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Abstract

We derive the quasiparticle picture for the fermionic logarithmic negativity
in a tight-binding chain subject to gain and loss dissipation. We focus on the
dynamics after the quantum quench from the fermionic Néel state. We con-
sider the negativity between both adjacent and disjoint intervals embedded
in an infinite chain. Our result holds in the standard hydrodynamic limit of
large subsystems and long times, with their ratio fixed. Additionally, we con-
sider the weakly-dissipative limit, in which the dissipation rates are inversely
proportional to the size of the intervals. We show that the negativity is pro-
portional to the number of entangled pairs of quasiparticles that are shared
between the two intervals, as is the case for the mutual information. Crucially,
in contrast with the unitary case, the negativity content of quasiparticles is
not given by the Rényi entropy with Rényi index 1/2, and it is in general not
easily related to thermodynamic quantities.

1 Introduction

Distinguishing genuine quantum correlations from statistical ones in quantum many-body
systems is a daunting task. While for bipartite quantum systems in a pure state several
quantum information motivated measures can be used to identify entanglement [1–4], this
is not the case if the state of the full system is mixed. Open quantum systems undergoing
dissipative Lindblad dynamics [5, 6] represent an important example of systems featuring
mixed states. Recently, it has been shown that for one-dimensional free-fermion and free-
boson systems it is possible to describe the dynamics of information-related quantities,
such as von Neumann and Rényi entropies, as well as the mutual information, in the pres-
ence of generic quadratic dissipation [7–9]. This generalizes the well-known quasiparticle
picture for entanglement spreading after quantum quenches in integrable systems [10–12].
Although the Rényi entropies and the mutual information are not proper measures of
entanglement for mixed states [13], it has been shown in Ref. [8] that even for Lindblad
dynamics the mutual information is sensitive to the presence of correlated pairs of quasi-
particles. This is similar to closed quantum systems, although the dissipation dramatically
affects the correlation content of the quasiparticles.
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Figure 1: Logarithmic negativity E between two intervals A1 and A2 of equal length ` at
distance d embedded in an infinite chain.

To make a step forward towards understanding entanglement dynamics in open quan-
tum systems here we focus on the logarithmic negativity, which is a proper entanglement
measure also for mixed states [14–18]. The computation of the logarithmic negativity is
in general a challeging task. It can be computed effectively from the two-point correlation
function only for free-boson systems [19]. For free fermionic ones it requires knowledge of
the spectrum of the so-called partial transpose, which is not a Gaussian fermionic opera-
tor [20]. Very recently, an alternative definition of negativity (that was dubbed fermionic
negativity) has been proposed [21] for free fermions. The fermionic negativity can be
computed efficiently from the two-point fermionic correlation functions. For generic inter-
acting systems, it can be computed with Matrix Product States (MPS) methods [22]. The
negativity is attracting increasing attention as a tool to characterize universal aspects of
equilibrium and out-of-equilibrium quantum many-body systems (see section 3).

Interestingly, it has been shown in Ref. [23] that after quantum quenches in one-
dimensional closed quantum integrable systems, both the standard negativity and the
fermionic one become equal to half the Rényi mutual information with Rényi index 1/2.
This has been verified for both free-fermion and free-boson models. For interacting inte-
grable systems no results are available. The reason is that there is no quasiparticle picture
for the full-time dynamics of Rényi entropies in interacting integrable models, although
their value in the steady state can be determined [24–27]. Moreover, recent exact results
for quenches in the so-called rule 54 chain [28], which is a “minimal model” for inter-
acting integrable systems, suggest that Rényi entropies violate the quasiparticle picture
paradigm. These results motivated a conjecture for the growth with time of the Rényi
entropies in generic interacting integrable systems [29]. Despite this scenario, it is possible
to obtain analytically the dynamics of the logarithmic negativity in the rule 54 chain, and
it is in agreement with Ref. [23].

In the context of open quantum systems subject to a Lindblad dynamics the loga-
rithmic negativity has not been explored much. Some numerical results were presented in
Ref. [7], suggesting that in the presence of dissipation the negativity is not half of the Rényi
mutual information with Rényi index 1/2, in contrast with closed systems [23]. Here we
derive the quasiparticle picture for the fermionic logarithmic negativity after the quench
from the fermionic Néel state in a tight-binding chain with homogeneous gain and loss
of fermions. We consider the geometry sketched in Fig. 1, focusing on the entanglement
between two intervals A1, A2 of length ` and placed at a distance d. The intervals are
embedded in an infinite chain. Our results hold in the standard hydrodynamic limit of
long times, large subsystem size, and large distances, i.e., `, t, d→∞, with the ratios t/`
and d/` fixed and arbitrary. The logarithmic negativity decays expontially in time with
a rate depending on the gain and loss rates γ±. Since we consider times of order `, in
order to observe a non-trivial time-evolution of the logarithmic negativity (and not an
instantaneous convergence to its stationary value) we work in the weakly-dissipative hy-
drodynamic limit, obtained by taking vanishing γ± → 0, with fixed γ±`. Our results show
that the dynamics of the logarithmic negativity can be described within the framework
of the quasiparticle picture. Specifically, we show that the logarithmic negativity, and
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hence the entanglement, is proportional to the number of entangled pairs of quasiparticles
that are shared between the two intervals. Indeed, the structure of our formula for the
logarithmic negativity is the same as that of the mutual information [8]. The contribution
of the entangled quasiparticles to the negativity is time-dependent and it vanishes at long
times, again, similar to the mutual information [8]. However, in contrast with the unitary
case [23], this negativity content does not coincide with the Rényi entropy with Rényi
index 1/2, and it is not, in general, straightforwardly related to known thermodynamic
quantities.

The manuscript is organized as follows. In section 2 we introduce the tight-binding
chain and discuss the treatment of the quench from the fermionic Néel state. In section 2.1
we review the Lindblad framework for gain and loss dissipation. In section 2.2 we discuss
the quasiparticle picture for free systems with quadratic dissipation. In section 3 we
introduce the fermionic logarithmic negativity. As a warm-up, we present in section 4 an ab
initio derivation of the quasiparticle picture for the Rényi entropies [7]. This was obtained
already in Ref. [7] using the results of Ref. [30], although the alternative derivation that we
present here is new and self-contained. In section 5 we derive the hydrodynamic picture
for the logarithmic negativity. Specifically, in our approach this requires the calculation
of the hydrodynamic behaviour of the moments of ad hoc modified fermionic correlation
functions, which are obtained in section 5.1 and section 5.2. Our main result is discussed
in section 5.3. In section 6 we benchmark our numerical results for the moments of the
fermionic correlators (see section 6.1) and the logarithmic negativity (see section 6.2). We
conclude in section 7. In Appendix A we derive the formula for the negativity in terms of
the fermionic correlation matrix for systems with fermion-number conservation.

2 Quantum quench in the open tight-binding chain

We consider the fermionic chain defined by the Hamiltonian

H =
1

2

L∑
j=1

(c†jcj+1 + c†j+1cj). (1)

Here c†j and cj are canonical fermionic creation and annihilation operators with anticom-

mutation relations {c†j , cl} = δjl and {cj , cl} = 0. The Hamiltonian (1) is diagonalized

by going to Fourier space by defining the fermionic operators bk := 1/
√
L
∑

j e
ikjcj , with

the quasimomentum k = 2πp/L and p = 0, 1, . . . , L − 1. The Hamiltonian (1) becomes
diagonal as

H =
∑
k

ε(k)b†kbk, with ε(k) := cos(k), (2)

where we defined the single-particle energy dispersion ε(k). It is also convenient to define
the group velocity of the fermionic excitations

v(k) := ε′(k) = dε(k)/dk. (3)

Here we focus on the nonequilibrium dynamics after the quench from the fermionic Néel
state |N〉 defined as

|N〉 :=

L/2∏
j=1

c†2j |0〉. (4)
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The fermionic correlation function Cjl is the central object to address entanglement related
quantities in free-fermion systems [31]. This is defined as

Cjl := 〈c†jcl〉. (5)

Under the closed-system dynamics implemented by H, the time-dependent correlation
function C̃jl(t) [cf. (5)] after the Néel quench is straightforwardly obtained as

C̃jl =
1

2
δjl +

1

2
(−1)l

∫ π

−π

dk

2π
eik(j−l)+2itε(k). (6)

In the following we consider the thermodynamic limit L → ∞, as it is clear by the
integration over the quasimomentum k. It is useful to exploit the invariance of the Néel
state under translation by two sites. Thus, we rewrite (6) as(

C̃2j,2l C̃2j,2l−1

C̃2j−1,2l C̃2j−1,2l−1

)
=

∫ π

−π

dk

2π
e2ik(j−l)t̂(k), with j, l ∈ [1, L/2]. (7)

The factor 2 in the exponent in the integral reflects translation invariance by two sites.
In (7) we have introduced the 2× 2 matrix t̂(k) as

t̂(k) =
1

2

(
1 + e2itε(k) −e2itε(k)−ik

e2itε(k)+ik 1− e2itε(k)

)
. (8)

We can conveniently rewrite t̂(k) in terms of Pauli matrices as

t̂(k) =
1

2

[
12 + σ

(k)
−i e

2itε(k)
]
, with σ±i := σz ± iσy, (9)

where we introduce the rotated Pauli matrices σ
(k)
α as

σ(k)
α := e−ik/2σzσαe

ik/2σz , α = x, y, z (10)

with σα the standard Pauli matrices.

2.1 Lindblad evolution in the presence of gain and loss dissipation

In this work we study the out-of-equilibrium dynamics in the tight-binding chain (cf. (1))
with fermionic gain and loss processes. We employ the formalism of quantum master
equations [5]. The Lindblad equation describes the evolution of the density matrix ρt of
the full system as

dρt
dt

= L(ρt) := −i[H, ρt] +
L∑
j=1

∑
α=±

(
Lj,αρtL

†
j,α −

1

2

{
L†j,αLj,α, ρt

})
. (11)

Here, {x, y} := xy + yx is the anticommutator, Lj,α are the so-called Lindblad jump

operators, which are defined as Lj,− :=
√
γ−cj and Lj,+ :=

√
γ+c†j , with γ± the gain and

loss rates. Eq. (11) describes single-site incoherent absorption and emission of fermions
which are homogeneous along the chain.

For free-fermion systems it is straightforward to obtain from (11) an equation for the

fermionic two-point function Cjl = 〈c†jcl〉 (cf. (5)). The time-evolved matrix C(t) is given
by [8]

C(t) = etΛC(0)etΛ
†

+

∫ t

0
dz e(t−z) ΛΓ+e(t−z) Λ† . (12)
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Here Λ = ih − 1/2(Γ+ + Γ−), where h encodes the effects of the Hamiltonian. For the
tight-binding chain considered here in (1) we have hjl = 1/2(δj+1,l + δj,l+1). In (12), Γ±

are L×L matrices describing gain and loss processes. Here we have Γ±jl = γ±δjl, reflecting
that gain/loss dissipation acts separately on the different sites. The diagonal structure of
the matrices Γ±jl implies that Cjl can be rewritten in terms of the correlation matrix C̃jl(t)

describing the quench in the absence of dissipation, i.e., with γ± = 0. Precisely, one has

C = n∞(1− b)1 + bC̃, b := e−(γ++γ−)t, n∞ :=
γ+

γ+ + γ−
. (13)

Moreover, Eq. (13) suggests that it is convenient to modify the matrix t̂(k) (cf. (8)),
introducing t̂′(k) as

t̂′(k) = n∞(1− b)12 + bt̂(k) =

1

2

(
2n∞(1− b) + b+ be2itε(k) −be2itε(k)−ik

be2itε(k)+ik 2n∞(1− b) + b− be2itε(k)

)
(14)

which can also be written as

t̂′(k) =
1

2

[
a12 + bσ

(k)
−i e

2itε(k)
]
, with a := 2n∞(1− b) + b, (15)

where σ
(k)
−i are defined in (9)-(10).

2.2 Quasiparticle picture for free systems with quadratic dissipation

Our goal is to determine the dynamics of the logarithmic negativity after the fermionic
Néel quench in the tight-binding chain with gain and loss dissipation. Here we review the
quasiparticle picture for free-fermion and free-boson systems in the presence of quadratic
dissipation [8]. The quasiparticle picture for the entanglement dynamics [10–12, 32] can
be generalized to describe the dynamics of quantum entropies, such as the von Neumann
entropy and the Rényi entropies, and the mutual information [7–9] in the presence of
generic quadratic dissipation [33]. Let us consider the Rényi entropies S(n)

A of a subsystem
A of length ` embedded in an infinite chain (see Fig. 1). The Rényi entropy of A is given
as [8]

S
(n)
A (t) = `

∫ π

−π

dk

2π

[
s

(n),YY
k (t)− s(n),mix

k (t)
]

min(1, 2|v(k)|t/`) + `

∫ π

−π

dk

2π
s

(n),mix
k (t), (16)

where v(k) (cf. (2) for the result in the tight-binding chain) is the fermion group veloc-
ity, which depends on the dispersion relation of the model. Crucially, Eq. (16) holds in
the standard hydrodynamic limit t, ` → ∞ with their ratio fixed, which is the regime of
validity for the standard quasiparticle picture for the entanglement spreading after quan-
tum quenches [11, 12, 34]. In the presence of quadratic dissipation one has to take the
weak-dissipation limit γ → 0, with γ` fixed, to ensure a nontrivial dynamics. Here γ is
the relevant dissipation rate, which measures the strength of the dissipative processes.
For gain/loss dissipation this is the rate γ± (cf. (11)). The reason for taking the weakly-
dissipative hydrodynamic limit is that at finite dissipation rate and for most dissipators,
in the limit t, ` → ∞ and fixed t/` one obtains a trivial scaling behaviour because the
entropies and the mutual information would converge immediately to their stationary
value, which for the mutual information is zero. In some cases, it is possible to apply
Eq. (16) away from the weak-dissipation limit after redefining the group velocities v(k) of
the quasiparticles and rescaling by an exponential factor the entropies [35].
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Let us now discuss the structure of (16). The first term has a similar structure as in
the case without dissipation [11, 12]. In the absence of dissipation s(n),mix

k = 0 and s(n),YY

k

do not depend on time. Thus, Eq. (16) describes a linear growth of the entropies up to
t < `/(2vmax), with vmax the maximum velocity. At asymptotically long times t → ∞
S(n)

A saturates to a volume-law behavior. Eq. (16) admits an interpretation in terms of
entangled quasiparticle pairs [10]. After the quench, pairs of entangled quasiparticles are
created uniformily in the systems. The quasiparticles travel as free particles. At the
generic time t the entanglement between A and the rest is proportional to the number of
shared entangled pairs, i.e., pairs that have one quasiparticle in A and the other one in the
complement of A. The entanglement content of the quasiparticles, i.e., their contribution
to S(n)

A is given by the Yang-Yang entropies [34] s(n),YY

k .
The Yang-Yang entropies are determined by the density ρk of the Bogoliubov modes bk

(cf. (2)) that diagonalize the model. The density is calculated over the pre-quench initial
state |ψ0〉. Specifically, we have

s
(n),YY
k :=

1

1− n

∫ π

−π

dk

2π
ln
(
ρnk + (1− ρk)n

)
, with ρk := 〈ψ0|b†kbk|ψ0〉. (17)

Here s(n),YY

k is the density of Rényi entropy of the Generalized Gibbs Ensemble [36–41]
(GGE) that describes local properties of the steady state after the quench.

This scenario changes dramatically in the presence of quadratic dissipation [8]. First,
the new term s(n),mix

k appears. This is purely dissipative and it can be obtained as the den-
sity of Rényi entropies of the full system. Indeed, the first term in (16) cannot contribute
to the entropies of the full system because it describes the contribution of correlated pairs
that are shared between A and its complement. If A is the full system both members of a
correlated pair are within A and hence they cannot contribute. This means that only the
second term in (16) contributes to the full-system entropy. Clearly, in the unitary case the
full system is in a pure state at any time and s(n),mix

k = 0. For free-fermion and free-boson
models s(n),mix

k is straightforwardly extracted from the two-point correlation function in
momentum space [8,9]. As it is clear from (16), dissipation affects the correlation between
the quasiparticles as well. First, the same s(n),mix

k appears in the first term in (16). The
minus sign reflects that dissipation diminishes the correlation of the pairs. Moreover, al-
though s(n),YY

k in (16) has the form of a Yang-Yang entropy (cf. (17)), the density ρk from
which it is obtained is no longer that of the original modes bk. It has been conjectured
in Ref. [8] that in the presence of dissipation the density ρk to be used in (17) is that of
the eigenmodes βk of the map L∗, which is the dual map — the one acting on observables
— of the generator L appearing in Eq. (11). In the weak-dissipation limit βk generically
satisfy [8]

L∗(βk) = −
(γk

2
+ iε(k)

)
βk, (18)

where ε(k) is the dispersion of the model without dissipation, and γk are dissipation rates
that are easily calculable. Both ε(k) and γk are real. Now, s(n),YY

k in (16) is the Yang-Yang

entropy (17) calculated from the density ρk of the modes βk, i.e., ρk = 〈ψ0|β†kβk|ψ0〉. In
contrast with the density of the modes bk, which in the unitary case is time-independent,
the density of βk is time-dependent, implying that s(n),YY

k depends on time. By computing

L∗(β†kβk) and using also (18), the evolution of ρk = 〈ψ0|β†kβk|ψ0〉 in the weakly-dissipative
limit is obtained as [8]

ρk(t) = e−γktρk(0) +
αk
γk

(1− e−γkt). (19)

Here αk is, again, a function that depends on the dissipation and that can be easily
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calculated for generic free systems with quadratic dissiption [8, 9]. Eq. (16) was derived
ab initio for a quench in the Kitaev chain with arbitrary quadratic dissipation in Ref. [9].

For the case of diagonal gain and loss dissipation, the decay rates γk in (18) do not
depend on k, and one has that γk = γ+ + γ−, and αk = γ+ (cf. (19)). It is also important
to stress that while for generic dissipation the modes βk are different from the original
Bogoliubov modes bk (see, for instance, Ref. [9]), for several types of dissipation one has
that βk = bk. The gain/loss dissipation that we treat here provides one of the simplest
examples for which this happens.

3 Fermionic logarithmic negativity

Here we are interested in the entanglement between two non complementary regions A1

and A2 (see Fig. 1). Let us first introduce the Rényi entropies S
(n)
W of a subsystem W =

A1, A2, A1 ∪A2, which are defined as

S
(n)
X :=

1

1− n
ln
(

TrρnX

)
. (20)

Here we often consider the von Neumann entropy, which corresponds to the limit n →
1 [1–4].

Crucially, since the interval A = A1∪A2 in Fig. 1 is in general in a mixed state, neither
the von Neumann nor the Rényi entropies can be used to quantify the entanglement
between A1 and A2 [1–4]. Instead, one can use the logarithmic negativity [14–18] E ,
which is a computable entanglement measure for mixed states. To define E one has to
introduce the partially-transposed density matrix ρT2A . The partial transposition is taken

with respect to one of the intervals (here A2). ρT2A is defined as

〈e(1)
i , e

(2)
j |ρ

T2
A |e

(1)
k , e

(2)
l 〉 = 〈e(1)

i , e
(2)
l |ρA|e

(1)
k , e

(2)
j 〉, (21)

with e
(1)
i , e

(2)
j two bases for A1 and A2, respectively. The partial transpose is not positive-

definite, and its negative eigenvalues quantify the entanglement between the two intervals.
The logarithmic negativity is defined as

E = ln(Tr|ρT2A |). (22)

For free-boson systems the negativity can be computed from the two-point correlation
function [19]. For free-fermion systems the partially transposed reduced density matrix
can be decomposed as [20]

ρT2A = e−iπ/4O+ + eiπ/4O−, (23)

where O± are gaussian operators. Crucially, while the spectrum of O± can be effectively
computed from that of the fermionic two-point function, this cannot be done for ρT2A . As a
consequence, the negativity cannot be easily calculated, not even for free-fermion models.
Recently, it has been shown that starting from the decomposition (23), it is possible to
construct an alternative measure of entanglement for mixed-state systems. This has been
dubbed fermionic negativity [21,43–45]. The fermionic negativity is defined as

E := ln Tr
√
O+O−. (24)

Notice that here we use the same symbol E for both the standard negativity (cf. (22)) and
the fermionic one. In the following sections we will always refer to the fermionic negativity.
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Since the product O+O− in (24) is a gaussian operator because O± is gaussian, the
fermionic negativity (24) can be computed effectively in terms of fermionic two-point
functions. The central object is the fermionic correlation matrix Cjl (cf. (5)). Let us
define the matrix Gjl as

Gjl := 2Cjl − δjl. (25)

We now consider the partition in Fig. 1. We focus on two intervals A1 and A2 of equal
length ` at distance d. We now define Gαβjl with α, β = 1, 2 as the restricted correlator
with j ∈ Aα and l ∈ Aβ. The matrix GA is rewritten as

GA =

(
G11 G12

G21 G22

)
, (26)

where Gαβ are `× ` matrices. We now define the matrices G±A as

G±A =

(
G11 ±iG12

±iG21 −G22

)
(27)

Finally, the negativity is a function of the spectrum of CA and that of GT
A, which is defined

as

GT
A :=

1

2

[
12` − (12` +G+

AG
−
A)−1(G+

A +G−A)
]
. (28)

Here 12` is the 2`× 2` identity matrix. The negativity is defined as [46]

E :=

2∑̀
j=1

ln[µ
1/2
j + (1− µj)1/2] +

2∑̀
j=1

1

2
ln[λ2

j + (1− λj)2]. (29)

where µj are the eigenvalues of GT
A and λj of CA. Importantly, Eq. (29) holds for free-

fermion systems that preserve the fermion number. For generic free-fermion systems a
generalization of (29) exists in terms of the correlation function of Majorana fermions [21,
45]. In the presence of gain/loss dissipation the fermion number is not preserved, although

at any time one has 〈c†jc
†
l 〉 = 〈cjcl〉 = 0. In Appendix A we show that this condition is

sufficient to ensure the validity of (29).
The logarithmic negativity has been employed to characterize entanglement in sys-

tems of harmonic oscillators [19, 47–52], spin models [22, 53–64], Conformal Field Theory
(CFT) [18,65–71]. The out-of-equilibrium dynamics after quantum quenches has received
a lot of attention [23, 72–79]. In particular, it has been shown in Ref. [23] that for large
intervals, long times, and large distance (see Fig. 1) `, t, d → ∞ with the ratios `/t and
d/t fixed, the standard negativity and the fermionic one become

E =
1

2
I

(1/2)
A1:A2

, (30)

where I(1/2)

A1:A2
is the Rényi mutual information with Rényi index 1/2. Eq. (30) was proposed

in Ref. [23], and it was verified for quantum quenches in free-boson and free-fermion
systems. It is natural to expect that Eq. (30) holds for generic interacting integrable
systems. Very recently, Eq. (30) has been verified for quenches in the rule 54 chain [80].
Eq. (30) is intriguing because in general the mutual information between A1 and A2 is not
a good measure of their entanglement but only an upper bound [42].
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4 Warm-up: quantum entropies in the presence of gain and
loss dissipation

As a warm-up, before deriving the quasiparticle picture for the fermionic negativity, here
we provide an alternative direct derivation of the results of Ref. [7], which has not been
presented elsewhere. In section 4.1 we derive the behavior of the moments of the correlation
matrix Tr(CnA). In section 4.2 we discuss the Rényi entropies.

4.1 Moments of the correlators Tr(Cn
A)

Here we determine the scaling of Tr(CnA) in the hydrodynamic limit t, ` → ∞, with their
ratio t/` fixed. At the end of the derivation we will also discuss the weakly-dissipative
limit by taking γ± → 0 with the product γ±` fixed. To derive our main results we follow
Ref. [81]. The correlator CA is defined in (13). We can use the trivial identity

`/2∑
z=1

e2izk =
`

4

∫ 1

−1
dξw([k]π)ei(`ξ+`+2)[k]π/2, withw(k) :=

k

sin(k)
, (31)

where we introduced the notation [x]π = xmodπ. The modπ reflects the factor 2 in the
exponent in the left hand side in (31). Eq. (31) allows us to write

Tr(CnA) =
( `

4

)n ∫
[−π,π]n

dnk

(2π)n

∫ 1

−1
dnξD({k})F ({k})ei`

∑n−1
j=0 ξj+1([kj+1−kj ]π)/2. (32)

Here we defined

D({k}) =

n−1∏
j=0

w([kj − kj−1]π) (33)

F ({k}) = Tr
n−1∏
j=0

t̂′(kj), (34)

where t′(k) is defined in (15). In deriving (32) from (31), we neglect the factor ` + 2
because it contributes with a phase. Notice that the quasimomenta in F (cf. (34)) are not
defined mod π. It is convenient to define new variables ζj as

ζ0 = ξ1 (35)

ζi = ξi+1 − ξi, i ∈ [1, n− 1]. (36)

This allows us to write (32) as

Tr(CnA) =
( `

4

)n ∫
[−π,π]n

dnk

(2π)n

∫
Rξ

dnζiD({k})F ({k})e−i`
∑n−1
j=0

∑j
l=0 ζl([kj+1−kj ]π)/2, (37)

Here the integration domain Rξ for ζi is

Rξ : −1 ≤
p−1∑
j=0

ζj ≤ 1, p ∈ [1, n]. (38)

The strategy to determine the behaviour of (37) in the space-time scaling limit is to use
the stationary phase approximation for the integrals over k1, . . . , kn−1 and ζ1, . . . , ζn−1. It
is easy to check that stationarity with respect to the variables ζ1, . . . , ζn−1 implies that

[kj+1 − kj ]π = 0, ∀j ∈ [0, n− 1]. (39)

9
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This also implies that the integrand in (37) does not depend on ζ0. Thus, the integration
over ζ0 is trivial and we obtain

Tr(CnA) =
( `

4

)n ∫
[−π,π]n

dnk

(2π)n

∫
dn−1ζiD({k})F ({k})e−i`

∑n−1
j=0

∑j
l=1 ζl([kj+1−kj ]π)/2µ({ζj}),

(40)
where we introduced the integration measure µ as

µ({ζj}) = max
[
0, min
j∈[0,n−1]

[
1−

j∑
k=1

ζk

]
+ min
j∈[0,n−1]

[
1 +

j∑
k=1

ζk

]]
. (41)

Now we can replace kj → k0 in D({kj}) because it depends only on [kj − kj−1]π to
obtain

D({kj})→ 1. (42)

The function F ({kj}) requires some care. We can expand it as

F =
1

2n

n−1∑
p=0

n−1∑
j1<···<jp=1

Tr[(a12 + bσ
(k0)
−i e

2itε(k0))bpσ
(kj1 )

−i σ
(kj2 )

−i · · ·σ
(kjp )

−i ]e2it
∑p
l=1 ε(kjl ), (43)

where a, b and σ−i are defined in (15), and we isolated the term with k0. To perform

the trace in (43) we observe that σ(k)

−iσ
(k′)
−i = 0 if k → k′. On the other hand, one has

that that Tr(σ
(k0)

−i σ
(kj1

)

−i . . . σ
(kjp−1

)

−i ) = 2p+1 if from the stationary solution (39) one selects
the alternating pattern as kj1 = k0 + π, kj2 = k0, . . . , and it vanishes otherwise. For the

second term, one has Tr(σ
(kj1

)

−i σ
(kj2

)

−i . . . σ
(kjp )

−i ) = 2p+1 for both the alternating patterns
kj1 = k0, kj2 = k0 + π, . . . and kj1 = k0 + π, kj2 = k0, . . . . This implies that the first term
in the trace in (43) gives nonzero contribution only for even p, whereas the second term
contributes to odd p. Thus, we can rewrite (43) as

F ({kj}) ∝ 2−n
b(n−1)/2c∑

p=0

(
n− 1

2p

)
an−2p(2b)2pe2it

∑2p
l=1 ε(kl)

+ 2−n
b(n−2)/2c∑

p=0

(
n− 1

2p+ 1

)
an−2p−2(2b)2p+2e2it

∑2p+1
l=0 ε(kl), (44)

Here we used the invariance under relabelling of the momenta kjl to replace kjl → kl
in the phase factor. However, we are not allowed to replace kl with their stationary
values before performing the stationary phase approximation. The binomials in (44) are
the number of terms containing 2p and 2p + 1 quasimomenta, and that are the same
under exchange of the momentum label. The factors 22p and 22p+2 are the results of
the trace operation. Finally, the proportionality symbol ∝ in (44) is because there is
an extra constant that originates from the total number of stationary points in (39).
Indeed, in principle Eq. (39) corresponds to 2n stationary points. However, the presence

of the strings of σ
(kj)

−i selects one of the two patterns k1 = k0, k2 = k0 + π, . . . or k1 =
k0 + π, k2 = k0, . . . . For the first term in (44) there is a remaining overall factor 2n−1−2p

that originates from the n− 1− 2p quasimomenta that do not appear in the string of σ−i.
Moreover, there is an extra factor 2 because both alternating patterns {k̄1, k̄2, . . . , k̄2p} =
{k0, k0 + π, k0, . . . } and {k̄1, k̄2, . . . , k̄2p} = {k0 + π, k0, k0 + π, . . . } contribute. This is

10
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different for the second term in (44). The stationary phase treatment of the quasimomenta
that do not appear in the phase factor gives a factor 2n−2−2p. There is no extra factor 2
because only the quasimomenta pattern {k̄1, k̄2, k̄3, . . . } = {k0 + π, k0, k0 + π, . . . } gives a
nonzero contribution after taking the trace in (43). By putting together all the factors,
the result is that one can drop the prefactors 2−n, 22p and 22p+2 in (44) to obtain

F =

b(n−1)/2c∑
p=0

(
n− 1

2p

)
an−2pb2pe

2it
2p∑
l=1

ε(kl)
+

bn/2c−1∑
p=0

(
n− 1

2p+ 1

)
an−2p−2b2p+2e

2it
2p+1∑
l=0

ε(kl)
,

(45)

The strategy is now to apply the stationary phase approximation to the integral in the
2n− 2 variables k1, k2, . . . , kn−1, ζ1, ζ2, . . . , ζn−1. For the first term in (45) with the quasi-
momenta k1, k2, . . . , k2p appearing in the phase factor one obtains the stationary points
k̄j and ζ̄j as

{k̄1, k̄2, . . . , k̄2p} = {k0, k0 + π, . . . k0 + π} ∪ {k0 + π, k0, . . . k0} (46)

ζ̄l = ±4
t

`
(−1)lε′(k0) l = 1, . . . , 2p (47)

ζ̄j = 0 l > 2p. (48)

Here we have to choose only one of the patterns in (46) because they give the same result,
and this was already taken into account in (45). The sign of ζ̄j in (47) is different for the
two patterns in (46). However, this sign does not affect the final result. The reason is that
ζ̄l enter only in the function µ({ζj}) (cf. (41)), which remains the same under change of
the sign of ζ̄l. The stationary phase treatment of the second term in (45) is similar. The
result is that only the second pattern in (46) contributes. We now use the formula for the
stationary phase approximation [82]∫

D
dNxp(x)ei`q(x) →

(2π

`

)N/2
p(x0)|detH|−1/2 exp

[
i`q(x0) + iπ

σA
4

]
. (49)

Here p(x) and q(x) are functions, D denotes the domain of integration and ` is the large
parameter. In (49), we denote by x0 the stationary point that is solution of ∇q(x0) = 0.
The Hessina matrix H is given by H = ∂xi∂xjq(x). The signature σ of the Hessian is
calculated as the difference between the number of positive and negative eigenvalues of H,
and in our case it is zero. Moreover, in our case |detH|−1/2 = 2n−1, and the phase in (49)
vanishes.

In using (49), we observe that the term with p = 0 in the first sum in (45) gives
(cf. (41)) µ({ζj}) = 2. On the other hand, all the other terms give the same result as

µ({ζj}) = 2 max(0, 1− 2t/`|v(k0)|), (50)

with v(k0) the group velocity (cf. (3)). Finally, it is clear from (45) that the term with
p = 0 contributes with an, whereas the remaining sum gives ((a+ b)n + (a− b)n− 2an)/2.
This implies that

Tr(CnA) =
an

2n
`+

(a− b)n + (a+ b)n − 2an

2n+1

∫ π

−π

dk

2π
max(0, `− 2t|v(k)|), (51)

where we replaced k0 → k. This can be rewritten as

Tr(CnA) = `

∫ π

−π

dk

2π

[(a
2

)n
− (a+ b)n + (a− b)n

2n+1

]
min(1, 2|v(k)|t/`)

+ `

∫ π

−π

dk

2π

(a+ b)n + (a− b)n

2n+1
, (52)

11
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Now, the first term in (52) admits a quasiparticle interpretation. Indeed, the function
min(1, 2|v(k)|t/`) is the number of pairs of entangled quasiparticles with quasimomenta k
and −k that are shared between A and the rest at time t. The second term is proportional
to the volume of A and it is not due to the pairs of quasiparticles.

4.2 Rényi entropies and von Neumann entropy

Eq. (52) allows us to obtain the behaviour of Tr(F(CA)), where F(z) is an arbitrary
function that admits a Taylor expansion in z = 0. After expanding F(CA) and using (52),
one obtains

Tr(F(CA)) = `

∫ π

−π

dk

2π

[
F(a/2)− F((a+ b)/2) + F((a− b)/2)

2

]
min(1, 2|v(k)|t/`)

+ `

∫ π

−π

dk

2π

F((a+ b)/2) + F((a− b)/2)

2
. (53)

The functions Fn(x) and F1(x) that correspond to the Rényi entropies S
(n)
A and the von

Neumann entropy SA read

Fn(x) :=
1

1− n
ln(xn + (1− x)n) (54)

F1(x) := −x ln(x)− (1− x) ln(1− x). (55)

After using (54) and (55) in (53) one recovers the results of Ref. [7]. Let us also discuss the
non dissipative limit γ± → 0. In that limit a, b→ 1 (see (13) and (15)), and one obtains

TrFn(CA) =

∫ π

−π

dk

2π

{[
Fn(1/2)− Fn(0) + Fn(1)

2

]
min(`, 2|v(k)|t) +

`

2
(Fn(0) + Fn(1))

}
.

(56)
Since Fn(0) = Fn(1) = 0 for any n, only the first term in the square brackets in (56)
survives. One has that Fn(1/2) = ln(2) for any n, which implies that for the Néel quench
all the Rényi entropies are equal. Moreover, the density of Rényi entropy does not depend
on k. Both these two features are specific for the Néel quench. Finally, we should observe
that Eq. (54) holds in the limit `, t → ∞ with the ratio t/` finite. In particular, for this
simple case of diagonal dissipation Eq. (54) holds also at finite γ±. Still, in the limit

t → ∞ one has that S
(n)
A → 0 for any n. To have a nontrivial dynamics we take the

weakly-dissipative hydrodynamic limit t, `→∞, γ± → 0, with t/` and γ±` fixed [7–9].

5 Fermionic logarithmic negativity

We are now ready to derive the behaviour of the fermionic logarithmic negativity in the
weakly-dissipative hydrodynamic limit. The strategy is as follows. We first focus on
the moments Tr[(G+G−)n]. In the following section we drop the subscript A in G±A, as
it is clear that we will always consider the correlators restricted to subsystem A. This
is presented in Section 5.1. Then we determine the hydrodynamic behaviour of some
modified moments of G+G−. These are obtained by expanding the n-th power of G+G−

and inserting an arbitrary number m of “misplaced” G±. These insertions break the
alternating pattern of G+G−, creating “defects” at places where the same operator is
present on consecutive positions. The hydrodynamic limit of these defective moments
is derived in Section 5.2. Finally, in Section 5.3 we provide the result for the fermionic
logarithmic negativity.
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5.1 Moments Tr[(G+G−)n]

Let us now consider the moments of the product G+G− (cf. (27)), i.e, Tr[(G+G−)n] for
arbitrary n. Here we focus on a subsystem A of length 2`, which is further divided into
two adjacent equal-length intervals A1 and A2 (see Fig. 1). Let us start by defining the
Fourier transform t̂′′(k) of the matrix (cf. (26)) G = 1− 2C as

t̂′′(k) = a′12 − bσ(k)
−i e

2itε(k), a′ := 1− a. (57)

The matrices G± (cf. (27)) are written as

G± =

∫ π

−π

dk

2π
e2ik(j−l)σ

(k`)
∓ ⊗ [a′12 − bσ(k)

−i e
2itε], j, l = 1, . . . , `. (58)

In (58) we defined σ
(k`)
± as

σ
(k`)
± := σ(k`)

z ± σ(k`)
y , (59)

where σ
(k`)
α are the rotated Pauli matrices defined in (10). Notice that ` appears in the

rotation angle in (59). This is important when using the stationary phase approximation.
The tensor product with σ(k`)

∓ in (58) accounts for the fact that the indices j, l are shifted
by ` when considering the blocks G12 and G21 (cf. (26)). The structure in (58) is straight-
forwardly generalizable to quenches from other initial states by changing the term in the
square brackets. Similar to (32), one can write the moments Tr[(G+G−)n] as

Tr[(G+G−)n] =
( `

4

)2n
∫

[−π,π]2n

d2nk

(2π)2n

∫ 1

−1
d2nξD({k})F ({k})ei`

∑2n−1
j=0 ξj+1([kj+1−kj ]π)/2.

(60)
Here D({k}) is the same as in section 4, whereas F ({kj}) is given by

F ({kj}) =
(

Tr

n−1∏
j=0

σ
(`k2j)
+ σ

(`k2j+1)
−

)(
Tr

2n−1∏
j=0

(a′12 − bσ
(kj)
−i e

2itε)
)
. (61)

To take the trace we use that

σ
(`k0)
+ σ

(`k1)
− · · ·σ(`k2n−2)

+ σ
(`k2n−1)
− = e−i`

∑2n−1
j=0 kj

2n−1∏
j=0

(eikj`+eikj+1`)

(
eik2n−1` −i

iei(k0+k2n−1)` eik0`

)
(62)

Notice that here we use periodic boundary conditions on the quasimomenta, meaning that
k2n = k0. One can expand (62) to obtain

Tr

n−1∏
j=0

σ
(`k2j)
+ σ

(`k2j+1)
− =

2 +
n∑
z=1

2n−1∑
j1<···<j2z=0

(ei`(kj1−kj2+kj3−···−kj2z ) + e−i`(kj1−kj2+kj3−···−kj2z )). (63)

Note the alternating pattern in the exponents in (63). The evaluation of the trace of the
right term in (61) can be performed as in (44). The stationary phase approximation with
respect to the variables ζj gives [kj+1−kj ]π = 0, i.e., the same as in (46). The trace in the
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Figure 2: The functions Θ1(k) = max(0, 1 − 2|v(k)|t/`) (a) and Θ2(k) = 2|v(k)|t/` +
max(2|v(k)|t/`, 2)−2 max(2|v(k)|t/`, 1) (b) plotted versus time t. Here v(k) = ε′(k) is the
fermion group velocity (cf. (2)). The definitions are for the bipartition with two adjacent
intervals of length ` (see Fig. 1).

right term in (61) is the same as in (45) after redefining a→ a′, and n = 2p. One obtains

2−2nTr

2n−1∏
j=0

t̂′′(kj) =

b(2n−1)/2c∑
j=0

(
2n− 1

2j

)
(a′)2n−2jb2je2it

∑2j
l=1 ε(kl)

+

p−1∑
j=0

(
2n− 1

2j + 1

)
(a′)2n−2j−2b2j+2e2it

∑2j+1
l=0 ε(kl), (64)

It is now clear that when multiplying (63) and (64) the constant term in (63) can be
treated as in section 4.1. In fact it gives the same result as (52) after replacing a → a′

and `→ 2`. Importantly, there are additional terms that originate from the second term
in (63). First, it is easy to check that the stationary phase approximation gives nonzero
µ(ζj) (cf. (41)) only when terms of (63) and (64) that contain the same quasimomenta kj
are multiplied. Notice that the term with j = 0 in (64) does not contribute. It is also
easy to check that within the stationary phase approximation all the contributions give
the same µ({ζj}) ∝ Θ2(k), with

Θ2(k) := 2|v(k)|t/`+ max(2|v(k)|t/`, 2)− 2 max(2|v(k)j|t/`, 1), v(k) = ε′(k), (65)

where we replaced k0 = k. The absolute value |v(k)| originates from the combination of
the two terms in the sum in (63). The function Θ2 is pictorially defined in Fig. 2 (b).
Θ2(k) describes a linear growth up to t = `/(2|v(k)|), which is followed by a linear decrease
up to t = `/(|v(k)|). At later times, Θ2(k) is zero. Finally, the sum over j in (64) gives

Tr[(G+G−)n] = `

∫ π

−π

dk

2π

(
2(a′)2n+[(a′−b)2n+(a′+b)2p−2(a′)2n]

(
Θ1(k)+

1

2
Θ2(k)

))
. (66)

The function Θ1(k) is defined as

Θ1(k) := max(0, 1− 2|v(k)|t/`). (67)

Θ1(k) is plotted as a function of time in Fig. 2 (a). At t = 0, Θ1(k) = 1 and then
it decreases linearly up to t = `/(2|v(k)|). At later times Θ1(k) is zero. Notice that
Θ1(k) + Θ2(k)/2 = max(0, ` − |v(k)|t/`). Thus, it is clear that Eq. (66) has the same
structure as (51). Precisely, it is twice the result obtained from (52) after replacing a→ 2a′,
b→ 2b, and n→ 2n. By using the formula

Tr(12` +G+G−)−1 =

∞∑
p=0

Tr(−G+G−)p, (68)
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we obtain that (cf. (28))

Tr[(12` +G+G−)−1] = `

∫ π

−π

dk

2π

{ 2

1 + (a′)2

−
[ (a′ − b)2

1 + (a′ − b)2
+

(a′ + b)2

1 + (a′ + b)2
− 2(a′)2

1 + (a′)2

](
Θ1(k) +

1

2
Θ2(k)

)}
. (69)

To derive the term in the square brackets in (69) one has to remove the term with p = 0
in (68). This is clear from (66) because the term in the square brackets for p = 0 is zero.

5.2 Moments with defects insertions

In order to calculate the moments of GT (cf. (28)) one has to deal with terms of the form

Tr

(
m∏
l=1

(G+G−)qlGαl

)
, with αl = ±. (70)

Here ql is a positive integer. The term (G+G−)ql is obtained by using (68) to expand
(12`+G+G−)−1. The term under the trace in (70) is obtained by breaking the alternating
pattern in (G+G−)

∑m
l=1 ql via the insertion of m “misplaced” matrices (defects) Gαl at

positions 2ql + l. Now, following the approach in Section 5.1, one obtains an expression
similar to (61). In particular, the presence of the defects in (70) does not affect the second
trace in (61), which depends only on the details of the quench and of the Hamiltonian.
The term inside the first trace in (61) has to be modified, although in a simple manner.
Specifically, some of the terms eikj` + eikj+1` in the product in (62) get a relative minus
sign.

Before considering the generic situation with arbitrary m, it is useful to focus on
m = 2. The case with m = 1 can be neglected because we numerically observe that
Eq. (70) vanishes in the hydrodynamic limit for any odd m. For now, let us consider
m = 2 and α1 = + and α2 = −. One can use (62) to obtain

Tr[(G+G−)q1Gα1(G+G−)q2Gα2 ] = e−i`
∑2q1+2q2+2
j=1 kj−1

2q1+2q2+2∏
j=1

(eikj−1` + sje
ikj`), (71)

where sj = 1 except for the sites near the positions of the defects. Precisely, sj = −1
if a “misplaced” G− is inserted at j + 1, and sj = −1 if G+ is inserted at j. Clearly,
Eq. (71) can be generalized to account for generic αl. A straightforward although tedious
calculation allows one to obtain that

Tr[(G+G−)q1G+(G+G−)q2G−] = `

∫ π

−π

dk

2π

{
2(a′)2s+

[
(a′−b)2s+(a′+b)2s−2(a′)2s

]
Θ1(k)

+
1

2

[
(a′ − b)2(q1+1)(a′ + b)2q2 + (a′ + b)2(q1+1)(a′ − b)2q2 − 2(a′)2s

]
Θ2(k)

}
, (72)

where we defined s := q1 + q2 + 1. Interestingly, the first two terms do not contain
information about the defects. In fact they coincide with the first two terms in (66) after
changing n→ q1 + q2 + 1. They depend only on the total number of operators G± present
in (70). On the other hand, the term multiplying Θ2(k) (third term in (72)) depends on
the defects. This term is obtained from the second one by replacing (a′ − b)2q1+2q2+1 →
(a′ − b)2q1+2(a′ + b)2q2 and (a′ + b)2q1+2q2+2 → (a′ + b)2q1+2(a′ − b)2q2 . The change in
the relative sign between a′ and b reflects the presence of the defects in (70). A similar
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Figure 3: Pictorial illustration of the operators G± (a). In (b) we show the pictorial
definition of (G+G−)q1G−(G+G−)q2G− with q1 = 1 and q2 = 2. In (c) we show the
effect of two defects due to the insertion of two misplaced operators (black symbols). The
number of operators between the two defects is 2q2 + d12 = 5. (d) The case with four
defects with q1 = q3 = 1 and q2 = q4 = 2. The contribution of the configuration to the
last term in (75) is (a′+b)m+2q1+2q3−d12−d34(a′−b)2q2+2q4+d12+d34 plus the term with a′−b
and a′ + b exchanged.

structue is present for generic α1, α2. We verified that

Tr

(
2∏
l=1

(G+G−)qlGαl

)
= `

∫ π

−π

dk

2π

{
2(a′)2s +

[
(a′ − b)2s + (a′ + b)2s − 2(a′)2s

]
Θ1(k)

+
1

2

[
(a′ − b)2(q1+1)−d1,2(a′ + b)2q2+d1,2 + (a′ + b↔ a′ − b)− 2(a′)2s

]
Θ2(k)

}
, (73)

Here we defined di,j as

di,j :=


1 for (αi, αj) = (+,+)
1 for (αi, αj) = (−,−)
0 for (αi, αj) = (+,−)
2 for (αi, αj) = (−,+)

(74)

Let us now discuss the case with generic m. We verified that formula (73) can be gener-
alized to arbitrary number of defects as

Tr

(
m∏
l=1

(G+G−)qlGαl

)
= `

∫ π

−π

dk

2π

{
2(a′)2s +

[
(a′ − b)2s + (a′ + b)2s − 2(a′)2s

]
Θ1

+
1

2

[
(a′− b)m+

∑
l(2q2l−1−d2l−1,2l)(a′+ b)

∑
l(2q2l+d2l−1,2l) + (a′+ b↔ a′− b)− 2(a′)2s

]
Θ2

}
,

(75)

with di,j defined in (74) and s := m/2+
∑

k qk. Again, as for the case with m = 2 (cf. (72))
the term multiplying Θ1(k) does not depend on the defects insertions. Oppositely, the
term multiplying Θ2 contains information about the defects. The structure of this term is
illustrated in Fig. 3. In Fig. 3 (a) we denote with a square and a diamond the two operators
G+ and G−, respectively. In (b) we show the multiplication of the string of operators with
m = 2, q1 = 1, q2 = 2 and α1 = −, α2 = −. The result is shown in Fig. 3 (c). Defects are
now present at places where the same operator is on consecutive sites. The box encloses
the operators in between two defects. Notice that the number of operators in the box
is 2q2 + d12 = 5 (cf. Eq. (74)). Similarly, one can recover the other cases of Eq. (74) by
considering other values of α1, α2. A more complicated contraction with m = 4 is shown in
Fig. 3 (d). Now we have {α1, α2, α3, α4} = {−,+,−,−} and {q1, q2, q3, q4} = {1, 2, 1, 2}.
In the last term in (75), this corresponds to (a′+b)4+2q1+2q3−d1,2−d3,4(a−b)2q2+2q4+d1,2+d2,4

plus the term with the relative sign between a′ and b exchanged.
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To proceed, we can now sum over all ql in Eq. (75) to obtain

Tr

(
m∏
l=1

(12` +G+G−)−1Gαl

)
=

`

∫ π

−π

dk

2π

{
2
( a′

1 + (a′)2

)m
+
[( a′ − b

1 + (a′ − b)2

)m
+
( a′ + b

1 + (a′ + b)2

)m
− 2
( a′

1 + (a′)2

)m]
Θ1

+
1

2

[(a′ + b)m−
∑
l d2l−1,2l

[1 + (a′ + b)2]m/2
(a′ − b)

∑
l d2l−1,2l

[1 + (a′ − b)2]m/2
+ (a′ + b↔ a′ − b)− 2(a′)m

[1 + (a′)2]m

]
Θ2

}
, (76)

After summing over αl = ±, we obtain

Tr

 ∑
{αl=±}

m∏
l=1

(12` +G+G−)−1Gαl

 = 2m+1`

∫ π

−π

dk

2π

{( a′

1 + (a′)2

)m
+

1

2

[( a′ − b
1 + (a′ − b)2

)m
+
( a′ + b

1 + (a′ + b)2

)m
− 2
( a′

1 + (a′)2

)m]
Θ1(k)

+
1

2

[ (a′)m

[1 + (a′ + b)2]m/2[1 + (a′ − b)2]m/2
− (a′)m

[1 + (a′)2]m

]
Θ2(k)

}
. (77)

Curiously, the term multiplying Θ2(k) vanishes in the non-dissipative limit a′ → 0, despite
the fact that it shows the “rise and fall” dynamics expected for the negativity (see Fig. 2
(b)). From (77) we now obtain the moments of GT (cf. (28)) as

Tr
[(
GT
)m]

= `

∫ π

−π

dk

2π

{(1

2
± a′

1 + (a′)2

)m
+

1

2

[(1

2
± a′ − b

1 + (a′ − b)2

)m
+
(1

2
± a′ + b

1 + (a′ + b)2

)m
− 2
(1

2
± a′

1 + (a′)2

)m]
Θ1(k)

+
1

2

[(1

2
± a′

[1 + (a′ + b)2]1/2[1 + (a′ − b)2]1/2

)m
−
(1

2
± a′

1 + (a′)2

)m]
Θ2(k)

}
, (78)

where one has to sum over the ±. Again, as for (77), the term multiplying Θ2(k) vanishes
in the nondissipative limit.

5.3 Fermionic logarithmic negativity

We now have all the ingredients to discuss the quasiparticle picture for the fermionic
logarithmic negativity. Before starting, we observe that (77) allows one to obtain the
hydrodynamic behavior of Tr[F(CT)], for any F(z) that admits a Taylor expansion near
z = 0. After expanding F(z), by applying (77) to all the terms, and resummming the
series, we obtain that

Tr
[
F(GT)

]
= `

∫ π

−π

dk

2π

{
F
(1

2
± 1− a

1 + (1− a)2

)
+

1

2

[
F
(1

2
± 1− a− b

1 + (1− a− b)2

)
+F

(1

2
± 1− a+ b

1 + (1− a+ b)2

)
− 2F

(1

2
± 1− a

1 + (1− a)2

)]
Θ1(k)

+
1

2

[
F
(1

2
± 1− a

[1 + (1− a+ b)2]1/2[1 + (1− a− b)2]1/2

)
−F

(1

2
± 1− a

1 + (1− a)2

)]
Θ2(k)

}
,

(79)
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Figure 4: Dynamics of the fermionic negativity E : Theoretical predictions in the weakly-
dissipative hydrodynamic limit t, ` → ∞ γ± → 0 with t/` and γ±` fixed. The results
are for two adjacent intervals of equal length `. We plot E/` versus the rescaled time t/`
for several gain/loss rates γ±. The negativity is smaller for balanced gain and losses, i.e.,
for γ+ = γ−, and it increases upon increasing the inbalance between them. Notice the
cusp-like singularity at t/` = 1/2 (marked by the vertical line), which reflects the presence
of entangled quasiparticles.

where we replaced a′ = 1 − a, and where one has to sum over the ±. To calculate the
negativity (see first term in (28)) we have to use

F (1/2)(z) := ln(z1/2 + (1− z)1/2). (80)

We also need to calculate Tr[F (2)(CA)] where CA is the correlation matrix for A1 ∪ A2

(cf. (5)) of length 2`, with

F (2)(z) :=
1

2
ln(z2 + (1− z)2). (81)

The hydrodynamic prediction for the latter contribution is obtained from (53) as

Tr[F (2)(CA)] = `

∫ π

−π

dk

2π
[2F (2)(a/2) min(1, t/`|v(k)|)

+ (F (2)((a+ b)/2) + F (2)((a− b)/2)) max(0, 1− t/`|v(k)|)]. (82)

Let us consider the unitary limit γ± → 0. Thus, one obtains that a → 1 and b → 1.
From (79), one has that

Tr(F (1/2)(GT)) = 2`

∫ π

−π

dk

2π
F(1/2)[1−Θ1(k)], (83)

where we used that F (1/2)(0) = F (1/2)(1) = 0. Importantly, as we also observed before, the
term with Θ2 vanishes in the non-dissipative limit. On the other hand, we have

Tr(F (2)(C)) = 2`

∫ π

−π

dk

2π
F (2)(1/2) min(1, |v(k)|t/`). (84)

Putting together (83) (84) and (28), we obtain that

E =
`

2

∫ π

−π

dk

2π
ln(2)Θ2(k). (85)
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This is in agreement with the conjecture that E = I
(1/2)
A1:A2

/2 that was put forward in [23],

where I(1/2)

A1:A2
is the Rényi mutual information with Rényi index 1/2 between the two

intervals. This conjecture was also verified recently for the quench from the Néel state
and the Majumdhar-Ghosh state in the XX chain [79]. As we are going to discuss, the
relation between negativity and Rényi mutual information is violated in the presence of
dissipation.

Before discussing the final result for E we observe that

F (1/2)

(
1

2
+

1− a
1 + (1− a)2

)
+ F (1/2)

(
1

2
− 1− a

1 + (1− a)2

)
+ 2F (2)

(a
2

)
= 0. (86)

The left hand side of Eq. (86) would be the contribution to E for t > `/|v(k)|. Eq. (86) is
consistent with the fact that the negativity is determined by the propagation of entangled
pairs of quasiparticles. Indeed, for t > `/|v(k)| there are no entangled pairs shared between
the two subsystems. Furthermore, within the quasiparticle picture the negativity should
be proportional to Θ2, which is the number of entangled pairs that are shared between A1

and A2, as in the unitary case (cf. (85)). Indeed, a straightforward calculation shows that
the negativity is given by

E =
`

2

∫ π

−π

dk

2π
e(k)Θ2(k), (87)

where

e := ln

(
1

2

(
1− (1− a)2 + b2 +

√
[1 + (1− a)2]2 + 2[1− (1− a)2]b2 + b4

))
(88)

is the density of negativity. Clearly, one recovers that in the non-dissipative case e = ln(2).
Finally, it is interesting to focus on the balanced gain/loss dissipation. The condition
γ+ = γ− implies that a = 1, whereas b = e−2γ−t. This means that the term proportional
to Θ2(k) in (78) vanishes. Now, one has that e(k) = ln(1 + b2). Interestingly, this implies
that Eq. (88) is

e(k) = s
(2),YY
k (t)− s(2),mix

k (t), for γ+ = γ−, (89)

where s(2),YY

k and s(2),mix are the same as in (16). This means that

E =
1

2
I

(2)
A1:A2

, (90)

which makes apparent that in dissipative settings E 6= I(1/2)/2. We also verified that
Eq. (90) does not remain valid for generic gain and loss processes.

Finally, within the quasiparticle picture it is straightforward to generalize (87) to the
case of two intervals at a distance d (see Fig. 1). Indeed, as for the unitary case [23], it
is natural to expect that the negativity content e(k) of the entangled pairs remains the
same as in (87), whereas only the function Θ2(k) has to be modified. This is obtained by
replacing Θ2(k) in (87) with Θ̃2(k) defined as

Θ̃2 := max(2|v(k)|t/`, 2 + d/`) + max(2|v(k)|t/`, d/`)− 2 max(2|v(k)|t/`, 1 + d/`). (91)

Clearly, Θ̃2(k) appears in the quasiparticle picture for the mutual information between
two intervals (see for instance [78]). This happens because both the mutual information
and the negativity are proportional to the number of pairs shared between A1 and A2.
Θ̃2(k) is zero for t < d/(2|v(k)|). This reflects that at very short times there are entangled
pairs that are shared between A1∪A2 and the rest, but there are no entangled pairs shared
between A1 and A2 only. Θ̃2(k) grows linearly for d/(2|v(k)|) ≤ t < (d+ `)/(2|v(k)|). At
later times Θ̃2(k) decreases linearly. At any t > (d+ 2`)/(2|v(k)|) it is identically zero.
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We report analytical predictions for E for several dissipation rates γ± in Fig. 4 con-
sidering the case of adjacent intervals. For all the values of γ± the negativity exhibits
the typical “rise and fall” behavior, with a growth at short times, followed by a vanishing
behavior in the long time limit. The maximum at intermediate times is lower for the
case with balanced gain/loss, i.e., for γ+ = γ−, and it progressively grows as the imbal-
ance is increased. The vertical dashed line marks the point t/` = 1/2. All the curves
exhibit a cusp-like singularity at this point, which reflects the presence of the entangled
quasiparticles. Indeed, a similar cusp is present in the absence of dissipation.

Finally, let us discuss the regime of validity of (87) and (88). As it is clear from the
derivation, the result holds in the usual hydrodynamic limit with `, d, t → ∞ with the
ratios t/` and t/d fixed. Still, since E at fixed γ± vanishes exponentially as e−(γ++γ−)t

for t→∞, it is convenient to take the weakly-dissipative hydrodynamic limit by sending
γ± → 0 with fixed γ±`.

6 Numerical benchmarks

Having derived the quasiparticle picture for the logarithmic negativity in the (weakly-
dissipative) hydrodynamic limit, we now discuss some numerical checks. We first focus on
several moments of the matrices G+G− in section 6.1. Finally, in section 6.2 we discuss
numerical results for the negativity.

6.1 Moments of G+G−

Let us discuss the moments

Mn := Tr
[ n∏
p=1

Gαp
]
, with αp = ±. (92)

Here we focus on two adjacent intervals of length `. The correlator (92) is identified by
the string {α1, α2, . . . , αn}. Our numerical results for Mn are shown in Fig. 5. We only
consider the situation with loss dissipation with rate γ−. In Fig. 5 we consider both
moments with defects insertions (see section 5.2), as well as without them. The operator
insertions that create defects are denoted with red ± symbols. For each Mn we consider
several values of increasing `. To reach the weakly-dissipative hydrodynamic limit we fix
γ− = 1/(4`). The analytic results in the scaling limit are reported as continuous red lines,
and are obtained by using (75). For all the cases that we consider, at t = 0 we have Mn = 2
independently of n. Then, Mn decrease, vanishing in the limit t→∞. It is important to
stress that this is due to the fact that we have only loss dissipation. In the generic case
with both gain and loss dissipation the behavior is different. Precisely, the moments start
at Mn = 2, they exhibit a minimum at intermediate times, and saturate to a nonzero value
at t→∞. As it is clear from Fig. 5, as we approach the weakly-dissipative hydrodynamic
limit, deviations between the exact numerical data and the analytic predictions become
progressively smaller. In Fig. 6 we consider the moments M ′n defined as

M ′n := Tr
[ n∏
p=1

(12` +G+G−)−1Gαp
]
. (93)

Similar to Fig. 5, we focus on γ+ = 0. The red continuous lines are the results in the
weakly-dissipative hydrodynamic limit. These are obtained by using (76). Already for
moderately small γ− and large t, ` the data are in very good agreement with the analytical
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Figure 5: Dynamics of the moments Tr(
∏
pG

αp) in the tight-binding chain with gain and
loss dissipation. The results are for the quench from the fermionic Néel state and for two
adjacent intervals of equal length ` (see Fig. 1). The string of (α1, α2, . . . ) that identifies
the correlator is reported. Here we consider strings of operators G± with and without
“defects”, i.e., places where the same operator appears on consecutive sites (red symbols).
We fix γ+ = 0 and γ− = 1/(4`). The continuous red lines are the analytical results in the
weakly-dissipative hydrodynamic limit `, t→∞ with t/` and γ−` fixed.

results. As a further check, in Fig. 7 we discuss the moments of GT (cf. (28)). We report
Tr[(GT)n] for n = 3, 4. We now consider gain dissipation only with γ+ = 1/(2`) and
γ− = 0. As it is clear from Fig. 7, already for ` = 10, 20 the data are in excellent agreement
with the analytical results in the weakly-dissipative hydrodynamic limit (continuous red
lines) obtained from (78).

6.2 Logarithmic negativity

Let us finally discuss the dynamics of the fermionic negativity. We show numerical data
for the rescaled fermionic negativity E/` plotted versus t/` in Fig. 8. We now consider
both gain and loss dissipation with rates γ+ = 1/(2`) and γ− = γ+/2. In Fig. 8 (a) we
consider the situation with two adjacent intervals of equal length `, i.e., at distance d = 0
(see Fig. 1). In Fig. 8 (b) we focus on two disjoint intervals. Since we are interested in
the hydrodynamic limit, we consider d = `/2. In the figure we show numerical data for
` = 10, 20, 40. The data exhibit the typical “rise and fall” dynamics. For the two disjoint
intervals (Fig. 8), E = 0 for t ≤ d/(2vmax) with vmax = 1. This is expected because for
t ≤ d/(2vmax) there are no pairs of entangled quasiparticles that are shared between A1

and A2. Indeed, the first entangled pair contributing to the entanglement between the
two intervals is created at a distance d/2 from them. The time d/(2vmax) is the time at
which the two quasiparticles forming the pair and traveling with |vmax| = 1 reach A1 and
A2, respectively. The quasiparticle prediction for the logarithmic negativity (cf. (84)) is
reported in Fig. 8 as continuous red line. The agreement between (84) and the numerical
data is remarkable for both adjacent and disjoint intervals.

7 Conclusions

We derived an exact formula for the dynamics of the fermionic logarithmic negativity after
the quench from the fermionic Néel state in the tight-binding chain with both gain and
loss dissipation. Our main result is formula (87). As a byproduct we provided analytical
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Figure 6: Dynamics of the moments Tr(
∏
p P
−1Gαp) with αp = ± and P = 12` +G+G−.

Results are for the quench from the fermionic Néel state and for two adjacent intervals
of equal length `. The gain and loss rates γ± are fixed as γ+ = 0 and γ− = 1/(4`). In
the legend we report as (α1, α2, . . . ) the configuration of the αp that identify the different
moments. Here (+,−)4 denotes the sum over all the possible strings (α1, α2, α3, α4). The
continuous red lines are the results in the weakly-dissipative hydrodynamic limit `, t→∞
with t/` and γ±` fixed.

results for several fermionic correlators. Formula (87) shows that the negativity admits
a quasiparticle picture interpretation. Similar to the mutual information, the negativity
is proportional to the number of entangled pairs that are shared between two intervals.
This is reflected in its typical “rise and fall” dynamics. Still, the negativity content of the
quasiparticles originates from an intricate interplay between unitary and dissipative con-
tributions. In particular, the negativity is not easily related to standard thermodynamic
quantities. This is in constrast with what happens for the mutual information, which can
be related to the thermodynamic entropy of the system [8,9]. Moreover, our result shows
explicitly that in the presence of dissipation the logarithmic negativity is not half of the
Rényi mutual information with Rényi index 1/2, in contrast with the unitary case [23].

Let us now mention some interesting future directions. First, it would be important
to extend the quasiparticle picture for the negativity to other quenches and other free-
fermion systems. Indeed, it is likely that a formula for generic quenches and quadratic
dissipation can be obtained. A good starting point would be to consider the quench from
the Majumdar-Ghosh state in the tight-binding chain [83]. Another interesting direction
would be to consider out-of-equilibrium dynamics in bosonic systems [8]. Moreover, it
would be interesting to study the negativity in the presence of localized dissipations. In-
deed, it has been shown in Ref. [84] that the dynamics of the von Neumann and the Rényi
entropies in the presence of localized fermion losses are determined by the effective trans-
mission and reflection coefficients of the lossy site. It would be interesting to understand
how to generalize this result to the negativity. Finally, an important open problem is to
understand the behavior of the logarithmic negativity in dissipative interacting integrable
systems.
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A Logarithmic negativity for particle-number-conserving free-
fermion systems

In this appendix we report the derivation of formula (29) for the fermionic logarithmic
negativity [21] for free-fermion systems with fixed fermion number. Specifically, fermion
number conservation implies

〈cjcl〉 = 〈c†jc
†
l 〉 = 0, ∀j, l. (94)

As a consequence of Eq. (94), the negativity can be expressed in terms of the correlation
matrix Cjl defined as

Cjl := 〈c†jcl〉. (95)

In order to show that, we start from the more general definition of the negativity in terms
of Majorana correlation functions, which holds true also for generic, i.e., non particle-
conserving fermion systems [21]. Let us define the Majorana operators aj as

cj :=
1

2
(a2j−1 − ia2j), c†j :=

1

2
(a2j−1 + ia2j). (96)

Here aj satisfy the standard anticommutation relations

{aj , al} = 2δjl. (97)

In the following we are going to assume that (94) holds in the initial state and at any
time. From the definitions (95) and (96) we obtain that

Cjl =
1

4
(a2j−1a2l−1 − ia2j−1a2l + ia2ja2l−1 + a2ja2l). (98)
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Figure 8: Dynamics of the fermionic negativity E after the quench from the fermionic Néel
state in the tight-binding chain with gain/loss dissipation. Results are for the negativity
between two intervals of equal length `. The data are for γ+ = 1/(2`) and γ− = γ+/2.
The figure shows the scaling plot of E/` versus t/`. The continuous red line is the result
in the weakly-dissipative hydrodynamic limit. In (a) we show results for two adjacent
intervals, whereas in (b) we discuss the case of two disjoint intervals at d = `/2.

After using (94), Eq. (98) becomes

Cjl =
1

2
(a2ja2l + ia2ja2l−1). (99)

This implies that

2Re(Cjl) = δjl + ia2ja2l−1, 2iIm(Cjl) = a2ja2l − δjl. (100)

Let us now define the Majorana correlation matrix Γjl as

Γjl :=
1

2
〈[aj , al]〉 = 〈ajal〉 − δjl. (101)

From (100) we obtain that

Γ2j,2l = Γ2j−1,2l−1 = 2iIm(Cjl) (102)

Γ2j−1,2l = −Γ2j,2l−1 = −i
(
2Re(Cjl)− δjl

)
. (103)

The correlation matrix Gjl (cf. (25)) is obtained as

Gjl := 2Cjl − δjl = Γ2j,2l + iΓ2j,2l−1. (104)
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Let us now consider the 2`×2` correlation matrix G restricted to subsysytem A, i.e., with
j, l ∈ A (see Fig. 1). We also define the 4`× 4` restricted Majorana correlation matrix as

Γ =

(
Γ2j,2l Γ2j−1,2l

−Γ2j−1,2l Γ2j,2l

)
, (105)

where we used (102) and (103). The eigenvalues and eigenvectors of Γ are simply related
to those of Gjl. To show that, let us consider a generic eigenvalue λ of Gjl with eigenvector
vj . From (104) one has that

(Γ2j,2l + iΓ2j,2l−1)vl = λvj , (106)

where the sum over repeated indices is assumed. Now, one can check that

Γv+ = λv+, Γv− = −λ̄v−, with v+ =

(
vj
−ivj

)
, v− =

(
v̄j
iv̄j

)
, (107)

where vj are the components of the eigenvectors of Gjl (cf. (106)) and the bar in v̄j denotes
the complex conjugate. To verify (107) one has to use that v̄j satify

(Γ2j,2l − iΓ2j,2l−1)v̄l = λ̄v̄j , (108)

which is obtained by taking the complex conjugate of (106) and by using that Γ̄2j,2l =
−Γ2j,2l and Γ̄2j,2l−1 = −Γ2j,2l−1. Furthermore, here we notice that λ is real, because Gjl
is an hermitian matrix. This means that given the eigenvalues λk of Gjl, the eigenvalues
of Γ are organized in pairs as (λk,−λk).

A similar result holds for the matrices Γ± (cf. (27)). Let us first define Γ± as

Γ± =

(
Γ11 ±iΓ12

±iΓ21 −Γ22

)
(109)

Here Γpq (p, q = 1, 2) are defined in (105) with the constraint that j ∈ Ap and l ∈ Aq. The
eigenvalues and eigenvectors of Γ± are simply related to those of G± (cf. (27)) defined as

G± =

(
G11 ±iG12

±iG21 −G22

)
(110)

First, we observe that G± and Γ± are not hermitian, implying that they have different
left and right eigenvectors. Let us consider the right eigenvector w±j (j = 1, . . . , 2`) of G±

with eigenvalue µ±. One can show by direct computation that the right eigenvector Vµ±
of Γ± with eigenvalue µ± is obtained as

Vµ± =
{
w±1 ,−iw

±
1 , w

±
2 ,−iw

±
2 , . . . , w

±
2`,−iw

±
2`

}
. (111)

The eigenvector V−µ̄± associated with the other eigenvalue −µ̄± of Γ± is given as

V−µ̄± =
{
w̄±1 ,−iw̄

±
1 , w̄

±
2 ,−iw̄

±
2 , . . . , w̄

±
` ,−iw̄

±
` ,−w̄

±
`+1, iw̄

±
`+1, . . . ,−w̄

±
2`, iw̄

±
2`

}
. (112)

Finally, in a similar way one can obtain the spectrum of ΓT defined as

ΓT =
1

2

[
14` − (14` + Γ+Γ−)−1(Γ+ + Γ−)

]
(113)

from that of GT defined as (cf. (28))

GT =
1

2

[
12` − (12` +G+G−)−1(G+ +G−)

]
. (114)
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First, both ΓT and GT are hermitian matrices, and hence have real eigenvalues. Now, let us
consider the eigenvector Z = {z1, . . . , z2`} of 12`/2−GT with eigenvalue ζ. One can show
that 14`/2− ΓT has eigenvalues ±ζ. The eigenvectors are obtained from (111) and (112)
after replacing wj → zj . Thus, the eigenvalues νi of ΓT are given as νi = (ξi, 1 − ξi),
with ξi the eigenvalues of GT . Finally, for a generic free-fermion system the negativity is
obtained as [45]

E =
1

2

4∑̀
i=1

ln(ν
1/2
i + (1− νi)1/2)− 1

2
S

(2)
A , (115)

where νi are the eigenvalues of ΓT , and S(2)

A is the second Rényi entropy of A = A1 ∪ A2

(see Fig. 1). Given the relationship νi = (ξi, 1 − ξi) between νi and the eigenvalues ξi of
GT , it is clear that (115) is the same as (29).
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Negativity across a Finite Temperature Transition: A Monte Carlo Study, Phys. Rev.
Lett. 125, 140603 (2020), doi:10.1103/PhysRevLett.125.140603.

[57] T.-C. Lu and T. Grover, Entanglement transitions as a probe of quasi-
particles and quantum thermalization, Phys. Rev. B 102, 235110 (2020),
doi:10.1103/PhysRevB.102.235110.

[58] H. Wichterich, J. Molina-Vilaplana and S. Bose, Scaling of entanglement between
separated blocks in spin chains at criticality, Phys. Rev. A 80, 010304 (2009),
doi:10.1103/PhysRevA.80.010304.

[59] H. Wichterich, J. Vidal and S. Bose, Universality of the negativity
in the Lipkin-Meshkov-Glick model, Phys. Rev. A 81, 032311 (2010),
doi:10.1103/PhysRevA.81.032311.

[60] A. Bayat, S. Bose, P. Sodano and H. Johannesson, Entanglement Probe of Two-
Impurity Kondo Physics in a Spin Chain, Phys. Rev. Lett. 109, 066403 (2012),
doi:10.1103/PhysRevLett.109.066403.

[61] X. Turkeshi, P. Ruggiero, V. Alba and P. Calabrese, Entanglement equipar-
tition in critical random spin chains, Phys. Rev. B 102, 014455 (2020),
doi:10.1103/PhysRevB.102.014455.

[62] G. Mbeng, V. Alba and P. Calabrese, Negativity spectrum in 1D gapped phases
of matter, Journal of Physics A: Mathematical and Theoretical 50(19) (2017),
doi:10.1088/1751-8121/aa6734.

[63] S. Wald, R. Arias and V. Alba, Entanglement and classical fluctuations at finite-
temperature critical points, Journal of Statistical Mechanics: Theory and Experiment
2020(3) (2020), doi:10.1088/1742-5468/ab6b19.

[64] H. Shapourian, S. Liu, J. Kudler-Flam and A. Vishwanath, Entanglement negativity
spectrum of random mixed states: A diagrammatic approach, PRX Quantum 2,
030347 (2021), doi:10.1103/PRXQuantum.2.030347.

[65] P. Calabrese, J. Cardy and E. Tonni, Entanglement negativity in extended systems: a
field theoretical approach, Journal of Statistical Mechanics: Theory and Experiment
2013(02), P02008 (2013), doi:10.1088/1742-5468/2013/02/p02008.

[66] P. Calabrese, J. Cardy and E. Tonni, Finite temperature entanglement negativity in
conformal field theory, Journal of Physics A: Mathematical and Theoretical 48(1),
15006 (2014), doi:10.1088/1751-8113/48/1/015006.

[67] X. Wen, P.-Y. Chang and S. Ryu, Entanglement negativity after a local quan-
tum quench in conformal field theories, Phys. Rev. B 92, 075109 (2015),
doi:10.1103/PhysRevB.92.075109.

[68] P. Ruggiero, V. Alba and P. Calabrese, Negativity spectrum of one-
dimensional conformal field theories, Phys. Rev. B 94, 195121 (2016),
doi:10.1103/PhysRevB.94.195121.

[69] V. Alba, P. Calabrese and E. Tonni, Entanglement spectrum degeneracy and the
Cardy formula in 1 + 1 dimensional conformal field theories, Journal of Physics A:
Mathematical and Theoretical 51(2), 24001 (2017), doi:10.1088/1751-8121/aa9365.

30

http://dx.doi.org/10.1103/PhysRevLett.125.140603
http://dx.doi.org/10.1103/PhysRevB.102.235110
http://dx.doi.org/10.1103/PhysRevA.80.010304
http://dx.doi.org/10.1103/PhysRevA.81.032311
http://dx.doi.org/10.1103/PhysRevLett.109.066403
http://dx.doi.org/10.1103/PhysRevB.102.014455
http://dx.doi.org/10.1088/1751-8121/aa6734
http://dx.doi.org/10.1088/1742-5468/ab6b19
http://dx.doi.org/10.1103/PRXQuantum.2.030347
http://dx.doi.org/10.1088/1742-5468/2013/02/p02008
http://dx.doi.org/10.1088/1751-8113/48/1/015006
http://dx.doi.org/10.1103/PhysRevB.92.075109
http://dx.doi.org/10.1103/PhysRevB.94.195121
http://dx.doi.org/10.1088/1751-8121/aa9365


SciPost Physics Submission

[70] E. Cornfeld, E. Sela and M. Goldstein, Measuring fermionic entanglement:
Entropy, negativity, and spin structure, Phys. Rev. A 99, 062309 (2019),
doi:10.1103/PhysRevA.99.062309.

[71] J. Kudler-Flam, H. Shapourian and S. Ryu, The negativity contour: a quasi-
local measure of entanglement for mixed states, SciPost Phys. 8, 63 (2020),
doi:10.21468/SciPostPhys.8.4.063.

[72] A. Coser, E. Tonni and P. Calabrese, Entanglement negativity after a global quantum
quench, Journal of Statistical Mechanics: Theory and Experiment 2014(12), P12017
(2014), doi:10.1088/1742-5468/2014/12/p12017.

[73] N. Feldman and M. Goldstein, Dynamics of charge-resolved entanglement after a
local quench, Phys. Rev. B 100, 235146 (2019), doi:10.1103/PhysRevB.100.235146.

[74] J. Kudler-Flam, Y. Kusuki and S. Ryu, Correlation measures and the en-
tanglement wedge cross-section after quantum quenches in two-dimensional con-
formal field theories, Journal of High Energy Physics 2020(4), 74 (2020),
doi:10.1007/JHEP04(2020)074.

[75] J. Kudler-Flam, Y. Kusuki and S. Ryu, The quasi-particle picture and its breakdown
after local quenches: mutual information, negativity, and reflected entropy, Journal
of High Energy Physics 2021(3), 146 (2021), doi:10.1007/JHEP03(2021)146.

[76] M. Gruber and V. Eisler, Time evolution of entanglement negativity across a de-
fect, Journal of Physics A: Mathematical and Theoretical 53(20), 205301 (2020),
doi:10.1088/1751-8121/ab831c.

[77] A. Elben, R. Kueng, H.-Y. R. Huang, R. van Bijnen, C. Kokail, M. Dalmonte, P. Cal-
abrese, B. Kraus, J. Preskill, P. Zoller and B. Vermersch, Mixed-state entangle-
ment from local randomized measurements, Phys. Rev. Lett. 125, 200501 (2020),
doi:10.1103/PhysRevLett.125.200501.

[78] S. Murciano, V. Alba and P. Calabrese, Quench dynamics of Rényi negativities and
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