three letters as well
as the introduction of a deletion rule that removes a particular letter each step. This case
is considered separately in Appendix B where we provide an alternative approach. For the
general case, the substitution matrix (10) reads

M{p,q} =



(
(p− 3)(q − 3) + p− 4 (p− 3)(q − 4) + p− 4

q − 2 q − 3

)
, p > 3,(

q − 5 q − 6

1 1

)
, p = 3 ,

(13)

and its largest eigenvalue is

λ+(p, q) =


1
2

(
pq − 2p− 2q + 2 +

√
(pq − 2p− 2q + 2)2 − 4

)
, p > 3 ,

1
2

(
q − 4 +

√
q2 − 8q + 12

)
, p = 3 .

(14)

Notice that λ+(p, q) > 1 for all p and q. The corresponding properly normalized right and
left eigenvectors are

v+ =

 ω(p,q)
2(p−2) −

q
2 + 2

− ω(p,q)
2(p−2) +

q
2 − 1

 ,

u+ =

(
2

−p(q − 2) + ω(p, q) + 2q
,

−p(q − 2) + ω(p, q) + 4q − 8

(q − 2) (−p(q − 2) + ω(p, q) + 2q)

)
,

(15)

where we introduced the short-hand notation ω(p, q) ≡
√

(p− 2)(q − 2)(p(q − 2)− 2q)
for clarity. It is a straightforward computation to check that the normalization condition
u+ · v+ = 1 holds.

Successive application of these inflation rules generates the hyperbolic tiling one layer
at a time. Infinite inflation steps tessellate the whole Poincaré disk, while truncation of
the tiling after some finite number n of inflation steps introduces a radial cutoff. The
letter sequence after n inflation steps characterizes uniquely the vertices on the boundary
of the tiling. It is worth stressing that, while the inflation of the seed word produces a
truly aperiodic sequence, the boundary of the hyperbolic tiling still enjoys a Zp rotational
symmetry with respect to the central tile. After a large number n → ∞ of inflation steps,
we can restrict ourselves to a p-th of the tiling boundary and still view large sub-sequences
of it as good representatives of the aperiodic structure.

2.3 Entanglement entropy in discretized AdS3: a toy model

We proceed to explain a geometric derivation of entanglement entropy on hyperbolic tilings.
We consider the vacuum state of AdS2+1 with a UV cutoff radius ρ̃, dual to the ground
state of a holographic two-dimensional CFT, with central charge c, defined on a circle with

11
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(a) {even, even}: ν = p
2 . (b) {odd, even}: ν = p−1

2 .

(c) {odd, odd}: ν = p. (d) {even, odd}: ν = p
2 + 1.

Figure 3: Hyperbolic patterns encompassing repeated segments of length t(p, q) of a con-
tinuous geodesic γA (blue line) for different parities of {p, q}. We take γA to be a diametric
geodesic of D2 here for clarity. Suitable choice of radial cutoff ϵ guarantees that the end-
points of γA coincide with vertices of the tiling. A single pattern contributes a number ν
of edges to the discrete path ΓA (red line) that approximates γA.

circumference L. We assume that the RT formula (1) for the entanglement entropy of a
boundary region A of length ℓ holds after the hyperbolic tiling is introduced. In AdS2+1

the minimal area hypersurface γA involved in (1) is a geodesic anchored at the endpoints
of the boundary subsystem A. On the tiling, the length of the continuous geodesic γA can
be approximated by that of a discrete path ΓA consisting purely of polygon edges and that
is anchored on the same boundary region A. The length |ΓA| then equals its total number
of edges N times the geodesic edge length s. The discretized version of the RT formula
then reads,

SA =
|ΓA|
4GN

=
N s

4GN
. (16)

In the following, we explain how to derive explicit expressions for N for different parities
of the Schläfli parameters p and q.
The starting point of the construction is the proper orientation of the tiling. For any
continuous geodesic γA of D2, we orient the tiling in the most symmetric way, which
is characterized by the continuous geodesic cutting subsequent polygons in a predictable
manner. This can always be achieved by first transforming the geodesic to a diametric
geodesic via a isometric transformation and then fixing the tiling orientation. In particular,
this introduces the notion of a pattern, which is a local geometric substructure of the tiling
that repeats exactly along the continuous geodesic. We visualize the patterns for different
{p, q} tilings in Fig. 3. The anchoring points of ΓA coincide with those of γA. Indeed,
proper definition of an entangling region on the boundary theory requires the geodesic to
end on a vertex, as will be explained in Sec. 3.

After fixing the tiling’s orientation, the continuous geodesic γA will consist of a number
n of patterns, each of which encompasses the geodesic length t(p, q), i.e. |γA|c = n t(p, q).
This length can be expressed in terms of the characteristic lengths of a polygon via (8).
The discrete path ΓA consists purely of the edges of the polygons through which γA runs,
cf. Fig. 3. Given a pattern, we assign to it a number ν(p, q) counting the number of edges
it adds to the discrete approximation of the geodesic. Thus, we have N = nν(p, q) and

12
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(16) turns into

SA =
n s(p, q) ν(p, q)

4GN
, (17)

where s(p, q) is defined in (8). In principle, the number n cannot be retrieved from infor-
mation about the tiling. However, it can be removed from (17) by inserting the continuous
length of the geodesic γA. It is known [6] that integration of the metric (5) along general
solutions to the geodesic equation up to a radial cutoff z = ϵ ≪ 1 yields a closed expression
for the length of the continuous geodesic

|γA| = 2R ln

(
ℓ

ϵ

)
+O(ϵ2) , (18)

where ℓ is the length of the entangling region A defined by the set of boundary points
x ∈ (− ℓ

2 ,
ℓ
2) in the Poincaré coordinates of (5). Inserting (18) into (17) yields

SA =
2Rs(p, q) ν(p, q)

4GN t(p, q)
ln

(
ℓ

ϵ

)
. (19)

Finally, let us emphasize that the above analysis does not yet take into account the subtle
relation between lengths on the bulk and lengths on the boundary, which arises from the
fractal structure of the tiling’s boundary. This introduces a scaling exponent, the fractal
dimension d = ln(λ+)/t, relating the number of sites L in the entangling region to its length
ℓ via ln(L) = d ln(ℓ/ϵ). A derivation of the fractal dimension for {p, q} tilings is provided
in Appendix A. Taking this into account, we find an expression for the tiling-dependent
entanglement entropy

SA =
2R

4GN

s(p, q) ν(p, q)

t(p, q)

t(p, q)

lnλ+(p, q)
ln(L) ≡

ceff,bulk(p, q)

3
ln(L) , (20)

with the tiling-dependent effective central charge

ceff,bulk(p, q) =
c s(p, q) ν(p, q)

lnλ+(p, q)
, (21)

characterizing the logarithmic growth of the entanglement entropy with the subsystem
size. We have made use of the Brown-Henneaux formula c = 3R

2GN
to introduce the central

charge of the CFT in consideration. The exact value of c is left undefined.

A few comments on (21) are in order. First, we emphasize that the effective central
charge is defined as the coefficient of the logarithmic growth of the entropy, but it does
not carry the standard interpretation of measuring the number of degrees of freedom in
the theory. Nevertheless, even in this simplified setup, the prefactor does depend on
{p, q}, which are the only parameters characterizing the discretization of the bulk. We
are thus able to see a non-trivial dependence of the entanglement entropy on the details
of the discretization considered. Second, a similar analysis has been presented in [52],
where maximal effective central charges for perfect tensor networks on hyperbolic tilings
have been derived. Let us emphasize that the construction in [52] makes explicit use
of a TN structure with perfect tensors of fixed bond dimension χ. In particular, this
implies a dependence of the Brown-Henneaux formula on the Schläfli parameters, which
we do not assume in our construction. In contrast, our analysis provides a much simpler,
geometrical derivation of the consequences of the discretization on the logarithmic scaling
of the boundary system size. A more detailed comparison of the resulting effective central
charges for different tilings derived in our setup with those of [52] is provided in Sec. 6.
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Figure 4: Construction of an aperiodic spin chain (bottom) based on the sequence of letters
that the inflation procedure for a {p, q} tiling of the Poincaré disk (cf. Sec. 2.2) induces
on the boundary (top). The letter sequence on the tiling’s boundary is associated to the
coupling distribution in the corresponding spin chain. Different colors depict bonds with
different couplings Jk with k = a, b.

3 Aperiodic quantum spin chains

Based on the analysis of Sec. 2 and in view of establishing a bulk-boundary correspondence
on regular hyperbolic tilings, we consider aperiodic quantum spin chains to be a promising
candidate for a boundary theory. In order to study the critical properties of these models,
we discuss the strong disorder renormalization group approach for aperiodic spin chains
[57, 58]. We subsequently apply it to our example of interest in this class, namely XXZ
chains with aperiodicities induced by the inflation rule σ{p,q}. Finally, we discuss the
consequences of aperiodicity in this model and characterize its relevance with respect to
the homogeneous model.

3.1 Aperiodic spin chains on the boundary of hyperbolic tilings

Consider a regular {p, q} hyperbolic tiling on the Poincaré disk obtained after a large num-
ber of inflation steps, as described in Sec. 2.2, and the sets {ei}Ni=1 and {vi}Ni=1, respectively
containing the edges and the vertices on the tiling’s boundary. Each vi is endowed with
a letter xi ∈ {a, b} such that the sequence {xi}Ni=1 is determined by the inflation rule
σ{p,q}, as depicted in Fig. 4. Given that the full tiling enjoys a Zp rotational symmetry,
we restrict to one p-th of the boundary, where the sequence of letters is a proper aperi-
odic sequence generated by σ{p,q}, in the sense that there are no sub-sequences repeated
with a fixed periodicity. We assume that the number of inflation steps through which the
boundary has been generated is large such that this sequence can be well approximated
by an infinite aperiodic sequence. This leads us to consider infinitely many edges {ei}i∈Z
and vertices {vi}i∈Z, the latter ones in one-to-one correspondence with letters following an
infinite aperiodic sequence {xi}i∈Z. As explained in Sec. 2.2, the properties these sequences
are encoded in the substitution matrix (10), its largest eigenvalue and the corresponding
right and left eigenvectors.

At any inflation step, the boundary of the tiling is characterized by a discrete set of
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vertices and edges. Thus, if a correspondence between a discrete theory defined on the
tiling and a model on its boundary exists, we expect that the latter can be described
by a quantum chain, e.g. a spin chain. We also expect that the degrees of freedom
along the spin chain follow a pattern determined by the same sequence {xi}i∈Z which
characterizes the boundary of the tiling. The procedure we follow for constructing such a
suitable spin chain is pictorially represented in Fig. 4. We associate spin degrees of freedom,
generically denoted by σi, to each edge ei and a bond to each vertex vi of the tiling’s
boundary. Moreover, given a vertex vi, we assign to the corresponding bond the coupling
Ja if xi = a and the coupling Jb if xi = b. Models constructed in this way are examples
of aperiodic quantum chains, a well known class of systems in the literature of condensed
matter theory [45–50]. The precise nature of the couplings depends on the specific spin
model one considers. In this work, we restrict ourselves to nearest-neighbor chains and to
the case where the couplings Ja and Jb are hopping parameters. In particular, the case
Ja = Jb ≡ J recovers a homogeneous spin chain. For concreteness, one can imagine that
this underlying homogeneous model is in a gapless regime, which in the continuum limit
is described by a CFT with central charge c. An important question that can be raised is
whether the presence of aperidiocity modifies the critical properties of the homogeneous
model. An aperiodic modulation is called relevant if the critical behavior changes, being
governed by a new aperiodicity-induced fixed point. If instead the critical properties are
unchanged after the introduction of the aperiodicity, the modulation is called irrelevant.
Finally, we denote a modulation as marginal when the criticality of the system (or, more
concretely, its critical exponents) develops a continuous dependence on the values of Ja
and Jb.

In our construction the nature of the spin variables defined on each site of the chain,
as well as of the explicit form of the Hamiltonian, is not fixed a priori, but it can be
chosen according to the features we require for the boundary theory. These choices do not
influence in any way the aperiodic modulation we impose on the boundary chain, which
is the only feature determined by the pair {p, q} associated to the bulk tessellation. For
instance, as we are going to specify in the next subsection, one can require the boundary
model to be gapless, imposing constraints on the type of spin degrees of freedom and
on the Hamiltonian describing their behavior. The most common choice is considering
SU(2) spins, where the spin variables are operators satisfying the Lie algebra associated
to the group SU(2). Moreover, within this choice, one can further choose the irreducible
representation of SU(2), which is associated to a spin quantum number that can assume
either integer or half integer numbers. As we will discuss later, for some specific choices of
Hamiltonian, the nature of the spin quantum number can strongly influence the physical
properties of the model, independently of the presence of aperiodicity [79–81]. In this work
we will focus on the spin-1/2 case, for which the properties of the aperiodic spin chains are
well understood, cf. the discussion in Sec. 3.2.
Furthermore, we find it worth mentioning that generalizations to SU(N)-spin aperiodic
chains as boundary theories are feasible in principle. In that case, the spin variables at
each site are represented by the N2 − 1 generators of the SU(N) group [82–87]. Although
treating this class of systems can be very difficult, considering them as possible boundary
theories opens very interesting scenarios which we will briefly mention in Sec. 7.

3.2 Aperiodic XXZ spin chain and strong disorder renormalization group

Thus far, we have discussed the properties for generic spin chains with couplings modulated
by two-letter inflation rules (9). In this subsection, we choose a specific aperiodic chain
in order to study how the critical properties of the underlying homogeneous model are
modified by introducing a modulation generated by σ{p,q}.
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We introduce the aperiodic XXZ spin chain, governed by the following Hamiltonian

H =
∑
i∈Z

Ji

[
σ
(x)
i σ

(x)
i+1 + σ

(y)
i σ

(y)
i+1 +∆0σ

(z)
i σ

(z)
i+1 ,

]
(22)

where σ
(α)
i with α = x, y, z are the Pauli matrices localized on the i-th site of the chain,

Ji = Ja if the bond between the i-th and the i + 1-th site is of the type a and Ji = Jb
otherwise. We define the aperiodic XXZ chain (22) with a modulation of the hopping
parameters Ji generated by the inflation rule σ{p,q} as the boundary theory of the {p, q}
tiling of a Poincaré disk. For the remainder of this work, we focus on the properties of the
ground state of this model and their dependence on the Schläfli parameters.
Since the Hamiltonian can be rescaled by a constant factor without changing the properties
of the model, from (22) it is straightforward to see that the only physical parameters are
r ≡ Ja/Jb and ∆0. The parameter ∆0 is sometimes called the anisotropy parameter and we
restrict ourselves to the regime 0 ⩽ ∆0 ⩽ 1 in the following. This is because, in this range
of values for ∆0, the underlying homogeneous model (homogeneous XXZ chain) is gapless
and is described by a compactified free boson CFT (c = 1) in the continuum limit, with the
compactification radius determined by ∆0 [88]. One of our motivations for considering the
XXZ chain is that it can be mapped into a theory of interacting fermions via the Jordan-
Wigner (JW) transformation, which relates spins to spinless fermions. In particular, when
∆0 = 0, (22) reduces to the Hamiltonian of the aperiodic XX model, which is a free model
in the sense that it is mapped by the JW transformation into a chain of free fermions. An
exact approach for determining the relevance of the aperiodic modulations in XX chains
has been developed in [49]. Instead, when ∆0 = 1, we have the so-called aperiodic XXX
spin chain.

We require the aperiodic spin chain that we define on the tiling’s boundary to be critical.
This is motivated by the standard continuum AdS/CFT, where a conformal field theory,
which provides a good description for gapless systems, is defined on the boundary of the
AdS spacetime. Thus, it is in our interest to verify if the criticality of the homogeneous XXZ
model is maintained in the presence of aperiodicity. The effect of aperiodic modulations on
the critical properties of the XXZ chain has been first studied in [57,58], where the strong
disorder renormalization group (SDRG) developed in [89, 90] for systems with random
disorder has been adapted to the case of aperiodic modulations. In these works it was
argued that, in presence of binary aperiodicities with equal fractions of letters a (or b) at
even and odd sites, the XXZ spin chain with 0 ⩽ ∆0 ⩽ 1 is still in a gapless regime. By
this we mean that if we were to consider only the a letters in a sequence, these would be
uniformly distributed among even and odd numbered sites of the full chain. A criterion
to determine whether a given aperiodic sequence does fulfill this property is provided
in [49]. Following that argument, we have checked that the {p, q} modulations (11) and
(12) considered here satisfy these requirements and therefore the theory we have chosen
to define on the boundary of a {p, q} tiling is critical in the given parameter regime.
Interestingly, note that when considering integer-spin representations of SU(2) instead of
spin-1/2 degrees of freedom along an aperiodic chain, criticality is no longer guaranteed.
This happens, for instance, in spin-1 aperiodic XXX chains, which are found to have a
finite gap in the spectrum, differently from its spin-1/2 counterpart [81]. Thus, we are
motivated to focus on half-integer spins aperiodic chains and, more specifically, spins-1/2
chains, where the criticality condition is well understood [49,57,58].

We now proceed to briefly review the SDRG method for the aperiodic XXZ chain
[57, 58]. Consider a subsystem of the chain made up with n + 2 spins connected by the
sequences of nearest neighbour couplings J l, J0, J0,..., J0, J r and ∆l, ∆0, ∆0,..., ∆0, ∆r.
We assume that J0 ≫ Jl,r and ∆0 ≫ ∆l,r and therefore the bonds with coupling J0 are
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(a) (b)

Figure 5: Strong disorder renormalization step involving a block of 2 (a) and 3 (b) spins
connected by strong bonds. Strong bonds are depicted in blue, while all other weaker
bonds are shown in red. Whether the bonds in the renormalized chain (depicted in cyan)
are strong or not can only be determined a posteriori, by comparing the renormalized
couplings after the RG transformation has been applied to the whole chain.

called strong bonds. The local Hamiltonian for the n internal spins reads

Hn = J0

n∑
i=1

[
σ
(x)
i σ

(x)
i+1 + σ

(y)
i σ

(y)
i+1 +∆0σ

(z)
i σ

(z)
i+1

]
, (23)

while the coupling of the n spins with the the two external ones, denoted by σ
(α)
l,r with

α = x, y, z, is

δH = Jl

[
σ
(x)
l σ

(x)
1 + σ

(y)
l σ

(y)
1 +∆lσ

(z)
l σ

(z)
1

]
+ Jr

[
σ(x)
n σ(x)

r + σ(y)
n σ(y)

r +∆rσ
(z)
n σ(z)

r

]
. (24)

The idea behind the SDRG is that at low temperature (below the smallest gap of Hn), δH
can be regarded as a small perturbation of Hn. Under this assumption, the n internal spins
can be decimated out from the system, since they couple into their ground state which
gives a negligible contribution to the thermodynamic properties. The decimation of the
internal spins induces effective couplings between the two external ones, whose magnitudes
can be estimated through the second order perturbation theory. In order to provide the
explicit expressions, let us distinguish between the cases where n is even and n is odd.
When n is even, the ground state of Hn is the singlet

|T ⟩ =
∑

{mi=±}

|m1⟩ . . . |mn⟩Tm1...mn , (25)

where we have defined the basis of the local Hilbert space such that σ(z) |±⟩ = ± |±⟩. The
decimation process of the internal spins induces an effective coupling between σl and σr
described by the Hamiltonian

H ′
even = J ′

[
σ
(x)
l σ(x)

r + σ
(y)
l σ(y)

r +∆′σ
(z)
l σ(z)

r ,
]

(26)

where the parameters J ′ and ∆′ are given by [57,91]

J ′ = γn(∆0)
JlJr

J0
, ∆′ = δn(∆0)∆l∆r , (27)
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with γn and δn functions of ∆0 and n such that |δn(∆0)| < 1 when 0 ⩽ ∆0 < 1 and
δn(1) = 1. The decimation of a block of n = 2 spins is shown pictorially in Fig. 5 a.
On the other hand, when n is odd, the ground states of Hn is a generic linear combination
of two degenerate states in a doublet

|Tm0⟩ =
∑

{mi ̸=0=±}

|m1⟩ . . . |mn⟩Tm0
m1...mn

, (28)

where the sum does not run over m0 = ±, regarded here as a free index labeling each of
the two ground states. Notice that the coefficients Tm0

m1...mn
have not been specified yet.

In order to fix them, in the spirit of SDRG [57,91], we consider the total spin of the block
within the subspace spanned by the degenerate ground states |T±⟩. More precisely, we
impose that the total spin operator M

(α)
n ≡

∑n
i=1 σ

(α)
i , for α = x, y, z, of an n-spin block

is equal, up to normalization factors, to a single effective spin σ
(α)
0 , namely〈

Tm0

∣∣∣M (α)
n

∣∣∣Tm′
0

〉
= η(α)n (∆0) ⟨m0|σ(α)

0

∣∣m′
0

〉
, α = x, y, z. (29)

where η
(z)
n (∆0) = 1 for generic anisotropies ∆0. In the special case of ∆0 = 1, we have

η(α)(1) = 1. Eq. (29) indicates that, along the SDRG, we can replace the block in its
ground state by an effective spin σ

(α)
0 coupled to σ

(α)
l,r through the Hamiltonian

H ′
odd = J ′

l

[
σ
(x)
l σ

(x)
0 + σ

(y)
l σ

(y)
0 +∆′

lσ
(z)
l σ

(z)
0

]
+J ′

r

[
σ
(x)
0 σ(x)

r + σ
(y)
0 σ(y)

r +∆′
rσ

(z)
0 σ(z)

r

]
, (30)

where [57,91]
J ′

l,r = γn(∆0)Jl,r , ∆′
l,r = δn(∆0)∆l,r . (31)

The decimation of a block of n = 3 spins is shown pictorially in Fig. 5 b. Notice that
analytical expressions for γn and δn as functions of ∆0 are available only for small values
n, while for large blocks they can be obtained numerically. For later convenience we report
the results for n = 2, which read [89,90]

γ2(∆0) =
1

1 +∆0
, δ2(∆0) =

1 +∆0

2
. (32)

For the following discussion, the explicit expressions of γn and δn are not necessary; it is
enough to know that δn ⩽ 1 when 0 ⩽ ∆0 ⩽ 1 and γn(1) < 1 [91]. We have checked these
inequalities numerically for several values of n, as discussed in Appendix B. The results
are reported in Fig. 16, where strong evidence of a decay in the values of γn(1) for growing
n is provided.

Given the initial aperiodic sequence of couplings along the whole chain, the decimation
process described above is applied simultaneously to all blocks of consecutive spins coupled
by the strong bonds. This is then iterated and leads to a renormalization of the spatial
distribution of the bonds along the chain. We denote a single iteration of this process as
an RG step. Given the self-similarity of the aperiodic sequences, the bond distribution in
the chain reaches a periodic attractor after a certain number of RG steps. If the attractor
arises every k RG steps, we denote it as a k-cycle. In the rest of the manuscript, the
transformation that realizes a k-cycle is called sequence-preserving transformation. In other
words, the sequence-preserving SDRG transformation is obtained by the composition of k
RG steps and will be denoted Ξ. Notice that, even if initially we do not have aperiodicities
in the anisotropy parameter (see (22)), the modulation of hopping parameters induces an
effective modulation on ∆0 which is renormalized to two different couplings, ∆a and ∆b .
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In order to determine the critical properties of the chain, we first employ (27) and (31)
to work out the recursion relations for the effective couplings induced by k RG steps. Then
we apply M times the recursion relation to the initial couplings, obtaining

r(M) = FM (r,∆0) , ∆(M)
a = G

(a)
M (r,∆0) , ∆

(M)
b = G

(b)
M (r,∆0) , (33)

and finally we take M → ∞ and we find the effective coupling at the so-called strong
disorder fixed point

r∗ = lim
M→∞

FM (r,∆0) , ∆∗
a = lim

M→∞
G

(a)
M (r,∆0) , ∆∗

b = lim
M→∞

G
(b)
M (r,∆0) .

(34)
The explicit expressions of the functions FM , G(a)

M and G
(b)
M depend on the specific aperiodic

modulation that we consider.
Let us qualitatively discuss some important scenarios occurring regardless of the spe-

cific form of aperiodicity for the couplings. On the one hand, given that δn(∆0) < 1 when
0 ⩽ ∆0 < 1, (27) and (31) imply that the anisotropy parameter flows to a XX fixed point
with ∆∗

a = ∆∗
b = 0. Thus, the system enjoys the same critical behavior as the aperiodic XX

chain. On the other hand, when ∆0 = 1, the anisotropy parameter does not flow and stays
constantly equal to one. The behavior of the coupling ratio r under SDRG is determined by
looking at its flow equation, which explicitly depends on the inflation rule. Suppose that,
iterating the RG steps, the coupling ratio becomes smaller and smaller reaching ultimately
the fixed point r∗ = 0. If this happens, we conclude that the aperiodicity drives the system
towards a strong inhomogeneity and therefore we expect the modulation to be relevant.
In contrast, when the coupling ratio r∗ at the fixed point is non zero and depends on the
initial value r, the aperiodic modulation which has induced the flow is marginal. We find
it worth stressing that, whenever the RG flow leads to a fixed point with r∗ = 0 for the
coupling ratio, we can argue that the SDRG method presented here becomes asymptoti-
cally exact. Indeed, recall that the relations (27) and (31) for the flows of couplings and
anisotropies have been obtained using the second-order perturbation theory, with J0 much
larger than all the other couplings.

Based on this discussion of the general behavior of the XXZ spin chain under aperi-
odic modulations, let us now consider the special case of interest to us, namely aperiodic
modulations induced by the inflation rules of {p, q} tilings. The critical behavior of these
models can be pictorially represented in parameter space (r,∆a,∆b), as shown in Fig. 6.
Notice that different Schläfli symbols {p, q} give rise to different phase diagrams. When
r = 1, the chain is homogeneous and the fixed points at various values of ∆0 (yellow dots
in Fig. 6) are described by c = 1 CFTs. In the presence of aperiodicity (r < 1), for any
0 < ∆0 < 1, the XXZ chain flows to an XX chain under SDRG. This is represented for an
exemplary point by the light blue arrow in the bottom part of Fig. 6. We stress that, since
the SDRG method is asymptotically exact at strong modulations, this picture is reliable
only when r ≪ 1. At the fixed points with ∆∗

a = ∆∗
b = 0, the critical behavior can be

determined by exploiting the exact methods developed in [49] and one can show that the
modulations generated by σ{p,q} are marginal for any pair {p, q}. In App. B this result has
been verified in the range of validity of the SDRG. In the phase diagram, the marginality
of the modulation on the XX chain corresponds to the line of fixed points represented in
Fig. 6 as green dots along the vertical line ∆a = ∆b = 0.

The aperiodic XXX chain requires a separate analysis. Exploiting the techniques re-
viewed in this section, we show in App. B that all the aperiodicities generated by {p, q}
inflation rules lead the system to a fixed point different from the homogeneous one. Thus,
all these modulations are relevant. This fact is represented in Fig. 6 by the blue dot flowing
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Figure 6: Phase diagram of the aperiodic XXZ chain in the critical regime. The SDRG
approach is reliable in the bottom part of the parameter space only (indicated schematically
by the grid plane), while the exact methods in [49] allow to establish the marginality of
the modulations in aperiodic XX chains for any 0 ⩽ r < 1. The resulting fixed points are
r-dependent and are shown in green. The axes ∆a and ∆b are necessary because of the
effective aperiodicity induced by the SDRG on the anisotropy ∆0, which is not modulated
in the original chain (see (22)).

towards the strong disorder fixed point (purple dot) along the red vertical edge. In the
following subsection we justify this statement through a detailed analysis of the modula-
tion induced by σ{6,q} with q ⩾ 4. The generalization to any pair {p, q} is rather involved
using the standard methods presented here. In Sec. 5 we provide an equivalent graphical
approach, based on a tensor network construction, that allows to prove the relevance of
{p, q} modulations in aperiodic XXX spin chain for all p and q in a much simpler way.

Finally, we find it useful to comment upon the relation of this aperiodic setup with the
case of random quantum spin chains. The latter are often of interest for condensed matter
systems since they provide a good description of inhomogeneities and defects in solid states.
The SDRG procedure introduced above has originally been implemented for these random
spin chains. However, the fixed points arising from the presence of random modulations
are not the same as those originating from aperiodic modulations. In particular, they are
characterized by different critical exponents and thus do not belong to the same universality
class. For a more detailed comparison in this context, we refer to [49,57,91,92].

3.3 Prime example: {6, q} modulations

Throughout this work, we will use the modulation generated by the inflation rule σ{6,q}
as a reference example. The reasons are twofold: first, in general, even values of p are
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Figure 7: Top line: Typical asymptotic sequence arising from the {6, q} inflation rule (35).
Strong bonds Jb are depicted in blue, weak bonds Ja in red. The gray brackets imply
the repetition of the letter sequence enclosed by them in analogy to usual exponentiation,
i.e. (abb)2 ≡ abbabb. A decimation procedure associated to the RG step (36) is performed,
whereby some repeated sub-structures like the one inside the green box can be renormalized
as a whole to a new sequence. Bottom line: Resulting sequence after one RG step which
is different from the original sequence.

simpler to study and allow us to analyze general families of the form {p = 2k, q} with
k ∈ N\{1}, which are of interest for obtaining expressions valid for all q. This simplicity
is explained in more detail in Sec. 5.1. Second, the p = 6 case has a tractable yet rich
real-space renormalization structure that allows for clear visualization of the nuances that
might arise in the RG procedure, such as k-cycle bond distribution attractors.
From (12), we can write the inflation rules for {6, q} tilings as

σ{6,q} =

{
a 7→ aab(aaab)q−3 ,

b 7→ aab(aaab)q−4 .
(35)

Let us comment on some general features of the asymptotic sequence generated by (35).
A typical string of letters extracted from the asymptotic sequence arising on the boundary
of the {6, q} tiling is shown on the top line of Fig. 7. As in the previous section, we denote
strong bonds with blue lines and weak bonds with red ones. It is clear from the inflation
rules (35) that the sequence will not have any isolated a letters. Moreover, there will also
never be consecutive strong bonds characterized by bb (or longer) sub-sequences, which
give rise to doublet ground states in the RG procedure, as explained in Sec. 3.2. Also, the
aab(aaab)q−4 sub-sequence never appears consecutively, e.g. aab(aaab)q−4aab(aaab)q−4aab
is not present in the asymptotic sequence. Finally, notice that the powers of the (aaab)
blocks are always either (q− 3) or (q− 4), separated by aa strings. In particular, concate-
nations to a (2q − 7) block do not appear.
The decimation of spin-blocks is performed as explained in the Sec. 3.2. The effective
spins of the renormalized chain will be defined on the two spins of the middle weak bond
of all aaa sub-sequences, as well as the middle spin of all the aa sub-sequences. Since
the (aaab)q−3 and (aaab)q−4 structures are just repetitions of these spin-block structures,
their decimation can be performed independently, yielding new sub-sequences (ba)q−3 and
(ba)q−4, respectively (cf. green dashed box in Fig. 7). Thus, the first RG transformation
is independent of q and reads

RG{6,q}
1 =

{
aba 7→ a

a 7→ b
⇐⇒ M

{6,q}
1 =

(
2 1
1 0

)
, (36)

where M
{6,q}
1 is the substitution matrix (cf. (10)) associated to the inflation rule which

implements the inverse of RG{6,q}
1 . Applying the decimation formulas (27) to the local
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spin-blocks of the chain, we can perform the RG1 (36). The renormalized couplings and
anisotropies are given by

J ′
a = γ2(∆0)

J2
a

Jb
, J ′

b = Ja ,

∆′
a = δ2(∆0)∆

2
0 , ∆′

b = ∆0 ,

(37)

with the functions γ2(∆0) and δ2(∆0) reported in (32). The resulting chain after one RG
step (36) is shown in the bottom line of Fig. 7. However, the resulting letter sequence is
manifestly not the original one. In other words, the single RG step is not equivalent, in
terms of letter sequences, to a deflation step σ−1

{6,q} of (35). Instead, as we will show in the
following, it turns out that the RG bond distribution attractor for {6, q} modulation is a
2-cycle for any q ⩾ 4. In order to verify this, consider a longer version of the sequence
resulting from the first RG step in (36), shown in Fig. 8. Consider further a second,
q-dependent RG transformation given by

RG{6,q}
2 =

{
a(ba)q−3 7→ a

a(ba)q−4 7→ b
⇐⇒ M

{6,q}
2 =

(
q − 2 q − 3
q − 3 q − 4

)
. (38)

Exploiting again (27), this leads to the renormalized couplings and anisotropies

J ′′
a =

(
γ2(∆

′
b)
)q−3J ′q−2

a

J ′q−3
b

, J ′′
b =

(
γ2(∆

′
b)
)q−4J ′q−3

a

J ′q−4
b

,

∆′′
a =

(
δ2(∆

′
b)
)q−3

∆′q−2
a , ∆′′

b =
(
δ2(∆

′
b)
)q−4

∆′q−3
a .

(39)

The resulting sequence, shown in the bottom line of Fig. 8, is now the original one. Thus,
we can relate the renormalized parameters in (39) to the original ones (Ja, Jb,∆0) by
inserting the expressions in (37). We obtain,

J ′′
a =

(
γ2(∆0)

)2q−5Jq−1
a

Jq−2
b

, J ′′
b =

(
γ2(∆0)

)2q−7Jq−2
a

Jq−3
b

,

∆′′
a =

(
δ2(∆0)

)2q−5
∆2q−4

0 , ∆′′
b =

(
δ2(∆0)

)2q−7
∆2q−6

0 .

(40)

We can compute the RG flow of the coupling ratio r = Ja/Jb from (40)

r′′ =
(
γ2(∆0)

)2
r . (41)

Let us stress that this is the result after two SDRG transformations, or equivalently after
a single sequence-preserving transformation Ξ{6,q} = RG{6,q}

2 ◦ RG{6,q}
1 . A complete flow

of the couplings can be then computed by repeatedly applying this analysis and producing
further generations of couplings which follow the original sequence but whose values get
renormalized, cf. (33) and (34). Regardless of the explicit value of the couplings at each
RG step, the fixed points can be determined from properties of γ and δ. For an initial
anisotropy 0 ⩽ ∆0 < 1, we have δ2(∆0) < 1 and thus the anisotropies flow towards a
XX chain fixed point with ∆∗

a = ∆∗
b = 0, as discussed below (34). Correspondingly, the

coupling ratio flows to a non-vanishing r∗, which depends on the initial value of r. This is
consistent with the marginality of {p, q} modulations in XX chains. For ∆0 = 1, i.e. the
XXX chain, the anisotropies are not renormalized and equal unity throughout the whole
RG procedure. Since γ2(∆0 = 1) = 1

2 , we find that the bare coupling flows towards a strong
disorder fixed point, characterized by r′ → r∗ = 0. Thus, {6, q} aperiodic modulations are
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Figure 8: Top line: Rescaled sequence appearing in the bottom line of Fig. 7 after the first
RG step. Applying a second RG step (38), (q − 3) blocks and their preceding bonds get
renormalized to a weak coupling J ′′

a , while the (q − 4) blocks are renormalized to a strong
coupling J ′′

b , both given in (39). Bottom line: After two RG steps, we recover the original
sequence, indicating that the bond attractor for {6, q} modulations is a 2-cycle.

relevant when applied to XXX chains.

In this section we have introduced a straightforward construction for defining a theory
on the boundary of a given {p, q} tiling of the Poincaré disk. We have associated a spin
1/2 to each edge and a bond connecting nearest-neighbor spins to each vertex. The letters
a and b of the asymptotic sequence on the boundary have been related to two different
couplings Ja and Jb along the spin chain. This way, we have constructed an aperiodic spin
chain on the boundary of the tiling whose modulation is governed by the letter sequence
generated by σ{p,q}. We have focused on infinite aperiodic XXZ chains with modulations of
the hopping parameters and homogeneous anisotropy parameter ∆0 (see the Hamiltonian
(22)). We have reviewed the SDRG techniques as a method for determining the critical
properties of aperiodic systems. Exploiting this method, we have argued that for any
pair {p, q} and for 0 ⩽ ∆0 < 1, the aperiodic modulation is marginal and the system is
characterized by a line of fixed points depending on the coupling ratio. In contrast, for
∆0 = 1 all the {p, q} modulations are relevant and the system flows towards a strong-
disorder fixed point independent of the couplings (see Fig. 6). This will be the case of
interest for us in the next sections.

4 Entanglement entropy in aperiodic XXX chains

As pointed out in Sec. 3.2, the infinite aperiodic XXX chain with modulations generated
by σ{p,q} has a critical behavior governed by an aperiodicty-induced fixed point, which
depend on the Schläfli parameters {p, q}. In this section we address the question of how the
entanglement properties of this aperiodic model depends on the pair {p, q} that determine
the modulation of the couplings. Notice that, because of the relevance of the modulation,
the entanglement in the aperiodic XXX chain is expected to depend on p and q only.
Instead, in cases where the modulation generated by σ{p,q} is marginal, as in the aperiodic
XX chain, we expect the entanglement to depend also on the coupling ratio [75].

4.1 Entanglement entropy in aperiodic singlet phases

In this section we compute the entanglement entropy of a block of consecutive spins in
an infinite XXX chain, whose Hamiltonian is given by (22) with ∆0 = 1, in presence of a
particular class of aperiodic modulations. Notice that, because of the spatial inhomogeneity
of these models, we have to consider the entanglement entropy averaged over different
starting positions of the subsystem. With a slight abuse of notation we will refer to this
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average simply as entanglement entropy. In what follows we consider aperiodic sequences of
couplings for which the SDRG procedure described in Sec. 3.2 produces exclusively 2-spin
singlets. Given that only singlets are created along the RG flow, after a large number of
RG steps, the ground state of the chain consists of singlets of spins separated by arbitrary
large distance. The system is then said to be in an aperiodic singlet phase [93]. Let us
stress that, within the geometric setup introduced in the previous sections, this state is
defined on one p-th of the boundary of a {p, q} tiling, while the whole boundary chain is
achieved by exploiting the Zp symmetry.

Given the infinite chain in its ground state, consider now a subsystem A consisting
of L consecutive spins. If the system is in the aperiodic singlet phase, the entanglement
entropy of A can be computed analytically, since in that case one simply has to count the
singlet bonds connecting the subsystem with the rest of the chain [93]. Each singlet will
give a contribution of ln 2 to the entanglement entropy. In [74] this idea was applied to
aperiodic XXZ chains with modulations given by the so-called singlet producing self-similar
sequences, namely sequences generated by inflation rules corresponding to the inverse of
the SDRG steps. As explained in Sec 3.2, these sequences all have a 1-cycle as bond
distribution attractor by construction. In the following, we generalize the computation
of [74] to those aperiodicities that along SDRG flow are characterized by a 2-cycle as bond
distribution attractor (see Sec. 3.2). The sequence-preserving transformations of this class
of flows can be written as the combination of only two RG steps, namely Ξ = RG2 ◦RG1.
The example discussed in detail in Sec. 3.3 belongs to this class.

Since the bond distribution attractor is a 2-cycle, the original sequence is renormalized
into itself through the application two distinct deflation rules, which define a sequence-
preserving transformation. Let us call M1 and M2 the substitution matrices of the two
corresponding inflation rules: in this notation, the sequence-preserving transformation
corresponds to M−1

2 M−1
1 = (M1M2)

−1. When M1 = M2 we recover exactly the setup
of [74]. We assume that M1 and M2 are both symmetric matrices; this holds in all the
cases of our interest. Under this assumption, M2M1 and M1M2 have the same eigenvalues.
We call λ(12)

+ the largest of them, which, in general, is not equal to the product of the
largest eigenvalues of M1 and M2 given that the two matrices do not commute.

As explicitly shown in the example reported in Sec. 3.3, when the bond-distribution
attractor is a 2-cycle, the coupling distribution along the chain alternates between even
and odd generations (obtained by even and odd numbers of RG steps respectively). The
k-th even generation (or 2k-th overall generation), with k ∈ N, is achieved by applying on
the k−1-th even one the matrix (M1M2)

−1 and therefore the system undergoes a rescaling

of
(
λ
(12)
+

)−1
. On the other hand, the k-th odd generation (or 2k−1-th overall generation)

is achieved by applying on the k − 1-th odd one the matrix (M2M1)
−1 and, also in this

case, the system undergoes a rescaling of
(
λ
(12)
+

)−1
. An initial condition relating the first

even and odd generations is required. This involves a single application of M1, but the
corresponding scaling cannot be directly inferred from it since M1 does not generate the
even generations asymptotically (because [M1,M2] ̸= 0). We denote the scaling factor
corresponding to this first transformation λ̃ and we will determine its exact value later.

Let us treat even and odd generations separately. Notice that the singlets in the k-th
generation correspond to the strong bonds in the k − 1-th generation and therefore their
characteristic length Λk reads

Λ2k−1 = l
(e)
b

(
λ
(12)
+

)k−1
, (42)

Λ2k = l
(o)
b

(
λ
(12)
+

)k−1
λ̃ , (43)
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where l
(o)
b and l

(e)
b are the b-th components of the left eigenvectors associated to λ

(12)
+ of

M2M1 and M1M2 respectively. Moreover, we have made use of the fact that the first
generation of singlets corresponds to the distribution of strong bonds in the original chain,
thus implying Λ1 = l

(e)
b . In contrast, the concentration of singlets in the k-th generation

reads

ρ2k−1 = p
(e)
b

(
λ
(12)
+

)−k+1
, (44)

ρ2k = p
(o)
b

(
λ
(12)
+

)−k+1
λ̃−1 , (45)

where p
(o)
b and p

(e)
b are the b-th component of the right eigenvectors associated to λ

(12)
+ of

M2M1 and M1M2 respectively.
In order to obtain λ̃, recall that after a large number of RG transformations the system

is supposed to be in an aperiodic singlet phase. This means that the sum over the singlet
concentrations of all the possible generations must give 1

2 , namely

∞∑
k=1

(
p
(o)
b λ̃−1 + p

(e)
b

)(
λ
(12)
+

)−k+1
=
(
p
(o)
b λ̃−1 + p

(e)
b

) λ
(12)
+

λ
(12)
+ − 1

=
1

2
. (46)

Inverting this relation, we obtain

λ̃ =
2p

(o)
b λ

(12)
+

λ
(12)
+

(
1− 2p

(e)
b

)
− 1

. (47)

Moreover, assuming that M1 and M2 are symmetric, it is straightforward to verify that

p
(o)
b l

(o)
b = p

(e)
b l

(e)
b . (48)

The fraction of the chain occupied by the singlets of the k-th generation is given by Wk =
ρkΛk and therefore, using (42)-(45), we have

W2k−1 = p
(e)
b l

(e)
b , W2k = p

(o)
b l

(o)
b , (49)

for all k ∈ N. In turn, due to (48), this means that Wk does not depend on k. Following
the procedure of [74], the generations of singlets with length Λk < L do contribute to the
entanglement entropy as

SA,< = 2 ln 2 p
(e)
b l

(e)
b

(
n(e)(L) + n(o)(L)

)
≡ 2 ln 2 p

(e)
b l

(e)
b n(L) , (50)

where n(e)(L) and n(o)(L) are respectively the number of even and odd generations of
singlets such that Λk < L, whose expressions read

n(e)(L) =

 ln
(
L/l

(o)
b

)
− ln λ̃

lnλ
(12)
+

 , n(o)(L) =

 ln
(
L/l

(e)
b

)
lnλ

(12)
+

+ 1 , (51)

with ⌊·⌋ indicating the floor function. On the other hand, the generations of singlets with
Λk > L give the following contribution to the entanglement entropy

SA,> = 2L ln 2

∞∑
k=n(L)+1

ρk = 2L ln 2

1

2
−

n(L)∑
k=1

ρk

 . (52)
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A distinction between even and odd values of n(L) is required. When n(L) is odd, we have

SA,> = 2L ln 2

1
2
−

[n(L)+1]/2∑
k=1

p
(e)
b

(
λ
(12)
+

)−k+1
−

[n(L)−1]/2∑
k=1

p
(o)
b λ̃−1

(
λ
(12)
+

)−k+1

(53)

= 2L ln 2
p
(e)
b + p

(o)
b λ̃−1λ

(12)
+

λ
(12)
+ − 1

[
λ
(12)
+

]−(n(L)−1)/2
≡ S

(o)
A,> , (54)

while for n(L) even we have

SA,> = 2L ln 2

1
2
−

n(L)/2∑
k=1

p
(e)
b

(
λ
(12)
+

)−k+1
−

n(L)/2−1∑
k=1

p
(o)
b λ̃−1

(
λ
(12)
+

)−k+1

 , (55)

= 2L ln 2
p
(e)
b + p

(o)
b λ̃−1

λ
(12)
+ − 1

[
λ
(12)
+

]−n(L)/2+1
≡ S

(e)
A,> , (56)

where we have exploited the last equality in (46) in both cases. Finally, given that SA =
SA,< + SA,>, we have

SA = 2 ln 2 p
(e)
b l

(e)
b n(L) +

{
S
(e)
A,> when n(L) is even ,

S
(o)
A,> when n(L) is odd ,

(57)

where S
(o)
A,> and S

(e)
A,> are defined in (54) and (56) respectively. The expression for the

entanglement entropy in (57) represents a main result of this section and generalizes the
results found in [74] in the sense that it holds for a larger class of inflation rules. When the
sequence-preserving transformation is given by a single deflation step, namely the bond-
distribution attractor is a 1-cycle rather than a 2-cycle, we recover the scenario considered
in [74]. In particular, if we take M1 = M2 = Mσ, where Mσ is the substitution matrix
of the inflation rule generating the original sequence, it is straightforward to verify that
the entanglement entropy (57) reduces to the result of [74], which does not depend on the
parity of n(L).
A more detailed investigation of (57) shows that the dependence of SA on L occurs through
n(L), which is a floor function. This leads to a piecewise linear behavior of the entangle-
ment entropy, typical of aperiodic systems [74, 75]. This behavior is different from the
one observed in one-dimensional homogeneous critical systems, where the entanglement
entropy of an interval grows logarithmically in the subsystem size [59, 60]. Nevertheless,
it is possible to make contact between these two classes of systems through the follow-
ing observation. The piecewise curve (57) has breaking points corresponding to L = Λk,
where Λk is defined in (42)-(43). The sets of points {Λ2k−1} and {Λ2k} uniquely determine
two distinct logarithmic envelopes of (57) with equal coefficients, but different additive
constant. They read

Senv,1 =
ceff

3
lnL+ κ1 , Senv,2 =

ceff

3
lnL+ κ2 , (58)

where

ceff =
12p

(e)
b l

(e)
b ln 2

lnλ
(12)
+

. (59)

Notice that the two sets of breaking points become a unique series when M1 = M2 and
therefore the two envelopes coalesce, allowing to recover the behavior found in [74]. Despite
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the different additive constant, the two envelope functions (58) have equal coefficients in
the logarithmic terms. Therefore, inspired by [74, 75] and by the results for homogeneous
critical systems, we are led to interpret this prefactor as an effective central charge ceff.
In Fig. 9 we show the entanglement entropy (57) with the envelopes (58) for our prime
example of a 2-cycle bond distribution attractor {6, 5}. In the next subsection we consider
the aperiodicities that satisfy the requirements discussed above and are generated by σ{p,q}
for some {p, q} and discuss how the corresponding ceff depends on p and q. Thus, we remand
a detailed explanation of Fig. 9 to that section.

Let us conclude this subsection with the following remark on the Rényi entropies of the
system. Within the approximation we are considering, our system is supposed to be in an
aperiodic singlet phase and therefore its full density matrix ρ factorizes into singlet (pure
state) density matrices ρ

(2s)
i . Thus, any possible reduced density matrix is the product of

pure state density matrices and the reduced density matrices ρ
(1s)
j of individual spins in

the singlets cut by the entangling points, namely

ρA =

( ⊗
i∈singlets

ρ
(2s)
i

)
⊗

 ⊗
j∈cut singlets

ρ
(1s)
j

 . (60)

It is well known that the entanglement entropy of a single spin in a singlet is equal to
ln 2. Moreover, all other Rényi entropies S

(α)
A = 1

1−α ln (Tr(ραA)) with α > 1 are also ln 2.
This means that generalising our computation to encompass the Rényi entropies is trivial
and would not change the result for the entanglement entropy (as long as we stay within
our assumptions). This result is very different from the behavior of the Rényi entropies
as function of the Rényi index in homogeneous critical lattice models [62], where one finds
a logarithmic growth in the subsystem size with a coefficient explicitly dependent on α,
rather than a piecewise linear behavior totally independent of the Rényi index.

4.2 Effective central charge in {p, q} aperiodic spin chains

In this section, we apply the results of Sec. 4.1 to those aperiodic modulations generated by
σ{p,q} that satisfy the assumptions of singlet producing self-similar sequences. In particular,
our generalization of the results in [74] given in Sec. 4.1 allows us to use (57) and (59) to
investigate the entanglement entropy of aperiodic chains with a 2-cycle bond distribution
attractor under SDRG. As detailed in Sec. 3.2, σ{6,q} with q ⩾ 4 belongs to the class
of inflation rules mentioned above. For this case, the matrices M1 and M2 describing
the sequence-preserving transformation are given by (36) and (38), respectively. It is
straightforward to compute the corresponding p

(e)
b , l(e)b , p(o)b , l(o)b , λ̃ and λ

(12)
+ , as described

in Sec. 4.1. Using these quantities, one can compute the entanglement entropy (57), whose
specific expression depends on q. Plugging p

(e)
b , l(e)b and λ

(12)
+ into (59), we get the coefficient

of the logarithmic envelopes of the piecewise linear entanglement entropy, i.e. the effective
central charge, given by

ceff(6, q) =
6− 2q +

√
q2 − 5q + 6

ln
(
2q − 5 + 2

√
q2 − 5q + 6

) 6 ln 2

6− 2q
, (61)

which exhibits a non trivial dependence on q.
In Fig. 9 we present the entanglement entropy for the exemplary case of q = 5 (black
piecewise curve). The breaking points occur at L = Λ2k−1 (blue vertical dashed lines) and
L = Λ2k (purple vertical dashed lines) given in (42) and (43), respectively. Moreover, Fig. 9
shows the two envelopes (58) with (61) evaluated for q = 5 as coefficient of the logarithm
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Figure 9: Entanglement entropy of a block of L consecutive sites in an aperiodic XXX chain
with modulation induced by the inflation rule σ{6,5}. The black solid curve is obtained
from (57), while the coloured ones correspond to the logarithmic envelopes in (58) with
κ1 ≃ 0.576 (green) and κ2 ≃ 0.591 (red). Both curves have a coefficient of the logarithm
given by (61) with q = 5. The vertical dashed lines correspond to the breaking points of
the black curve occurring at L = Λ2k−1 (blue lines) and L = Λ2k (purple lines) given in
(42) and (43), respectively.

(coloured curves). The additive constants of the these two curves have been fitted and read
κ1 ≃ 0.576 (green) and κ2 ≃ 0.591 (red). The green envelope touches the piecewise linear
entropy function in the breaking points at L = Λ2k−1, while the red one in the breaking
points at L = Λ2k.
Another case of interest is q = 4, for which M

{6,4}
1 = M

{6,4}
2 and the bond distribution

attractor is a 1-cycle. More precisely, the asymptotic sequence generated by σ{6,4} is known
as silver mean sequence. Applying this modulation to the XXX chain leads to a piecewise
linear entanglement entropy with a unique logarithmic envelope and to an effective central
charge ceff(6, 4) ≃ 0.6910, consistently with the findings of [74]. Thus, we not only recover a
known result, but also provide a new interpretation as effective central charge of a possible
boundary theory for the regular {6, 4} tessellation of the Poincaré disk.

Other examples of aperiodic modulations generated by σ{p,q} that satisfy the hypothesis
in Sec. 4.1 for being singlet producing self-similar sequences are those corresponding to
{3, 8} and {5, 4} tilings. Interestingly, we observe that M

{3,8}
1 = M

{5,4}
2 and M

{3,8}
2 =

M
{5,4}
1 . According to the discussion in Sec. 4.1, this means that the distribution of bonds

in even generations in the aperiodic {3, 8} chain is equal to the distribution in the odd
ones in the aperiodic {5, 4} chain and viceversa. This fact leads to entanglement entropies
with different shapes in the two cases, i.e. different additive constants, but to the same
effective central charge

ceff(3, 8) = ceff(5, 4) =
2(3−

√
3) ln 2

arcosh7
≃ 0.6674 . (62)
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In other words, the effective central charge depends only on M1 and M2, regardless of their
order of occurrence in the SDRG procedure.

Finally, notice that σ{3,7} ∼ σ{5,5} in the sense explained below (9), meaning that their
asymptotic sequences are equal. In fact, this resulting asymptotic sequence is known in
the literature as the Fibonacci sequence. Indeed, considering the substitution matrices (10)
associated to σ{3,7} and σ{5,5} and computing the corresponding eigenvectors v+ and u+,
one finds for both pairs of Schläfli parameters

vt
+ =

(√
5− 1

2
,
3−

√
5

2

)
, ut

+ =

(
5 + 3

√
5

10
,
5 +

√
5

10

)
, (63)

which identify the Fibonacci sequence as asymptotic sequence. The aperiodic XXX chain
with this modulation is sometimes called Fibonacci XXX chain. The entanglement entropy
of a block of consecutive spins in Fibonacci XXX chains has been computed in [74,75] and
has an expression consistent with (57) once we apply our construction to the Fibonacci
modulation. Given that the bond distribution attractor of the Fibonacci XXX chain under
the SDRG is a 1-cycle, the piecewise linear entanglement entropy has a unique logarithmic
envelope, whose coefficient determines the effective central charge as [74, 75]

ceff(3, 7) = ceff(5, 5) = 3
5−

√
5

5

ln 2

arcsinh2
≃ 0.7962 . (64)

Thus, through our approach we have recovered the known results for the entanglement
entropy in an infinite Fibonacci XXX chain, together with the coefficient of its logarithmic
envelope. Moreover, we provided the interpretation of the latter as the effective central
charge of the theory on the boundary of a {3, 7} (or {5, 5}) hyperbolic tiling.

In summary, we have computed the entanglement entropy of a block L of consecutive
spins in the aperiodic XXX chain with modulations induced by a specific class of tiling
inflation rules σ{p,q}. This class contains singlet producing self-similar sequences whose
bond attractor under the SDRG procedure is a 2-cycle, thus generalizing the analysis
from [74, 75]. We have found that the entanglement entropy exhibits a piecewise linear
behavior as function of the subsystem size. This is a peculiar feature of entanglement
in aperiodic chains [74, 75]. The piecewise linear entanglement entropy (57) for 2-cycle
sequences exhibits two logarithmic envelopes which only differ by an additive constant.
The coefficient of the logarithm is interpreted as an effective central charge, and we have
derived its explicit dependence on the Schläfli parameters p and q that determine the
modulation σ{p,q}.

In Sec. 2.3, we have considered the same bipartition on the boundary of a {p, q} tiling
and we have computed the entanglement entropy in the discretized bulk. The result (20)
grows logarithmically in the subsystem size, differently from (57) which exhibits a piecewise
linear behavior. Moreover, in (21) we have defined ceff,bulk(p, q), relating it to the maximal
central charge for perfect TNs introduced in [52]. Thus, in order to have a thorough
comparison of all the available results, we can compare ceff(p, q) computed in this section
with the findings of [52]. First we have observed that, for all the pairs {p, q} considered
above, the latter effective central charge is always larger than the former. Moreover, for
p = 6 and q > 4, we have observed that (61) and the corresponding result in [52] are both
decreasing functions of q and vanish as q → ∞. We refer to Sec. 6 for a more detailed
discussion.
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5 Tensor network states of aperiodic XXZ chains

The construction presented in the previous sections started from a hyperbolic tiling of D2

and its associated inflation rule (Sec. 2). This lead us to define an aperiodically modulated
XXZ model based on the letter distribution of the tiling’s boundary (Sec. 3). We now
present an additional construction, based on tensor networks, that allows us to exactly
recover the ground state of the aperiodic XXX chain (∆0 = 1).
Tensor networks naturally implement the idea of real space RG [30–41, 94, 95] since they
approximate a state on their boundary by a construction extending in one dimension higher.
Here, we incorporate the SDRG transformations introduced in Sec. 3.2 in tensor networks
and show how these provide a general derivation of RG flows of the XXZ couplings for
arbitrary values of p and q. We stress that the embedding of the TN onto the Poincaré
disk allows it to inherit some but, crucially, not all of the symmetries of the tiling. We
discuss in detail why this is the case and how it is related to a choice of coordinates for
the inflation procedure.

5.1 Tensor network representation of SDRG

We proceed with the construction of the TN that implements the SDRG transformations
introduced in Sec. 3 on the aperiodic XXZ spin chain (22). Our construction is an imple-
mentation of the ideas introduced in [34].

As explained in Sec. 3.2, within the SDRG approximation, the ground state of the local
Hamiltonian Hn (23) of an n-spin block can be approximated by the singlet state (25) and
a superposition of the doublet states (28). For the construction of the TN, it is practical
to introduce the following notation for these states, labeled by the number n of spins in
the block that is to be renormalized,

|Tn⟩ =


1√
2

∑
{mi=±} δ

m0
m1

|m0⟩ |m1⟩ , n = 1 ,∑
{mi=±} Tm1...mn |m1⟩ . . . |mn⟩ , n even ,

1√
2

∑
{mi=±} T

m0
m1...mn

|m0⟩ |m1⟩ · · · |mn⟩ , n odd ̸= 1 .

(65)

Notice that the first line of (65) defines an additional state |Tn=1⟩ describing the spins
that are not renormalized under a given SDRG step, i.e. the unaffected spins. Moreover,
the state |Tn⟩ for n even is precisely (25), while for n odd we define a superposition of
the states in (28) by further summing over the free index m0. Written in this form, we
can interpret the coefficients δm0

m1
, Tm1...mn , T

m0
m1...mn

as tensors of rank 2, n and n + 1,
respectively. These tensors, or equivalently, their corresponding states in (65), implement
the fundamental steps involved an SDRG transformation (as depicted previously in Fig. 5).
For a generic step in the RG flow, we denote the sequence of spins before the application
of an SDRG transformation as the UV chain, and the sequence after the transformation as
IR chain. In the tensors δm0

m1
, Tm1m2...mn and Tm0

m1m2...mn
(denoted in Fig. 10 by ⃝,△,□,

respectively) each lower index corresponds to a tensor leg connected to a spin on the UV
chain, while each upper index corresponds to a tensor leg connected to a spin on the IR
chain. We will use the terminology of tensors and states interchangeably in the following.
Recall that each index mi corresponds to a local Hilbert space H of dimension two, while
also labeling a complete basis of states {|mi = ±⟩} in this Hilbert space. The state |Tn⟩
corresponding to a tensor is thus defined in a local product Hilbert space spanned by the
tensors legs, i.e. |Tn⟩ ∈ H⊗2⌊(n+1)/2⌋. Assigning these tensors according to the SDRG
procedure through the full RG flow, we obtain a collection of tensors, each denoting a local
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state at some point of the graph which we label by the index b. The state corresponding
to this collection of tensors is given by their outer product⊗

b

|Tn⟩b , (66)

where the index b labels the position of the tensors in the collection. The set of all the
positions of the tensors in the collection determines a disconnected graph, where each node
corresponds to a tensor. Examples of these positions are visualized by the symbols ⃝,△,□
in Fig. 10.
The next step in order to construct the TN is to connect the tensors through internal lines.
These internal lines are drawn wherever two tensors share a common leg according to the
geometry of the TN graph. Incidentally, these are precisely the positions of spins along the
chain at that particular point along the RG flow. For this, it is useful to label the Hilbert
spaces corresponding to tensor legs by the vertices of the graph that they connect. For
example, if we have two tensors at positions b and b′, we label the Hilbert spaces of their
shared legs as Hbb′ and Hb′b, respectively. There are also some legs that are connected to
only one tensor, these are called open or dangling legs. In our setup, these are precisely
the legs describing the degrees of freedom where the SDRG starts, which we refer to as the
original UV chain.
As in the standard SDRG approach introduced in Sec. 3.2, the fundamental decimation
steps described above are applied simultaneously to all spin-blocks on the UV chain. In
terms of tensors, simultaneous application means taking the outer product of the tensors
decimating individual spin-blocks. By iterating the SDRG, we construct the state (66),
which describes the collection of all the tensors. The full network is then constructed by
contracting upper and lower indices of different tensors if they share a leg. In practice, the
contraction of a common leg of tensors at positions b and b′ consists of a projection in the
local product Hilbert space Hbb′ ⊗Hb′b onto a maximally entangled state denoted by |bb′⟩.
Since the local Hilbert spaces in our TN are all equal and of dimension two, this state is
an EPR state in the local basis∣∣bb′〉 = 1√

2
(|+⟩ |+⟩+ |−⟩ |−⟩) . (67)

Thus, schematically, the full tensor network state |Ψ⟩ is obtained by performing this con-
traction over all pairs of tensors that share a leg, resulting in

|Ψ⟩ =

⊗
⟨bb′⟩

〈
bb′
∣∣(⊗

b

|Tn⟩b

)
, (68)

where the indices b, b′ run over all the tensor positions in the TN graph, and ⟨bb′⟩ denotes
a shared leg. TN states constructed as in (68) are known as projected entangled pair states
(PEPS) [96]. The TN state |Ψ⟩ is defined in the product Hilbert space of all dangling legs
of the original UV chain and describes the ground state of the aperiodic XXX chain. Notice
that this statement holds for XXX chains only, because the {p, q} aperiodic modulations of
XXZ chains are only relevant for ∆0 = 1. As explained in Sec. 3.2, this implies that close to
the strong-disorder fixed point characterized by r∗ = 0 the SDRG becomes asymptotically
exact. Since the construction described above relies completely on the SDRG procedure,
our TN inherits the same validity regime and thus reproduces only the ground states of
{p, q} aperiodic XXX chains. For the general case of XXZ chains with 0 ⩽ ∆0 < 1, this
TN can still be used to approximate the ground state, but only in the regime of parameters
which keeps the coupling ratio r much smaller than one along the whole SDRG flow. In
the following, we will thus focus only on aperiodic XXX chains.
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(a) (b)

Figure 10: Tensor representation of the fundamental SDRG transformations previously
introduced in Fig. 5. Tensors associated to the states |Tn⟩ in (65) are depicted as green
circles (n = 1), triangles (n even) and squares (n ̸= 1 odd), with the green legs representing
their indices. The spins σl,r are contracted with the identity tensor associated to |T1⟩ and
remain unchanged. a) Decimation of a 2-spin singlet by contracting the 2 spins with the
rank-2 tensor associated to |T2⟩. b) Decimation of a 3-spin doublet by contracting the 3
spins with the rank-4 tensor associated to |T3⟩. For clarity, we will drop the green squares,
triangles and circles in the following figures of TNs.

The construction described above does not yet address the other end of the TN, namely
the uncontracted indices on the last IR chain of the network. For this, we have to make
a distinction between an XXX chain defined on an infinite line and it being on a finite
circle. In the former case, the SDRG can be repeated indefinitely and the resulting IR
chain will still be infinite. The remaining uncontracted upper indices are not relevant in
this situation, since they do not affect the properties of any local measurement at finite
scale on the UV chain. However, in the latter case, the finiteness of the circle implies that
the SDRG procedure has to end after a finite number of steps, since every decimation step
reduces the number of degrees of freedom. In this situation, the remaining upper indices
of the final IR chain have to be contracted. The spins associated to these open tensor
legs are governed by an IR XXX Hamiltonian whose couplings are modulated by the seed
sequence, i.e. the starting sequence for the inflation rule. As explained in Sec. 2.2, in the
case of the {p, q} inflation rules considered in this work, the seed sequence is ap (for p > 3)
and ⊛3 for p = 3. Thus, the IR Hamiltonian is a homogeneous XXX model with p sites,
whose ground state is the singlet state in (25) for even p = n and one of the doublets in
(28) for odd p = n. Consequently, we may contract the open tensor indices of the final IR
chain with the rank-p tensor corresponding to its ground state to obtain the full TN state.
This final tensor of the IR chain is akin to the “top-level tensor” introduced in [97] for the
MERA tensor network on a circle.

Based on this TN picture of fundamental decimation steps in the SDRG procedure, let
us clarify the precise relation between inflation and SDRG. As mentioned in the previous
sections, single RG transformations following the decimation steps shown in Fig. 5 and
Fig. 10 are not necessarily sequence-preserving. This prompted the introduction of the
cycle number k in Sec. 3 to specify how many RG transformations are required to recover
the original sequence. Then, a sequence-preserving SDRG transformation, denoted by
Ξ, corresponds to the product of k individual RG transformations. Equivalently, we can
also find the number m of inverse-inflation, i.e. deflation, steps according to the original
inflation rule σ{p,q} that implement one such sequence-preserving transformation. In other
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(a) {6, 4} XXZ chain (b) {4, 5} XXZ chain

Figure 11: Tensor networks of the ground states of an aperiodic {p, q} XXX chain on a
circle. The TNs are depicted by green lines and fit the tiling commensurately. The weak
and strong bonds in Fig. 10 at each step of the RG flow are denoted by red and blue
dots, respectively. a) TN of the {6, 4} XXX chain, consisting of identical rank-2 tensors
(excluding the central tensor). b) TN of the {4, 5} XXX chain, consisting of identical
rank-4 tensors and rank-2 tensors. Various minimal cuts, homologous to the corresponding
subregions on the boundary, are shown with brown dashed polylines.

words, a sequence-preserving SDRG transformation of the {p, q}-modulated chain is always
equivalent to m deflation steps

Ξ{p,q} ∼ σ−m
{p,q}, (69)

where we find that m only takes on the values m = 1, 2, 3. Thus, we may classify sequence-
preserving SDRG transformations and their corresponding TNs in three classes, denoted
by I, II and III, respectively. Moreover, this classification can also be expressed directly in
terms of the Schläfli parameters for a given {p, q} tiling,

• when p is even, the SDRG belongs to class I.

• when p is odd and q is even, the SDRG belongs to class II.

• when p is odd and q is odd, the SDRG belongs to class III.

We stress that the fact that this classification can always be achieved for all p and q is
highly non-trivial and we provide a constructive proof of it in Appendix B.

As described above, repeated application of the SDRG transformation in its TN de-
scription defines how the tensors are to be connected with each other and thus determines
the form of the TN. In particular, since m is a finite integer, we can place the TN on
the tiling in a commensurable way, where the layer of tensors generated by a sequence-
preserving transformation Ξ is placed on m layers of polygons in the tiling. We illustrate
the TN reproducing the ground states of the {6, 4} and {4, 5} XXX chain, embedded on
the corresponding tilings, in Fig. 11. These two TNs belong to class I, and their sequence-
preserving transformations are given by Ξ{6,4} = σ−1

{6,4} = {abaaaba 7→ a, aba 7→ b} and
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Ξ{4,5} = σ−1
{4,5} = {babab 7→ a, bab 7→ a}. Note that the structure of the TN does not coin-

cide with that of the hyperbolic tiling. This will be discussed in depth in Sec. 5.4.
In the next subsections, we discuss some applications and exploit the properties of the
tensor network introduced above to gain insights into the ground state of the correspond-
ing XXX chain. In particular, we provide an intuitive algorithm to write down the SDRG
flows of the couplings of the model and we determine an upper bound on the coefficient of
the logarithmic envelope (cf. (58)) for the entanglement entropy of a block of consecutive
spins.

5.2 Algorithm of RG flow from tensor networks

In this subsection we provide a graphical algorithm for determining the flows of the cou-
plings (33) along SDRG in a {p, q} aperiodic XXZ chain. This approach relies on the
structure of the TN introduced in Sec. 5.1 and on the underlying {p, q} tiling.

Consider a layer of tiles in a {p, q} tessellation of the Poincaré disk. In Fig.12 we have
pictorially represented such a layer for the exemplary case of a {8, 4} tiling. For visual
convenience, we have represented this portion of tessellation on a strip and the blue and
red vertices of the tiling (see for instance the ones shown in Fig. 11) are depicted as edges
of the same colors. Following the terminology introduced in Sec. 5.1, we denote the upper
horizontal line in Fig. 12 as UV chain and the lower one as IR chain. The black edges
between them are edges of the tiling while the green curves represent the TN. Following
Fig. 4, we associate to each edge on the UV chain a pair of couplings (Ji,∆i), with i ∈ {a, b}.
The aim is to renormalize the couplings along the UV chain into the ones along the IR
chain. Consider an edge on the IR chain and let us denote its unknown couplings by
(J ′,∆′). Notice that, by construction, the endpoints of each edge on the IR chain, i.e. the
positions of the renormalized spins, are given by the intersections of the legs of the TN with
that chain. Thus, we may define a region of the tiling bounded by the following elements:
the IR edge with couplings (J ′,∆′) (bottom), the TN legs carrying the renormalized spins
(left and right) and the sequence of edges in the UV chain encompassed by these legs (top).
An example of this domain is depicted in yellow in Fig. 12. The sequence of couplings of
the UV chain delimited by this region define the word that will be renormalized to the
new coupling (J ′,∆′) under a deflation step. The explicit values of (J ′,∆′) can be written
down exploiting the following algorithm, which is derived from the rules (27) and (31):

• a singlet of n spins connected by couplings (Ji,∆i) contributes to J ′ with a factor
γn(∆i)/Ji and to ∆′ with δn(∆i).

• a doublet of n spins connected by couplings (Ji,∆i) contributes to J ′ with a factor
γn(∆i) and to ∆′ with δn(∆i).

• An isolated bond with couplings (Ji,∆i) contributes to J ′ with a factor Ji and to ∆′

with a factor ∆i.

Note, however, that not all internal couplings in the yellow shaded region go into the rules
of the algorithm. Only those contained in the gray striped region in Fig. 12 are to be
taken into account. While in the case of TNs implementing class I SDRG procedures this
distinction is not essential, this becomes of crucial importance for studying the flow of the
couplings for classes II and III, cf. (69). These cases require the introduction of auxiliary,
internal letters that make the definition of the gray striped region non-trivial.
As an example, it is instructive to apply this algorithm explicitly to the {8, 4} tiling and
its corresponding TN shown in Fig. 12. We stress that the corresponding SDRG is a
representative of class I and so the algorithm only contains Ja and Jb couplings. Thus, for
the IR chain, we find
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Figure 12: Stretched representation of a layer of tiles (delimited by black segments) in
a {8, 4} tiling of the Poincaré disk and the corresponding TN (green lines) introduced
in Sec. 5.1. The upper and horizontal lines are called UV and IR chains, respectively.
Vertices a, b of the tiling, which correspond to weak and strong bonds Ja, Jb on the spin
chain according to Fig. 4, are represented in this figure as (horizontal) edges. The RG
direction is indicated by the arrow. The yellow region encompasses the letter sequence that
is renormalized, while the gray striped region highlights those couplings which effectively
enter the RG flow algorithm given in (70)-(73).

J ′
a =

(
γ3(∆a)

)
Ja

(
γ2(∆b)

Jb

)
Ja

(
γ4(∆a)

Ja

)
Ja

(
γ2(∆b)

Jb

)
Ja

(
γ3(∆a)

)
, (70)

∆′
a =

(
δ3(∆a)

)
∆a

(
δ2(∆b)

)
∆a

(
δ4(∆a)

)
∆a

(
δ2(∆b)

)
∆a

(
δ3(∆b)

)
, (71)

J ′
b =

(
γ3(∆a)

)
Ja

(
γ2(∆b)

Jb

)
Ja

(
γ3(∆a)

)
, (72)

∆′
b =

(
δ3(∆a)

)
∆a

(
δ2(∆b)

)
∆a

(
δ3(∆b)

)
. (73)

For the convenience of the reader, we have separated the factors in (70)-(73) according to
their appearance after each of the rules in the algorithm, such that it is clear where each
factor comes from.

As explained in Sec. 3.2, in order to determine the complete flows of the couplings,
we start from the chain with the original aperiodic {p, q} sequence of couplings Ji and
homogeneous anisotropy ∆0 and repeatedly apply the algorithm a large number of times.
On the other hand, given the properties of the coefficients γn and δn discussed in Sec. 3.2
(cf. Fig. 16), whether a modulation is relevant, marginal or irrelevant can be determined
without computing the entire flow, but only the change of the couplings along a single
sequence-preserving transformation. In Appendix B, we present the results obtained by
applying this algorithm to aperiodic XX and XXX chains defined on the boundary of
{p, q} tiling of the Poincaré disk. We consider all the pairs {p, q}, classified by the index
m introduced in (69), finding that all the modulations induced by σ{p,q} on XXX chain are
relevant, while on the XX chain they are marginal. This latter result is consistent with
the predictions achievable through the exact approach in [49]. Even though the critical
properties of the {p, q} aperiodic XX and XXX chains can be obtained as explained in
Sec. 3.2, the approach discussed in this subsection allows for a more practical and intuitive
treatment. This makes a general derivation of the results in Appendix B, for generic p and
q, more accessible.
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5.3 Effective central charge from tensor networks

Tensor networks offer an intuitive way to study the entanglement entropy of the ground
state of aperiodic XXX chains. In general, given a TN with uniform bond dimension χ,
the entanglement entropy of a subsystem A on the boundary is bounded from above by

SA ⩽ |ΛA| lnχ , (74)

where |ΛA| is the minimal number of tensor legs cut by a curve in the bulk. A curve that
is homologous to A and realizes the minimal number of cuts is called minimal cut and is
denoted by ΛA. The bound (74) is saturated when the tensors are perfect tensors [34].
Notice that, in order to realize the ground state of our aperiodic XXX as boundary state
of the TN, the bond dimension has to be set equal to two. Nonetheless, we keep this
parameter general in most of the following discussion.

We assume, for simplicity, that A is a block of L consecutive edges on the boundary
of the tiling (or, equivalently, a block of L + 1 vertices). The boundary of A, denoted by
∂A, consists of the two outermost vertices of the block: these are the initial and the final
points of ΛA. In order to draw the minimal cut, consider the two vertices of ∂A separately.
We connect each of them to its own image vertex through the SDRG sequence-preserving
transformation, in such a way that the resulting path cuts the minimal number of tensor
legs. Then we iterate this process deeper and deeper in the bulk, determining two RG
trajectories starting from the vertices in ∂A. At this point, there are two possibilities:
either the two RG trajectories meet in an intermediate layer or they both reach the central
tile. In any case, we have constructed the minimal cut ΛA. Some examples of minimal
cuts have been represented in Fig. 11 through brown dashed lines.

Notice that the RG trajectories starting at different vertices are independent. Thus,
in order to give an upper bound for the entanglement entropy, we estimate the average
number ñ of legs cut by a single step along the RG trajectory. In other words, when
starting from a generic vertex, the step will, in average, cut through ñ tensor legs. For this
purpose, we review the method introduced in [52] for calculating ñ.

We refine the classification of the vertices of a {p, q} tiling by introducing the letters
{ai}i∈N0 , {bi}i∈N0 . The a-type and the b-type vertices have the same properties defined
in Sec. 2.2, while the subscripts i identify the number of tensor legs cut by one step along
the RG trajectory starting from the corresponding vertex. Given a {p, q} tiling and the
aperiodic XXX chain defined on its boundary, the allowed subscripts for ai and bi are
restricted to two subsets of non-negative integer numbers Ka and Kb. According to this
fine-grained classification of vertices, the inflation rules (11) and (12) generalize to rules
σ̃{p,q}. This generalized inflation rule is constructed by considering the original words
wa(a, b), wb(a, b) and replacing each a and b with ai and bi, respectively, according to the
criteria explained above. The explicit expression of these new substitution rules can be
derived for all p and q in principle, although the constructions for class II and class III
SDRG flows are too involved to report here. Later in this subsection, we shall focus on
class I flows which nevertheless exhibit all the relevant properties of these new rules.

Once the refined inflation rule σ̃{p,q} has been introduced, we may construct the cor-
responding substitution matrix M̃ , as described in Sec. 2.2. Notice that M̃ is a (Ka +
Kb)× (Ka +Kb) matrix, which depends on p and q. To lighten the notation, we drop this
dependence in the following. The matrices M̃ and M can be decomposed into M̃ = ÃB̃
and M = B̃Ã, where Ã and B̃ are (Ka+Kb)× 2 and 2× (Ka+Kb) matrices, respectively.
Thus, M̃ and M share the same largest eigenvalue λ+ given in (14). The left and right
eigenvectors ũ+ and ṽ+ of M̃ corresponding to λ+ are constructed as ũ+ = u+B̃ and
ṽ+ = Ãv+ respectively, with u+ and v+ the left and right eigenvectors of M correspond-
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ing to λ+, given in (15). To study the RG trajectories, we introduce the deflation matrix
D̃ by exploiting these quantities, defined as

D̃ij =
M̃ij ṽj
λ+ṽi

. (75)

The entry D̃ij represents the probability of reaching a j-type vertex through a deflation
step starting from a i-type vertex. The deflation matrix D̃ has a left eigenvector p with
eigenvalue 1, whose components are found to be

pi = ũiṽi , (76)

up to normalization. This is proportional to the probability of reaching an i-type vertex
through a deflation step. To further encoding the network structure, we define the (Ka +
Kb) × (Ka + Kb) entanglement matrix Ẽ whose component Ẽij is equal to the minimal
number of legs cut by any curves connecting the vertex i in the UV chain and the vertex
j in the IR chain.

To proceed with the computation, we find it convenient to distinguish among the classes
of SDRG flows introduced in (69). For σ̃{p,q} whose SDRG flows belong to class I, the
matrix D̃ directly gives the upper bound for the entanglement entropy. Indeed, in this
case, the average number of legs ñ is equal to

ñ =

∑
ij D̃ijẼijpi∑
ij D̃ijpi

=

∑
ij ẼijM̃ij ũiṽj

λ+
∑

i ũiṽi
, (77)

which is determined by the network structure only. According to (74), the decrease of the
entanglement entropy under a sequence-preserving SDRG transformation (which, for this
class of flows, corresponds to one deflation step) is bounded as

∆SA ⩽ 2ñ lnχ . (78)

As already mentioned in previous sections, we define the effective central charge as the
coefficient of the logarithmic growth in the subsystem size of SA, namely SA ≃ ceff

3 lnL.
Under a sequence-preserving SDRG transformation, the subsystem size L is rescaled to
L/λ+. Thus, we obtain the following upper bound for the effective central charge in {p, q}
aperiodic XXX chains

ceff =
3∆SA

lnλ+
⩽

6ñ

lnλ+
lnχ =

6
∑

ij ẼijM̃ij ũiṽj

λ+ lnλ+
∑

i ũiṽi
lnχ , (79)

where the inequality comes from (74) and therefore it is saturated when the tensors are
perfect tensors [31]. A generalization of the bound (79) to classes II and III can be achieved
by replacing

(
M̃, λ+

)
with

(
M̃2, λ2

+

)
and

(
M̃3, λ3

+

)
, respectively.

As explicit example, we focus on flows belonging to class I, where the TN states are
constructed by the SDRG of {p, q} XXX chain with even p and q ⩾ 4. Notice that the case
{p, 3} with p even still belongs to class I, but, as explained in Sec. 2.2, requires a different
inflation rule, which is given in Appendix B. For even p and q ⩾ 4, the inflation rule σ̃{p,q}
with the fine-grained classification of vertices reads

σ̃I
{2k,q} =



{
a0 7→ (b1a0)

q−3b1, b1 7→ (b1a0)
q−4b1

}
, k = 2

{ai 7→ ak−3 · · · a1a0b1(a0a1 · · · ak−2 · · · a1a0b1)q−3a0a1 · · · ak−3,

b1 7→ ak−3 · · · a1a0b1(a0a1 · · · ak−2 · · · a1a0b1)q−4a0a1 · · · ak−3}, k ⩾ 3

i = 0, 1, ..., k − 2,

(80)
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where k = p/2. The sequence-preserving SDRG transformation of class I is the inverse of
(80), i.e. Ξ = σ̃−1

{2k,q}. The SDRG maps the spins in the word a0b1a0 to a 2-spin singlet,
the spins in the word a0a1 · · · ak−2 · · · a1a0 to a (2k − 4)-spin singlet and the spins in the
word a0a1 · · · ak−3ak−3 · · · a1a0 to a (2k − 5)-spin doublet. Notice that, when p = 6, the
SDRG only consists of 2-spin singlet, the corresponding 2-rank tensors are prefect, and the
entanglement entropy saturates (74). From (80) it is straightforward to obtain the k × k
substitution matrix, which reads

M̃ =


2q − 4 · · · 2q − 4 2q − 6

...
. . .

...
...

2q − 4 · · · 2q − 4 2q − 6
q − 3 · · · q − 3 q − 4
q − 2 · · · q − 2 q − 3

 , (81)

where the rows and columns are arranged in lexicographic order with respect to the fine-
grained letters, i.e. a0, a1, a2, ..., ak−2, b1. The left and right eigenvectors of (81) associated
to the largest eigenvalue, given by (14), are

ũ =
(
1, · · · 1, 1, x

)
, (82)

ṽ =
(
2, · · · 2, x, 1

)t
, (83)

x =2− k +

√
(k − 1)

(
k − q

q − 2

)
. (84)

Based on the fine-grained vertices introduced above, and the definition of Ẽ, the k × k
entanglement matrix is simply

Ẽ =


0 · · · 0
1 · · · 1
...

. . .
...

k − 2 · · · k − 2
1 · · · 1

 . (85)

Thus, from (79) with χ = 2, we obtain an inequality for effective central charge

cClass I
eff ⩽

3 ln 2

lnλ+

(k − 1)x+ (k − 3)(k − 2)

(k − 2) + x
. (86)

Notice that, for class I SDRG flows, the tensors in the TN considered in this section
have lower rank than those in [31, 52]. Thus, the entanglement matrix (85) has smaller
components than the matrix Ẽ for the TNs of the HaPPY codes in [31] or the Majorana
dimers in [52]. In turn, this means that the resulting maximal effective central charge will
be smaller in our case.

Remarkably, when p = 6, (86) is saturated and the result (61) is recovered, providing
a non-trivial cross check for the computations of Sec. 4. By properly adapting (79) as
explained before, we can obtain the upper bounds for the effective central charge in some
simple examples of SDRG flows belonging to Class II and Class III. In particular, the results
given in Sec. 4 for modulation induced by σ{p,q} with {p, q}= {3, 7}, {5, 5}, {3, 8}, {5, 4},
whose TNs consist of rank-2 tensors only, have been recovered through this approach.

In Appendix C we present a detailed computation of the entanglement structure of the
TN states (65) based on a numerical analysis. We provide numerical results for various
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values of n and check that tensors appearing in our TNs are only perfect if they are rank-2.
Moreover, we show that for any of the TN states in (65), the Rényi entropies depend on the
Rényi index in a way which is different from the behavior in homogeneous critical lattice
models [62]. Finally, exploiting this numerical analysis, we discuss a procedure to improve
the upper bound (79).

5.4 Symmetries of tensor network states

We now investigate the tensor network construction introduced in the previous subsections
in view of two types of symmetries: internal and spatial. The former are transformations
that act on the space of variables of the boundary model and do not involve the spacetime
coordinates. In our case, these will be the global SU(2) and U(1) symmetries of the XXX
and XXZ Hamiltonians, respectively. The latter refer to transformations with respect to
the spatial coordinates within the TN in the bulk.

Internal symmetries

As reviewed in [73], within holography, the global symmetries of the boundary theory have
to match with local symmetries in the bulk. Both the aperiodic XXZ Hamiltonian (22)
and the homogeneous XXZ Hamiltonian (23), enjoy global SU(2) symmetry for ∆0 = 1
and a global U(1)z symmetry for ∆0 ̸= 1. The subscript in the latter symmetry group
denotes that the U(1) rotation is performed around the z-direction of the spin variables.
Before discussing the symmetries of the entire TNs state |Ψ⟩ given in (68), let us discuss
the symmetries of its constituent blocks, namely the tensor states in (65) and EPR states
(67). When n is even, the singlet ground state |T ⟩ in (25) shares the same symmetries as
the Hamiltonian Hn in (23). When n is odd, the degenerate doublet ground states |T±⟩
in (28) with coefficients specified by (29) enjoy the symmetry U(1)z. The enlargement of
the Hilbert space introduced in (65), which includes the effective spin for doublet states,
allows |Tn⟩ to recover the symmetries of Hn. Thus, we may summarize the symmetries of
all the tensor states in (65) as

|Tn⟩ = G(n) |Tn⟩ , G(n) ≡

{
G⊗n, even n

G∗ ⊗G⊗n, odd n
, G ∈

{
SU(2), ∆0 = 1

U(1)z, ∆0 ̸= 1
, (87)

where G∗ is the conjugation of G in the |±⟩ basis. Since the tensor states |Tn⟩ are localized
at different points of the tensor network, the symmetries in (87) are local symmetries in
the bulk and exactly match the global symmetries of the aperiodic Hamiltonian on the
boundary. Moreover, we may check that the EPR state in (67) enjoys the symmetry

G∗ ⊗G
∣∣bb′〉 = ∣∣bb′〉 , G ∈ SU(2) . (88)

Finally, the top-level tensor at the center of the tiling. Let us denote it as the tensor state∣∣∣T top
p

〉
corresponding to the ground state of Hp with periodic boundary conditions. If p is

even,
∣∣∣T top

p

〉
is a singlet which shares the same symmetries as Hp. If p is odd,

∣∣∣T top
p

〉
is a

general linear combination of doublet states, similarly to the discussion above. In this case,
the symmetries of the state depend on the precise choice of the combination. Thus, for
the study of the global symmetries of the TN state |Ψ⟩, we see that the choice of top-level
tensor

∣∣∣T top
p

〉
plays an important role. For this reason, we make explicit the dependence

of the TN state on this tensor by writing
∣∣∣Ψ(∣∣∣T top

p

〉)〉
. Exploiting the symmetries of all
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2π

p

Figure 13: Left: Visualization of the action of two elements of the Fuchsian group describing
the isometries of a {p, q} tiling. The rotation by an angle 2π/p around the center of the
Poincaré disk is denoted in purple. The effect of a boost of the central tile and how the
rest of the tiles are transformed by this isometry is shown by the orange arrows. Right:
The Poincaré foliation. The different leafs are represented by different shades of gray. This
indicates an inflation direction different from the radial foliation shown in Fig. 2.

the building blocks mentioned above, we find the following relation for the action of the
symmetry group of the boundary Hamiltonian on the TN state,

G⊗N
∣∣Ψ (∣∣T top

p

〉)〉
=

⊗
⟨bb′⟩

〈
bb′
∣∣Gt

b ⊗G†
b′

(⊗
b

G(n)
b |Tn⟩b

)
=
∣∣Ψ (G⊗p

∣∣T top
p

〉)〉
, (89)

where N is the total number of spins of the chain on the boundary, the subscripts b in G(n)
b

and Gb denote that they are acting on the legs of the tensor state at position b. Eq. (89)
shows that, by exploiting the symmetries (87) and (88), the transformation G⊗N acting
on the boundary can propagate into the bulk until it reaches

∣∣∣T top
p

〉
. Thus, the symmetry

of |Ψ⟩ depends only on
∣∣∣T top

p

〉
. In particular, when p is even, the tensor network state |Ψ⟩

exhibits the same symmetries of the aperiodic Hamiltonian on the boundary.

Spatial symmetries

Motivated by the fact that the structure of the TN embedded onto the Poincaré disk is
different from that of the hyperbolic tiling, we now study the spatial symmetries of the
TNs derived in previous subsections that reproduce the ground state of the aperiodic XXX
chain.
First, let us recall how the original symmetries of our starting point, AdS2+1/CFT2

(cf. Sec. 2.1), have been broken down through the steps in Sec. 2. The group of orientation-
preserving isometries of AdS2+1 is PSL(2,C). Since we consider a constant time slice of
this space, this restricts the group of isometries to PSL(2,R). The discretization in terms
of {p, q} hyperbolic tilings further reduces the isometries to a discrete subgroup belonging
to the class known as Fuchsian groups [98] (for a recent discussion of Fuchsian groups in the
context of hyperbolic tilings, we refer to [22,40, 55,99]). This subgroup contains infinitely
many elements, but for our discussion we want to highlight only two. Their respective
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actions on the tiling are visualized in the left panel of Fig. 13 and consist of a rotation
about the center of the tiling by 2π

p (purple arrow), and a boost of the central tile to the
center of any other tile (orange arrows).
Second, throughout this work we have constructed the tilings by means of inflation rules as
explained in Sec. 2.2. We have always taken the starting point to be the tile at the center of
the Poincaré disk and constructed the tiling through iterative inflation steps. This defined
a so-called discrete foliation of the hyperbolic space, in which each inflation layer defines a
leaf of the foliation. In particular, by starting from the central tile, we have used what we
denote as a radial foliation. Thus, it specifies a particular direction in hyperbolic space in
which the tiling is constructed. However, one can think of defining other discrete foliations
of the Poincaré disk by changing the starting point. For instance, we can act on the tiling
with a particular element of the large class of boosts in the Fuchsian group to shift the
central tile to the boundary. Construction of the tilings through inflation starting from this
point will then define a different discrete foliation, shown in the right panel of Fig. 13 by
different shades of gray. We denote this foliation as Poincaré foliation. Indeed, in terms of
continuum coordinates, this amounts to a transformation between global (3) and Poincaré
coordinates (5). Note that this foliation also specifies a particular inflation direction that
is different from that of the radial foliation. Let us emphasize that the result of an infinite
number of inflation steps is the same in both foliations, namely the full hyperbolic tiling.
However, we have shown in Sec. 5.1 that the SDRG flow is related to the construction
of the tilings through inflation and will thus depend on the specific foliation we choose.
Since the TN we construct in the previous subsections is an implementation of this SDRG
procedure, we expect it to be sensitive to the choice of foliation as well.
Finally, in the literature, for instance in [34,35,37–40,42,51,52], TNs are constructed and
connected such that they coincide with the hyperbolic tilings and thus share their symme-
tries. In our case, we have an explicit Hamiltonian on the boundary and we construct the
TN such that it reproduces its ground state, without assuming the tiling’s symmetries. The
geometric structure of the TN does not coincide with that of the tiling, featuring instead a
different set of symmetries which depends on the foliation. Therefore, we are prompted to
analyze the symmetries of the resulting TN and how they are affected by different choices
of foliation in more detail.

Our analysis relies on the distinction between global and local symmetries of the TN.
A global symmetry is defined as a transformation that preserves the entirety of the TN.
This type of symmetries depend explicitly on the choice of foliation. A local symmetry is
defined as a transformation that maps a subregion of the TN to another subregion while
preserving its tensor structure. By their local nature, these symmetries do not depend on
the chosen foliation. With these definitions, the symmetries of the TN representing the
ground state of an aperiodic XXX chain are as follows:

Global symmetries in radial foliation: rotational Zp symmetry In the radial foli-
ation, the central p-gon carries the seed word ap (or ⊛3 for p = 3). The corresponding
TN thus has a central tensor of rank p. Therefore, the TN only inherits the global
Zp rotational symmetry around the central rank-p tensor, as can be seen in Fig. 11.

Global symmetries in Poincaré foliation: Z scaling symmetry Under the isometry
taking the central tile to the boundary, the tiling itself is left invariant, but the cen-
tral rank-p tensor is shifted. With this choice of a starting point for the inflation
procedure, the SDRG and the corresponding TN develop in the direction of the foli-
ation visualized in right panel of Fig. 13. By means of the boost transformation, all
but one leg of the central p-tensor get shifted to infinity. This removes the Zp sym-
metry present in the radial foliation. However, along the remaining leg, which runs
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A
C

B

Figure 14: Tensor network reproducing the ground state of the {4, 5} aperiodic XXX
chain, embedded onto the corresponding regular tiling. We zoom in on a part of the TN
close to the boundary of the tiling, allowing us to leave unspecified the foliation used to
define the inflation. The orange arrows are the same as in Fig. 13. The portions of tensor
networks ending on the boundary subregions A and B are related by the local translational
symmetry. Moreover, they are both related to the portion of the network ending on the
boundary subregion C by a local scaling transformation.

diametrically through the Poincaré disk, the TN enjoys a global Z scaling symmetry.

Local symmetries The fractal structure of the aperiodic sequences defining the modu-
lation of the chain is inherited by the TN. Thus, any arbitrarily large substructure
of the TN can be found again at infinitely many other points of the TN. On the one
hand, if a given substructure can be found again in the same leaf of the foliation, this
can be regarded as a local translational symmetry. A similar notion has been denoted
as “approximate” or “quasi” translational symmetry in [40]. On the other hand, if a
tensor substructure can be found in a different leaf, this represents a local scaling
symmetry. Both these local symmetries, examples of which are shown in Fig. 14, are
a consequence of the self-similarity properties of aperiodic sequences.

In this section we have constructed a TN which reproduces the ground state of an
aperiodic XXX chain with modulation generated by σ{p,q}. This has been done by exploting
the SDRG approach reviewed in Sec. 3.2. In particular, we have associated a tensor to the
decimation of each spin-block. This has led to the building blocks of the tensor network
(65), sketched in Fig. 10 for the decimation of 2-spin and 3-spin blocks. Placing and
implementing these fundamental tensors along the whole UV chain is equivalent to realizing
a single sequence preserving SDRG transformation: by iterating the process, we have
constructed the entire tensor network which has the ground state of the original aperiodic
XXX chain as its UV state. Such a tensor network, which is defined independently of the
discrete bulk geometry determining the inflation rule, can be nevertheless embedded onto
the corresponding {p, q} tiling. This provides a discrete structure in the bulk, which is
different from the one of the regular {p, q} tiling of the Poincaré disk (see Fig. 11 for a
comparison between two of these tensor networks and their corresponding {p, q} tilings).
As an application, in Sec. 5.2 we have exploited these tensor networks to determine an

42



SciPost Physics Submission

efficient algorithm for computing the SDRG flow of the couplings (33) in aperiodic XXZ
chains. This approach has been applied in a thorough analysis reported in Appendix B for
the modulations generated by any pair {p, q}. We would like to highlight that the TN we
construct, when embedded onto the discrete AdS space given by the {p, q} tilings, describes
an RG flow of the couplings from the UV (boundary) to the IR (center of the tiling).
This is consistent with the holographic RG flows known from AdS/CFT [73, 100, 101], as
opposed to the setup in [41]. Moreover, adapting the computation developed in [52] to our
tensor networks, we have provided the general expression (79) for an upper bound on the
effective central charge defined in Sec. 3.2 for the boundary aperiodic XXX chain. We have
applied this formula to those modulations whose SDRG flows belong to the class I (see the
definition in (69)), obtaining the explicit expression (86) for the maximal effective central
charge. Finally, we have discussed the spatial symmetries of the TN graph constructed in
this section, observing that they depend on the discrete foliation we choose for defining
the inflation procedure on the discretized Poincaré disk. Furthermore we have compared
these spatial symmetries with the ones of the corresponding regular {p, q} tiling, finding
that the former are a subgroup of the latter. This can be explained by noticing that the
foliations explicitly break the Fuchsian group symmetry of the whole tiling. In spite of the
aforementioned mismatch between the spatial symmetries, in (87) and (88) we find that
the global symmetries of the boundary Hamiltonian are indeed captured by the TN states
(65) localized in the bulk.

6 Comparison of results for different effective central charges

The results provided in the previous sections allow us to draw comparisons in order to better
understand the underlying setups and the consequences of the discretization procedures. In
particular, we will compare the coefficients of the logarithmic growth of the entanglement,
i.e. the effective central charges, computed in Sec. 2.3, Sec. 4 and Sec. 5.3 of this work with
those of [52]. Our comparison includes some key points to connect and differentiate our
analysis from the one in [52].

The main result of Sec. 2.3 provides the effective central charge (21) purely as a function
of the geometric Schläfli parameters p and q tied to the hyperbolic tilings. For a given
continuous geodesic γA, ceff,bulk in (21) quantifies the length of the corresponding discrete
path ΓA in units of polygon edge lengths s(p, q) (8). In contrast, the setup introduced
in [52] implements the logarithm of the bond dimension, lnχ, as a “length” unit. This is
well motivated from the point of view of the TN construction used in [52], though it is not a
default quantity defined on any {p, q} tiling. Particularly useful to help us understand the
difference in these two constructions is the Brown-Henneaux formula c = 3R

2GN
describing

the central charge of the underlying CFT. On the one hand, in our construction, the
formula is assumed to remain true and unaffected after the discretization. In other words,
we assume that if the discretization has any effect on the underlying CFT, this will manifest
itself as a tiling-dependent multiplicative factor ceff,bulk = c · f(p, q) instead of a direct
dependence of the central charge on the Schläfli parameters. On the other hand, the TN
used in [52] assumes a dependence of Newton’s constant on the tiling parameters, something
that underlies the fact that the bond dimension is fixed to be lnχ = s(p,q)

4GN (p,q) . If we assume
this identification in order to make contact with our expression of ceff,bulk in Sec. 2.3, both
approaches are equivalent up to a constant numerical prefactor. Even though the effective
central charges reported in [52] are maximal with respect to the type of tensors used, the
prefactors of our computations are sometimes larger and sometimes smaller than those
in [52]. We can trace back this behavior to an averaging procedure introduced in [52]. Our
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construction does not consider such averaging, since the orientation of the geodesic is fixed
a priori. Fluctuations of the numerical prefactor around an average value are thus to be
expected. Nevertheless, we emphasize that our construction is in some sense closer to the
continuous setup, since it only requires a discretization procedure, without the immediate
need to associate a TN to the tiling. Such a construction indeed proves useful a posteriori
as explained in Sec. 5, but leads to a different bulk TN.

Let us now extend this comparison to include the results obtained in Sec.4 and Sec.5 for
the aperiodic XXX chain in its ground state. In Sec. 5.3, exploiting the structure of the TN
constructed in Sec. 5.1, we have obtained an upper bound for the effective central charge
of some aperiodic XXX chains. In particular, we have focused on chains with modulations
generated by those σ{p,q} whose corresponding SDRG flows belong to the class I, according
to the definition (69). The upper bound we derive in (86) does depend on p and q and
is saturated in the case of {6, q} modulations along XXX chains, where the result (61) of
Sec. 4.2 is recovered. The bound (86) has been obtained by employing (79) for the TN
considered in this manuscript. The formula in (79) was introduced in [52], where it has
been applied to the TN built by identifying each p-gon of a {p, q} tiling with a tensor.
When employed for different networks, (79) provides different bounds and therefore (86)
is different from the maximal central charge reported in [52]. This fact can be also seen
in the following perspective: since the TNs considered in this manuscript and in [52] are
different, the corresponding boundary states are not the same, nor should we expect their
entanglement structure to be equal. In spite of this, one could try to draw qualitative
comparisons between the effective central charges to gain a birds-eye view of how the
Schläfli parameters might influence this object in general. Notice that, for a consistent
comparison, the bond dimension χ in the results of [52] has to be set equal to 2, given that
our TN is characterized by a two-dimensional local Hilbert space. Restricting the analyses
to those σ{p,q} with a SDRG flow belonging to class I (p = 4, q ⩾ 5 and even p ⩾ 6, q ⩾ 4),
we observe that the maximal central charge of [52] is always greater than the one reported
in (86). Moreover, once we fix an even value of p, the two upper bounds are decreasing
as functions of the allowed q (except for the unique case with p = 6 and q = 4) and are
both vanishing in the limit q → ∞. Let us stress again that, despite these qualitative
similarities for the behavior of the maximal central charges as function of q, the fact that
their explicit values are different is totally justified given that the boundary states of the
two corresponding tensor networks are not the same.
Finally, we find it interesting to compare the upper bounds reported in (86) with the
(proper) central charge of the CFT underlying the homogeneous XXX chain, namely c = 1.
Notice that the upper bound in (86) can be either smaller or greater than one, depending
on the values of p and q. Moreover, in the particular regime where q → ∞, the upper
bound approaches to zero and and we find that c = 1 is larger than cClass I

eff . This is not
a contradiction given that c = 1 characterizes the critical behavior of the homogeneous
model, while cClass I

eff holds as upper bound in the regime of validity of the SDRG, namely for
strong aperiodicities. Given that these two regimes do not overlap, we should not expect
any direct relation between c and cClass I

eff .

7 Discussion and outlook

In this paper, we present a first step towards a discrete holographic duality involving a
dynamical theory on the boundary. Our argument is visualized by the diagram in Fig. 15.
As an exemplary quantity benchmarking the different scenarios represented in Fig. 15, we
study bipartite entanglement entropy. The starting point is the discretization scheme we
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Figure 15: Diagrammatic summary of the relations between hyperbolic tilings, aperiodic
spin chains and tensor networks found in this work. A detailed explanation of the individual
ingredients of this diagram is provided in the main text.

choose for a constant time slice of AdS2+1, which we identify with the Poincaré disk D2.
We implement regular hyperbolic tilings, uniquely characterized by their Schläfli symbol
{p, q}, to canonically discretize D2. From simple geometric arguments in the bulk of the
tiling, we derive a discrete version of the RT formula (17). This allows us to compute the
entanglement entropy (20) of a boundary region A, which we find to scale logarithmically
in the subsystem size L. Importantly, we find the coefficient of this logarithmic growth,
which we denote as the effective central charge ceff,bulk, to depend in a non-trivial way (21)
on p and q.
A {p, q} tiling may be constructed through an associated inflation rule σ{p,q}. From this
inflation procedure, an aperiodic structure arises on the boundary of the tiling after a large
number of inflation steps, as visualized in the top right corner of Fig. 15. This structure is
characterized by an infinitely long aperiodic letter sequence. Motivated by the aperiodic
structure of the asymptotic letter sequence on the tiling’s boundary, we expect a potential
holographic dual to the discretized bulk to also exhibit some notion of aperiodicity. More-
over, the discrete nature of our setup motivates the choice of a quantum spin chain as a
promising candidate for the boundary theory. We thus explicitly define an XXZ quantum
spin chain with aperiodically modulated couplings (22) as a boundary theory, shown on
the right hand side of Fig. 15. The aperiodicity of this model is induced by the asymptotic
letter sequence generated by the inflation rule σ{p,q}. The gapless, interactive nature of
this theory for anisotropies 0 ⩽ ∆0 ⩽ 1 makes it a more interesting choice above other
quantum spin chains.
We employ SDRG techniques to study the critical properties of this model. In the special
case of the aperiodic XXX chain, we find aperiodic {p, q} modulations to be relevant for
all p and q. This means that the aperiodic model flows to a new fixed point with respect to
the homogeneous case, induced by strong disorder. Furthermore, we compute the entangle-
ment entropy in aperiodic XXX chains for several choices of {p, q} modulations, for which
the ground state of the model is found to be in an aperiodic singlet phase. This includes
a generalization of previous SDRG techniques [74] to 2-cycle bond-distribution attractors
under SDRG. We find the piecewiese linear growth (57) of the entanglement entropy. The
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envelope of this functional dependence is a logarithm with a {p, q}-dependent coefficient,
interpreted as the effective central charge ceff. This indicates the effect of the discretization
on the entanglement structure of the boundary theory.
Finally, due to their computational advantages and their proven relation to holography,
we construct the tensor networks represented in the left bottom part of Fig. 15. These
are based on the SDRG and reproduce the ground state of aperiodic XXX chains. The
tensor network allows us to not only cross-check the results derived in this work for the
aperiodic XXX chain, but also to extend them and fully characterize the ground state
of this aperiodic model. Moreover, the natural holographic structure of tensor networks
provides a canonical way of extending into the bulk when they are embedded onto {p, q}
tilings. In Sec. 5.2, we provide an efficient algorithm to compute the flows of the couplings
of the chain along the SDRG. Moreover, we find an upper bound for the effective central
charges as a function of p and q, also in cases where the SDRG involves doublet states.
The embedding of our TNs onto the Poincaré disk reveals that their spatial symmetries
are however different from those of the corresponding {p, q} tilings, cf. Sec. 5.4. This is
depicted by the dashed arrow in Fig. 15. This difference can be traced back to the choice of
a discrete foliation for the tilings. On the other hand, we explain how the internal symme-
tries of the boundary Hamiltonian can also be found in the tensor states that constitute the
TN, as explained in Sec. 5.4. In particular, these can be regarded as local bulk symmetries
within the discrete geometry provided by the TN. This is reminiscent of the known relation
between global boundary symmetries and local bulk symmetries from standard continuum
holography.
For eventually obtaining a complete holographic duality, it appears necessary to further
investigate the mismatch of the spatial symmetries between tilings and TN. A holographic
duality would require the boundary fields to transform covariantly under the Fuchsian
group given by the hyperbolic tiling. This, to the best of our knowledge, has not yet been
achieved and constitutes a line for future studies. Based on our analysis in Sec. 5.4, we
believe that the matching of global to local symmetries in the TN picture is a promising
indicator that such a correspondence can be potentially realized.

Let us conclude by commenting upon several avenues for future developments of the
results reported in this manuscript.
In this work, we have proposed an aperiodic chain with SU(2) spins at each site as a
boundary theory. The nature of the spin variables can be generalized, for instance consid-
ering SU(N) spins. This is interesting in view of spin chains with SU(N) global symmetry,
whose continuum limit is provided by SU(N) Wess-Zumino-Witten CFTs [102–106]. The
central charge of this theory diverges linearly in N when N → ∞. Note that the SU(N)
symmetry in this case is global rather than local, meaning that its large N limit is more
similar to the vector large N limit than to the matrix large N limit usually considered in
holography [107]. It is more akin to large N limit of O(N) models of quantum field theo-
ries, where fields transform in the fundamental representation of the symmetry group, and
the number of degrees of freedom N is taken to infinity. Interestingly, holographic duals
for such models have been proposed in the context of higher-spin gravity theories [108–111]
such as Vasiliev gravity [112–114]. It would thus be interesting to study aperiodic SU(N)
spin chains in this large N regime. In particular, we aim to understand whether the
effective central charge defined as in Sec. 4.1 also grows with N for fixed pairs {p, q}.

It is known that the conformal spectrum of the homogeneous XXZ chain in the con-
tinuum limit contains the spectra of various models with central charge less than one,
including minimal models [115, 116]. Understanding whether fingerprints of this feature
remain in presence of aperiodicity would be an interesting future development. In view of
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holography, we note that gravity duals for minimal models in Euclidean spacetime have
actually been proposed in [117].

Furthermore, in standard continuum holography, the fields of the boundary CFT trans-
form covariantly under representations of the conformal group, which is isomorphic to the
isometry group of the bulk spacetime. Thus, in order to establish a field-operator map
between discrete theories, a challenging but promising goal for the future is to translate
this argument to our discrete setup, where the isometries of the bulk are given by Fuchsian
groups.

As discussed in detail throughout this work, introducing an aperiodic modulation on
a homogeneous critical XXZ spin chain can be seen as an RG flow triggered by a relevant
deformation of the couplings. This flow interpolates between the homogeneous model in
the UV and the aperiodic XXZ chain in the IR. In this picture, the continuum limit of the
model at the UV fixed point enjoys conformal symmetry, being a CFT with a central charge
c = 1. On the other hand, the IR fixed point is characterized by a critical theory, whose
aperiodicity explicitly breaks the conformal symmetry. This is similar to the symmetry
breaking along RG flows in continuous holographic models such as AdSd+1/Lifshitzd+1

domain wall [118] or the AdSd+1/AdS2×Rd−1 domain wall (extremal RN black hole) [119].
Understanding the full extent of this analogy an how it might provide insight into a discrete
holographic duality presents an interesting goal which we leave for future work.

A further step towards a complete discrete holographic duality requires the construction
of a dual bulk theory. For this purpose, the interplay between SDRG and tensor networks
discussed in Sec. 5 provides a promising starting point. More precisely, the graph of the TN
embedded onto the Poincaré disk can be viewed as a discrete space in the bulk. Based on
this, we can define a bulk theory by promoting the couplings Ji defined on the vertices xi of
the TN to background bulk fields J(xi). The RG flows (27) and (31) can be interpreted as
the global radial evolution of the background fields in this discrete space. Given the local
nature of the SDRG, we might generalize the global radial evolution to local equations
of motion by considering a perturbation J(xi) + δJ(xi) and studying its flow under the
SDRG. We leave an investigation into the dynamics of this potential bulk theory for future
work.

A further interesting perspective is the investigation of how modifications of the TN
influence the corresponding boundary theory. First, we can introduce a TN version of a
conical defect into the discrete TN graph mentioned above. This can be done by choosing
a different “top-level tensor” of rank p′ ̸= p described by a new seed word ap

′ . In the UV,
the resulting TN state will have the same fine-grained structure as the ground state of the
{p, q} XXX chain (see Sec. 5.1). It would be interesting to understand how this conical
defect can deform the minimal cuts and thus affect the entanglement properties of the
TN [38, 120]. Second, it would be insightful to consider excited states, thermal states or
more general mixed states of our proposed boundary Hamiltonian (22). For instance, a
low-lying excited state of the boundary aperiodic chain could be constructed through the
SDRG method by replacing the ground state of one of the local Hamiltonians Hn in (23)
with a higher energy eigenstate. The case of a thermal state is more challenging, since
the SDRG procedure is no longer valid due to the thermal correlations present in the local
ground state, which prevent us from individually decimating strongly-coupled spin blocks.
Establishing a more general framework allowing for the description of aperiodic spin chains
at finite temperature is a compelling goal which we will pursue in the future.

We would also like to comment upon the connection between hyperbolic tilings and the
discretization scheme employed in the p-adic AdS/CFT [23–25]. This approach to discrete
holography considers the so-called Bruhat-Tits tree to be the discrete bulk dual to a theory
defined on the field Qp, with p prime, of p-adic numbers (we use bold font to distinguish
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between the parameter p in the p-adic setting and the Schläfli parameter p from hyperbolic
tilings). The Bruhat-Tits tree is a (p+1)-valent tree equivalent to a Bethe lattice and can
be formally realized as the p → ∞ limit of {p, q} tilings with q = p + 1. Currently, our
construction exhibits no clear sensitivity to prime values of the Schläfli parameters, other
than a complicated structure for the corresponding TN. It would be interesting to access
the p → ∞ limit explicitly and possibly obtain results that could be compared to those
found in the context of p-adic AdS/CFT. This would serve as a non-trivial consistency
check between different approaches to discrete holography.

Finally, in order to include the dynamics of AdS gravity into our approach, it is nec-
essary to extend the hyperbolic tessellation of the time slice into the time direction and
make the resulting triangulation of AdS3 dynamical. This can in principle be achieved
within the framework of causal dynamical triangulations [121, 122], which simulates pre-
cisely the Lorentzian gravitational path integral for such dynamical triangulations. Within
this approach, particular time-dependent problems such as the time domain of holographic
correlation functions, the dynamics of local and global quenches, and the formation of
black holes, can be solved in the context of discrete gravity on hyperbolic tilings. We leave
the investigation of discrete dynamical AdS gravity on hyperbolic tessellations using causal
dynamical triangulations for future work.
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A Length rescaling towards the boundary of hyperbolic tilings

Given a homogeneous non-aperiodic chain, the number of sites N is given by N = L/a,
with L the total length of the system and a the lattice spacing. In the setup of Sec. 2.3,
this lattice model was assumed to underlie a CFT defined on a circle of the same length
L. However, the relation N = L/a does not hold in our boundary construction due
the fractal structure of the aperiodic lattices. The correct relation is described by the
fractal dimension d of {p, q} tilings [123], which we derive in the following from hyperbolic
geometry arguments.
The fractal dimension d relates the effective number of sites N on the whole boundary to
the total circumference of the circle L via

N ∼
(
L
a

)d

. (90)

On the one hand, after a large number n of inflation steps, we may equate the circumference
C of a hyperbolic circle of radius R̃ centered at the origin of D2 with the circumference of
the CFT circle L

L
a
= C = π sinh

(
R̃
)
≈ πeR̃ . (91)
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where we introduce the UV cutoff a of the CFT to capture the divergence of the circum-
ference for large radii. All lengths in this derivation are implicitly given in units of the
AdS radius. For a hyperbolic tiling, we know that the radius will be given in terms of the
number of patterns and their tiling-dependent geodesic length, i.e. R̃ = n t(p, q). Thus,
plugging this into (91) and solving for n we find

n =
ln L

a

t(p, q)
. (92)

On the other hand, the number of vertices N on the tiling’s boundary is asymptotically
well approximated by N ≈ λ+(p, q)

n, with λ+(p, q) the largest eigenvalue of the associated
substitution matrix M{p,q}, which implies

n =
lnN

lnλ+(p, q)
. (93)

Equating (93) with (92), we find the correct relation between the number of sites on the
boundary and its length

ln(N) =
lnλ+(p, q)

t(p, q)
ln

L
a
. (94)

Naturally, this also holds for a sub-region of the circle

ln(L) =
lnλ+(p, q)

t(p, q)
ln

ℓ

a
, (95)

where L denotes the number lattice sites on the region ℓ. From this derivation, compar-
ing (90) with (95), we find that the fractal dimension of the boundary of {p, q} tilings is
d = lnλ+(p,q)

t(p,q) . The fractal dimension allows us to properly relate lengths in the bulk to
lengths on the boundary, which we exploit in our derivations in Sec. 2. Note that the cutoff
scale in section 2.3 was denoted as ϵ and was associated to a radial cutoff in the bulk. In
this Appendix, we have kept the underlying cutoff scale a of the boundary theory general.
The two cutoff need not be equal, but are related only by a rescaling, which would simply
contribute a sub-leading constant term to the universal logarithmic behavior in (95). For
this reason, we can insert (95) into (19) to derive the final result in (20).

B SDRG flows in generic aperiodic XXZ chains

In this appendix we provide a detailed list of results on the application of SDRG techniques
to the aperiodic XXZ chains. The analysis has been performed by considering the mod-
ulations generated by σ{p,q} for any pair {p, q}. These findings include the classification
of all the {p, q} modulations according to the criterion discussed around (69), the explicit
expressions for all the sequence-preserving transformations associated to their SDRG flows,
and the flows of the coupling ratio under SDRG in the case of aperiodic XX and XXX
chains.

B.1 The classifications of SDRG flows

As discussed in Sec. 3.2, the sequence-preserving transformations Ξ{p,q} associated to the
asymptotic aperiodic sequences generated by σ{p,q} can be classified according to the num-
ber of individual RG steps they are made up of. In particular, when

Ξ{p,q} = RGkRGk−1 · · ·RG1 , (96)

49



SciPost Physics Submission

we say that the corresponding bond distribution attractor is a k-cycle under SDRG [91].
This classification does not involve explicitly the inflation rule σ{p,q}. Moreover, it is

not unique since consecutive RG steps in (96) can be combined to give more complicated
transformations or single RG steps can be decomposed into more elementary transforma-
tions, resulting, in both cases, in a change of the values of the index k labeling the cycle.
For these reasons, in Sec. 5.1 the classification of Ξ{p,q} via the exponent m defined in (69)
has been introduced. This exponent, which is unique, quantifies the number of inverse
inflation steps σ−1

{p,q} (deflations) that are required for implementing Ξ{p,q}. Exploiting the
explicit expressions of the sequence-preserving SDRG transformations reported in Appen-
dices B.2-B.4 for all the pairs {p, q}, one can straightforwardly verify that the SDRG flows
associated to the {p, q} modulations are labeled by one of three integer values m = 1, 2, 3.
This fact has the remarkable implication that each tensor network constructed in Sec. 5.1
can be placed on the corresponding tiling in a commensurable way. In the context of this
classification, the SDRG flows associated to σ{p,3}, for p ⩾ 7 require an ad hoc analysis.
As explained in Sec. 2.2, the inflation rules σ{p,3} are peculiar since are usually written in
terms of three letters a, b, c [52]. Since the techniques we have exploited in this manuscript
are valid for binary inflation rules, we would like to recast σ{p,3} in a form involving two
letters a, b only. This can be done at the price of introducing letters with negative expo-
nents in the inflation rule, i.e. a−1. Examples of these rules, which are not considered in
the standard literature on aperiodic spin chains [47–50,58,91], are given in (102) and (126).
Our goal is to understand what happens to the SDRG procedure in XXZ chains in pres-
ence of this kind of aperiodicities. The key observations are that the sequence-preserving
transformation Ξ{p,3} does not contain letters with negative exponents and it is related to
the inverse inflation rule σ−1

{p,3} as

Ξ{p,3}RG0 ∼ RG0σ
−m
{p,3}, (97)

where RG0 is an auxiliary RG step and m is an integer number. We generalize the classi-
fication by the index m in (69) to (97), by saying that Ξ{p,3} belongs to class I, II or III,
if m = 1, 2 or 3 respectively. The relation (97) implies that the SDRG associated to {p, 3}
modulations is not affected by RG0 and it can thus be treated as the other cases of {p, q}.

One of the main results reported in this appendix is the flow of the coupling ratio r under
SDRG when a generic aperiodic {p, q} modulation is applied either to an XX (∆0 = 0) or
to an XXX (∆0 = 1) chain. We can restrict ourselves to these two cases without loss of
generality because, as explained in Sec. 3.2, for any 0 < ∆0 < 1 the aperiodic XXZ chain
flows to the XX chain under SDRG. After one sequence-preserving transformation, the
coupling ratio r becomes r′ such that

r′/r = Λ, (98)

with Λ independent of the hopping parameters. Crucially, the SDRG analysis for aperiodic
XX and XXX chains (see Sec. 3.2) reveals that the anisotropy parameters do not flow in
either of these cases, since ∆0 = ∆∗

0 = 0 and ∆0 = ∆∗
0 = 1, respectively. As a consequence,

Λ does not change along the SDRG flow either. Thus, if Λ = 1, r is constant along the
SDRG flow and the corresponding modulation is marginal, while, if Λ < 1, r → r∗ = 0
along the SDRG and the corresponding modulation is relevant. In the following subsections
we find the expression for Λ, for any {p, q}, as products of various coefficients γn introduced
in (27) and (31). Remarkably, in these products, the indices n of the various γ factors are
always even. From a numerical analysis, whose results are shown in Fig. 16 for some
values of n, we observe that γn(∆0 = 1) < 1 for any n and therefore all the {p, q}
modulations are relevant when applied to the XXX chain. On the other hand, when n
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Figure 16: Coefficients γn and δn defined in (27) and (31) shown as functions of ∆0, for
various values of n. The black dashed line in the right panel corresponds to γn = δn. The
numerical data show that these coefficients are always smaller than 1 in the whole range
of ∆0 considered here.

is even, γn(∆0 = 0) = 1 and therefore all the {p, q} modulations are marginal when
applied to the XX chain. This latter statement is consistent with the results obtained by
applying the exact methods developed in [49] on the {p, q} modulations.
In the following subsections we consider the three classes of SDRG flows separately and
we collect the results which allowed us to draw the aforementioned conclusions about the
nature of the {p, q} modulations in XX and XXX chains.

B.2 Class I: {p, q} XXZ chain for even p

The modulations in class I are associated to sequence-preserving transformations Ξ{p,q},
fulfilling (69) (or (97)) with m = 1.

{p, q} tiling for even p and q ⩾ 4

The sequence-preserving SDRG transformation can be written in terms of the following
RG steps

RG1 = {aba 7→ a, a 7→ b} , (99)

RG2 =
{
b(p−6)/2(abp−5)q−3ab(p−6)/2 7→ a, b(p−6)/2(abp−5)q−4ab(p−6)/2 7→ b

}
. (100)

It might seem odd that some powers of letters in (99) and (100) can be negative for some
choices of p, as for instance for p = 4. This is however not problematic, since even if
this occurs for the individual RG steps, this issue disappears once we combine them for
constructing the sequence-preserving transformation Ξ{p,q} = RG2RG1. Taking the case
{4, q} for q ⩾ 5 as an example, we have RG2 = {b−1(ab)q−3ab−1 7→ a, b−1(ab)q−4ab−1 7→
b}, but the sequence-preserving transformation RG2RG1 = {(ba)q−3b 7→ a, (ba)q−4b 7→ b}
does not contain negative exponents for the letters. The same remark is valid for all
the other pairs {p, q} considered in this appendix. It is straightforward to check that
Ξ{p,q} = RG2RG1 is equivalent to a single deflation step σ−1

{p,q}.
Exploiting the algorithm reported in Sec. 5.2, we can write down how the coupling ratio

r is modified after one sequence-preserving transformation, namely

r′/r = γ2γp−4. (101)
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Notice that, since p is even, p − 4 is also even. Thus, (101) guarantees the marginality
and the relevance of the modulations belonging to this class when applied to XX and
XXX chains respectively. Similar conclusions can be drawn at the end of all the following
subsections, but we will not write them down explicitly for conciseness.

{p, 3} tiling for even p ⩾ 8

This case belong to the special class of modulations discussed in Appendix B.1. By con-
sidering also negative exponents for the letters, the inflation rule σ{p,3} can be written
as

σ{p,3} =
{
a 7→ aa(p−5)/2ba(p−5)/2, b 7→ a−1

}
. (102)

The RG step

RG1 =
{
b(p−6)/2abp−7ab(p−6)/2 7→ a, b(p−6)/2ab(p−6)/2 7→ b

}
, (103)

combined with the auxiliary transformation

RG0 = {aba 7→ a, a 7→ b} , (104)

leads to the relation

RG1RG0 ∼ RG0σ
−1
{p,3}. (105)

Comparing (105) with (97) evaluated for m = 1, we can identify Ξ{p,3} = RG1.
The SDRG flow of the coupling ratio can be obtained in this case by RG1 only and

reads

r′/r = γp−6, (106)

where we notice that p− 6 is even for any even p.

B.3 Class II: {p, q} XXZ chain for odd p and even q

The modulations belonging to this class are associated to sequence-preserving transforma-
tions Ξ{p,q} satisfying (69) with m = 2.

{3, q} tiling for even q ⩾ 8

The RG steps are

RG1 = {aba 7→ a, a 7→ b} , (107)

RG2 =
{
b(q−6)/2(abq−7)q−5ab(q−6)/2 7→ a, b(q−6)/2(abq−7)q−6ab(q−6)/2 7→ b

}
, (108)

and contribute to determine the sequence-preserving transformation Ξ{3,q} = RG2RG1.
The corresponding flow of the coupling ratio is

r′/r = γ2γq−6, (109)

where again we remark that q − 6 is even when q is even.
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{p, q} tiling for odd p ⩾ 5 and even q ⩾ 4

Consider the following RG steps

RG1 = {aba 7→ a, a 7→ b} , (110)

RG2 =
{
b(p−5)/2abp−6ab(p−5)/2 7→ a, b(p−5)/2ab(p−5)/2 7→ b

}
, (111)

RG3 =
{
b(q−4)/2abq−5ab(q−4)/2 7→ a, b(q−4)/2ab(q−4)/2 7→ b

}
, (112)

RG4 =
{
b(p−5)/2(abp−4)q−3ab(p−5)/2 7→ a, b(p−5)/2(abp−4)q−4ab(p−5)/2 7→ b

}
. (113)

These four RG steps combine to provide the sequence-preserving transformation Ξ{p,q} =
RG4RG3RG2RG1. After one application of Ξ{p,q} on the original aperiodic (XX or XXX)
chain, the ratio r between the hopping parameters transforms into r′ in such a way that

r′/r = γ2γp−5γp−3γq−4. (114)

Rather remarkably, p− 5, p− 3 and q − 4 are even precisely when p is odd and q is even.

B.4 Class III: {p, q} XXZ chain for odd p and odd q

Finally, we consider here those {p, q} modulations such that the corresponding Ξ{p,q} satisfy
the condition (69) or (97) with m = 3.

{3, q} tiling for odd q ⩾ 7

The three RG steps that contribute to the sequence-preserving transformation Ξ{3,q} =
RG3RG2RG1 read

RG1 = {aba 7→ a, a 7→ b} , (115)

RG2 =
{
b(q−7)/2abq−8ab(q−7)/2 7→ a, b(q−7)/2ab(q−7)/2 7→ b

}
, (116)

RG3 =
{
b(q−7)/2(abq−6)q−5ab(q−7)/2 7→ a, b(q−7)/2(abq−6)q−6ab(q−7)/2 7→ b

}
. (117)

The SDRG flow of coupling ratio is

r′/r = γ2γq−7γq−5. (118)

Also in this case, all the integer indices of the γ factors are even.

{p, q} tiling for odd p ⩾ 5 and odd q ⩾ 5

For this class of {p, q} modulations we need the following six RG steps

RG1 = {aba 7→ a, a 7→ b} , (119)

RG2 =
{
b(p−5)/2abp−6ab(p−5)/2 7→ a, b(p−5)/2ab(p−5)/2 7→ b

}
, (120)

RG3 =
{
b(q−5)/2(abq−4)p−3ab(q−5)/2 7→ a, b(q−5)/2(abq−4)p−4ab(q−5)/2 7→ b

}
, (121)

RG4 = {aba 7→ a, a 7→ b} , (122)

RG5 =
{
b(q−5)/2abq−4ab(q−5)/2 7→ a, b(q−5)/2ab(q−5)/2 7→ b

}
, (123)

RG6 =
{
b(p−5)/2(abp−4)q−3ab(p−5)/2 7→ a, b(p−5)/2(abp−4)q−4ab(p−5)/2 7→ b

}
, (124)
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for constructing the sequence-preserving transformation Ξ{p,q} = RG6RG5RG4RG3RG2RG1.
After one application of Ξ{p,q}, the coupling ratio r transforms into r′ such that

r′/r = γ22γp−5γp−3γ
2
q−3. (125)

Notice that, since both p and q are odd, p− 5, p− 3 and q − 3 are even.

{p, 3} tiling for odd p ⩾ 7

The last set of modulations we are left with belongs to the exceptional class discussed in
Appendix B.1. The inflation rule containing negative powers of letters can be written as

σ{p,3} =
{
a 7→ aa(p−5)/2ba(p−5)/2, b 7→ a−1

}
. (126)

By defining the RG steps

RG1 =
{
b(p−7)/2(abp−6)p−5ab(p−7)/2 7→ a, b(p−7)/2(abp−6)p−6ab(p−7)/2 7→ b

}
, (127)

RG2 =
{
a(p−5)/2bap−6ba(p−5)/2 7→ a, a(p−5)/2ba(p−5)/2 7→ b

}
, (128)

and the auxiliary transformation

RG0 = {aba 7→ a, a 7→ b} , (129)

we can write

RG2RG1RG0 ∼ RG0σ
−3
{p,3}. (130)

Comparing this last equation with (97) for m = 3, we identify Ξ{p,3} = RG2RG1, which
allows to determine the SDRG flow of the coupling ratio

r′/r = γ2γp−7γp−5, (131)

where, again, all the integer indices of the γ factors are even.

C Entanglement structure and improved bound for effective
central charge

The entanglement structure of a tensor network state depends on the network structure
as well as on the detail of its building blocks, i.e. the tensor states. In this appendix,
we will study the entanglement structure of the tensor states defined in (65), which are
the building blocks of the TN constructed in Sec. 5.1. We combine our results with the
network structure to improve the bound (79) for the effective central charge of the {p, q}
aperiodic XXX spin chain.

C.1 Entanglement in tensor states

The tensor states |Tn⟩ in (65) are obtained by diagonalizing the local Hamiltonian Hn of a
block of n consecutive spins given by (23). In this appendix we calculate the entanglement
entropy and the Rényi entropies of k spins in the tensor state |Tn⟩, with k < n.
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For n = 1, 2, both tensor states are EPR states, namely |T1⟩ = (|+⟩ |+⟩+ |−⟩ |−⟩)/
√
2

and |T2⟩ = (|+⟩ |−⟩ − |−⟩ |+⟩)/
√
2. The reduce density matrix for each spin is I2/2,

where I2 is the 2-by-2 identity matrix. The entanglement spectrum is flat and both the
entanglement entropy and all the Rényi entropies are ln 2. Since the EPR states are
maximally entangled, the tensors associated to the states |T1⟩ and |T2⟩ are perfect. Thus,
if these two tensors are the only ones appearing in a given TN, the resulting entanglement
entropy saturates the bound (74).
For n ⩾ 3, we have computed the entanglement entropies numerically. Notice that for these
values of n the states |Tn⟩ exhibit a non trivial dependence on the anisotropy ∆0. Some of
the results of our analysis are shown in Fig. 17, where we present the curves for two distinct
values of n (left and right panels respectively) as functions of the anisotropy parameter
∆0 (top panels) and of the Rényi index α (bottom panels). In this appendix we denote
by S

(α)
{j1,...,jk}(|Tn⟩) the α-th Rényi entropy of k spins, where the (distinct) integer numbers

j1, . . . , jk are respectively associated to the vectors |mj1⟩ , . . . , |mjk⟩ in the definition (65)
of |Tn⟩. We recall that the limit of S(α)

{j1,...,jk}(|Tn⟩) for α → 1 provides the entanglement
entropy S{j1,...,jk}(|Tn⟩). In the following we will refer to the entanglement entropy and the
Rényi entropies with α ̸= 1 collectively as entanglement entropies.

For odd n ⩾ 3, the tensor state |Tn⟩ is constituted by n-spin doublets. The reduced
density matrix of any single spin (k = 1) is I2/2, and therefore the corresponding entan-
glement entropies are S

(α)
{j1}(|Tn⟩) = S{j1}(|Tn⟩) = ln 2, for any α and j1 = 0, 1, . . . , n. On

the other hand, the reduced density matrix of (k ⩾ 2) spins depends on ∆0 and it is not
proportional to the identity matrix. We find that the entanglement entropies of these bi-
partitions are such that ln 2 < S{j1,...,jk}(|Tn⟩) < k ln 2 and ln 2 < S

(α)
{j1,...,jk}(|Tn⟩) < k ln 2,

for any α. This means that the tensors associated to |Tn⟩ with odd n ⩾ 3 are not perfect
tensors. Moreover, we have found that the Rényi entropies as functions of the Rényi index
α do not follow the behavior occurring in homogeneous critical lattice models and CFTs,
which, at leading order in the subsystem size, reads [62,63]

S(α) ∝ 1 +
1

α
. (132)

The features discussed above can be observed, for the particular case of the tensor state
|T3⟩, in the left panels of Fig. 17.
For even n ⩾ 4, the tensor state |Tn⟩ is an n-spin singlet state. Our analysis provides
findings very similar to the ones obtained for odd n ⩾ 3. In particular, the reduced density
matrix of any single spin (k = 1) is I2/2, while the reduced density matrix of k ⩾ 2 spins
is not proportional at the identity and depends on ∆0. As for the entanglement entropies,
we find that, for any α, S(α)

{j1}(|Tn⟩) = S{j1}(|Tn⟩) = ln 2 (for any j1 = 1, . . . , n) and both

S
(α)
{j1,...,jk}(|Tn⟩) and S

(α)
{j1,...,jk}(|Tn⟩) are strictly included between ln 2 and k ln 2. Thus, also

the tensors associated to |Tn⟩ with even n ⩾ 4 are not perfect tensors. Furthermore, the
behavior of Rényi entropies as functions of α does not satisfy (132). These properties are
shown in the right panels of Fig. 17, where the results obtained for the exemplary case
n = 4 are reported.

To summarize, our analysis shows that the tensors associated to the tensor states (65)
are not perfect when n ⩾ 3. Thus, the entanglement entropy obtained from a TN where
states |Tn⟩ with n ⩾ 3 do appear does not saturate (74). On the other hand, when only
|T1⟩ and |T2⟩ appear in a TN, the corresponding entropy saturates (74). We have also
investigated the behavior of the Rényi entropies as a function of Rényi index α, finding
that they behave differently from (132) (see also the discussion at the end of Sec. 4.1). This
is a further hint of the fact that aperiodic XXZ chains cannot be described by underlying
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Figure 17: The reduced entanglement entropies S̃ ≡ S{j1,...,jk}(|Tn⟩)/ ln 2 as functions of ∆0

(top panels) and the reduced Rényi entropies S̃(α) ≡ S
(α)
{j1,...,jk}(|Tn⟩)·2/[(1+1/α) ln 2]|∆0=1

as functions of the Rényi index α (bottom panels). We consider two values of n, namely
n = 3 (left panels) and n = 4 (right panels). In each panel we present the entropies of
different choices of the set of spins, labeled by {j1} or {j1, j2}. Notice that for the left
panels, the entropies of the spins {0, 1} and {1, 2} are equal.

conformal field theories.

C.2 An improved bound for effective central charges

The upper bound for the effective central charge, reported in the right hand side of the
inequality (79), is obtained by assuming that all the tensors in the TN are perfect. Thus,
this expression depends only on the geometry of the TN graph, without any information
about the actual properties of the tensors. As explained in Sec. 5.1, each tensor is associated
to one of the states reported in (65). Thus, studying the entanglement properties of
these states, one can understand the actual contribution that each tensor gives to the
entanglement of the whole TN. Exploiting the findings reported in Appendix C.1 above, it
is possible to improve the upper bound (79) for the effective central charge associated to
the ground state of any {p, q} aperiodic XXX chain. In the following we describe how to
derive these results generalizing the construction discussed in Sec. 5.3, and we provide the
expression of the new bound as function of q for two exemplary choices of p.

In order to compute the improved bound for the effective central charge, the fine-grained
inflation rule σ̃{p,q} defined in Sec. 5.3 needs to be further refined. Each of the letters ai
(bi) is endowed with an additional index n in such a way that ain (bin) is the i-th letter
of type a (b) in the n-spin singlet/doublet along the TN layer which ain (bin) belongs to.
We denoted the further fine-grained inflation rule by ˜̃σ{p,q}. It can be obtained from the
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original one σ{p,q} by considering the words wa(a, b), wb(a, b) and substituting each a and
b with ain and bin, according to the new classification introduced above. The number of
different kinds of vertex in ˜̃σ{p,q}, i.e. the number of pairs of indices (i, n) for the letters a
and b, depends in a highly non trivial way on the choice of p and q. Once the new inflation
rule ˜̃σ{p,q} has been specified, the corresponding substitution matrix ˜̃M can be constructed

in the same manner we obtained M̃ from σ̃{p,q} in Sec. 5.3. Also the eigenvectors of ˜̃M , ˜̃u+
and ˜̃v+, are defined following the construction of ũ+ and ṽ+ from M̃ . Notice that, for the
same reason explained in Sec. 5.3, the largest eigenvalue of ˜̃M is equal to the one of M̃ ,
which in turn is equal to λ+ given in (14) as function of p and q. Next, a new entanglement
matrix ˜̃E has to be defined. Its entries no longer contain the number of legs cut by curves
connecting two given vertices, but rather the actual entanglement entropy (modulo ln 2)
associated to each of the aforementioned legs. Since this entropy is not accessible via
analytical computations, the entries of ˜̃E have to be obtained numerically, for instance
from the results shown in Fig. 17. Notice that these components of ˜̃E are smaller than the
ones of Ẽ because the latter ones contain the entanglement contributions to the network
assuming that all the tensors are perfect, i.e. maximally entangled.
Combining all these ingredients, we can improve the bound (79) for SDRG flows of class I
as follows

ceff ⩽
6
∑

ij
˜̃Eij
˜̃M ij ˜̃ui˜̃vj

λ+ lnλ+
∑

i
˜̃ui˜̃vi

ln 2 ⩽
6
∑

ij ẼijM̃ij ũiṽj

λ+ lnλ+
∑

i ũiṽi
ln 2 . (133)

Similarly to the bound computed in Sec. 5.3, this new bound can also be generalized to

SDRG flows of class II and III, by replacing
(˜̃M,λ+

)
with

(˜̃M2

, λ+

)
and

(˜̃M3

, λ+

)
respectively. Although this approach provides an improved bound for the effective central
charge through a more careful analysis for the entanglement entropy of the tensor states
(65), we cannot achieve the exact entanglement entropy in this way. The reason is the
following: when computing the variation of the entropy along one inflation step of the tiling,
(133) overestimates the entanglement associated to those doublet states, i.e. Tm0

m1...mn
in

(65), where legs associated to an upper and a lower index are simultaneously cut. Moreover,
we stress that (133) holds as bound on the effective central charge of {p, q} aperiodically
modulated XXX chain only. Indeed, in this regime, all the {p, q} modulations are relevant
and at the strong-disorder fixed point the SDRG, on which our TN is fully based, becomes
exact.

We now consider two explicit examples where we apply the above mentioned analy-
sis. In the first one, we focus on the {4, q} aperiodic XXX chain (with q ⩾ 5), whose
corresponding SDRG flow belongs to class I (see Appendix B). For this modulation, the
inflation rule ˜̃σ{4,q} reads

˜̃σ{4,q} =
{
a00 7→ b13a00(b12a00)

q−4b13, b1n 7→ b13a00(b12a00)
q−5b13

}
, n = 2, 3. (134)

By ordering the vertices appearing in this rule as (a00, b12, b13), the substitution matrix is
given by

˜̃M{4,q} =

q − 3 q − 4 q − 4
q − 4 q − 5 q − 5
2 2 2

 . (135)

In order to determine the entanglement matrix, we notice that the presence of both b12
and b13 requires us to know the entanglement of a single spin in a block made up of two
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and three spins, respectively. As discussed above, the entanglement of a single spin in a
2-spin block is ln 2. Moreover, by looking at the blue curve in the top right panel of Fig. 17,
we notice that ln 2 is also the entanglement of a single spin into a 3-spin block. Thus, the
entanglement matrix reads

˜̃E{4,q} =

0 0 0
1 1 1
1 1 1

 . (136)

Plugging (135) (with its eigenvectors) and (136) into (79), we obtain

ceff(4, q) ⩽
3 ln 2

ln
(√

(q − 2)(q − 4) + q − 3
) . (137)

Notice that the right hand side of (137) is equal to the right hand side of (86) when p = 4.
This means that in the bound (133) is the same as (79) when p = 4. This is particular to
the {4, q} modulation and does not hold in general. We can convince ourselves of this by
considering as a second example the SDRG flow induced by the {8, q} modulation, with
q ⩾ 4. This flow belongs to the class I as well and its fine-grained inflation rule reads

˜̃σ{8,q} = {ain 7→ a13a00b12(a00a14a24a14a00b12)
q−3a00a13,

b12 7→ a13a00b12(a00a14a24a14a00b12)
q−4a00a13, n = 3, 4} . (138)

The corresponding substitution matrix, in the basis (a00, a13, a14, a24, b12), is

˜̃M{8,q} =


2q − 4 2q − 4 2q − 4 2q − 4 2q − 6

2 2 2 2 2
2q − 6 2q − 6 2q − 6 2q − 6 2q − 8
q − 3 q − 3 q − 3 q − 3 q − 4
q − 2 q − 2 q − 2 q − 2 q − 3

 . (139)

For constructing the entanglement matrix we now need not only the entanglement entropy
of a single spin in a 2- or 3-spin block (see discussion above), but also the entanglement
entropy of two spins in a 4-spin block. The latter can be obtained numerically and its result
is reported in the top right panel of Fig. 17 (cf. yellow curve). By considering ∆0 = 1, the
entropy modulo ln 2 reads s ≃ 0.46 and therefore the entanglement matrix is given by

˜̃E{8,q} =


0 0 0 0 0
1 1 1 1 1
1 1 1 1 1
s s s s s
1 1 1 1 1

 . (140)

Exploiting (139) with its eigenvalues and (140) in (133), we find

ceff(8, q) ⩽
9q − 24− s

(
9q − 2

(
12 +

√
3(q − 2)(3q − 8)

))
(3q − 8) ln

(
3q − 7 +

√
3(q − 2)(3q − 8)

) ln 2. (141)

Notice that the right hand side of (141) is strictly smaller than the right hand side of (86)
with p = 8, for any value of q ⩾ 4 and therefore (141) provides an actual improvement of
the bound on the effective central charge.
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Summarizing the results of this appendix, we have found that even though we can com-
pute the precise entanglement structure of each tensor state, the exact entanglement en-
tropy of a generic block of consecutive spins in the TN state is still analytically intractable.
This obstacle is also present for the exact effective central charge of the aperiodic XXX
spin chain. The reason is that the entanglement is not local in the these TNs, namely
the entanglement entropy depends on the global structure of the RG trajectories, which is
not localized throughout separated steps of deflation. However, as discussed in Sec. 4 and
Sec. 5.3, there are exceptions for which the exact entanglement entropy can be obtained,
namely those tensor networks where only tensor states |T1⟩ and |T2⟩ appear.
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