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We show that one of the quantum entangled state recently realized in a Rydberg quantum
simulator [Semeghini et al., Science 374, 6572 (2021) [1]] offers a sufficient resource for univer-
sal measurement-based quantum computation. In particular, we provide explicit measurement se-
quences that implement a universal set of gates on the encoded logical qubits. Upon successful
experimental realization, the proposed sequences would promote the Rydberg simulators to the first
universal quantum computers relying on the measurement-based model of quantum computation.

I. INTRODUCTION

Quantum simulators are controlled quantum devices
that can be used to simulate other quantum systems, pro-
viding the means to study a class of problems currently
intractable on classical computers [2–4]. Being special
purpose devices, they are often contrasted with general-
purpose universal quantum computers [5, 6], which are –
in principle – capable of solving any quantum problems,
including those addressed by simulators. This apparent,
but loosely stated, inclusion relation is however mislead-
ing, as it is in fact an equivalence.

Indeed, certain quantum entangled states, once sim-
ulated, provide sufficient resources for the realization of
any quantum algorithm using the model of measurement-
based quantum computation (MBQC) [7–10], wherein
measurements on individual constituents of the entangled
state drive the algorithm. Within the MBQC paradigm,
quantum simulators realizing those computationally uni-
versal states (CUSs) are therefore equivalent to universal
quantum computers [11, 12].

The standard example of such CUS, and the first iden-
tified, is the cluster state on the square lattice [13, 14].
Since then, several other two dimensional states – such
as graph states [15, 16], the tricluster state [17], modified
toric code states [18], and Affleck-Kennedy-Lieb-Tasaki
states [19, 20] – have been diagnosed as CUSs. Intrigu-
ingly, all these candidates for universal MBQC share a
common feature, they are two-dimensional symmetry-
protected topologically ordered states (SPTOSs) [21–25].
The coincidence between CUS and SPTOS was further
grounded numerically in certain models [26, 27]. Using
this phenomenological observation, the search for the first
quantum simulator to be promoted to the rank of uni-
versal quantum computer might benefit from a focus on
those realizing two-dimensional SPTOS.

Recently, a two-dimensional state with Z2 topologi-
cal order has been realized in Rydberg arrays [1, 28],
one of the most promising quantum simulator for the
study of many-body systems with short-range interac-
tions [29–31]. In this article, we show that this SP-
TOS exhibits universal computational power within the
MBQC paradigm. To achieve this goal, we first model it
as a pair-entangled projected pair state (PEPS) [32], and

then provide explicit and experimentally realistic mea-
surement sequences implementing a universal set of quan-
tum gates. If successfully realized, Rydberg arrays could
be engineered into universal quantum computers relying
on MBQC, a paradigmatic shift from the circuit model
implemented, e.g. with superconducting qubits [33, 34].
Our findings call for an extensive search of UCS in Ry-

dberg arrays, tracking those offering the simplest exper-
imental sequences for the implementation of a universal
gate set. Experimental imperfections weakening the reli-
ability of MBQC, such as non-adiabaticity or dephasing
due to long-range interactions, should also be identified
and listed, together with ways to correct for them, i.e.
through pulse-engineering.

II. REQUIRED EXPERIMENTAL RESOURCES

Let us first describe the SPTOS realized in Ref. [1]
and characterize the types of measurement available in
typical Rydberg array experiments. These two types of
resources will later serve as the necessary building blocks
of our MBQC scheme.

A. Z2 SPTOS in a Rydberg simulator

The Rydberg array of Ref. [1] consists of atoms individ-
ually trapped in optical tweezers [35–37], and positioned
on a Ruby lattice, i.e. on the links of a Kagome lattice
(see Fig. 1a). These atoms are initially prepared in an
electronic ground state |g⟩, which is laser-coupled to a
Rydberg state |e⟩ with a Rabi frequency Ω and a detun-
ing ∆, leading to the on-site Hamiltonian

H =
1

2
(Ω|e⟩⟨g|+Ω∗|g⟩⟨e|)−∆n, n = |e⟩⟨e|. (1)

Due to their high polarizability, atoms in the Rydberg
states strongly interact through the strong van der Waals
interaction V (d) = C6/d

6, with d the interatomic dis-
tance [30]. As a result, all atoms within a distance
r < Rb = (C6/Ω)

1/6 of an atom in |e⟩ are brought far off
resonance from the laser field. This effect is well captured
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FIG. 1. a) State consistent with the blockade condition (grey
circle) at filling ⟨n⟩ = 1/4, the equivalence with dimer is made
explicit by coloring the links of the Kagome lattice on which
Rydberg excitations lie. b) Physical decoupling of the sim-
ulation and computation (or measurement) plane allow for
pulses with arbitrary driving parameters (Ω′,∆′).

by the so-called blockade radius model, in which the sys-
tem’s dynamics is approximated by Eq. 1 projected to
the subspace where no pairs of excitations distant by less
than Rb are present.

In Ref. [1], the Rabi frequency and detuning have been

set such that 2a < Rb <
√
7a, a being the Ruby lattice

constant, and ⟨n⟩ = 1/4. The first condition prevents
adjacent links of the Kagome lattice to simultaneously
host an atom in |e⟩, while the second requires that at least
one of the four links surrounding each vertex be in the
Rydberg state. As sketched in Fig. 1a, these conditions
restrict many-body configurations to dimer coverings of
the Kagome lattice, where the position of dimers is given
by the excited atoms [38].

After appropriate time evolution under the blockade
radius model Hamiltonian, the state |Φ⟩ realized with
the previous parameters is very well approximated by
a dimer state, i.e. an equal superposition of all exist-
ing dimer coverings. The overlap between the dynami-
cally prepared and dimer states was estimated to reach
as high as 99% for 48 atoms under realistic experimen-
tal conditions [28]. In the following, we shall therefore
approximate |Φ⟩ by the Kagome dimer state. This state
has been thoroughly studied in the literature [39–41] and
is known to host Z2 topological order [42–44].

The first goal of this paper is to explore the the com-
putational power of |Φ⟩ within MBQC, and prove that
it is a CUS. Our second aim is to show that universal
MBQC is within experimental reach. The measurements
sequences proposed in this article should therefore remain
realistically implementable in current Rydberg array ex-
periments.

B. Available measurements

To meet this last criterion, we shall only rely on fluo-
rescence measurement of the Rydberg excitation number
at each site, potentially preceded by a ’pulse’. A pulse
is defined as the free evolution of a few atom cluster de-
coupled from the rest of the lattice under the Rydberg
blockade model Hamiltonian. Note that pulses might re-
quire different laser parameters (Ω′, ∆′) than those used
to stabilize the dimer state. One possible setup allowing
for this discrepancy is depicted in Fig. 1b: atomic clusters
are moved out of the simulation plane into a computation
plane, where a different laser is shone to produce the de-
sired pulse and where the final fluorescence measurement
takes place [48].
In the next section, we will combine three elementary

pulses to form a universal set of gate on the encoded log-
ical qubits: (I) The first one involves a two-atom cluster,
evolved under Eq. 1 for a time π/∆, with the detuning

tuned such that ∆/Ω =
√
2/3 [49]. The Hamiltonian in

the two-atom Rydberg blockaded subspace { , , } is
easily exponentiated to give

e−iHτ =

−1 0 0
0 q q∗

0 q∗ q

 , q = −1 + i

2
. (2)

The measurement of the Rydberg excitation position
P = diag(0, 1,−1) after this time evolution becomes
equivalent to the measurement of

eiHτPe−iHτ =

0 0 0
0 0 1
0 1 0

 , (3)

on the original lattice, and projects onto the states ,
( + ) and ( − ) when p = 0, 1,−1 is measured,
respectively. (II) The second pulse isolates three atoms

within a blockade radius for a time 4π/(3
√
3Ω) before flu-

orescence measurement. A similar analysis on the block-
aded Hilbert space { , , , } shows that the state of
the atomic cluster is now projected on 1

2 ( − p↑p↓ −
xp↑ −xp↓ ), where x/p↓/p↑ are equal to one when the
left/bottom right/top right link of the triangle is in |e⟩,
and to minus one otherwise [50]. (III) Finally, a far de-
tuned laser field (∆ ≫ Ω) can be applied for a time t to
imprint a variable phase shift φ = ∆t on the |e⟩ state of
individual atoms.
In the following paragraphs, we show how MBQC can

be implemented by combination of these three measure-
ment pulses on |Φ⟩.

III. UNIVERSAL MQBC

Our scheme for MBQC using |Φ⟩ as a resource follows
the principle of computation in correlation space [16, 18,
47]. More precisely, we write the dimer state as a PEPS,
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and encode the logical qubits in the auxiliary space of
the PEPS tensor. Quantum information processing is
performed by pulse measurements that act as special
contractions of the tensor’s physical space. The residual
action of these contracted tensors on the logical qubits
executes a desired set of gates.

A. Tensor network description

To define our logical qubits and to make the MBQC
scheme transparent, we introduce one possible tensor net-
work representation of the dimer state

|Φ⟩ = , (4)

that uses a PEPS tensor of bond dimension equal to
two, and a physical space gathering six atoms forming
a bowtie. This tensor only has eight non-zero elements,
all equal to one, that can be depicted as

0 +

+ 1

,

0 −

+ 0

,

1 −

+ 1

,

0 −

− 1

,

1 +

− 1

,

1 −

− 0

,

1 +

+ 0

,

0 +

− 0

,

(5)

with filled circle representing atoms in |e⟩, and where

we have used the notation |±⟩ = (|0⟩ ± |1⟩)/
√
2 in the

auxiliary space. The two upper auxiliary qubits are equal
to ones or pluses if the vertex closest to them is covered
by a dimer, and to zero or minus otherwise. The opposite
is true for the two lower auxiliary qubits, such that, upon
contraction, only configurations with all vertices covered
by one and exactly one dimer acquire a non-zero weight.
Since all coefficients in Eq. 5 are equal to one, this weight
also is, and Eq. 4 indeed represents the dimer state. Note
that, because we kept the physical degrees of freedom
of the tensors on the atomic sites rather than on the
vertices of the Kagome lattice, our construction differs
from, but is equivalent to, earlier PEPS descriptions of
dimer states [45, 46].

Logical qubits are encoded into the auxiliary space of
the tensors, and form computational wires (red vertical
lines in Eq. 4). In the remainder of the discussion, we
provide an explicit way to devise a universal set of gates
on these logical qubits that solely rely on the pulses (I-
III) given above.

B. Wire decoupling

First, logical qubits should be able to pass through
the PEPS tensors without being altered when no gate
is applied. In other words, the two incoming logical
qubits of each tensor should be decoupled in that sit-
uation. The following procedure allows to do so: the
right and leftmost atoms of the bowtie are first isolated
and measured in the |g⟩ ± |e⟩ basis (i.e. fluorescence af-
ter a π/2-pulse); then, a π/2 phase shift is imprinted on
the two bottom atoms of the bowtie’s central cross (III);
finally, the atoms of the cross are gathered two-by-two
vertically, each within its own blockade radius, and pulse
(I) is performed.

Our above analysis shows that this sequence projects
the PEPS’ physical state onto one of the states{(

+ xL

)
×

(
+ pL

)
× ×

(
+ xR

)
if: pR = 0(

+ xL

)
× ×

(
+ pR

)
×

(
+ xR

)
if: pL = 0

,

(6)
where xL, xR = ± are the measurement results from the
right/left-most atoms, and pL, pR are those of the left and
right two-atoms clusters, as defined after Eq. 3. Using
Eq. 5, we can then compute the action that this projec-
tion, written as D0(xL, pL, pR, xR), has on the incoming
logical qubit

D0(xL, pL, pR, xR) ≡
H

XpL+xLpR

ZpR

H

ZpR+xRpL

XpL

. (7)

The two last lines are irrelevant Pauli errors that are
inevitable within MBQC, and can be corrected at the end
of the computation. We observe that the computational
wires are indeed decoupled by D0, up to Hadamard gates
that will cancel out with those arising in adjacent PEPS
tensors (see below).

C. Single qubit operations

A small modification of the previous scheme allows to
implement single qubit rotations along each of the incom-
ing computation wires. More precisely, if the leftmost
atom of the bowtie is measured in |g⟩±eiφ|e⟩ using (III),
the gate implemented changes as follows

Dφ ≡
H

XpL+xLpR

G
|pR|
φ

H

ZpR+xRpL

XpL

, Gφ = ZRx(φ),

(8)
where Rx denotes a rotation around the x-axis on the
logical qubit’s Bloch sphere. The conditional rotation Gφ

is similarly performed on the right computational wire
when the rightmost atom of the bowtie is phase-shifted
instead of the leftmost one.
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While this rotation is only applied when pR ̸= 0, we
can try to implement it on successive PEPS tensor along
the computational wire until a non-zero pR heralds suc-
cessful rotation of the qubit. We now show that the
probability to measure pR = 0 on n successive tensors
is K/2n−1, with K constant, ensuring the quasi-certain
application of the rotation Gφ with polynomial circuit
depth using the above iterative method.

To prove this statement, consider the following situa-
tion

1

2
3

4

5

, (9)

and assume that we want to apply a rotation Gφ on the
central logical wire but have measured pR = 0 on the
upper bowtie. We thus apply a phase shift on the right-
most atom of the lower bowtie, and would like to know
the probability of success (pL ̸= 0). The measurement
pR = 0 has restricted |Φ⟩ to an equal superposition of
dimer covering in which either atom 1 or atom 2 is ex-
cited. Suppose it is atom 1, then either atom 3 or 4
should also be excited to satisfy the dimer constraint,
which respectively yields pL ̸= 0 and pL = 0. We can see
that the number of dimer coverings with excitations on
1-3 and 1-4 is identical. Indeed, there exists a bijection
B between these dimer covering subsets [50]

1

3
4

B

, :

{
⇆

⇆
, (10)

where we have defined B by its action on each of the
triangles. A similar analysis holds when atom 2 is in |e⟩.
As a result, there are as many dimer coverings leading to
pL = 0 and pL ̸= 0 once pR = 0 has been measured. Since
|Φ⟩ is an equal superposition of those, the probability
of both outcomes is identical, equal to one half. If we
write K the probability to measure pR = 0 during the
first trial, the probability of failing to apply Gφ on n
consecutive PEPS tensors is thus K/2n−1, as claimed
above.

Finally, notice that φ can be tuned to realize, among
others, the three gates G0 = Z, Gπ/2 = Z

√
X and

Gπ = ZX, which form a universal gate set for single qubit
operations since

√
X is a non-Clifford gate [51]. We have

therefore demonstrated that it is possible to implement
arbitrary single qubit operations along the computational
wires of our system with a polynomial circuit depth.

D. Universal quantum computation

To reach universality, the current gate set should be ex-
panded with a two-qubit gate that is not unitarily equiv-

alent to a SWAP. We propose the following sequence,
named Q: Three of bowtie’s atoms are dephased by π
(III), for instance, the rightmost atoms and those next
to the leftmost one; then pulse (II) is applied to the left
and right triangles. This projects the bowtie’s physical
space onto(

− pL↑ p
L
↓ + xLpL↑ + xLpL↓

)
×

(
+ pR↑ p

R
↓ − xRpR↑ − xRpR↓

)
,

(11)

where the x, p↑ and p↓’s have been defined above. Us-
ing Eq. 5, one can check that the PEPS tensor obtained
after contraction of the physical index acts on the two
incoming logical qubits as

Q ≡
HH

H X
, (12)

up to irrelevant Pauli errors [52]. Apart from the initial
Hadamard gates common to all of our gate set, Q can
be understood as an entangling Bell gate that sends, for
instance, |00⟩ → |01⟩+|10⟩. Such a gate creates entangle-
ment and therefore provides universality when appended
to our previous single qubit operations.

IV. CONCLUSION

Measurement-based quantum computation feeds from
entangled many-body states, and can be realized if suf-
ficient experimental control over each individual con-
stituent of the may-body state exists. It is therefore par-
ticularly suited to arrays of Rydberg atoms, which have
repeatedly demonstrated their strength as quantum sim-
ulators, and benefit from tried-and-tested laser manipu-
lation techniques to measure all atoms individually.

In this article, we have shown that the entangled many-
body state realized in Ref. [1] together with the proposed
measurement pulses enable universal measurement-based
quantum computation. This establishes Rydberg arrays
as a new platform for universal quantum computing,
which could potentially compete with superconducting
quantum circuits due to the large number of available
atoms (about 220 in Ref. [1]).

Our work calls for a search of robust and resilient Ry-
dberg phases with identical computational power, over
which single qubit operations could be performed with
circuits of smaller depth. It is also important to explore
how to identify, quantify and correct the intrinsic errors
arising from the non-adiabatic state preparation in Ryd-
berg arrays, and how to mitigate the effects of the long-
range part of the van der Waals interaction through pulse
engineering.
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Resonating valence bond states in the peps formalism,
Physical Review B 86, 115108 (2012).

[47] J.-M. Cai, W. Dür, M. Van den Nest, A. Miyake, and
H. Briegel, Quantum computation in correlation space
and extremal entanglement, Physical review letters 103,
050503 (2009).

[48] D. Barredo, V. Lienhard, S. De Leseleuc, T. Lahaye, and
A. Browaeys, Synthetic three-dimensional atomic struc-
tures assembled atom by atom, Nature 561, 79 (2018).

[49] This choice makes the effective Rabi frequency Ω̃ =√
2Ω2 +∆2 = 2∆ commensurate with the detuning.

[50] R. Verresen, M. D. Lukin, and A. Vishwanath, Prediction
of toric code topological order from rydberg blockade,
Physical Review X 11, 031005 (2021).

[51] G. Nebe, E. M. Rains, and N. J. Sloane, The invariants
of the clifford groups, Designs, Codes and Cryptography
24, 99 (2001).

[52] They read Zp1XqR and Xp1Zp2+qL for the left and
right computational wire, respectively, where p1 = (1 −
xRpR↑ p

L
↑ p

L
↓ )/2, p2 = (1 − xLpR↑ p

L
↑ p

R
↓ )/2 and qi = (1 −

xipi↑)/2 with i ∈ {R,L}.


	Rydberg arrays offer a universal resource for measurement-based quantum computations
	Abstract
	Introduction
	Required experimental resources
	Z2 SPTOS in a Rydberg simulator
	Available measurements

	Universal MQBC
	Tensor network description
	Wire decoupling
	Single qubit operations
	Universal quantum computation

	Conclusion
	Acknowledgments
	References


