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Abstract

We extend the entanglement bootstrap program to (3+1)-dimensions. We

study knotted excitations of (3+1)-dimensional liquid topological orders and ex-

otic fusion processes of loops. As in previous work in (2+1)-dimensions [1, 2], we

define a variety of superselection sectors and fusion spaces from two axioms on

the ground state entanglement entropy. In particular, we identify fusion spaces

associated with knots. We generalize the information convex set to a new class of

regions called immersed regions, promoting various theorems to this new context.

Examples from solvable models are provided; for instance, a concrete calculation

of knot multiplicity shows that the knot complement of a trefoil knot can store

quantum information. We define spiral maps that allow us to understand con-

sistency relations for torus knots as well as spiral fusions of fluxes.
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1 Introduction

The entanglement bootstrap [1, 2] is a program to understand liquid topological orders

from a couple of well-motivated axioms concerning the structure of entanglement in a

single ground state wave function. By a topological order [3, 4], we mean a gapped

phase of matter with a ground state subspace of locally indistinguishable ground states

whose dimension depends on the topology of space. By ‘liquid’, we mean that this

ground state degeneracy does not depend on the geometry; this excludes fractons.

The program thus far has been focused on bosonic topological order in two spatial

dimensions. It has been successful in explaining much of the structure of the mathemat-

ical theory of anyons, from a very simple starting point; this includes the explanation

of the fusion rules of anyons [1] and the nondegenerate mutual braiding statistics after

that [5]. The axioms follow from the area law of the entanglement entropy [6, 7] but are

weaker. These axioms, which can be stated in the approximate case, can be useful for

the study of 2d chiral systems with a bulk energy gap and gapless edge modes, whose

thermal Hall conductance is quantized [8, 9] according to its chiral central charge [10].

In fact, with related techniques, a formula for the chiral central charge, in terms of a

single bulk ground state wave function, has been argued and tested [11, 12]. No rigor-

ous derivation of this formula is known, at the moment, which calls for new innovation

of concepts and techniques of the framework.
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In addition to the goal of deriving the emergent physical laws of 2d gapped phases,

one hopes that this program will lead to new insights in broader physical contexts.

An example where this has already happened is in the theory of gapped domain walls

[2, 13].

A central notion of the entanglement bootstrap is the information convex set. Given

a reference state |ψ〉 on some manifold, this machine associates with any subsystem X

(with boundary) a convex set of density matrices, Σ(X, |ψ〉). Roughly, these are all the

density matrices on the subsystem that are indistinguishable from the reference state

on balls. The basic observation is that Σ(X, |ψ〉) depends only on the deformation

class of both |ψ〉 and X. We will often omit the |ψ〉 label on Σ(X). For various choices

of the topology of X, Σ(X) encodes the information about the topological excitations

(anyons, for the case of 2d), as well as their fusion spaces.

In this work, we ask about the extension of this program to three spatial dimensions

(3d). For simplicity, we continue to restrict attention to systems made of bosons. The

main new ingredient in three dimensions is that there are many more ways to choose

a subsystem. Each choice of (deformation class of) subsystem, then, has a role to play

in the theory of 3d topological order. As in two dimensions, these include identifying

excitation types and their possible fusion spaces. As we will explain, one new ingredient

is the fusion space associated with knotted loop excitations. As an example, we show

that a single trefoil excitation on a 3-sphere can be associated with a nontrivial knot

multiplicity, and thus a topological qubit may be stored in the knot complement of a

trefoil knot.

We begin in §1.1 with a brief overview of entanglement bootstrap, starting from the

axioms. After that, we present an overview of the whole paper, focusing on physical

intuition (§1.2). We postpone the comparison of our findings and other approaches of

3d topological orders to the discussion section.
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1.1 Brief overview of 3d entanglement bootstrap

Without further ado, here are the axioms for the entanglement bootstrap in three

dimensions. We assume given a reference state σ supported on a large ball (much larger

than any other length scales such as correlation lengths or lattice spacing). About this

state, we assume that the following two axioms hold on all balls contained in the large

ball:

C

B

A0 : (SBC + SC − SB)σ = 0

C

B

D

A1 : (SBC + SCD − SB − SD)σ = 0
(1.1)

where (SX)σ = −Tr(σX lnσX) is the von Neumann entropy of the state σ reduced to

the region X, and each region is the volume of revolution of the indicated 2d region.1

We will find it convenient to denote the entropy combinations appearing in the axioms

as

∆(B,C) ≡ SBC + SC − SB, ∆(B,C,D) ≡ SBC + SCD − SB − SD. (1.2)

We note that if we erase the rotation label, these axioms have the same form as the

axioms in the 2d case [1].

As in the 2d case [1], assuming the axioms only on bounded-radius balls can be

used to prove the same conditions on larger balls by application of strong subadditivity

(SSA) [14]. Similarly, the axioms can be shown to hold on any collection of regions

with the indicated topology. The axioms (1.1) follow from a strict area law for the

von Neumann entropy but are strictly weaker (for example, in two dimensions, regions

with corners may violate the strict area law in chiral states while still satisfying the

axioms up to an error exponentially decaying with the system size).

The central actor in this work is the information convex set [15, 16, 17], which,

given a reference state σ satisfying the axioms A0 and A1, associates to each region

of space X a convex set of density matrices, Σ(X). (The dependence on the state

σ is implied.) Informally, Σ(X) is the set of density matrices on X that agree with

the reference state on any ball in X. A more precise definition enlarges the region X

slightly to take care of balls that overlap the boundary of X.

1In the figure, we used a rotation label to indicate the revolution. Note, however, we do not assume

rotation symmetry; the axioms apply to any partition of balls topologically equivalent to these.
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The information convex set is a topological invariant in two senses. First, it is a

property of the phase of matter represented by the reference state |ψ〉 – it is invariant

under adiabatic deformations of |ψ〉. Secondly, two regions related by a regular homo-

topy have isomorphic information convex sets; this is the content of the Isomorphism

Theorem (Theorem 2.5). The isomorphism in question maps extreme points to extreme

points and preserves entropy differences and distances between states.

The structure of a (compact) convex set is determined by its extreme points. If

the extreme point density matrices of Σ(X) are all mutually orthogonal, then Σ(X)

is a simplex. In this case, the states of Σ(X) encode only classical information, which

may be copied. In contrast, the information convex sets of some regions contain fusion

spaces, which can store quantum information. The relation between the geometry of

a region and these properties of the information convex set is understood [1], and

in §2.2, we review the dichotomy between sectorizable regions [2], whose information

convex set is a simplex, and non-sectorizable regions, whose states can encode quantum

information. Sectorizable is a simple geometric condition: a region is sectorizable if it

contains two disjoint pieces such that each can be deformed back to the whole via a

sequence of extensions.

A crucial tool for understanding the structure of the information convex sets is

merging [18, 1]: given elements ρ, τ of the information convex sets of two intersecting

regions ABC and BCD, which agree on the overlap BC, a unique element of the

information convex set of their union ρ ./ τ ∈ Σ(ABCD) can be obtained, if a quantum

Markov chain condition is satisfied. This merging is possible because quantum Markov

chain conditions on large regions can be deduced from SSA and the axioms on local

regions [19, 1]. The merged state ρ ./ τ is the maximum-entropy state consistent with

its marginals. This process has a lot in common with the topological notion of surgery.

Meanwhile, merging is flexible enough to glue either part of a boundary component or

whole boundary components.

1.2 Heuristic overview of the paper

The main text of this paper attempts to take care of both physical ideas and the

mathematical rigor needed for building a theoretical framework. Despite the many

illustrations, this unavoidably makes multiple places lengthy and more technical than

needed in grasping the physical idea. For this reason, we include the following overview

of its contents from a physics perspective.

Section 2 develops the entanglement bootstrap technology, focusing on novelties in

3d, as compared to 2d. The first important innovation (§2.1) is the use of what we

call immersed regions. The idea, first used in [5], is to make regions with non-trivial
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topology by realizing them as regions locally (but not globally) embedded in a ball.

It is well-established that non-trivial spatial topology is a useful probe of topological

order; the method of immersed regions allows us to exploit non-trivial spatial topology

even when given only a single wave function on a region with the topology of a ball.

A key step in §2.1 is to show that the Isomorphism Theorem generalizes to include

immersed regions, and moreover to include regular homotopies between regions that

allow immersed regions in the intermediate steps of deformation (even if the starting

and ending regions are embedded). This is the content of the Generalized Isomorphism

Theorem, 2.5. An immediate consequence of the Generalized Isomorphism Theorem is

that any two thickened knots have the same information convex set. (The information

convex set of a knot complement, however, will be much more interesting.)

It is not a priori clear that the information convex set of an immersed region

has a vacuum sector. One important role the vacuum sector plays is in the entan-

glement bootstrap definition of the quantum dimension of an extreme point: da =

e(S(ρa)−S(ρ1))/2. This motivates an alternative, more general, definition of quantum di-

mension, described in Appendix D, in terms of a linear combination of entropies of

subregions. The existence of a vacuum sector is proved, however, for any (embedded)

subregion of a ball by a partial trace of the reference state in Lemma 3.2.

In §2.3, we describe what we call the Associativity Theorem (Theorem 2.22), which

describes how to build the information convex set of a region by decomposing the

region into parts. Lemma 2.20 shows that when merging two extreme points along a

whole component of their boundary, we always produce an extreme point of the merged

region. The proof of this lemma uses a nice necessary and sufficient criterion for a state

to be an extreme point, given in Lemma 2.13. The Associativity Theorem 2.22 then

says that all extreme points of the merged region Ω = ΩLΩR arise in this way, so that

their fusion multiplicities satisfy

N(Ω) =
∑
I

NI(ΩL)N I(ΩR), (1.3)

where I labels an extreme point of the thickened boundary component along which ΩL

and ΩR were merged.

The purpose of §3 is to study the information convex set for various 3d regions and

to make connections to the fusion data and fusion processes of 3d topological order. We

said above that the method of immersed regions allows us to build states on non-trivial

topological spaces, starting with just a state on a ball. But so far, these spaces must

be immersed in a ball, and this is not always possible. For example, a torus T 2 cannot

be immersed in a disk, but a torus with a hole (T 2\ disk) can be. In 3.1, we prove the

Sphere Completion Lemma 3.1, which shows that a state on a manifold with a hole can

7



be used to produce a state on the closed manifold obtained by filling in the hole. One

way in which we will repeatedly use the Sphere Completion Lemma is to turn regions

inside-out by deforming them to the point at infinity on the sphere. An immediate

application of this technique is to study the complement of knots on a 3-sphere and to

gain an additional intuition on various anti-sectors.

§3.2 explains the structure of the information convex set for basic sectorizable re-

gions in 3d:

• the sphere shell, whose extreme points label particle excitations

• the solid torus, whose extreme points label a class of loop excitations called pure

fluxes, and

• the torus shell, whose extreme points label more general Hopf link excitations.

Another class of 3d sectorizable regions is the handlebodies of genus g > 1; their

extreme points are labeled by graph excitations with g edges. We defer their discussion

to [20]. In 2d, there is a unique notion of total quantum dimension, defined by D =√∑
a d

2
a. In 3d, one could a priori define such a notion for each type of excitation

listed above. Proposition 3.4 shows that they are all equal.

In §3.3 we translate known results about fusion spaces of particles and loops into

statements about information convex sets. For example, the fusion of two particles to a

third particle is encoded in the structure of the information convex set of a ball minus

two balls. In Appendix E we show that a procedure of dimensional reduction precisely

relates all of the above information to an entanglement bootstrap problem in 2d with a

special kind of gapped boundary [2]. The idea is that each of the above regions enjoys

an action of revolution; the loci where the circle action is not free produces a gapped

boundary.

It is not true, however, that all information about 3d topological orders can be

obtained by dimensional reduction. In §3.4, we initiate the study of information convex

sets of knot complements. These regions are not sectorizable, and the information

convex set with a specific sector of its torus-shell boundary is the state space of some

finite-dimensional Hilbert space. Its dimension, which we call a knot multiplicity, is an

isotopy invariant of the knot. In §3.5, we identify several exotic fusion processes of flux

loops. One example is that a flux loop deforms into a spiral and then makes a new flux

loop. We analyze this with the spiral maps we introduce in §5. Another example is a

fusion process of two loops related to the Borromean rings complement.

The main goal of the rest of the paper is to understand the structure of these knot

multiplicities and the spiral fusion of fluxes.

8



In §4 we use a technique called minimal diagram (explained in §2.4) to compute

basic information convex sets for the 3d quantum double model. This includes the

complement of the trefoil knot. In particular, for a general 3d quantum double model,

we demonstrate a close relationship between the structure of the information convex

set of a region and its fundamental group. Specifically, the structure of the information

convex set of a knot complement is determined by (the Wirtinger presentation of) its

fundamental group, the knot group (a nice description can be found in [21]). When

we wish to be completely explicit, we specialize to the case of 3d quantum double

with gauge group S3, the smallest non-abelian group. Further examples, including the

Borromean rings complement, are explained in Appendix C.

In §5 we introduce a family of maps on information convex sets that we call spiral

maps. The simplest spiral map takes Σ(T ), the information convex set of the solid

torus, to itself. It is defined by tracing out the complement of a sub-solid-torus that

winds around the hole multiple times, followed by a deformation that unwinds it, to

map back to a state on the original region. This map takes extreme points to extreme

points, and thus it takes fluxes to fluxes. As a logical consequence, the spiral fusion

of any flux provides a unique flux as the outcome; moreover, the quantum dimension

of flux cannot increase under such a process. The spiral maps can be composed. In

the special case of the 3d quantum double model, it is a realization of the group

multiplication law, which is information that goes beyond the character table. The

spiral maps will play an important role in relating knot multiplicities to each other.

In §6, we illustrate consistency conditions between the fusion spaces and quantum

dimensions associated with various regions, including torus knots. There are two kinds

of consistency conditions. The simplest kind involves chopping up a region along some

hypersurface internal to the region. Then the Associativity Theorem in the form (1.3)

determines the fusion multiplicities of the whole region in terms of a convolution of

those of its parts. If, instead, we chop up a region along a cut that intersects a region’s

boundary so that we are not merging along a whole boundary component, we obtain

a relation that involves the quantum dimensions of the labels on the cut boundary.

In particular, we derive a consistency relation for torus knots which involves knot

multiplicities, quantum dimensions, and spiral maps. This provides an upper bound

on torus knot multiplicities in terms of the total quantum dimension.

2 General theorems and calculation tools

In this section, we describe basic concepts and general theorems of the entanglement

bootstrap approach in 3d. Most of them can be stated in a general context and originate
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from recent literature [1, 2]. In addition to reviewing these known results, we highlight

two innovations that will have a broad application in 3d. The notable new concept we

introduce is immersed region2 (see e.g. Fig. 2), which extends the scope of previous

results to this broader type of region and also makes the information-preserving defor-

mations of a region more flexible, by allowing the region to “pass through itself”; see

Theorem 2.5. The second innovation is the associativity theorem presented in §2.3.

We further provide a discussion on a calculation tool for solvable models; see §2.4.

While this is not part of the entanglement bootstrap, the approach works for solvable

models whose ground state(s) satisfy axioms A0 and A1. Therefore, it is capable

of providing concrete examples, demonstrating the various objects and consistency

relations predicted by entanglement bootstrap.

2.1 Immersed regions and generalized isomorphism theorem

2.1.1 Immersed regions

When studying a quantum many-body system on a spatial manifold M , it is natural to

consider subsystems, which are embedded manifolds (of the same dimension as M) with

boundary. The concept of subsystem has played an important role in entanglement

bootstrap. This is because information convex sets, the isomorphism theorem, and

structure theorems are associated with subsystems.

Immersed regions are natural generalizations of subsystems. They are locally em-

bedded in the physical system but may not be globally embedded. For our purpose, we

shall be interested in immersions of regions that are of the same dimension as M ; see

Fig. 1 for an illustration. As we shall discuss, most of the nice properties associated

with subsystems generalize to immersed regions.

We think of the physical system on M as a coarse-grained lattice that possesses

a finite-dimensional Hilbert space on each site; we always work with a large enough

length scale so that the manifold can be treated as smooth. A quantum state σ, which

we shall call the reference state, is defined on the total Hilbert space of the physical

system. In this work, we shall focus on bosonic systems by assuming that the total

Hilbert space is the tensor product of the onsite Hilbert spaces. Let Γ(M) be the set

of bounded-radius balls on M , for which the axioms are imposed.3

Definition 2.1 (Immersed region). An immersed region is specified by either (Ω̂, i) or

Ω, as we will discuss. When useful, we write Ω as (Ω, p). (See Fig. 1 for an illustration.)

2This includes non-subsystem regions whose quantum states can nevertheless be constructed from

the reference state, an observation that first appeared in [5].
3The set covers M and adjacent balls overlap with each other.
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i(Ω̂)

i(Ω̂) = p(Ω)

Ω

Ω̂

ĩ

i

M

M

p

Figure 1: An illustration of the concept of immersed region (Definition 2.1). M is the spatial manifold

of the physical system. Ω̂ is an abstract topological manifold with the same dimension as M . i is

the immersion map. ĩ is an homeomorphism such that i = p ◦ ĩ. Note that the image i(Ω̂) (or p(Ω))

usually has a different topology than Ω̂. Ω is an immersed region whose coordinate determines p.

The first definition, (Ω̂, i): Let Ω̂ be a topological manifold (possibly with bound-

ary), which has the same dimension as M . Consider a continuous map

i : Ω̂→M. (2.1)

We call this map an immersion map if the preimage of any ball b ∈ Γ(M), for which

b ⊂ i(Ω̂), is the union of disjoint balls of Ω̂, and i is a homeomorphism (between a

region and its image under i) when restricted to any of these disjoint balls of Ω̂. We

say (Ω̂, i) defines an immersed region when i is an immersion map.

The second definition, Ω or (Ω, p): Let Ω be a topological manifold of the same

dimension as M , with coordinates: (x, q) ∈ Ω with x ∈ M and q is a discrete, finite

variable that specifies the information of the layers and branch cuts4; the topology of

Ω is consistent with the map
p : Ω →M

(x, q) 7→ x
(2.2)

such that (x, q) ∈ Ω is mapped to x ∈ M by p. Ω defines an immersed region if the

preimage of any ball b ∈ Γ(M) for which b ⊂ p(Ω) is the union of disjoint balls of Ω,

and p is a homeomorphism (between a region and its image under p) when restricted

4The assignment of layers and branch cuts determines the topology of Ω. Note that the assignment

is not without possible redundancy, e.g., branch cuts can freely deform without changing the topology.

We are only interested in the assignment up to this redundancy.
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to any of these disjoint balls of Ω. We write Ω as (Ω, p) when we wish to specify p. We

emphasize that p is part of the information of Ω.

To relate these two definitions, we let ĩ be a homeomorphism from Ω̂ to Ω; see

Fig. 1. Such a homeomorphism must exist with an appropriate choice of Ω̂ because Ω

has a manifold structure. The two alternative definitions of immersed region, Ω and

(Ω̂, i) are related by

Ω = ĩ(Ω̂), p = i ◦ ĩ−1. (2.3)

The immersion in the definition above is precisely local embedding.5 In general

topology, an embedding is a homeomorphism onto its image. A local embedding (or

local homeomorphism) is a map p : Ω → M with the property that for each point

x ∈ Ω there is a neighborhood U containing x such that p(U) is an open subset of M

and p|U is a homeomorphism. Embedding is a special type of immersion. In that case,

p can be taken to be the identity map. For our purpose, an immersed region Ω will

always have the same dimension as M . An embedded region is a subsystem.

It is tempting to use the term ‘covering space’ for what we call here ‘immersed

region.’ However, a covering space must have the same number of preimages of each

point in the image; in contrast, as can be seen in Fig. 1, in an immersed region,

the number of sheets (range of the discrete coordinate q) is allowed to vary over the

image. The crucial difference in the definition is that we only demand that i is a

homeomorphism from each component of its preimage to its image and not to a fixed

set in M . The former is weaker.

The Hilbert space of an immersed region is defined as the tensor product of the

local Hilbert spaces of its embedded local patches.

Definition 2.2 (Hilbert space of immersed region). If Ω is an immersed region, we

define the Hilbert space of Ω (denoted as HΩ) as the tensor product

HΩ = ⊗iHp(Ai), (2.4)

where Ω =
∏

iAi is a partition of Ω into local patches {Ai}, such that each patch Ai
is embedded into M by p. Hp(Ai) is the Hilbert space of subsystem p(Ai).

Remark. Below are a few remarks on Definition 2.1:

5The terminology ‘immersion’ is motivated by its use in differential topology. In that context,

local embedding is achieved by a condition on tangent space. (Roughly speaking, this condition is

for having no sharp corners.) We are only interested in immersion between manifolds with the same

dimension. In this case, immersion is also called submersion. We do not consider the tangent space

because we are interested in systems made of qudits, which are discrete on small scales.
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1. Either Ω or the pair (Ω̂, i) is sufficient for defining the immersed region Ω. We kept

both of them because each provides a useful perspective. Ω is the most convenient

for visualization of the topological region and the Hilbert space associated with

it; the pair (Ω̂, i) is insightful in relating smooth deformations to the concept of

regular homotopy.

2. How is the immersed region Ω consistent with the previous idea of subsystems?

If Ω is a subsystem, the assignment of the layer is trivial. Every point on Ω is

in the same layer. We can omit the data q in the coordinate (x, q), and then p

becomes the identity operator.

3. Consider i′ = i ◦ u, where u is a self-homeomorphism of Ω̂. We consider i and

i′ as equivalent, and we shall only be interested in immersion maps up to this

equivalence relation.

4. The second definition of the immersed region can be alternatively formulated

without using “layers and branch cuts” as follows. (We emphasize that this idea

is not necessary, but it may help some readers.) Think of Ω as an embedded

region in a space with tiny extra dimensions: M × E, where E is an ε-ball with

high enough dimensions. Ω is embedded in M × E in such a way that points in

Ω has coordinate (x, e) where x ∈ M and e ∈ E. p maps (x, e) to x. (Again, we

do not care about the detailed assignment of coordinates e as long as it works.)

In this way, Ω lies on top of M , and its coordinates contain the information of p.

5. In practice, the drawing of branch cuts can often be omitted, supplemented with

other ways to specify the layering. This is done in Fig. 1. See Fig. 2 (b1) and

(b2) for further explanations.

Information convex sets for immersed regions: We are ready to define infor-

mation convex sets for immersed regions. The definition below is a direct generalization

of the original definition.6 It reduces to the original definition if the region is a subsys-

tem. As in the original references, when we define an information convex set, we are

interested in a region that can be thickened. Below, we always consider an immersed

region Ω that can be identified as the interior of some Ω+, where (Ω+, p) is an immersed

region.

Not every immersed region can be thickened. For instance, Ω in Eq. (2.5) can be

6See Definition 3.1 of [1] as well as the alternative Definition C.1 in the same reference.
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thickened into Ω+. In contrast, Ω+ cannot be thickened into any immersed region.

i

Ω

Ω+

M
(2.5)

Recall that we have a reference state σ, defined on M . The total Hilbert space

of the physical system is assumed to be a tensor product of finite-dimensional local

Hilbert spaces associated with the lattice sites. The reference state σ satisfies the two

axioms A0 and A1 on bounded radius balls b ∈ Γ(M). Because (Ω+, p) is an immersed

region, we can obtain a set of balls in Ω+ by finding the connected components of the

preimage of b ⊂ p(Ω+). We call this set of balls of Ω+ as Γ̃(Ω+).

Balls in Γ̃(Ω+) are embedded into M by p. Therefore, according to the definition

of the Hilbert space HΩ+ , there is a natural way to say a state ρΩ+ is locally indistin-

guishable from the reference state. Let b ∈ Γ(M), where b ⊂ p(Ω+). We say a state

ρΩ+ is consistent with σb if ρΩ+ , reduced to any connected component of the preimage

of b, is identical with σb or its reduced density matrix (after mapping to the physical

system according to p). We denote this consistent condition by

ρΩ+

c, p
== σb. (2.6)

Definition 2.3 (Information convex set for immersed region). For an immersed region

Ω, which can be thickened into immersed region (Ω+, p), the information convex set

Σ(Ω), for a given reference state σ, is the set of density matrices

Σ(Ω) ≡ {ρΩ|conditions 1, 2}, (2.7)

where the two conditions are

1. ρΩ = TrΩ+\Ω ρΩ+ , where ρΩ+ is a density matrix on Ω+.

2. ρΩ+

c, p
== σb for any b ∈ Γ(M) such that b ⊂ p(Ω+).

We shall always consider regions Ω containing a finite number of sites to avoid

infinite-dimensional Hilbert spaces. An immediate consequence is that the information

convex set Σ(Ω) must be a compact convex set. Therefore, the convex set is completely

determined by the set of extreme points. We shall denote the set of extreme points as

ext(Σ(Ω)).
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Remark. For immersed regions that are not subsystems, the existence of reference

state σ (defined on M) does not immediately guarantee that Σ(Ω) is nonempty. This

is because on the immersed region Ω+, which thickens Ω, we have a set of local density

matrices rather than a global reference state. We do not know if every immersed

region has a nonempty information convex set. However, for all examples studied in

this paper, we can verify the nonemptiness using the merging technique. A simple

example is an immersed disk; see Example 2.4 below.

M

A

(a)

B

(b1)

q = 1

q = 2

B

(b2)

Figure 2: Examples of immersed disks in 2d. (a) A is embedded. (b) B is an immersed disk that is

not embedded. (b1) or (b2) are without or with explicit labeling of the layers and branch cuts.

Example 2.4 (Immersed disks). Here we consider the immersed disks illustrated in

Fig. 2. Region A in Fig. 2(a) is an embedded disk, which can be understood in ways

described in the previous literature. The more nontrivial case, which we discuss in

detail, is B in Fig. 2(b). It is an immersed disk that is not a subsystem. Let us relabel

B as (B, pB) to specify the map pB. pB(B) is the image of B on M , and it is an

annulus rather than a disk. Nonetheless, pB : B → M is a local embedding, meaning

it maps small balls of B onto small balls of M .

Figure 2(b1) and (b2) are two ways to describe B. While (b2) gives more details, we

shall prefer (b1) since it is more concise and contains the same necessary information

(up to equivalence). We start by explaining (b2). Recall that B 3 (x, q) according

to the second definition of immersed region (in Definition 2.1). q is a discrete label of

the layers. Here, part of B is labeled by q = 1, and the rest is labeled by q = 2. A

branch cut separates the two layers. The way we draw B on top of M specifies the x

coordinate. (b1) omitted the branch cut and the layer labels q = 1, 2. However, (b1)

contains the same information for the following reasons. First, the layering is implied

by the drawing of the two layers with transparency (opaque in the case of Fig. 1).

Second, the branch cut can deform freely and its precise location is unimportant; (b1)

omitted this nonessential information.

The Hilbert space structure of M induces a Hilbert space on A and B through Def-

inition 2.2. Note that the Hilbert space associated with immersed disk B is larger than

the Hilbert space associated with the image pB(B). This is because the overlapping
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region appears twice in the tensor product form of HB (by Eq. (2.4)). In other words,

some qudits are “recycled”.

Information convex sets Σ(A) and Σ(B) are well-defined as long as A and B can be

thickened to immersed regions A+ and B+ respectively. In the rest of this paragraph,

we assume such thickenings exist, which applies to the cases shown in Fig. 2 as one

can check pretty easily. The information convex set Σ(A) contains a unique element

if A+ is an embedded disk; this fact has an elementary proof (Proposition 3.5 of [1]).

The same line of logic does not work for Σ(B). The very fact that Σ(B) is nonempty

has to be justified. It is still possible to show that Σ(B) contains a unique element;

the proof needs the merging technique; see Corollary 2.6.1. The idea is that we can

obtain a state on B by merging (Lemma 2.6, Theorem 2.7) reference states on a pair

of (smaller) embedded disks.

2.1.2 Generalized isomorphism theorem

There is a huge number of possible choices of immersed regions. Are the structure of

their information convex sets different? A rough answer is that these structures only

depend on the topology of the region we choose, and therefore smooth deformation of

the regions cannot change the structure.

The generalized isomorphism theorem (Theorem 2.5) provides a precise version of

this statement. It is a direct generalization of the isomorphism theorem proved in [1].

This generalization is important for some of our applications. We first explain what

we mean by path in this context. Consider a finite sequence of immersed regions {Ωt},
where the parameter t = i/N , where i ∈ {0, 1, · · · , N} and N is a positive integer.

We call the set {Ωt} as a path from Ω0 to Ω1 if an adjacent pair of elements in {Ωt}
are related by adding/removing a small ball in a topologically trivial manner at the

boundary of the region. (We say two adjacent elements in {Ωt} are related by an

elementary step, where the elementary step can either be an extension or restriction.)

Theorem 2.5 (Generalized isomorphism theorem). Let Ω0 and Ω1 be two immersed

regions that are connected by a path. Their information convex sets are isomorphic,

Σ(Ω0) ∼= Σ(Ω1). (2.8)

As in the original isomorphism theorem (Theorem 3.10 of Ref. [1]), the “∼=” in

Eq. (2.15) is an isomorphism that preserves three things:

1. the structure as a convex set

2. the entropy difference of two elements
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3. distance measures and the fidelity between any two elements

Remark. A few remarks are in order.

1. If we view the immersed region Ωt through the pair (Ω̂, it) instead, the sequence

of immersion maps {ii/N}Ni=1 then describes a discrete version of regular homotopy

equivalence of i0 and i1. Intuitively, the generalized isomorphism theorem is a

statement about regular homotopy equivalence, whereas the original isomorphism

theorem (for subsystems) is about isotopy equivalence.

2. We omit the proof because it is similar to the proof of the isomorphism theorem.

We emphasize that the key ingredient is the ability to construct an unknown

density matrix by merging two quantum Markov states,7 by applying the merging

lemma:

Lemma 2.6 (Merging Lemma [18]). If there is a pair of quantum states ρABC
and λBCD satisfy ρBC = λBC and I(A : C|B)ρ = I(B : D|C)λ = 0, there exists a

unique quantum state (“merged state”) τABCD such that

TrDτABCD = ρABC

TrAτABCD = λBCD

I(A : CD|B)τ = I(AB : D|C)τ = 0.

Here I(A : C|B)ρ ≡ (SAB + SBC − SB − SABC)ρ is the conditional mutual infor-

mation.

By the merging lemma, for each elementary step of extension, one can obtain a

density matrix on the new region by merging the original density matrix and the

reference state on a ball. Finally, it is important that the merging lemma can be

promoted to the merging theorem, which guarantees that the resulting state is

in an information convex set. For readers’ convenience, we write down the full

statement of the merging theorem at the end of this section; see Theorem 2.7.

Corollary 2.6.1. Let ω be an immersed ball (in either 2d or 3d), then Σ(ω) contains

a unique element.

Corollary 2.6.2. Let T1 and T2 be two solid tori embedded in a ball in 3d space. Their

information convex sets are isomorphic, Σ(T1) ∼= Σ(T2).

7We say a state ρ is a quantum Markov state with respect to partition A,B,C if the conditional

mutual information I(A : C|B)ρ ≡ (SAB + SBC − SB − SABC)ρ = 0.
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Figure 3: Two solid tori in 3d space, whose information convex sets are isomorphic. (Left) A solid

unknot. (Right) A solid trefoil knot.

For example, T1 can be an unknot and T2 can be knotted. See Fig. 3.

The merging theorem below indicates that elements of the information convex sets

are “closed” under the merging operation as long as a mild extra condition is satisfied.

Theorem 2.7 (Merging Theorem [1]). 8 Consider two density matrices ρABC ∈ Σ(ABC)

and λBCD ∈ Σ(BCD), such that ABCD is an immersed region. E is an immersed

region that thickens ABCD. Consider three conditions:

1. ρBC = λBC and I(A : C|B)ρ = I(B : D|C)λ = 0.

2. There exists a partition B′C ′ = BC, such that no bounded radius ball in Γ̃(E)

overlaps with both AB′ and CD.

3. I(A : C ′|B′)ρ = I(B′ : D|C ′)λ = 0.

If these three conditions hold, the resulting density matrix generated by merging ρABC
and λBCD (by applying Lemma 2.6) belongs to Σ(ABCD).

Remark. In the context that the merging theorem applies, we shall often denote the

merged state as τ = ρ ./ λ. We emphasize that the extra conditions 2 and 3 are

introduced to avoid pathological cases, which may happen when the regions are “too

thin”. For all the applications we consider in this paper, the regions are thick enough;

thus, conditions 2 and 3 hold as long as condition 1 holds.

2.2 Structure theorems

Information convex sets are convex. What are the geometries of these sets? What are

the entropy difference and distance measures between two elements of an information

8Merging theorem is Proposition C.5 of [1], which is later printed as Theorem II.3 in [2], under the

current name.
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convex set? The (generalized) isomorphism theorem implies that the answer can only

depend on the “topological class” of the immersed regions.

In this section, we review the structure theorems [1, 2], which provide a concrete

answer to these questions. In particular, the information convex set for any sectorizable

region [2] (see Definition 2.8 below) forms a simplex. For more general choices of

immersed regions, the information convex set is the set of density matrices on a set of

finite-dimensional Hilbert spaces, which we call fusion spaces. We describe a version

of these theorems for immersed regions; these are immediate generalizations of the

original version.

2.2.1 Simplex theorem and superselection sectors

Under what conditions is the information convex set of a region a simplex, with orthog-

onal extreme points? The simple and flexible notion of sectorizable regions [2] captures

this simple condition. For sectorizable regions, an element of the information convex

set carries only classical information, and the set of extreme points can be identified

with a set of superselection sectors.

Definition 2.8 (Sectorizable Region [2]). An immersed region S is sectorizable if there

is a region Ŝ such that:

1. Ŝ contains disjoint regions S and S ′′.

2. Both S and S ′′ can be deformed to Ŝ by a path formed by extensions.

Example 2.9. Here are a few simple examples of sectorizable regions:

1. 2d regions: disk, annulus, the union of spatially-separated disks and annuli

2. 3d regions: ball, solid torus, sphere shell, torus shell (more in §3)

Remark. Every connected sectorizable region in the examples above has either one or

two boundary components. This is a general fact; see Proposition 2.16. Furthermore,

for every example above, S = M × I, where I is an interval and M is a (d − 1)-

dimensional manifold, possibly with boundaries. We do not know if this feature is

general; see Conjecture 2.18.

The simplex theorem for sectorizable region can be stated:

Theorem 2.10 (Simplex theorem (Theorem 4.1 of Ref. [1])). Let S be a sectorizable

region. Then Σ(S) is a simplex, that is:

Σ(S) =

{∑
I

pIρ
I
S

∣∣∣∣∣∑
I

pI = 1, pI ≥ 0

}
, (2.9)
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where {ρIS} is a set of mutually orthogonal density matrices.

In the context of theorem 2.10, the set of labels I forms a set CS, which we shall

refer to as the set of superselection sectors.

In many contexts,9 it is meaningful to talk about a special label, the vacuum sector,

denoted as “1”. If S is a subsystem of a ball, we shall define the vacuum sector such

that ρ1
S = σS is the reduced density matrix of the reference state. (A nontrivial fact is

that σS is an extreme point no matter how complex the sectorizable subsystem is. See

Lemma 3.2.)

Definition 2.11 (Quantum dimension). Whenever the vacuum sector is well-defined,

we define the quantum dimension of superselection sector I ∈ CS as

dI ≡ exp

(
S(ρIS)− S(ρ1

S)

2

)
. (2.10)

For instance, a sphere shell in 3d is a sectorizable region. The extreme points

correspond to the superselection sectors of the point excitations of the 3d topological

order. We shall see a variety of 3d sectorizable regions in §3. For these examples,

our definition is compatible with the idea that the quantum dimensions should be a

positive eigenvector of the fusion multiplicities, as in 2d [10, 1].

2.2.2 Hilbert space theorem and fusion spaces

For regions that are not sectorizable, to describe the structure of the information convex

set, a set of finite dimensional Hilbert spaces is needed. These Hilbert spaces can be

thought of as generalizations of the notion of fusion spaces in anyon theory. The Hilbert

space theorem [1, 2] is a concrete version of this statement.

Let Ω be an immersed region. Let Σ(Ω) be the information convex set associated

with it. To state the Hilbert space theorem, we adopt the notion of thickened boundary

of Ω, denoted as ∂Ω. ∂Ω is the subset of Ω that is obtained by thickening the boundary

of Ω towards the interior of Ω by an enough distance10; see Fig. 4 for an illustration.

Below is a list of established facts about thickened boundary:

1. The thickened boundary ∂Ω is a sectorizable region because ∂Ω =M× I, where

M is a (d− 1)-dimensional closed manifold, and I is an interval.11 Thus, Σ(∂Ω)

9There are exceptions. For example, the simplex theorem can apply to an annulus surrounding a

topological defect [22], even though none of the extreme points can be viewed as a vacuum.
10This is a few lattice spacings on the coarse-grained lattice.
11Whenever we write an immersed region as M × I, we assume that the region can be further

extended and restricted at both ends of the interval by a path.
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: Ω \ ∂Ω
: ∂Ω

Figure 4: An illustration of Ω and ∂Ω.

is a simplex. We can thus obtain a finite set of superselection sector labels C∂Ω.

2. If ∂Ω contains multiple connected components, then each component is sector-

izable. Each label in C∂Ω will be a collection of labels associated with the su-

perselection sectors of each connected component of ∂Ω. This is known as the

“product rule” (Lemma IV.2 of [2]).

3. Every extreme point of Σ(Ω) reduces to an extreme point of Σ(∂Ω) under partial

trace. We review this fact in the proof of Lemma 2.13 below.

Example 2.12. For example, if ∂Ω has three connected components, as is shown in

Fig. 4, then I = {a, b, c} is an ordered triple. Here the three entries are the labels of

superselection sector of each connected component.

These observations motivate the definition of the following convex subset of Σ(Ω).

For any I ∈ C∂Ω, we define

ΣI(Ω) ≡ {ρΩ ∈ Σ(Ω)
∣∣TrΩ\∂Ω ρΩ = ρI∂Ω}, (2.11)

where ρI∂Ω is an extreme point of Σ(∂Ω). Note that ρΩ ⊥ λΩ if ρΩ ∈ ΣI(Ω) and

λΩ ∈ ΣJ(Ω), with I 6= J ; this follows from the monotonicity of fidelity.

Thus Σ(Ω) is the convex hull of mutually orthogonal subsets {ΣI(Ω)}I∈C∂Ω
, namely

Σ(Ω) =

{∑
I∈C∂Ω

pIρ
I
Ω

∣∣∣∣∣ρIΩ ∈ ΣI(Ω),
∑
I

pI = 1, pI ≥ 0

}
. (2.12)

There is a simple entropy condition that can unambiguously determine if an element

is an extreme point of Σ(Ω):

Lemma 2.13 (extreme point criterion). Let Ω be an immersed region. Let ρΩ ∈ Σ(Ω).

ρΩ is an extreme point if and only if

(SΩ + SΩ\∂Ω − S∂Ω)ρ = 0. (2.13)
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Here ∂Ω is the thickened boundary of Ω.

Note that the statement applies to the case that Ω is a closed manifold as well; in

that case ∂Ω is empty.

Proof. First, if ρΩ is an extreme point of Σ(Ω) then Eq. (2.13) holds. This is known as

the “factorization property” of the extreme points (Appendix C of Ref. [2]). Second,

to see that Eq. (2.13) and ρΩ ∈ Σ(Ω) implies that ρΩ is an extreme point, we consider

proof of contradiction.

1. Let us observe that TrΩ\∂Ω ρΩ ∈ Σ(∂Ω) and it must be an extreme point. If

not, it must be a mixture of extreme points. Divide ∂Ω into three layers (outer,

middle, and inner) of increasing distance to the boundary of Ω. Then there will

be a nontrivial correlation between the inner layer and the outer layer on the

superselection sectors. This is in contradiction with Eq. (2.13), which implies

that the mutual information between the inner layer and outer layer vanishes. It

follows that ρΩ ∈ ΣI(Ω), for some label I ∈ C∂Ω.

2. Any ρΩ ∈ ΣI(Ω) satisfying Eq. (2.13) must be an extreme point. This is because

(SΩ + SΩ\∂Ω − S∂Ω)ρ = 2(SΩ(ρ) − SΩ(ρI,〈e〉)) for any ρΩ ∈ ΣI(Ω) and ρ
I,〈e〉
Ω is an

extreme point of ΣI(Ω). The right-hand side is positive for nonextreme points.

This completes the proof.

As a simple corollary of the extreme point criterion and Eq. (2.10), we have

Corollary 2.13.1. When the definition of quantum dimension (Eq. (2.10)) is appli-

cable, for each I ∈ C∂Ω that corresponds to a nonempty ΣI(Ω),

ln dI = S(ρ
I,〈e〉
Ω )− S(ρ

1,〈e〉
Ω ), (2.14)

where ρ
I,〈e〉
Ω is an extreme point of ΣI(Ω) and 1 is the vacuum label.

The proof is omitted because it is an analog of the proof of Lemma 4.8 of [1]. This

result shows that we do not need to extend the definition of quantum dimension to

non-sectorizable regions. Now we are in the position to state the Hilbert space theorem,

which describes the structure of ΣI(Ω).

Theorem 2.14 (Hilbert space theorem [1, 2]). 12 For an immersed region Ω,

ΣI(Ω) ∼= S(VI), (2.15)

12The original proof (Theorem 4.5 of Ref. [1]) was stated for Ω being a 2-hole disk. Theorem D.5

of Ref. [2] was stated for a general embedded region Ω. (The proof there works for immersed regions

without change.)
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where S(VI) is the state space13 of a finite dimensional Hilbert space VI .

Therefore, we can completely characterize the convex set ΣI(Ω) by a non-negative

integer NI = dimVI . We shall refer to this integer as a (fusion) multiplicity.

Example 2.15. When NI = 0, ΣI(Ω) is empty. When NI = 1, ΣI(Ω) contains a

unique element; this element is an isolated extreme point of Σ(Ω) because no extreme

point is close to it in terms of distance measures. When NI = 2, ΣI(Ω) is isomorphic

to a Bloch ball. It contains (infinite number of) continuously parameterized extreme

points.

The region Ω can store a piece of quantum information when NI > 1. Quantum

information cannot be copied in the sense that if one tears apart Ω, the quantum

information can be recovered from at most one party; the storage of this quantum

information is nonlocal in the sense that one cannot decode this information from ball-

shaped regions, nor from ∂Ω. We shall come back to this point when discussing the

storage of quantum information in knot complements §3.4.

2.2.3 General properties of sectorizable regions

We discuss a few general properties of sectorizable regions.

Proposition 2.16. The thickened boundary of any connected sectorizable region has

either one or two connected components.

Proof. We shall denote the sectorizable region as S and denote its thickened boundary

as ∂S. First, we use the defining properties (Definition 2.8). Because S and S ′′ can be

deformed to Ŝ by a sequence of elementary steps and S is connected, S ′′ and Ŝ must

be connected as well.

Below, we proceed with a proof by contradiction. We shall assume that the thick-

ened boundary of S, denoted as ∂S, has three connected components: (∂S)1, (∂S)2

and (∂S)3. (The proof generalizes straightforwardly to the case that the number of

connected components of ∂S is larger.)

The sequence of extensions that deforms S to Ŝ is, in fact, a sequence of extensions of

(∂S)1, (∂S)2 and (∂S)3 respectively. Denote the regions obtained after the extensions

as R1, R2 and R3, where Ri ⊃ (∂S)i. They must be spatially separated subsets of

Ŝ. Furthermore, ∂Ŝ must have precisely three connected components, denoted as

{(∂Ŝ)i}3
i=1, such that (∂Ŝ)i ⊂ Ri.

13State space of Hilbert space H is the set of all density matrices on H.
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Figure 5: A schematic illustration of the contradiction, supposing that the thickened boundary of

sectorizable region S has three connected components. (The black lines are the boundary of Ŝ.)

Since S ′′ is connected, it must be contained in one of Ri; without loss of generality,

we write S ′′ ⊂ R1. Hence S ′′ can be extended to include (∂Ŝ)1 without overlapping

with S. However, to extend S ′′ to include (∂Ŝ)2 or (∂Ŝ)3, the extension must overlap

with S. (In comparison, we saw that S can be extended to include (∂Ŝ)2 and (∂Ŝ)3

without overlapping with S ′′.)

However, a parallel line of reasoning, switching the role of S and S ′′, implies that it

is possible to extend S to only one of the three connected components of (∂Ŝ) without

overlapping with S ′′. This is a contradiction, and this completes the proof.

Conjecture 2.17. If the thickened boundary ∂S of a connected sectorizable region S

has two connected components (∂S)1 and (∂S)2, then Σ(S) ∼= Σ((∂S)1) ∼= Σ((∂S)2),

where the isomorphism between the two boundary components is induced by partial

trace.

This conjecture is true for all sectorizable regions of which we are aware, but we

do not have general proof. In fact, the following stronger conjecture holds for all sec-

torizable regions of which we are aware. (The stronger conjecture implies the previous

one.)

Conjecture 2.18. A connected sectorizable region S can be written as S = M× I,
where M is a manifold and I is an interval. Furthermore, if S has one boundary

component, M has boundaries; if S has two boundary components, M is closed.

Remark. We emphasize that the conjecture may apply to a broad context. For ex-

ample, we expect that a system with a gapped boundary is not a counterexample if a

proper notion of topology is adopted for regions adjacent to a gapped boundary.

Consider a connected sectorizable region of the form S =M× I. It is not difficult

to see that ifM has boundaries, then S has one boundary component; ifM is closed,

then S has two boundary components.
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For this type of sectorizable region, starting from an extreme point ρIS ∈ ext(Σ(S)),

trace out the density matrix in the interior of S. The reduced density matrix on

the thickened boundary ∂S is an extreme point of Σ(∂S), whose label is completely

determined by extreme point label I ∈ CS (Proposition D.4 of Ref. [2]). Quantum

dimension dI for I ∈ CS is related to the quantum dimension of the extreme point on

the thickened boundary ∂S in the following way.

Proposition 2.19. Consider a connected d-dimensional immersed region S =M× I
where M is a (d − 1)-dimensional manifold and I is an interval. Assume that Σ(S)

admits a special extreme point, i.e., the vacuum denoted as σS. Let I ∈ CS. If M has

boundaries, ∂S only has one connected component. We can denote h(I) as the sector

label for the reduced density matrix of ρIS on ∂S, and

dh(I) = d2
I . (2.16)

If M is closed, ∂S has two connected components (∂S)1, (∂S)2. Similarly, h1(I), h2(I)

are denoted as sector labels for the reduced density matrix of ρIS on (∂S)1, (∂S)2 respec-

tively, and

dh1(I) = dh2(I) = dI . (2.17)

Proof. If M has boundaries, ∂S only has one connected component. We get

S(ρ
h(I)
∂S )− S(σ∂S) = [S(ρIS) + S(ρIS\∂S)]− [S(σS) + S(σS\∂S)]

= 2(S(ρIS)− S(σS)). (2.18)

The first equality follows from the extreme point criterion (Lemma 2.13). The second

equality follows from generalized isomorphism theorem. Then Eq. (2.16) follows from

the definition of quantum dimension (Definition 2.11).

If M is closed, then ∂S has two connected components (∂S)1, (∂S)2. From the

tensor product structure for the density matrix supported on two disjoint regions

(∂S)1, (∂S)2 (“product rule” shown in Lemma IV.2 of [2]), we have (S(∂S)1 + S(∂S)2 −
S∂S)

ρ
(h1(I),h2(I))
∂S

= 0. Then

[S(ρ
h1(I)
(∂S)1

)− S(σ(∂S)1)] + [S(ρ
h2(I)
(∂S)2

)− S(σ(∂S)2)] = S(ρ
(h1(I),h2(I))
∂S )− S(σ∂S) (2.19)

Since (∂S)1 and (∂S)2 are connected by a path within S, from generalized isomor-

phism theorem, entropy difference is conserved, i.e. S(ρ
h1(I)
(∂S)1

)−S(σ(∂S)1) = S(ρ
h2(I)
(∂S)2

)−
S(σ(∂S)2). Similar to the proof for Eq. (2.18), the righthand side of Eq. (2.19) equals

to 2(S(ρIS) − S(σS)). Then Eq. (2.17) also follows from the definition of quantum

dimension.
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2.3 Associativity theorem

The dimensions of the Hilbert spaces obey further consistency relations. One impor-

tant such relation is known as associativity. In the anyon theory (Proposition 4.11

of Ref. [10]) the associativity relation relates the fusion multiplicities of the two-hole

disk to those of the three-hole disk:
∑

iN
i
abN

d
ic = Nd

abc. Similar relations also ap-

pear in broader physical contexts, e.g., in the presence of a gapped domain wall and

in higher-dimensional systems. In particular, there are many associativity relations

for 3d systems. Entanglement bootstrap is capable of deriving associativity relations.

However, previous methods require a case-by-case analysis.

In this section, we present an associativity theorem (Theorem 2.22). The associa-

tivity relations for a large variety of cases can then be read off effortlessly as corollaries.

The theorem applies to subsystems as well as immersed regions. It works in 2d and 3d

as well as higher dimensions. The idea of the proof is to cut a region into pieces and

analyze the ability to merge the pieces back.

Let us first state the general setup. Consider a region Ω, divided into two parts by

a hypersurface. (See Fig. 6 for an illustration. We emphasize that the consideration

is general.) The hypersurface may have more than one connected component but

must be disjoint from the boundary of Ω. We shall consider a partition of Ω into

ALBLCLCRBRAR. Here C = CLCR is the thickening of the hypersurface, where CL
and CR lie on the opposite sides. ALAR = ∂Ω. ΩL = ALBLC and ΩR = CBRAR.

Because AL, C, AR are sectorizable regions, we can talk about superselection sectors

on them. Let {aL, · · · }, {i, · · · }, {aR, · · · } be the labels of the extreme points of Σ(AL),

Σ(C), Σ(AR) respectively. Let N i
aL

(ΩL) and NaR
i (ΩR) be the dimensions of fusion

spaces associated with Σi
aL

(ΩL) and ΣaR
i (ΩR), and let NaR

aL
(Ω) be the dimension of the

fusion space associated with ΣaR
aL

(Ω).

Lemma 2.20. Suppose there is a pair of extreme points ρΩL ∈ Σ(ΩL) and λΩR ∈
Σ(ΩR), that are consistent on C. Then the following two statements hold:

1. ρΩL and λΩR can be merged.

2. The result of merging is an extreme point of Σ(Ω).

Remark. Importantly, for generality, we allowed the hypersurface to be a union of

connected components. Furthermore, we note that AL and AR can be empty sets.

The proof of this lemma is presented in Appendix B. The nontrivial part is to show

that the merged state satisfies the extreme point criterion (Lemma 2.13).

Lemma 2.21. If ΣaR
aL

(Ω) is nonempty, its maximum-entropy state satisfies

I(ALBL : BRAR|C) = 0. (2.20)
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Ω

(a) (b)

AL

AL

AR

AR

CL CRBL BR

(c)

Figure 6: (a) A possibly immersed region Ω, part of which is shown. (b) It is divided into halves

by a hypersurface (dashed line). (c) Partition of Ω into ALBLCLCRBRAR. Here C = CLCR is the

thickening of the hypersurface, where CL and CR lie on opposite sides. ALAR = ∂Ω. ΩL = ALBLC

and ΩR = CBRAR. Note that Ω = ΩL ∪ ΩR and ΩL ∩ ΩR = C.

Proof. Suppose this were not the case. To see the contradiction, we reduce the given

state to ΩL and ΩR then merge the marginals back. This merging is always possible and

the newly obtained state is an element of ΣaR
aL

(Ω) that satisfies I(ALBL : BRAR|C) = 0.

However, the newly obtained state has a larger entropy; this is because among states

with identical marginals, the one with minimal conditional mutual information has the

greatest entropy. This completes the proof.

Theorem 2.22 (Associativity theorem). In the general setup concerning immersed

region Ω, its partition and the labeling (see Fig. 6), the following associativity condition

holds:

NaR
aL

(Ω) =
∑
i∈CC

N i
aL

(ΩL)NaR
i (ΩR). (2.21)

The proof of is presented in Appendix B. Intuitively, the ability of deriving this

theorem lies in the fact that subregions ΩL and ΩR know enough about both the extreme

points (by Lemma 2.20) and the maximum-entropy state of ΣaR
aL

(Ω) (by Lemma 2.21).

Proposition 2.23 (sectorizable region and restriction). Let S be a sectorizable region,

and ρS be an extreme point of Σ(S). Let Ω be a region embedded in S. Then the

following statements are true:

1. The reduced density matrix ρΩ ≡ TrS\Ω ρS is an extreme point of Σ(Ω).

2. ρΩ is an isolated extreme point: Let I ∈ C∂Ω be the label such that ρΩ ∈ ΣI(Ω),

the associated fusion space dimension N I(Ω) = 1.

Proof. We first show that the two statements hold if Ω is embedded in S in such a

way that Ω ∩ ∂S = ∅. Let S = Ω ∪ Ω′, where Ω′ ≡ ∂Ω ∪ (S \ Ω). Translating
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notations in Associativity Theorem 2.22 to this context, we have ΩL = Ω, ΩR = Ω′,

AL = ∅, AR = ∂S, and C = ∂Ω. Because ρS is an extreme point, it carries a particular

label s ∈ C∂S. Rewrite Eq. (2.21) for this particular label, we find:

1 = N s(S) =
∑
I∈C∂Ω

N I(Ω)N s
I (Ω′) . (2.22)

Here N s(S) = 1 because S is sectorizable. If ρΩ were not an extreme point of Σ(Ω),

then there can only be two cases:

1. ρ∂Ω ≡ TrS\∂Ω ρS is a convex combination of more than one extreme point of

Σ(∂Ω). Let us say ρ∂Ω = p1ρ
I1
∂Ω + p2ρ

I2
∂Ω + · · · , where p1, p2 > 0. Then N I1(Ω),

N s
I1

(Ω′), N I2(Ω) and N s
I2

(Ω′) are greater or equal to 1. This violates Eq. (2.22).

2. There is a certain label I ∈ C∂Ω, such that ρΩ ∈ ΣI(Ω) but ρΩ /∈ ext(ΣI(Ω)).

This implies N I(Ω) ≥ 2, N s
I ≥ 1. Again, this violates Eq. (2.22).

This proves the case that Ω ∩ ∂S = ∅.

Suppose Ω ∩ ∂S is nonempty, which happens when Ω share boundaries with S,

for instance. It is possible to shrink Ω along its boundary and obtain Ω− such that

Ω− = Ω \ ∂Ω and Ω− ∩ ∂S = ∅. As the previous paragraph shows, the two statements

of the proposition hold for Ω−. We then extend Ω− back to Ω using a sequence of

elementary steps of extensions. Both statement 1 and 2 still hold under each such

step, and therefore they hold for the region Ω ⊂ S. This completes the proof of the

general case.

2.4 Subdivision-invariance and minimal diagram: tools for ex-

plicit data

A minimal diagram [17] is a means to avoid unnecessary complication when studying

information convex sets for ground states of exactly solvable models of topological

order. The idea is that the information convex set is a topological invariant in two

senses: it depends only on the phase of matter represented by the reference state, and

it depends only on the topology of the spatial region. Therefore we may choose the

reference state to be a renormalization group fixed-point state which is not changed

by subdivisions of the cell complex on which the model is defined. More concretely,

starting from a fixed-point wave function, we can use entanglement renormalization

[23, 24] to remove as many degrees of freedom as possible while preserving the topology

of the region of interest. Therefore, we can determine its structure by considering the

simplest available cell complex that discretizes the region of interest.
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3 Information convex sets for various 3d topologies

In this section, we study the information convex set for regions of various 3d topologies,

applying the entanglement bootstrap techniques summarized in §2. This allows us to

identify a number of simplexes and finite-dimensional Hilbert spaces. Physically, these

correspond to the superselection sectors of various excitation types of a 3d topological

order and their fusion spaces. Some explicit data calculated from 3d quantum double

models are presented for illustration purposes, the detailed calculation of which are

shown in §4. The content of each subsection is summarized in Table 1.

Section Physical data Choice of regions

§3.1 vacuum ball, 3-sphere

§3.2 superselection sectors sectorizable regions

point particles Cpoint sphere shell

pure-fluxes Cflux solid torus

Hopf excitations CHopf torus shell

shrinkable loops Cloop torus shell with a constraint

§3.3 fusion spaces (basic ones) 3d regions with boundaries

dimensional reduction see Appendix E for details

§3.4 knot multiplicity knot complement

§3.5 exotic fusion of fluxes 3d regions with boundaries

Table 1: Summary of the content of §3.

3.1 Ball, 3-sphere, and the vacuum

In the entanglement bootstrap approach, we often start with a reference state on a

ball instead of that on a closed manifold. The reason is that the density matrix on

a ball is often an “economical” starting point: a ball is a subsystem of any manifold,

and therefore it is something easy to obtain. Starting with a reference state on other

manifolds is possible, but that is considered as a stronger input.

Nonetheless, the sphere completion lemma (Lemma 3.1) below indicates that the

sphere is equally simple, in the sense that one can always complete the ball to a 3-

sphere. The logic of the analysis applies in any space dimension.

Lemma 3.1 (sphere completion lemma). Let σZ be a reference state of a ball Z. Let

Z = ABCD as is shown in Fig. 7(a). There exists a pure state |ψ〉 on a 3-sphere

S3 = ÃBCD (Fig. 7(b)) such that:
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Figure 7: Sphere completion for 3d: completion of the reference state on a ball to a 3-sphere S3. (a)

A reference state on a ball Z = ABCD; E is a finite-dimensional purifying system. (b) We map the

system to a 3-sphere S3 = ÃBCD by treating the union of A and E as a single site Ã.

1. |ψ〉 is a reference state of S3 if we treat Ã as a single site on the coarse-grained

lattice. (Namely, the Hilbert space on each site is finite dimensional and that the

3d version of axioms A0 and A1 are satisfied on |ψ〉.)

2. TrÃ|ψ〉〈ψ| = σBCD.

We shall call |ψ〉 as the completion of reference state σZ onto the 3-sphere.

Proof. Consider a partition of the ball Z = ABCD as is shown in Fig. 7(a). Let E be

its purifying system with a finite dimensional Hilbert space, and |ψ〉 be a purification

of σZ . We map AE to a single site Ã. The topology of the coarse-grained lattice is now

a 3-sphere. It is easy to check that the state |ψ〉 satisfies the axioms that we would

expect for a reference state on a 3-sphere. In particular, we have

∆(BD, Ã)|ψ〉 = 0 and ∆(B, Ã,D)|ψ〉 = 0, (3.1)

among other relations. This completes the proof.

The important physical object associated to the ball and 3-sphere is the vacuum.

To prepare the discussion of the vacuum, we recall the basic facts about information

convex sets on these simple regions:

• The information convex set of a disk in 2d (ball in 3d) contains a unique ele-

ment. The 2d case is Proposition 3.5 of [1], and the proof of the 3d case is a

straightforward generalization.
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• The information convex set on a sphere in 2d (3-sphere in 3d) contains a unique

element, and that element is a pure state. The 2d case is Proposition 3.7 of [1],

and the proof of the 3d case is a straightforward generalization.

The following lemma is the key to putting many of the anticipated properties of the

vacuum into a firm footing. The logic of the proof works for general space dimensions.

Lemma 3.2 (vacuum lemma). Let σ be the reference state defined on a ball ( 3-sphere).

Ω is a region embedded in the ball (3-sphere). Then the following are true:

1. σΩ ∈ ext(Σ(Ω)).

2. Let I ∈ C∂Ω be the label such that σΩ ∈ ΣI(Ω). The associated fusion space

dimension satisfies NI(Ω) = 1.

Proof. First, we prove the case of a ball. A ball is a sectorizable region; moreover,

the reference state is an extreme point. By applying Proposition 2.23, we prove the

desired answer. Second, we prove the case of a 3-sphere. If Ω = S3, the result is true.

If Ω ( S3, then Ω is embedded in a ball-shaped subsystem of S3. By the previous

argument, we prove the desired answer.

One implication is that vacuum is a well-defined superselection sector. Another

implication is that vacuum fuse trivially among each other, as long as we consider

fusion spaces associated with regions embedded in a ball (or a 3-sphere).

Definition 3.3 (vacuum sector). Let S be a sectorizable region embedded in a ball

(3-sphere) for which the reference state σ is defined. We define the vacuum sector 1 to

be the label of the following unique extreme point:

ρ1
S ≡ σS. (3.2)

In the rest of Section 3, all regions are embedded/immersed in either a ball or a

3-sphere, whichever is more convenient.

3.2 Sectorizable regions and superselection sectors

By the simplex theorem (Theorem 2.10), we can assign a set of superselection sectors to

each sectorizable region. In 3d, sectorizable regions are diverse. Simple choices include

sphere shell, solid torus, and torus shell; see Fig. 8. (The solid torus and torus shells

can be knotted.) Another class of sectorizable regions is the genus-g handlebodies for

each g > 1; these play an important role in our companion study of braiding [20].
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Cpoint = {1, a, b, · · · } Cflux = {1, µ, ν, · · · } CHopf = {1, η, ζ, · · · }

a ā

µ

ηη∨

Figure 8: A list of basic sectorizable regions in 3d, the corresponding superselection sector types,

and the string/membrane operators. Each region is embedded in a ball. (Left) sphere shell, the

superselection sectors of point particles, and a string operator. (Middle) solid torus, the superselection

sectors of pure-fluxes, and a membrane operator supported on a disk. (Right) Torus shell, the Hopf

excitations, and a membrane operator bounded by a Hopf link. η is a label of an extreme point of

the information convex set of a torus shell in a neighborhood of one of the loops; η∨ is the label on

a torus shell thickening the other. The relation between the loop labels η∨ and η is analogous to the

relation between particle and antiparticle, as explained in Footnote 17.

The superselection sectors associated with each region in Fig. 8 are summarized

below. These superselection sectors are associated with different classes of point (loop)

excitations. Each class of point (loop) excitations can be created by applying a suitable

type of string (membrane) operator.14 Intuitively, the view of the information convex

set is “dual” to the view of excitations because it focuses on the complement of the

excitations (when viewed on a 3-sphere). Each region in Fig. 8 is embedded in a ball

(or 3-sphere), and therefore the vacuum sector is well-defined.

1. (Sphere shell) Let X be a sphere shell. Σ(X) is a simplex with extreme points

ext(Σ(X)) ≡ {ρaX}a∈Cpoint
, where

Cpoint = {1, a, b, · · · }. (3.3)

These are the labels for the point particles, among which 1 is the vacuum sector.

For each a ∈ Cpoint, there is a unique antiparticle ā ∈ Cpoint. Furthermore, 1̄ = 1,

14String and membrane operators have been considered extensively for exactly solvable models;

see, for example, [4, 25, 26]. The existence of such operators can be established independently in

entanglement bootstrap with the logic presented in Appendix H of [1]. The idea is to use the structure

theorems of the information convex set and Uhlmann’s theorem to constrain the general shape of the

deformable operator.
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¯̄a = a and da = dā ≥ 1. Point particles can be created using a string operator

connecting a and ā. These are explained in Appendix E.

The total quantum dimension is defined as

D ≡
√ ∑

a∈Cpoint

d2
a. (3.4)

2. (Solid torus) Let T be a solid torus. Σ(T ) is a simplex with extreme points

{ρµT}µ∈Cflux
, where

Cflux = {1, µ, ν, · · · }. (3.5)

These are the labels for the pure-flux sectors, among which 1 is the vacuum

sector. They correspond to excitations on closed loops that can be created by a

single membrane operator supported on a disk; see Fig. 8.

For each µ ∈ Cflux there is an anti-flux which we shall denote as µ̄ ∈ Cflux. Here

are three ways to think about anti-fluxes:
• Rotating the flux excitation by π, about an in-plane axis. This maps the

loop excitation back to the same position, and it maps µ to µ̄. Fig. 9(a).

• Deform the solid torus T , such that it rotates by π, about an in-plane axis,

and maps back to itself. This generates an automorphism of the information

convex set, such that ρµT → ρµ̄T . Fig. 9(b).

• Consider an element in the information convex set of a genus-2 handlebody.

If, after a partial trace, it reduces to 1 (µ) on the outer (left) solid torus

shown in Fig. 9(c), then it must reach the extreme point labeled by µ̄ on

the third solid torus.15

µ→ µ̄ ρµT → ρµ̄T

µ µ̄
1

(a) (b) (c)

Figure 9: Three ways to think about anti-fluxes: (a) deform the excitation, (b) automorphism of

the information convex set of the solid torus, and (c) do a partial trace for a genus-2 handlebody.

15To make this mathematically accurate, we have fixed the sector label of the blue solid torus on

the right by a “translation” of the labels of the left blue solid torus.
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Furthermore,
¯̄µ = µ, dµ̄ = dµ ≥ 1, ∀µ ∈ Cflux. (3.6)

We explain these conditions and say more about anti-fluxes when discussing di-

mensional reductions in Appendix E. The total quantum dimension, defined in

Eq. (3.4), can be alternatively expressed as D =
√∑

µ∈Cflux
d2
µ; see Proposi-

tion 3.4.

3. (Torus shell) Let T be a torus shell. Σ(T) is a simplex with extreme points

{ρηT}η∈CHopf
, where

CHopf = {1, η, ζ, · · · }. (3.7)

We call them “Hopf sectors” (or “Hopf excitations”) because all such superselec-

tion sectors can be realized by a loop that participates in a linked loop pair on a

3-sphere such that the pair of loop excitations form a Hopf link. See Fig. 8(c) for

an illustration.16 We emphasize that a Hopf superselection sector is associated

with a single loop excitation (possibly linked with other excitations) in the sense

that the sector can be detected from the tubular neighborhood of the loop. (This

feature implies, for example, that a Hopf sector can be assigned to any single

loop that is part of three linked Hopf fibers on S3.)

As we shall show in Proposition 3.5, the set of Hopf excitations has a natural

decomposition into a union of disjoint subsets (see Fig. 11 for the procedure):

CHopf =
⋃

µ∈Cflux

C[µ]
Hopf. (3.8)

We shall develop a dimensional reduction understanding of C[µ]
Hopf in Appendix E;

therein, each set is mapped to the set of anyons in a 2d entanglement bootstrap

problem.

The information convex set Σ(T) has nontrivial automorphisms. One obvious

automorphism is achieved by deforming T ⊂ S3 in such a way that the Hopf link

in its complement has its two constituent loops permuted.17 This automorphism

permutes the labels in CHopf . We denote this map as v : CHopf → CHopf , and

v(η) ≡ η∨.

16Note that a subset of excitations in CHopf can be created without exciting both of the loops. They

are distinguished with genuine Hopf excitations that necessarily need both of the loops.
17Specifically, we can identify the two loops as part of a right-handed Hopf fibration of S3 and

deform them in such a way that they are thickened fibers of this fibration at any time. (A left-handed

Hopf fibration corresponds to a different automorphism.) For this deformation, the region remains

embedded. Viewed from the base space of the Hopf fibration, the image of the torus shell is an

annulus, and this deformation swaps the two holes of the annulus. See Appendix E.3 for more exotic

automorphisms making use of immersion.
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4. (Shrinkable loops) We define the set of “shrinkable loops” as Cloop ≡ C[1]
Hopf. Each

of these excitations can be realized by a loop that is not linked with other loops

and thus can be continuously shrunk to a point. In fact, every shrinkable loop

sector l ∈ Cloop can be created by a membrane operator supported on the side of

a cylinder, together with another shrinkable loop:

l

l̄ (3.9)

Each shrinkable loop has a well-defined anti-sector. (We denote the anti-sector

of l as l̄.) This is because Cloop is mapped to the set of anyons in a 2d entan-

glement bootstrap problem, and anyons have anti-sectors. This is explained in

Appendix E.

The set of fluxes Cflux is naturally embedded in Cloop as a subset.

Cflux

ϕ
↪→ Cloop ⊂ CHopf. (3.10)

Here the embedding ϕ : Cflux ↪→ Cloop is defined by the following sequence of

operations: (1) solid torus T is embedded in a ball. Complete the ball to an

S3 if it is not already part of an S3. (2) Let T = BC where B = ∂T and let

A = S3 \ (BC). Deform BC to AB by a path. (Such a path exist because any

pair of embedded solid tori on S3 can be converted to one another by smooth

deformations. There is, however, a possible flip. We chose one for concreteness.)

By the isomorphism theorem, ρµT is deformed to an extreme point λµAB. (3) Take

a partial trace, and let ρ̃B ≡ TrA λ
µ
AB. The label ϕ(µ) ∈ Cloop is defined to be the

label associated with the extreme point ρ̃B.

From this definition we further see that ϕ(1) = 1 and that the quantum dimension

dϕ(µ) = d2
µ.

Intriguingly, the set of point particles are naturally embedded in the set of shrink-

able loops as well. As we explain in §6.2.2,

Cpoint

φ
↪→ Cloop ⊂ CHopf, (3.11)

such that dφ(a) = da.
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Remark. The embedding of fluxes and point particles defined in Eq. (3.10)

and Eq. (3.11) are natural in 3d quantum double models (with or without twist),

where point particles are irreducible representations of the finite group G and the

fluxes are conjugacy classes. From our analysis, this structure holds on broader

classes of systems, whose ground state satisfies axioms A0 and A1.

We further notice a relation of the total quantum dimension:

Proposition 3.4 (matching of total quantum dimension).∑
a∈Cpoint

d2
a =

∑
µ∈Cflux

d2
µ. (3.12)

Figure 10: Making the maximum-entropy state of the information convex set of a solid torus (sphere

shell) by merging the reduced density matrices of the reference state on balls.

Proof. Make a solid torus T from two balls AB and BC as in Fig. 10(a), where B =

B1B2. Merging the unique states in Σ(AB) and Σ(BC) produces the maximum-entropy

state of Σ(T ), denoted as ρ?T =
∑

µ

d2
µ∑
ν d

2
ν
ρµT . This implies that ρ?T is a quantum Markov

chain
0 = I(A : C|B)ρ?T

= − ln(
∑
µ

d2
µ) + I(A : C|B)σT

= − ln(
∑
µ

d2
µ) + 2γ.

(3.13)

The second line uses the orthogonality of the extreme points and the definition of the

quantum dimension. γ ≡ 1
2
I(A : C|B)σT in the third line is the 3d version of Levin-Wen

topological entanglement entropy.

Similarly, we can make a sphere shell X from two balls AB and BC; see Fig. 10(b).

The merged state is ρ?X =
∑

a
d2
a∑
b d

2
b
ρaX .

0 = I(A : C|B)ρ?X

= − ln(
∑
a

d2
a) + I(A : C|B)σX .

(3.14)
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The second line follows from the orthogonality of the extreme points and the definition

of the quantum dimension. The remaining thing is to show that I(A : C|B)σX = 2γ.

This is true according to Proposition D.11. This completes the proof.

Proposition 3.5 (decomposition of CHopf). There is a well-defined map from CHopf

to Cflux described by the following process. (By this map, we define the decomposition

(3.8).) Let T be a torus shell, and T ⊂ T is a solid torus; see Fig. 11 below for an

illustration. Let ρηT ∈ Σ(T) be an extreme point. Then TrT\T ρ
η
T is an extreme point

ρµT ∈ Σ(T ).

η ∈ CHopf
T µ ∈ CfluxT

Figure 11: On the proof of the decomposition of CHopf .

Proof. It follows from Proposition 2.23. To see this, we observe that T is a sectorizable

region and that ρηT is an extreme point.

Remark. The map identified in Proposition 3.5 is a special case of a class of maps we

identify in §5. It is identified with t(1,0) among the maps t(p,q) defined in Eq. (5.19).

Below are a few examples. The explicit data presented here can be calculated by

the procedure described in §4.

Example 3.6 (3d toric code). 3d toric code is the 3d quantum double model with

finite group G = Z2. The data are

1. Cpoint = {1, e}, with quantum dimension d1 = de = 1.

2. Cflux = {1,m}, with quantum dimension d1 = dm = 1.

3. Cloop = {1, e,m, f}. We choose the same label as the 2d toric code model, because

these can be identified with the 4 anyon types of the toric code model by a

dimensional reduction.

4. CHopf contains 8 labels. Each of them has quantum dimension equals to 1. CHopf =

C[1]
Hopf ∪ C

[m]
Hopf . Both C[1]

Hopf and C[m]
Hopf contain 4 labels.
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Example 3.7 (3d S3 quantum double). The finite group S3 = {1, r, r2, s, sr, sr2}, with

r3 = s2 = 1 and sr = r2s. It is the smallest non-Abelian group. This model has non-

Abelian superselection sectors (whose quantum dimension is greater than 1). Without

introducing heavy notations, we describe the number of excitations and the quantum

dimensions.

1. Cpoint contains 3 labels, with {da} = {1, 1, 2}.

2. Cflux contains 3 labels, with {dµ} = {1,
√

2,
√

3}.

3. Cloop contains 8 labels, with {dl} = {1, 1, 2, 2, 2, 2, 3, 3}.

4. CHopf = ∪µC[µ]
Hopf contains 8 + 9 + 4 = 21 labels, with

{dη} = {1, 1, 2, 2, 2, 2, 3, 3} ∪ {2, 2, 2, 2, 2, 2, 2, 2, 2} ∪ {3, 3, 3, 3}. (3.15)

Remark. From these examples, we can explicitly see that
∑

a d
2
a =

∑
µ d

2
µ. In fact,∑

η∈C[µ]
Hopf

d2
η is independent of µ; see Appendix E. Furthermore, both of the examples

satisfy |Cflux| = |Cpoint| and this is a general fact. An argument can be found in Ref. [27].

We shall provide an entanglement bootstrap derivation of this statement in [20].

3.3 Fusion spaces for 3d systems: basic ones

In the next three sections, we identify a variety of fusion spaces and fusion processes of

the excitations types identified in §3.2. In this section, we start with a few basic ones

that have been studied in literature by other approaches [28, 29, 30, 31, 32, 33]. The key

technique is the Hilbert space theorem (Theorem 2.14). An independent dimensional

reduction method to understand these basic processes is presented in Appendix E. A

few novel fusion spaces and processes are discussed in §3.4 and §3.5.

By the Hilbert space theorem (Theorem 2.14), information convex sets of 3d re-

gions with boundaries can be associated with a set of fusion spaces.18 Traditionally,

the dimensions of fusion spaces appear in fusion equations. These are, roughly speak-

ing, equations that specify the content before the fusion on the left and the possible

outcomes of the fusion on the right. Below is a list of basic fusion processes in 3d. In

Fig. 12 we illustrate the regions, and string (membrane) operators.

1. (ball minus two balls) The subsystem ball-minus-two-balls characterizes the fu-

18Sectorizable regions are special cases for which the fusion space dimensions are either 0 or 1.
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Figure 12: A list of regions, the corresponding fusion multiplicities, and the excitations with the

associated string (membrane) operators. (left) The fusion of point particles. (Middle) For a shrinkable

loop. (Right) Fusion of two loops in C[µ]
Hopf.

sion of two point particles19:

a× b =
∑
c

N c
abc, a, b, c ∈ Cpoint. (3.16)

See the left of Fig. 12. The multiplicities {N c
ab} are characterized by the informa-

tion convex set of ball-minus-2-balls: N c
ab = dimVc

ab(ball-minus-2-balls). These

non-negative integers satisfy a set of consistency rules. We review these rules in

Appendix E.

2. (ball minus unknotted solid torus) The complement of an unknot in a ball char-

acterizes the shrinking of a shrinkable loop to a point:

l =
∑
a

Na
l a, with l ∈ Cloop, a ∈ Cpoint. (3.17)

We shall refer to this as the “shrinking rule”. (By the Hilbert space theorem we

should let the lower label of the multiplicity be η ∈ CHopf . We restrict the lower

index to be l ∈ Cloop for the reason that Na
η = 0 for η /∈ Cloop.) It is easy to see

that

N1
l =

∑
µ∈Cflux

δl, ϕ(µ), (3.18)

where ϕ is the map defined in Eq. (3.10). The multiplicities {Na
l } and the con-

sistency relations can be understood by dimensional reduction; see Appendix E.

19We will write formal equations like (3.16) indicating fusion rules by analogy with fusion rules for

anyons in 2d. One precise meaning will be that replacing sector labels with an appropriate quantum

dimension produces a true consistency relation.
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3. (solid torus minus two solid tori) The fusion of Hopf excitations in each class

C[µ]
Hopf is closed among themselves. It is tempting to write down a fusion equation

for it:

h× i =
∑
j

N j
hi j, h, i, j ∈ C[µ]

Hopf. (3.19)

The precise meaning of multiplicities {N j
hi} are the dimensions of Hilbert spaces

identified by the Hilbert space theorem (Fig. 12 top right). (They can be un-

derstood as the fusion spaces of a 2d system, by dimension reduction.) When

µ = 1, this corresponds to the fusion of shrinkable loops; see Refs. [28, 32, 33]

for a discussion of the same phenomena. When µ 6= 1, this corresponds to the

fusion of two loops that are linked with a third loop. The configuration of the

loop excitations is closely related to that involved in the 3-loop braiding statistics

[29, 30].

Remark. These basic fusion spaces and the superselection sectors can be understood

from a rigorous dimensional reduction point of view. This dimensional reduction is

distinct from existing literature in the sense that it rigorously maps a 3d entanglement

bootstrap problem to a 2d entanglement bootstrap problem. A detailed discussion is

postponed to Appendix E. The idea is to look at the 2d region which becomes the 3d

region under revolution. This applies to either a ball or a solid torus. The former case

works for the vacuum, and the 2d system is adjacent to a gapped boundary; for the

latter case, it is possible to apply the dimensional reduction to any flux. The idea is

illustrated in the following figure.

σ

vacuum reduction

revolution
σ[1]

ga
p

p
ed

b
ou

n
d

ar
y

ρµT ∈ Σ(T )

flux reduction

revolution

σ[µ]

(3.20)

Example 3.8. We provide a few basic examples of 3d quantum double, with finite

group G, to familiarize the readers with our notations. The fusion processes described

in this example are studied in Ref. [28].

• {N c
ab}: The point excitations correspond to irreducible representations of the

finite group G. N c
ab is the integers that appear in the tensor product of these

irreducible representations.
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When G = S3 = {1, r, r2, s, sr, sr2}, denote 1 = IdS3 , a = SignS3
, b = ΠS3 , where

ΠS3 is the 2-dimensional irreducible representation. Then the nontrivial fusion

rules for point particles are

a× a = 1

a× b = b

b× b = 1 + a+ b

• {Na
l }: When G = S3, there are 3 choices of a and 8 choices of l. The multiplicities

is a 3× 8 table.

da

Na
l dl

1 1 2 2 2 2 3 3

1 1 0 0 1 0 0 1 0

1 0 1 0 1 0 0 0 1

2 0 0 1 0 1 1 1 1

(3.21)

Here the first row and column are the vacuum sector. We, nonetheless, omit

the detailed labels here. More details of the labeling can be found in Table 7 of

Appendix C.2.

• {N j
hi} for C[µ]

Hopf are identical to the fusion multiplicities of anyons in a 2d quantum

double model (depending on µ) obtained by a dimensional reduction consider-

ation. When G = S3, the choice of flux µ corresponds to the three conjugacy

classes C1, Cr and Cs. The multiplicities {N j
hi} for C[C1]

Hopf, C
[Cr]
Hopf, C

[Cs]
Hopf are the same

as that for the 2d quantum double with group G = S3,Z3,Z2 respectively.

3.4 Knot multiplicity

Knots are intriguing mathematical objects [34]. A knot is an embedding of the circle

S1 into a three-dimensional space. Knot complement plays an important role in the

classification of knots. Here, we identify nontrivial fusion data associated with the

information convex set of knot complements.

One may wonder why not consider the information convex set of a knot instead.

The answer is twofold. First, the information convex set of a knotted solid torus does

not provide now data, compared to that of an unknotted torus; see Corollary 2.6.2.

Second, the information convex set of a knot complement physically characterizes loop

excitations located on the knot.

For concreteness, we shall consider knot complements on a 3-sphere. See Fig. 13

for an illustration. Recall that the sphere completion lemma 3.1 indicates that even
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if we start from a reference state on a ball, we can recover from it a reference state

on S3. This mirrors a standard maneuver in the study of knots, where one can inter-

changeably study knot complements in S3 and in R3. In the following we denote the

S3 \K

(a)

K ⊂ S3

(b)

Figure 13: (a) The knot complement S3\K. (b) The knot excitation located at K and the associated

(most general) membrane operator. Here K can be any thickened knot. (For illustration purposes, K

is chosen to be a right-handed trefoil knot.)

knot complement on S3 as

ΩK ≡ S3 \K, (3.22)

where K is a solid thickened knot.20 The knot complement has one thickened boundary

(∂ΩK), which is a knotted and embedded torus shell. By the generalized isomorphism

theorem (Theorem 2.5),

C∂ΩK ' CHopf, (3.23)

meaning that these two sets are identical up to a possible permutation of some kind.

Below, we do not distinguish these two sets.

The information convex set Σ(ΩK) is thus a convex hull of the subsets Σζ(ΩK),

where ζ ∈ CHopf. In general, Σζ(ΩK) is nonempty only for a subset of ζ ∈ CHopf. This

leads to the following theorem:

Theorem 3.9 (knot excitation type). The set of superselection sectors for knotted loop

excitations that can exist on a knot K of a 3-sphere alone is a subset of CHopf .

Remark. This implies that the knot excitation type is a small number on any knot,

compared to the simplest link (Hopf link). However, as we shall see, excitations on

knots are more coherent compared to excitations on a Hopf link. The former can

be coherent, whereas the latter cannot. For example, Ωtrefoil can encode quantum

information; see Example 3.12.

20When we consider a knot K as a 3d region or its complement, we always think of a solid knot

with a thickness large compared to the correlation length.
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By the Hilbert space theorem, Σζ(ΩK) ∼= S(Vζ(ΩK)), where the finite-dimensional

Hilbert space Vζ(ΩK) specifies the possible ways to put the loop excitation ζ on the

knot K. The dimension of this Hilbert space will be referred to as the knot multiplicity.

Definition 3.10 (Knot multiplicity). The knot multiplicity for knot K is

Nζ(K) ≡ dimVζ(ΩK). (3.24)

The knot multiplicity is nonnegative for any ζ ∈ CHopf . Below are a few remarks on

the physical meaning of Vζ(ΩK) and Nζ(K). The observation is general and works for

any knot including the unknot:

1. A vector |α〉 ∈ Vζ(ΩK), (up to the overall phase) represents the quantum informa-

tion that can be encoded in the information convex set Σζ(ΩK). This information

can be decoded from the state on the knot complement ΩK . In fact, one can de-

code the information on any region Ω̃K ⊂ ΩK that can be continuously deformed

to ΩK by a sequence of extensions.

2. Vζ(ΩK) corresponds to the effective low energy Hilbert space associated with a

single knotted excitation ζ, that is robust under any perturbation of the exci-

tation plus any local perturbations in other places. Note that the perturbation

along the excitation does not have to be local. This is precisely the condition

required by the authors of Ref. [32, 33].

3. On the other hand, to protect quantum information from decoherence to the envi-

ronment, often a weaker statement is needed. We only need locally-indistinguishable

states (i.e., the states are indistinguishable on balls with bounded radius). One

may wonder if the protected degeneracy can be larger than the knot multiplic-

ities. We do not have an answer to this question for the most general context.

However, we would like to observe two things. First, when the excitation has

an extra “smoothness”, e.g., it behaves like a codimension-2 defect and satisfies

a generalization of boundary axioms (a generalization of the version of A0 and

A1 2d gapped boundary), then there can be extra degeneracy; a related obser-

vation is made in Ref. [35]. The coherence of the extra degeneracy is, however,

protected by the details in the vicinity of the excitation. Quantum information

stored in this extra degeneracy (1) cannot be decoded in the knot complement,

away from the excitation, and (2) is not robust to arbitrary perturbation along

the excitation.

Example 3.11 (unknot). Let K be the unknot. Then the knot multiplicity is

Nη(unknot) =
∑
µ∈Cflux

δη,ϕ(µ), ∀η ∈ CHopf . (3.25)
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Example 3.12. When the knot K is a trefoil knot, the knot multiplicities and quantum

dimensions for excitation types that can exist alone on the trefoil are as follows:

For the 3d toric code:
Nζ(K) 1 1

dζ 1 1
(3.26)

For the 3d S3 quantum double model:

Nζ(K) 1 1 2 1

dζ 1 2 3 3
(3.27)

(Note that the data shown is identical for the left-handed trefoil and the right-handed

trefoil for both models; if we included the labels ζ in the table, they need not be. The

omitted data for the labeling of ζ can be found in Table 8.)

With a slight generalization, one can define the fusion space associated with a

excitation located at the knot, labeled by ζ ∈ CHopf and a point particle a ∈ Cpoint.

Because we are now allowed to put a point particle, the excitation type associated with

the knot can now be a bigger set. Such excitation is detected by the information convex

set of a ball with the knot removed; its thickened boundary has two components: an

outer sphere shell labeled by a particle type and an inner torus shell boundary labeled

by the knot excitation. According to the Hilbert space theorem, then, we can define

Na
ζ (K) ≡ dimVa

ζ (ball \K) . (3.28)

The multiplicities depend on the choice of the knot and Nζ(K) = N1
ζ (K). It is tempting

to write a fusion rule for the shrinking of the knot into a particle, generalizing (3.17)

in the case of the unknot:

ζ
?
=

∑
a∈Cpoint

Na
ζ (K) a. (3.29)

The precise meaning of such a relation is not clear to us at the moment, and the formula

obtained by naively replacing labels with quantum dimensions does not hold in this

case (see Table 8).

3.4.1 Torus knots

Knots can be classified as torus knots, satellite knots and hyperbolic knots. Every knot

falls into exactly one of the three categories [34]. It is interesting to ask whether it

is possible to distinguish the three categories by looking at the fusion (braiding) data

associated with them. We leave this as an open question. Another interesting question
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is whether there are reference states for which the data distinguishes a knot and its

mirror image. For example, a trefoil is topologically distinct from its mirror image.

In this section, we study a specific property of torus knots. Torus knots are knots

that can be put on the surface of an unknotted torus. A torus knot can be labeled by

a pair (p, q), where p and q are coprime integers. The (p,−q) torus knot is the mirror

image of the (p, q) torus knot. The (−p,−q) torus knot is equivalent to the (p, q) torus

knot except for the reversed orientation. The (p, q) torus knot is equivalent to the (q, p)

torus knot. For example, the (2, 3) torus knot and the (2,−3) torus knot are trefoil

knots with opposite chiralities; the (p, 1) torus knot, for any p ∈ Z is an unknot.

(2,3)

(a)

(2,3)

(b)

ζ

η

Figure 14: An illustration of (p, q)-type revolution: (a) A solid trefoil knot. (b) A solid torus with

a trefoil knot removed; the labels are those used in (3.31).

The number (p, q) provides explicit instruction for constructing the torus knot. For

our purpose, it is convenient to introduce a revolution of (p, q)-type; see Fig 14 for

an illustration. Here p is the number of times that a 2d region is rotated around the

shown (vertical) axis, and q is the number of times that the region is rotated around

the circle located at the center of a solid torus. (The blue arrow in Fig. 14(a) illustrates

the rotation around this second axis.) We allow (p, q) to be (1, 0) or (0, 1) taking the

obvious meaning.

For a torus knot, it is natural to consider the process of “fusing” a knot excitation

to a Hopf excitation:

ζ
?
=
∑
η

Nη
ζ (p, q) η, ζ, η ∈ CHopf . (3.30)

More precisely, the Hilbert space theorem says that we can define a set of integers

Nη
ζ (p, q) ≡ dimVη

ζ (T \Kp,q) , ζ, η ∈ CHopf (3.31)

where Kp,q denotes the (p, q) torus knot; see Fig. 14(b) for an illustration. η is the label

on the (unknotted) outer boundary and ζ is the label on the knot boundary. Another
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view of this fusion process is:

(3.32)

Here the excitations are located in the complement of the region we consider, on a

3-sphere. (The difference between the second and third figures needs an explanation.

We relabel ζ as η. This is allowed when either of the following happens. (1) The

excitation on trefoil effectively becomes an unknot because the two strings become so

close to each other that the distance between them is small compared to the correlation

length. (2) We zoom out to a larger length scale compared to the distance between the

two strings, which can be done by, e.g., coarse-grain the lattice further.)

3.5 Exotic fusion processes of flux-loops

The simplest class of loop excitations in 3d are the fluxes in Cflux. We emphasize that,

even for this simple set, the fusion processes can be very diverse, making use of the

3d space.21 As with previous examples, it is useful to look at the complement of the

excitations on a S3. The information convex sets know about the fusion processes.

We say some of the fusion processes below are “exotic” in the sense that: (1) for

some cases, it is unclear if it is possible to assign a fusion space by applying the Hilbert

space theorem; (2) for some cases, an intrinsic 3d view seems necessary, and we do not

know any dimensional reduction understanding of them.

As a warm-up, we mention that the shrinking of flux loops is simple to understand.

If we shrink a flux-loop to a point, it becomes the vacuum sector. This is because the

membrane operator is supported on the disk. Shrinking the disk makes the operator

local.

(3.33)

Below is a list of exotic cases we identify:

21Each of the following processes can be considered for shrinkable loops as well. The positions of

the loop excitations are identical, but the membrane operators are different.
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1. Two flux-loops can be fused on top of each other:

µ

ν
(3.34)

Note that the shape of the membrane operator matters, and from the shape of

the membrane operator, we see that the possible fusion outcomes must be fluxes

as well.

We say this case is exotic because it is unclear whether there exists a 3d region

for which a set of integers labeled by three fluxes are defined:

Nλ
µν

?
= dimVλ

µν(a certain 3d region). (3.35)

Here Vλ
µν is a fusion space defined by the Hilbert space theorem. It is therefore

even less clear if an equation of the form:

µ× ν ?
=
∑
λ

Nλ
µνλ, µ, ν, λ ∈ Cflux, (3.36)

make sense physically. Nonetheless, a natural set of integer Nλ
µν seems to be

a candidate. For example, in the quantum double models, the set of fluxes is

identified with the set of conjugacy classes. The “fusion” of conjugacy classes

naturally provide a set of integers:

Example 3.13 (fusion rule for conjugacy classes). For a general finite group G,

consider the fusion of conjugacy classes:

Cµ × Cν =
∑

Cλ∈(G)cj

Fλµν · Cλ (3.37)

The precise definition for Fλµν is: for fixed group element gλ ∈ Cλ, Fλµν is the

number of ordered pairs gµ, gν with gµ ∈ Cµ, gν ∈ Cν and gµgν = gλ (see, for

example chapter 19 in [36]). We see Fλµν are non-negative integers and Fλµν = Fλνµ.

For the finite group S3, there are three conjugacy classes C1 = {1}, Cr = {r, r2}
and Cs = {s, sr, sr2}. The fusion rules (algebra of classes) are:

C1 × C1 = C1, C1 × Cr = Cr, C1 × Cs = Cs,

Cr × Cr = 2C1 + Cr, Cr × Cs = 2Cs,

Cs × Cs = 3C1 + 3Cr.

(3.38)

Can this set of integers play a physical role, whether or not Eq. (3.35) holds? We

leave the solution to this puzzle as an open question.
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It is worth noting a distinct fusion process: the fusion of two independently-

created shrinkable loops, each of which is created on a membrane operator sup-

ported on the side of a cylinder:

(3.39)

The fusion multiplicities of this process are understood in dimensional reduction

picture and there is a well-defined set of integers {N l′′

ll′ }. Here l, l′, l′′ ∈ Cloop.

(In the context of quantum double models, this is first discussed in Ref. [28].)

Restricting the set of shrinkable loops to the subset {ϕ(µ)} (in both the incoming

loops and the fusion outcomes), in general, provides a set of integers different from

those obtained in Eq. (3.38). For example, it is impossible to have N1
ϕ(µ)ϕ(ν) > 1.

We argue that this does not contradict what we discussed above because the two

physical processes are different.

2. A flux-loop can be twisted spirally and then becomes a new flux-loop.

(3.40)

What is illustrated here is the spiral labeled by an integer n = 2. It is possible

to generalize this to any integers.

Example 3.14. In the case of the quantum double with finite group G, the

operation described in (3.40) acts by the group law of G on a representative of

the conjugacy class labeling the initial flux loop.

Interestingly, every µ ∈ Cflux is mapped to a unique outcome. We shall explain

a general proof of this fact in §5.1.1, which makes use of the spiral map that we

introduce in §5.

3. A pair of fluxes can turn into a “graph excitation” by fusing part of the loops.

µ ν
(3.41)
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In general, the possible fusion outcomes for µ, ν ∈ Cflux can be multiple graph

excitations. We will have more to say about these graph excitations and their

creation by this fusion process in [20].

4. Two flux-loops can “collide” and become a new flux-loop as follows:

µ
ν

(3.42)

The final outcome of this process can be a non-vacuum flux sector only if both

initial fluxes are non-vacuum (µ 6= 1 and ν 6= 1). However, we do not know if it

is sensible to write an equation:

µ× ν ?
=
∑
λ

Nλ
µνλ, (3.43)

with an appropriate set of integers {Nλ
µν}.

We note that this fusion process is closely related to the rule for the crossing

of string defects in a 3d ordered medium whose order parameter space has non-

abelian fundamental group π [37]. In that context, string types are labeled by

conjugacy classes of π. When two string segments pass through each other, they

leave behind a connecting string labeled by the group commutator PQP−1Q−1 of

representatives of the respective conjugacy classes, P and Q. (Though different

choices of representatives P and Q can lead to different fusion outcomes, in this

classical context, there is not really a non-abelian fusion rule; rather, the outcome

depends on the details of the fusion process.)

Example 3.15. In the case of the 3d quantum double model, the outcome of the

process in (3.42) is also constrained by the possible values of group commutators

PQP−1Q−1, where P and Q are representatives of the conjugacy classes µ and

ν, respectively. In particular, therefore, the outcome is always trivial if G is

Abelian.

More generally, the outcome is constrained by the fusion multiplicity of the Bor-

romean rings complement: let Y be a solid torus surrounding the red and orange

loops in the right figure of (3.42). Explicitly, Y is the yellow solid torus in the

following figure:

Y (3.44)
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Then the outcome of the fusion is measured by the state of a solid torus which

is contained in the complement of Y , e.g., the blue solid torus in Eq. (3.44).

Y minus the thickened red and orange loops is a Borromean rings complement.

Therefore, we will call this type of fusion of loops ‘Borromean fusion’. However,

the relation between this fusion process and the multiplicities associated with

the information convex set of Y is indirect. We leave the precise relation as an

open question. In Appendix C.5, we calculate Borromean ring multiplicities in

quantum double examples, including the special cases relevant to the Borromean

fusion of flux loops.

4 Examples from solvable models

In this section, we present explicit examples of the data we identified in §3. These

examples come from a particular class of solvable models: the 3d quantum double

model associated with a finite group G. It is a natural generalization of Kitaev’s

quantum double model [4], and at low energies reduces to lattice gauge theory with

gauge groupG. The ground state of this model is known to satisfy the two entanglement

bootstrap axioms [38], and that is why it can serve as an example. The subdivision-

invariance of the 3d quantum double model, i.e., the ability to add and remove qubits in

a “smooth” way using entanglement renormalization [23, 24] makes it possible to reduce

the calculation to a small lattice. This calculation approach may apply to other solvable

models with subdivision-invariance, e.g., the 3d Dijkgraaf-Witten models [39, 40] and

the 3d Walker-Wang models with interesting boundary excitations and with or without

deconfined bulk excitations [41, 42].

In §4.1 we review the 3d quantum double model. In §4.2 we review the “minimal

diagram” technique [17], which is a way to calculate the information convex set of

quantum double models. In §4.3, we present the minimal diagram for a few basic cases

and the rules that lead to the explicit data.

4.1 3d quantum double model

The 3d quantum double is a lattice model with input: a finite group G and a 3d lattice.

The Hilbert space of the 3d quantum double model is a tensor product of local Hilbert

spaces associated with each link of the 3d lattice (H = ⊗eHe). Each link of the 3d

lattice is associated with a finite dimensional Hilbert spaceHe = span{|g〉|g ∈ G}. Here

{|g〉} is an orthonormal basis labeled by group elements. The orientation of each link

can be chosen at will, but when the orientation is flipped, the basis vector is relabeled
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as |g〉 → |g−1〉, where g−1 ∈ G is the inverse of g. The physics of interest is insensitive

to the detailed geometry of the lattice, and when we introduce the Hamiltonian, we

shall consider the cubic lattice for concreteness.

The Hamiltonian for the 3d quantum double model is local, and it consists of two

types of local terms:

H = −
∑
v

Av −
∑
p

Bp. (4.1)

Here Av is a vertex term acting on the (six) links adjacent to vertex v (and is a sum of

generators of gauge transformations for lattice gauge theory with gauge group G). Bp

is the plaquette term acting on (four) links that make up the boundary of a plaquette p

(and, in the language of lattice gauge theory, measures the flux through the plaquette).

These operators are defined according to the following action on their supports:

• Av ≡ 1
|G|
∑

g∈GA
g
v, with

Ag
v = . (4.2)

• Bp is defined for a plaquette p oriented xy, yz, zx-plane, respectively, as

Bp = δ1,abc−1d−1

Bp = δ1,abc−1d−1

Bp = δ1,abc−1d−1

(4.3)

Note that it does not matter on which one of the four vertices of the plaquette

the product starts. All that matters is to take into account the arrows and the

ordering.

4.2 Information convex set and minimal diagram

To compute the information convex set (defined in Definition 2.3) for various regions

in the 3d quantum double model, we use the minimal diagram technique introduced
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in [17]. Note that in Ref. [17], the definition of information convex set uses a parent

Hamiltonian rather than a reference state. In general, these two definitions of infor-

mation convex set are inequivalent. Nevertheless, these two definitions are equivalent

if the ground state satisfies the area law; see [43] (Theorem 10.1 of Chapter 10 in

particular).

4.2.1 Choose a minimal diagram

Roughly speaking, a “minimal diagram” is a graph (more precisely, a cell complex)

with a small number of links and a finite-dimensional Hilbert space, obtained from

reducing links and constraints from a finite but arbitrarily large subsystem of the lattice

model, using the subdivision-invariance of the solvable lattice model. This philosophy

is familiar in the calculation of ground states of solvable models, e.g., the string-net

model. The main difference is that the rules for minimal diagrams come from those

for computing the information convex set. These rules are, in general, inequivalent to

those for finding the set of ground states of a Hamiltonian on a small lattice. Without

further ado, here is what we mean by a minimal diagram explicitly:

Minimal diagram: A minimal diagram, of 3d quantum double model, for a region

Ω contains:

• a number of links

– boundary links

– bulk links

• a number of 2d faces

• a number of vertices

– bulk vertices, not an endpoint of any boundary link

– boundary vertices, an endpoint of a boundary link

We shall choose blue for boundary links and purple for bulk links. The local Hilbert

space on each link is |G|-dimensional. The total Hilbert space for this minimal diagram,

denoted by Hmini
Ω , is the tensor product of these local Hilbert spaces.

Remark. A few remarks are in order:

1. If the group element of a link is constrained to be the identity 1 ∈ G by a zero-

flux constraint described in §4.2.2, then it is possible to go back and simplify the

diagram by deleting some links and faces.
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2. We do not require a minimal diagram to be the smallest choice. We want it to

be small enough to do a calculation.

3. When we draw a minimal diagram, it is often useful to draw additional lines to

illustrate the background topological space in which the diagram lives. Those

lines are not part of the minimal diagram.

4. For all the examples in 3d bulk of which we are aware, we find that it is possible

to choose one boundary vertex for each connected component of the boundary.

However, this is not true in a broader context. For example, this stops being true

when we consider regions attached to a gapped boundary.

5. If Ω is a closed manifold, the sets of boundary links and boundary vertices are

empty.

4.2.2 Rules for calculation with a chosen minimal diagram

The goal of a minimal diagram calculation is to find a convex set of density matrices

on Hmini
Ω , satisfying a few constraints. The convex set obtained this way is isomorphic

to the information convex set Σ(Ω).

These constraints follow from the three types of constraints for the calculation of an

information convex set of quantum double for an arbitrarily large subsystem: (1) the

boundary links are block-diagonal, (2) the constraints from terms acting on the interior

(zero-flux constraints and vertex projection), and (3) the invariance under conjugation

by (truncated) boundary vertex terms.22

For a chosen minimal diagram, the explicit rules for the calculation are the following.

We would like to find the set of all density matrices ρ on Hmini
Ω satisfying:

1. (block diagonal) ρ is block-diagonal in the group element basis of the boundary

links, namely

ρ =
∑
{gi}

p{gi}ρ{gi}, (4.4)

where {gi} is a set of group element labels for the boundary links, {p{gi}} is a

probability distribution and {ρ{gi}} is a density matrix living in the subspace of

Hmini
Ω such that the boundary links are fixed to be the chosen group elements

{gi}.
22See equations (34), (35) and (36) of Ref. [17] for the explicit expressions in the context of 2d

quantum double. The constraints for 3d quantum double are similar because both models have vertex

terms and plaquette terms.
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2. (projectors within the bulk) There are two types. The first type is the projector

for each face f of the minimal diagram: Bfρ = ρ. Here Bf is the projector onto

zero total flux on the links surrounding face f , an analog of Eq. (4.3); we call

them zero-flux constraints. The second type is of the form Avρ = ρ for each bulk

vertex. Av is an analog of the vertex term in the 3d quantum double Hamiltonian.

3. (conjugation invariant) AgvρA
g†
v = ρ, for every boundary vertex v of the minimal

diagram and ∀ g ∈ G. Here the unitary operator Agv is analogous to that defined

in Eq. (4.2).

Remark. In practice, one can simplify the calculations further by using the technique

reviewed in Appendix C.1. In particular, Theorem C.1 is useful in solving the conjuga-

tion constraint. When Ω is a closed manifold, only the second rule survives; the rules

reduce to the familiar rules for calculating the convex set of (possibly mixed) ground

states.

4.3 Explicit data

We provide the calculation of the information convex sets of 3d quantum double models,

focusing on the simplest superselection sectors and one nontrivial fusion space (the knot

multiplicity of trefoil). Additional cases are presented in Appendix C.

4.3.1 Superselection sectors

Below, we summarize the superselection sector data calculated from 3d quantum double

models (with finite group G). The minimal diagram and the explicit constraints that

lead to the calculation results are described.

(Sphere shell and point excitations) The superselection sectors of point exci-

tations correspond to the irreducible representations of finite group G: R ∈ (G)ir.

Cpoint = {1, a, · · · }, where a = R ∈ (G)ir. (4.5)

Here, the label 1 corresponds to the 1-dimensional identity representation (IdG). The

quantum dimensions are

da = dimR, for a = R ∈ (G)ir, (4.6)

where dimR is the dimension of the irreducible representation R.

The minimal diagram calculation that leads to this result is as follows. We consider

the minimal diagram for the sphere shell, shown in Fig. 15(a). It contains two vertices
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and a single link, which is a bulk link. (An alternative minimal diagram is Fig. 15(b),

which contains 1 bulk link, 2 boundary links, 2 vertices and 5 faces. This one can be

simplified to that in Fig. 15(a), according to the rule to remove faces and links.) The

Figure 15: Minimal diagram for sphere shell.

Hilbert space is Hmini
S2×I = span{|t〉|t ∈ G}. Two constraints are associated with vertices

v1 and v2:

• Agv1
ρAg†v1

= ρ, ∀g ∈ G, where Agv1
is defined according to Agv1

|t〉 = |gt〉.

• Agv2
ρAg†v2

= ρ, ∀g ∈ G, where Agv2
is defined according to Agv2

|t〉 = |tg−1〉.

The goal is to find the convex set of density matrices supported on Hmini
S2×I that satisfy

these two constraints. The end result is a simplex with extreme points labeled by

R ∈ (G)ir. The quantum dimension Eq. (4.6) is verified by calculating the entropy

difference between the extreme points. We omit the details here since the problem is

solved directly by applying Proposition C.1, using Eq. (C.6).

If G = S3, the information convex set of the sphere shell has three extreme points.

They correspond to three point particle types:

Cpoint = {IdS3 , Sign,Π}, with quantum dimensions {da} = {1, 1, 2}. (4.7)

Here IdS3 , Sign and Π are the identity, sign and two dimensional irreducible represen-

tation of S3 respectively.

(Solid torus and pure fluxes) The superselection sectors of pure fluxes corre-

spond to the conjugacy classes of finite group G: C ∈ (G)cj.

Cflux = {1, µ, · · · }, where µ = C ∈ (G)cj. (4.8)

Here, 1 corresponds to the conjugacy class that contains the identity group element.

The quantum dimensions are

dµ =
√
|C|, for µ = C ∈ (G)cj, (4.9)
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where |C| is the number of group elements in conjugacy class C.

The minimal diagram calculation of this result is as follows. Take the minimal

diagram of the solid torus shown in the following figure. It contains a single link living

on the surface of the solid torus, a single vertex, and no face. (Accurately speaking, one

may draw a diagram with additional faces and links, but then the faces are removed

in the process of simplifying the diagram.) The Hilbert space associated with this

minimal diagram is Hmini
T = {|g〉|g ∈ G}. We consider the convex set of density

matrices supported on Hmini
T that satisfy the following two conditions:

• ρ =
∑

g pg|g〉〈g|, with a probability distribution {pg}.

• ρ = AhvρA
h†
v ,∀h ∈ G.

The first condition comes from the fact that the link is a boundary link. The second

condition comes from the vertex. Here the operator Ahv acts as Ahv |g〉 = |hgh−1〉. The

solution is a convex set with extreme points labelled by conjugacy classes C:

ρC =
1

|C|
∑
g∈C

|g〉〈g|, ∀C ∈ (G)cj. (4.10)

This verifies Eq. (4.8). Furthermore, Eq. (4.9) is obtained by computing the entropy

differences between these extreme points and the vacuum sector ρC1 , with C1 ≡ {1}.

If G = S3, the information convex set of the solid torus has three extreme points.

Thus, there are three fluxes:

Cflux = {C1, Cr, Cs} with {dµ} = {1,
√

2,
√

3}. (4.11)

Here Cg is the conjugacy class of G that contains element g ∈ G. Explicitly, for

S3 = {1, r, r2, s, sr, sr2}, where r3 = s2 = 1 and sr = r2s, the three conjugacy classes

are C1 = {1}, Cr = {r, r2} and Cs = {s, sr, sr2}.

(Torus shell and Hopf excitations) The information convex set of the torus

shell characterizes the Hopf excitations. For 3d quantum double models, these are

CHopf = {1, η, · · · }, where η = (C(g,h), R), and gh = hg. (4.12)
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Here C(g,h) ≡ {(tgt−1, tht−1)|t ∈ G}, R ∈ (E(g,h))ir and E(g,h) ≡ {t ∈ G|(g, h) =

(tgt−1, tht−1)}. The quantum dimensions are

dη =
|G|
|E(g,h)|

· dimR, for η = (C(g,h), R). (4.13)

η ∈ C[µ]
Hopf , for µ = Cg.

The minimal diagram calculation that leads to this result is as follows. Again, we

first draw a minimal diagram of the torus shell. The choice below contains 5 links, 2

vertices, and 3 faces; one of the links is a bulk link, and the others are boundary links.

The Hilbert space associated with this minimal diagram is

Hmini
T = {|g1, h1, g2, h2, t〉|g1, h1, g2, h2, t ∈ G}. (4.14)

(The association of the group elements with the links is specified in the figure.) The

problem is to find the convex set of density matrices on Hmini
T satisfying the following

constraints:

• Constraints from the boundary links indicate that the relevant density matrices

can be written in the diagonal basis as

ρ =
∑

g1,h1,g2,h2,λ

pλg1,h1,g2,h2
|{g1, h1, g2, h2};λ〉〈{g1, h1, g2, h2};λ|, (4.15)

where {pλg1,h1,g2,h2
} is a probability distribution and λ is an abstract label such

that

|{g1, h1, g2, h2};λ〉 =
∑
t

cλ(t, g1, h1, g2, h2)|g1, h1, g2, h2, t〉 (4.16)

is a normalized vector.

• Zero-flux constraints from the three faces are: g1h1 = h1g1, h2 = t−1h1t and

g2 = t−1g1t (g2h2 = h2g2 is implied by these). This constraint is satisfied for all

configurations with cλ(t, g1, h1, g2, h2) 6= 0.
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• Constraints from the vertices are:

Agv1
ρAg†v1

= ρ, Agv2
ρAg†v2

= ρ, ∀g ∈ G. (4.17)

Here Agv1
and Agv2

act as

Agv1
|g1, h1, g2, h2, t〉 = |gg1g

−1, gh1g
−1, g2, h2, gt〉,

Agv2
|g1, h1, g2, h2, t〉 = |g1, h1, gg2g

−1, gh2g
−1, tg−1〉.

(4.18)

By solving this constraint problem we are able to verify the labeling of the superselec-

tion sectors Eq. (4.12) and the quantum dimensions Eq. (4.13). We omit the details

but point out that Proposition C.1 is useful for solving this problem. This result agrees

with the calculation using the minimal entangled states on T 3 [31].

Example 4.1 (Hopf excitations). For the quantum double model with finite group

G = S3 = {1, r, r2, s, sr, sr2}, where r3 = s2 = 1 and sr = r2s, there are 3 point

particles and 3 pure fluxes, as we have already described. The set of Hopf excitations,

CHopf = ∪µC[µ]
Hopf , contains 8+9+4=21 labels, summarized in Table 2.

µ {η}
η∈C[µ]

Hopf
{dη}η∈C[µ]

Hopf

C1


(C(1,1), IdS3), (C(1,1),Sign), (C(1,1),Π),

(C(1,r), IdZ3), (C(1,r), ω), (C(1,r), ω
2),

(C(1,s), IdZ2), (C(1,s), Sign)

 {1, 1, 2, 2, 2, 2, 3, 3}

Cr


(C(r,1), IdZ3), (C(r,1), ω), (C(r,1), ω

2),

(C(r,r), IdZ3), (C(r,r), ω), (C(r,r), ω
2),

(C(r,r2), IdZ3), (C(r,r2), ω), (C(r,r2), ω
2),

 {2, 2, 2, 2, 2, 2, 2, 2, 2}

Cs

{
(C(s,1), IdZ2), (C(s,1), Sign),

(C(s,s), IdZ2), (C(s,s),Sign),

}
{3, 3, 3, 3}

Table 2: The Hopf excitations for the 3d S3 quantum double, and their quantum dimensions.

(Shrinkable loops) Because the set of shrinkable loops Cloop is a subset of the

Hopf excitations, we do not need a new minimal diagram. Instead, we take g1 = g2 = 1

in the minimal diagram for the torus shell, and find

Cloop = {1, l, · · · }, where l = (C,R). (4.19)

Here C ∈ (G)cj is a conjugacy class, R ∈ (Eh)ir, and Eh ≡ {t ∈ G|h = tht−1} is the

centralizer of a representative h ∈ C. The quantum dimensions are

dl = |C| · dimR, for l = (C,R). (4.20)

Eqs (4.19) and (4.20) should be familiar since they are the labels for the anyons of a

2d quantum double model with finite group G [4, 26]. This is consistent with existing

dimensional reduction statements in literature [28, 44, 45].
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4.3.2 Knot multiplicity

S3

(a)

(2,3)

(b)

Figure 16: (a) The minimal diagram for a trefoil complement. The links labeled by group elements

g and h live on the surface of the trefoil. The links labeled by a and b are bulk links corresponding

to the generators of the knot group. (b) An illustration of the position relation between the removed

trefoil (gray) and the link labeled by g (blue), i.e., the choice of “framing” of the loop labeled by g.

In this section, we discuss the minimal diagram calculation of the knot multiplicity

of a trefoil knot. Trefoil is a (2, 3) torus knot. The strategy of the calculation generalizes

straightforwardly to other torus knots. A notable feature is the role played by the knot

group. The knot group of knot K is the fundamental group of the knot complement

S3 \K. For the trefoil knot

π1(S3 \ trefoil) = 〈a, b|a2 = b3〉. (4.21)

In other words, the fundamental group is a group with two generators a and b such

that a2 = b3.

In the minimal diagram, Fig. 16(a), we have two bulk links (labeled by a and

b), two boundary links (labeled by g and h) and a vertex v. The minimal dia-

gram contains faces (not shown). The Hilbert space associated with it is Hmini
S3\K =

span{|g, h, a, b〉|g, h, a, b ∈ G}. Again, the problem is to find the set of density matrices

on this Hilbert space satisfying a few constraints.

The choice of the two bulk links is inspired by the structure of the knot group

(4.21); as the labels a and b suggest, the group elements on these two links satisfy the

knot group constraint a2 = b3 by the zero-flux constraints of the faces of the minimal

diagram. (a, b ∈ G are analogs of the generators a and b but they are restricted to the

finite group G. The Hilbert space of the minimal diagram furnishes a representation

of the knot group in G.) Because the minimal diagram has only one vertex and thus

every link is a closed-loop, a and b determine the group element on all other links.
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Remark. This feature generalizes to the minimal diagram of all knots! For any knot,

the minimal diagram contains a single vertex, two boundary links, and the number

of bulk links can be chosen to have a one-to-one correspondence with knot group

generators (with values restricted to finite group G).

Note that the choice for the loop labeled by g is not unique since we can add a “Dehn

twist” so that the framing changes. The choice of framing does affect the names of

the η labels without changing the physics. For a concrete calculation, however, it is

crucial to keep track of the specific choice,23 and this is illustrated in Fig. 16(b). For

this choice, {h, g} are determined by knot group generators a and b as follows:

g = a2 = b3, h = a−1b. (4.22)

From this, we already see gh = hg, even before the explicit usage of the boundary face.

The solution of the other two constraints leads to the formula:

Nζ(trefoil) = the number of R ∈ (E(g,h))ir contained in H(g,h). (4.23)

Here, ζ = (C(g,h), R) and the H(g,h) is a representation of E(g,h) defined according to

the following steps:

1. Pick a C(g,h) such that g, h ∈ G and gh = hg.

2. Find the set of ordered pairs {a, b}, a, b ∈ G, such that Eq. (4.22) holds.

3. H(g,h), as a Hilbert space, is defined as span{|a, b〉|{a, b} from step 2}.

4. H(g,h) is a representation of E(g,h) by the group action:

Γ(t)|a, b〉 = |tat−1, tbt−1〉, ∀t ∈ E(g,h). (4.24)

The solution to this problem can be converted to to a calculation in terms of the

characters. The character of representation H(g,h) is

χH(g,h)
(t) =

∑
allowed(a,b)

δa,tat−1δb,tbt−1 , ∀t ∈ E(g,h). (4.25)

The expression in Eq. (4.23) is then translated into

Nζ(trefoil) =
1

|E(g,h)|
∑

t∈E(g,h)

χ∗R(t)χH(g,h)
(t). (4.26)

The solution to this problem for specific finite groups are summarized in Table 3 and

Table 4.
23As a matter of fact, the choice of framing in Fig. 16 is consistent with the generalized isomorphism

theorem in the following sense: There exists a path (with immersed regions in the intermediate steps)

which turns the trefoil shell to an unknotted torus shell such that the framing becomes the usual

framing for the unknotted torus shell.
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ζ (C(1,1), IdZ2) (C(1,s), IdZ2)

Nζ(trefoil) 1 1

dζ 1 1

Table 3: Trefoil knot multiplicities for 3d toric code, with Z2 = {1, s}.

ζ (C(1,1), IdS3) (C(1,r), IdZ3) (C(1,s), IdZ2) (C(1,s),SignZ2
)

Nζ(trefoil) 1 1 2 1

dζ 1 2 3 3

Table 4: Trefoil knot multiplicities for 3d S3 quantum double. Only the excitation types with

Nζ(trefoil) ≥ 1 are shown. Note that the label of excitations can depend on the framing. This

particular choice is based on that in Fig. 16.

5 Spiral map and beyond

The set of pure fluxes Cflux is in an elementary position of the 3d theory. While they

may be understood, to some extent, from the dimension reduction picture, we argue

that an intrinsic 3d view of them is worthwhile.

In this section, we introduce a class of spiral maps, which maps pure fluxes to

pure fluxes. The spiral maps are of intrinsic 3d nature; they arise because a solid

torus (embedded in a solid ball) has nontrivial subsystems spirals within it that are

deformable to the original solid torus. We further discuss a few generalizations to

broader contexts.

5.1 Spiral map

We shall begin with the definition of the spiral map Tn on the information convex set

of the solid torus:

Definition 5.1 (Spiral map). The nth spiral map is

Tn : Σ(T )→ Σ(T ) (5.1)

where T is a solid torus embedded in a ball and n ∈ Z is an integer. It is defined by

the following two steps, illustrated in Fig. 17:

1. Trace out the complement of a (n, 1) unknot contained in T .

2. Deform the (n, 1) unknot back to T using the isomorphism theorem, along a

particular path (fixed by convention) within the ball.
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(2,1)Tr

deform

Figure 17: The steps involved in defining the spiral map. The case T2 is illustrated explicitly, while

the strategy works for an arbitrary Tn for n 6= 0. The case T0 is defined separately making use of the

(0, 1) unknot, which is an unknot contained in a ball-shaped subsystem of the original solid torus.

We are interested in the spiral map is that it has many nice properties:

1. (linearity) For any n ∈ Z and any collection of states ρiT ∈ Σ(T ),

Tn

(∑
i

piρ
i
T

)
=
∑
i

piTn(ρiT ). (5.2)

This is because each of the steps is linear in the input density matrix.

2. (preservation of vacuum) Let ρ1
T ∈ Σ(T ) be the vacuum sector, then

Tn(ρ1
T ) = ρ1

T , ∀n ∈ Z. (5.3)

This is because every configuration along the deformation path is embedded in the

ball on which the reference state is defined; the initial state ρ1
T , after the partial

trace, is (globally) consistent with the reference state. Thus any deformation step

allowed by the isomorphism theorem cannot break this consistency.24 Moreover,

T0(λT ) = ρ1
T , ∀λT ∈ Σ(T ). (5.4)

3. (product rule) The spiral maps can be composed as:

Tn ◦ Tm = Tmn. (5.5)

See Proposition 5.5.

4. (spiral map for fluxes) Extreme points are mapped to extreme points under the

spiral map; see Corollary 5.6.1. Therefore, we can define the (induced) spiral

map on pure flux labels:

tn : Cflux → Cflux, by Tn(ρµT ) = ρ
tn(µ)
T . (5.6)

24This argument uses embedding and thus it does not apply to paths containing immersed regions.

It turns out that the statement remains true more generally, due to Proposition 5.4.
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Note that tn completely fixes the action of Tn by Eq. (5.2), and therefore it is an

equivalent description of the spiral map.

5. (monotonicity) The spiral map induces a monotonic decrease on the quantum

dimension (and thus monotonic decrease of entropy of quantum states):

dtn(µ) ≤ dµ, ∀n ∈ Z, µ ∈ Cflux. (5.7)

See Proposition 5.8.

Example 5.2. For the quantum double model, the spiral map tn acts on the flux

labelled Cg (the conjugacy class with representative g) by tn : Cg → Cgn .

So in the case of G = Z2 and S3, the actions of t2 and t3 are given in Table 5.

µ C1 Cs
t2(µ) C1 C1

t3(µ) C1 Cs

µ C1 Cr Cs
t2(µ) C1 Cr C1

t3(µ) C1 C1 Cs

Table 5: The action of the first two nontrivial spiral maps on pure fluxes in the Z2 (left) and S3

(right) quantum double models.

5.1.1 Spiral fusion of fluxes

In §3.5 we introduced a notion of ‘spiral fusion’ of a pure flux loop. Here we use the

spiral map to describe the outcome.

Proposition 5.3. The process depicted in (3.40) takes µ ∈ Cflux to tn(µ) ∈ Cflux.

Proof. This statement is best understood from Fig. 18. The idea is that the solid torus

that detects the final flux can be deformed by regular homotopy to the n-fold-twisted

solid torus defined in the first (partial trace) step of the spiral map definition.

5.1.2 Proofs

Proposition 5.4. Let Ω be an immersed region in a ball and ρΩ ∈ Σ(Ω). Suppose K0

and K1 are two knots embedded in Ω, that can be related by a path {Kt}t∈[0,1] immersed
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Figure 18: The first and last frames of the regular homotopy taking the region (blue) detecting the

result of spiral fusion to the subregion of the solid torus defining the spiral map.

in Ω. Then the following diagram commutes:

ρΩ

ρK0 ρK1

TrΩ\K0 TrΩ\K1

Φ{Kt}

Φ{K1−t}

(5.8)

where Φ{Kt} : Σ(K0)→ Σ(K1) is the isomorphism associated with the path {Kt}.

Remark. The application of this proposition is broad because it does not require Ω

to be embedded in a ball. The proof does make use of a special property, namely

that a knot looks like a solid cylinder locally (see Fig. 19). Pushing the sphere shell

through itself is trickier to analyze. For example, we do not know if, in general, a

sphere eversion [46, 47, 48] which turns a sphere shell inside out, takes the vacuum

sector 1 ∈ Cpoint back to itself.

Proof. Without loss of generality, we shall consider K0 and K1 that are related by

the basic move described below. (More general cases are proved by applying the same

strategy multiple times.) The basic move is to pass the solid torus through itself

smoothly via a sequence of regions immersed in Ω; in the depiction Fig. 19, the basic

move is to deform S ⊂ K0 smoothly to the left and obtain S ′ ⊂ K1.

The strategy of the proof is illustrated in Fig. 19. Let the state on immersed

region K+ = K0BC ′, obtained by an extension of ρK0 , as λK+ . It is easy to see

that the both ρK0 and Φ{Kt}(ρK0) are consistent with λK+ . We want to further show

Φ{Kt}(ρK0) = ρK1 . This follows from two quantum Markov chain conditions.

First, for the state λ, we have

I(C : K0|B)λ ≤ I(C ′ : K0|B)λ = 0. (5.9)

Second, for the state ρΩ ∈ Σ(Ω), we have

I(C : K0|B)ρ ≤ (SBC + SCD − SB − SD)ρ = 0, (5.10)
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Figure 19: Illustrated is the strategy used in the proof for a basic move. All regions are within Ω.

The basic move is to deform S to the left to obtain S′, where RS = K0 and RS′ = K1. (Part of R

is not shown.) The first step is to enlarge the knot K0 into immersed region K+ ≡ K0BC ′, where

BC ′, B, and C ′ are disks, respectively. Here we require K+ to contain K1. The second step is to do

a partial trace K+ → K0BC, where C is an annulus and K0BC is a subsystem containing K1. The

final step is to do a partial trace to reduce BCS → S′ and thus K0BC → K1.

where BD is a torus shell which covers the boundary of C such that D ∩K0 = ∅.

(Here, we have used the following result: Consider a partition of a solid torus T

into three regions BCD; see Fig. 20. Here C is T minus its thickened boundary,

BD. B is a ball connecting C to the complement of T . Then, for the reference

state σ, (SBC + SCD − SB − SD)σ = 0. This statement is proved in Appendix D; see

Proposition D.6.)

B
C

D

Figure 20: A partition of the solid torus, T = BCD.

So, both ρ and λ are quantum Markov states with respect to the partition C,B,K0.

Moreover, they have the same marginals on BC and BK0. Therefore, ρBCK0 = λBCK0 .

This implies the desired property and completes the proof.

Corollary 5.4.1. The same map Tn is obtained if we replace the (n, 1) unknot with

any knot that can be deformed to the (n, 1) unknot through a path within the solid torus.

This implies, for example, that we obtain the same map if we use the (n, p) torus

knot instead of (n, 1) torus knot, where n and p are relatively prime.
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Proof. This follows from Proposition 5.4 directly.

Proposition 5.5 (Product rule). For any m,n ∈ Z,

Tn ◦ Tm = Tmn. (5.11)

Proof. When both m and n are nonzero, this follows from Corollary 5.4.1 because the

knot that is associated with the left-hand side of Eq. (5.5) is a satellite (un)knot of the

(n, 1) unknot (by a (m, 1)), and it is deformable to the (mn, 1) unknot through a path

within the solid torus.

When either m or n equals to 0, the relation holds. This is because the map defined

on either side of the equation maps λT ∈ Σ(T ) to the vacuum sector ρ1
T .

Proposition 5.6. Tracing out the complement of any knot or link K contained in the

solid torus T maps extreme points of Σ(T ) to extreme points of Σ(K).

Remark. The scope of this statement goes beyond the context of the spiral map

because we do not need the solid torus to be contained in a ball. We shall provide two

proofs based on different ideas.

Proof. (The 1st proof.) Solid torus T is a sectorizable region. Therefore, the desired

answer follows from Proposition 2.23.

(2, 1)
C ′

A′

B′

C ′

A′

B′

TrT\K
A

A

B

B

C

C K

Figure 21: A partition of the solid torus T and its intersection with a thickened torus knot K

contained in T . The case where K is a (2, 1) unknot is shown.

Proof. (The 2nd proof.) The strategy is to subdivide the solid torus into three concen-

tric regions, (T = A′B′C ′ as in Fig. 21), by which we shall provide a proof for torus

knots. The case of more general knots and links then follows from Proposition 5.4.

First, by the factorization property of extreme points, I(A′ : C ′)ρ = 0 if ρT is an

extreme point of Σ(T ). This implies, by SSA, that for any subsets A ⊂ A′, C ⊂ C ′

I(A : C)ρ = 0 as well.

Now consider a torus knot. By definition, it can be embedded in an unknotted

torus surface. Choose the torus to lie within B′ and let the thickened torus knot be

K; see Fig. 21. We require K to be thick enough so that A = A′ ∩K,C = C ′ ∩K are
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of the same topology as K (namely, they can be deformed back to K by a sequence of

extensions). We conclude that the reduced density matrix ρK is an extreme point of

Σ(K); this is because I(A : C)ρ = 0 is a necessary and sufficient condition for ρK to

be an extreme point of Σ(K).

Corollary 5.6.1. The spiral map (Tn, ∀n ∈ Z>0) maps extreme points to extreme

points.

Proof. Looking back at the definition of the spiral map (Definition 5.1), the only danger

is the step involving the partial trace. This step is safe due to Proposition 5.6.

(p, q)

C BB

D

D
A

(a)

C DD

B

B

(q, p)

A DB A BD

C

(b)

Figure 22: Solid torus T = BCD is a subsystem of a ball, where BD forms the thickened boundary

of T with rotation type (p, q). Here (p, q) are coprime integers. Completion on a sphere S3 = ABCD

allows us to consider a pure reference state |ψS3〉 and a “dual” solid torus T̃ = BAD, where the

rotation type, show in (b) is (q, p). The illustration is accurate when (p, q) = (2, 1).

Lemma 5.7. Consider a solid torus T that is a subsystem of a ball. The reference

state of the ball is σ. Consider partition T = BCD, according to Fig. 22(a). Then

(SBC + SCD − SB − SD)σ = 0, if (5.12)

1. (p, q) = (1, q) for any integer q;

2. (p, q) = (p, 1) for any integer p.

Remark. The basic intuition is that the (1, q) and (p, 1) cases are dual to each other.

This is why they can be solved simultaneously. In fact, the statement is true for all

coprime (p, q); the proof is more subtle, and it is presented in the appendix (Proposi-

tion D.7).

Proof. Because of the sphere completion lemma (Lemma 3.1), we only need to prove

the statement (5.12) for the case where the solid torus is embedded in S3. This case
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is illustrated in Fig. 22(a), where A is the complement of the solid torus BCD on S3.

Let |ψS3〉 be the global reference state on S3.

Because |ψS3〉 is pure, Eq. (5.12) is equivalent to the statement

I(A : C|B)|ψS3〉 = 0. (5.13)

There are two views of the same subsystems, related by a rotation of the 3-sphere,

namely Fig. 22(a) and its “dual” view Fig. 22(b).

When (p, q) = (1, q), there is a way to smoothly deform B to BC by a sequence

of enlargements (as in the proof of Lemma D.2 of [1]). When (p, q) = (p, 1), instead,

there is a way to smoothly deform B to AB by a sequence of enlargements. This

proves Eq. (5.13). The details of the enlargement are reviewed in the next paragraph

for B → BA of the case (p, q) = (p, 1).

Consider a sequence of subsystems {BAi}Mi=1 where A0 = ∅ and AM = A. For any

i ∈ {0, 1, · · ·M − 1}, δAi+1 ≡ Ai+1 \ Ai is a small ball attached to BAi in a way that

does not change the topology. Then for all i ∈ {0, 1, · · ·M − 1},

(SCBAi − SBAi)|ψS3 〉 = (SCBAi+1
− SBAi+1

)|ψS3 〉. (5.14)

Therefore I(A : C|B)|ψS3〉 = 0. This completes the proof.

Proposition 5.8 (Monotonicity of the spiral map). For any pure flux sector µ ∈ Cflux

and any positive integer p,

dµ ≥ dtp(µ). (5.15)

Proof. Consider a solid torus T embedded in a ball. SSA says that for any state on

BCD, the combination of entropies (SBC + SCD − SB − SD) ≥ 0. By applying this

result to a partition T = BCD of type (p, 1), as is shown in Fig. 22, and using the fact

that (SBC + SCD − SB − SD)σ = 0 for this partition (Lemma 5.7), we arrive at

0 ≤(SBC + SCD − SB − SD)ρµ − (SBC + SCD − SB − SD)σ

=(2 ln dµ + 2 ln dµ − 2 ln dtp(µ) − 2 ln dtp(µ))

=4(ln dµ − ln dtp(µ)).

(5.16)

Here µ ∈ Cflux and ρµT is an extreme point of Σ(T ). To arrive at the second line, we

have used the fact that the reduced density matrices of ρµT on B and D each contribute

2 ln dtp(µ) entropy difference with the reference state. Therefore, dµ ≥ dtp(µ) and this

completes the proof.
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5.2 Generalizations

A similar class of maps can be generalized to other regions. We provide two such

examples.

The first generalization is to a genus g handlebody Xg. We can define a map from

Σ(Xg) to itself. A first step is to take the trace over X \X− in this figure (for g = 2):

(5.17)

Then deform X− along a specific path back to X. This map takes extreme points to

extreme points by Proposition 2.23.

The second generalization involves the torus shell T; we require the torus shell to

be embedded in a ball. (See Fig. 23 for the illustration of the idea.) For each pair of

coprime positive integers (p, q) we define

T(p,q) : Σ(T)→ Σ(T ) (5.18)

by:

1. Trace out the complement of a thickened (p, q) torus knot contained within the

torus shell T.

2. Use the generalized isomorphism theorem to deform the knot to a reference solid

torus T .

Similar to the spiral maps, T(p,q) maps extreme points to extreme points (by Propo-

sition 2.23). Thus, it induces a map

t(p,q) : CHopf → Cflux, according to T(p,q)(ρ
η
T) = ρ

t(p,q)(η)

T . (5.19)

t(p,q) maps the vacuum sector to the vacuum sector. (Note that, T(p,q) cannot be

composed because it maps a torus shell to a solid torus.)

Remark. In defining each of these spiral maps, we have chosen a particular path from

the outcome of the partial trace to the final reference region. It will be interesting to

study the space of ambiguities avoided by this arbitrary choice, namely the homotopy

groups of the space of such deformation paths.
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(2,1)

Tr deform

Figure 23: The idea behind the definition of T(p,q). Being illustrated is (p, q) = (2, 1).

6 Consistency Relations

In this section, we study the consistency relations among the fusion data of various

3d regions. The focus is on the consistency relation for the knot multiplicities of torus

knots because they are simple and escape (known) dimensional reduction descriptions.

(Many other consistency relations of 3d data can be derived by applying the dimen-

sional reduction technique we developed. These relations and a few that are beyond

dimensional reduction can be found in Appendix E.) These consistency relations come

from a standard entanglement bootstrap analysis: computing the entropy of a certain

maximum-entropy state of an information convex set in two different ways and com-

paring them. The relations we identify below are of two types. Conditions of the first

type follow directly from the associativity theorem 2.22; these are consistency rela-

tions among multiplicities. Relations of the second type involve both multiplicities and

quantum dimensions.

6.1 Associativity constraints

The associativity theorem 2.22 is a powerful statement. It indicates that the fusion

spaces of a few simple regions can be used as “building blocks” to construct more

complex fusion spaces. In 3d, we do not know the complete list of such building

blocks. Nonetheless, the fusion space associated with a large class of regions can be

obtained this way. One example is:

Proposition 6.1. Let Ω(m,n) be a ball with m balls removed and n (unlinked) un-

knots removed. The fusion multiplicities associated with Ω(m,n) are {Na
b1···bml1···ln}

with a, b1, · · · , bm ∈ Cpoint and l1, · · · , ln ∈ Cloop. These multiplicities are determined

by two sets of basic multiplicities: {N c
ab}a,b,c∈Cpoint

, the multiplicities for Ω(2, 0) and

{Na
l }l∈Cloop

, the multiplicities for Ω(0, 1).

Proof. First, the multiplicities associated with Ω(m+ n, 0) are determined entirely by

{N c
ab}. This is because one can glue a boundary of Ω(k − 1, 0) and Ω(2, 0) to make a
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Ω(k, 0). Next, we can glue Ω(k + 1, l) with Ω(0, 1) to obtain Ω(k, l + 1). For example,

for k = 0, we get Na
l1l2

=
∑

bN
a
bl1
N b
l2

. By induction, we see that the multiplicities of

Ω(m,n) are determined by {N c
ab}a,b,c∈Cpoint

and {Na
l }l∈Cloop

. A precise formula can be

worked out for the general case, but we omit it.

Remark. This statement can be understood from the dimensional reduction picture.

The idea is that balls and unlinked unknots can be arranged along a line segment. The

whole region Ω(m,n) then becomes the revolution of a 2d region with a boundary.

Proposition 6.2. Let K be a (p, q) torus knot. Then, the knot multiplicities satisfy:

Nζ(K) =
∑
µ∈Cflux

N
ϕ(µ)
ζ (p, q), ∀ζ ∈ CHopf . (6.1)

Here, {Nϕ(µ)
ζ (p, q)} is a subset of the multiplicities defined in Eq. (3.31). More gener-

ally, the multiplicities defined in Eq. (3.28) satisfy

Na
ζ (K) =

∑
l∈Cloop

N l
ζ(p, q)N

a
l , ∀ζ ∈ CHopf , ∀a ∈ Cpoint. (6.2)

(1,0)

D3 \ T

(2,3)

T \K

(1,0): outer

(2,3): inner

D3 \K

Figure 24: A partition of a ball minus a torus knot (D3 \K) for the associativity proof. Here K is a

(p, q) torus knot. (p, q) = (2, 3) is illustrated accurately while the same idea works for general (p, q).

Proof. We first derive Eq. (6.2). Let D3 ⊃ T ⊃ K, where D3 is a ball, T is a solid

torus. K is the (p, q) torus knot that is described by a (p, q) type rotation along the

same axis that defines T and D3. The boundaries of these three regions do not touch

each other, as is illustrated in Fig. 24. Thus D3 \ K is divided into halves by the

boundary of T . By the associativity theorem,

Na
ζ (K) =

∑
η∈CHopf

Nη
ζ (p, q)Na

η , ∀a ∈ Cpoint.

71



Only shrinkable loops contribute because Na
η = 0 if η /∈ Cloop. Therefore, we arrive at

Eq. (6.2). To derive Eq. (6.1), we recall that N1
l =

∑
µ δl,ϕ(µ) and that N1

ζ (K) = Nζ(K).

We plug these in Eq. (6.2).

Remark. In fact, this idea can be extended to provide insight into a certain type of

satellite knots. Let K be the (p, q) torus knot discussed in Fig. 24. Let K ′ ⊂ K be

a knot such that K \ K ′ can be deformed to T \ K by a path (formed by immersed

regions), under which process K ′ becomes K. It is easy to see K ′ is a (special type of)

satellite knot. The set of regions K ′ ⊂ K ⊂ T ⊂ D3 is useful for deriving a consistency

relation.

6.2 Consistency relations on shrinking rules

Below, we study a few consistency relations related to the multiplicities {Na
l } associated

with the shrinking rule. The region in question is the ball minus a solid torus D3 \ T .

While it is not impossible to continue the analysis of cutting D3 \ T by a hypersurface

contained in the interior of D3 \ T , there are simpler partitions that involve cuts that

intersect the boundary. We prove two such conditions. A general feature is that when

the cut intersects with the boundary, quantum dimensions appear in the consistency

relation. We further establish an embedding φ : Cpoint ↪→ Cloop which preserves the

quantum dimension.

6.2.1 Consistency with quantum dimensions

The two consistency relations we discuss here can be understood by dimensional re-

duction (Appendix E, Proposition E.1), which maps them to a 2d consistency in the

presence of a gapped boundary. Nonetheless, the 3d analysis is simple and pleasant.

We present them for pedagogical purposes.

Proposition 6.3 (for shrinking rules).

dl =
∑

a∈Cpoint

Na
l da, ∀l ∈ Cloop. (6.3)

da =
1

D2

∑
l∈Cloop

Na
l dl, ∀a ∈ Cpoint. (6.4)

Proof. We first prove Eq. (6.3). Consider the partition shown in Fig. 25(a). D3 \ T =

ABC, where B = B1B2. For each choice of l ∈ Cloop, there is a well-defined merging

process. Let the merged state be τ ?, lABC . Note that τ ?, 1ABC = σABC . (In other words,
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l

a

Figure 25: Make a ball minus unknot (D3 \ T ) by two different merging processes. (a) The newly

formed boundary is the sphere boundary. We have the freedom to choose l ∈ Cloop. (b) The newly

formed boundary is the torus boundary. We have the freedom to choose a ∈ Cpoint.

I(A : C|B)σ = 0 for the partition in Fig. 25(a). For reader’s convenience, we review

this fact in Lemma 6.4.) The entropy different S(τ ?, lABC)−S(σABC) can be expressed in

two different ways. First, by analyzing the structure of Σ(D3 \ T ) we have S(τ ?, lABC)−
S(σABC) = ln(

∑
aN

a
l da) + ln dl. Second, by considering the entropy difference of the

marginals, we derive S(τ ?, lABC)− S(σABC) = 2 ln dl. Therefore, dl =
∑

aN
a
l da, which is

precisely Eq. (6.3).

Next, we prove Eq. (6.4). Now we choose an extreme point of the sphere shell,

labeled by a ∈ Cpoint, and consider the merging process in Fig. 25(b). Let the merged

state be λ?, aABC . This time, note that λ?, 1ABC is not the same with σABC , although its

marginals on AB and BC are identical with that of the reference state. (The reason is

that I(A : C|B)σ = 2 lnD by Lemma 6.4 while I(A : C|B)λ?, a = 0 for any a.) Again,

we have two ways to compute the entropy difference S(λ?, aABC)−S(σABC). By analyzing

the structure of Σ(D3 \ T ) we have S(λ?, aABC) − S(σABC) = ln(
∑

lN
a
l dl) + ln da. On

the other hand, by looking at the marginals we see S(λ?, aABC)− S(λ?, 1ABC) = 2 ln da and

that S(λ?, 1ABC)− S(σABC) = 2 lnD. This leads to the constraint ln da + ln(
∑

lN
a
l dl) =

2 ln da + lnD2. By simplifying this, we get Eq. (6.4).

Remark. It is interesting to observe the existence of an extra 1/D2 factor on the right-

hand side of the second equation. This makes shrinkable loops and point particles

manifestly different. This contribution comes from a factor of the form e−I(A:C|B)σ .

This contribution will appear in a broader context in [20].

Lemma 6.4. For the ABC partition in Fig. 25(a), I(A : C|B)σ = 0. For the ABC

partition in Fig. 25(b), I(A : C|B)σ = 2 lnD.

Proof. Consider the ABC partition of D3 \ T in Fig. 25(a). I(A : C|B)σ ≤ I(AT :

C|B)σ by SSA. Next, we show I(AT : C|B)σ = 0. We provide two independent ways to

see it. Here is the first method. Suppose I(AT : C|B)σ > 0; we can take the marginals
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σTAB and σBC and merge them; the resulting state has I(AT : C|B) = 0 and it is

an element of Σ(D3). However, this would contradict with the fact that Σ(D3) has a

unique element. The second method is to consider Fig. 26:

I(AT : C|B)σ ≤ ∆(B,AT,E)σ

= 0.
(6.5)

The first line follows from SSA, and the second line follows from Proposition 5.7.

Figure 26: With a region E.

For the ABC partition of D3 \ T in Fig. 25(b), I(A : C|B)σ is the topological

entanglement entropy 2γ; see Proposition D.11, the fourth case. According to the

analysis that is done around Fig. 10, we have γ = lnD. Therefore, I(A : C|B)σ =

2 lnD.

6.2.2 Embedding φ : Cpoint ↪→ Cloop

We establish a natural embedding of the set of point particles to the set of shrinkable

loops.

Consider the arrangement of regions in Fig. 27. Here A is a ball minus an unknot

and AB is a sphere shell. Because AB is a sphere shell, the extreme points of Σ(AB) are

labeled by a ∈ Cpoint. By a partial trace, we can reduce any extreme point ρaAB ∈ Σ(AB)

to A. According to Proposition 2.23, the result is an isolated extreme point, namely

ρaAB
TrB→ ρaA ∈ Σa

φ(a)(A), (6.6)

where φ(a) ∈ Cloop, defined by this process, satisfies Na
φ(a) = 1.

Proposition 6.5. The map φ : Cpoint → Cloop defined by Eq. (6.6) is injective. Fur-

thermore,

dφ(a) = da, N b
φ(a) = δa,b. (6.7)
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Figure 27: Identify a ball minus an unknot (D3\T ) as a subsystem of a sphere shell. Here ABC = D3

is a ball, B and C are two balls and BC = T is an unknotted solid torus. A = D3 \ T is a ball minus

an unknot, and AB is a sphere shell.

For this reason, we shall call φ an embedding, and denote it as φ : Cpoint ↪→ Cloop.

Proof. For the partition in Fig. 27, we consider an extreme point ρaAB. Not only can we

take a partial trace to obtain a state in Σ(A), we can also reverse the partial trace by a

quantum channel (associated with an appropriate merging) that is independent of the

sector a ∈ Cpoint. Thus, the entropy difference is preserved: ln da + ln dφ(a) = 2 ln da.

Therefore, dφ(a) = da. Plugging this into Eq. (6.3) we see that da =
∑

bN
b
φ(a)db.

Noticing that multiplicities and quantum dimensions are non-negative (and Na
φ(a) = 1),

we see that N b
φ(a) = δa,b.

Remark. Does the same logic work when the union of the two balls B and C is a

knot, instead of the unknot shown in Fig. 27? In that case, we can identify a map

φ̃K : Cpoint → CHopf , (6.8)

which depends on the choice of knot K. Furthermore,

dφ̃K(a) = da, Na
φ̃K(a)

(K) = 1. (6.9)

This observation is consistent with the data shown in Table 8. The analog of the second

equation in (6.7) would require the analog of (6.3) for knots, the naive version of which

is not true. Nevertheless, we expect that φ̃K is an embedding for general knots K.

6.3 Torus knots: a constraint with quantum dimensions

We shall consider a (p, q) torus knot K ⊂ S3. We derive a consistency relation that

involves the knot multiplicities, the quantum dimensions, and the spiral maps. As a

corollary, we derive a universal upper bound for the knot multiplicities for all torus

knots in terms of the total quantum dimension.
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Proposition 6.6. Let K be a (p, q) torus knot. Then

∑
ζ∈CHopf

Nζ(K)dζ =
∑

µ,ν∈Cflux:
tp(µ)=tq(ν)

d2
µd

2
ν

d2
tp(µ)

. (6.10)

(p, q) for BC

(1, 0) for D

A

D CC BBD

C

C

B

B

Figure 28: A decomposition of the knot complement of a (p, q) torus knot. S3 \ K = ABCD.

(p, q) = (2, 3) is illustrated accurately. Note that A is the solid torus such that the rotation axis is

contained entirely in A (although this is not obvious in a 2d Euclidean illustration).

Proof. Consider the decomposition of the complement of a (p, q) torus knot, ΩK ≡
S3 \ K depicted in Fig. 28. ΩK = ABCD, where ABC and BCD are both solid

tori. The maximum entropy state ρ?ΩK of the information convex set Σ(ΩK) and the

reference state on S3 (σ) both have I(A : D|BC) = 0. To see that the former statement

is true, we observe that if ρ?ABCD were not a quantum Markov state, we would be able

to obtain a state with higher entropy by merging the marginals back. The latter case

follows from Proposition D.7.

Below we compute the entropy difference S(ρ?ΩK )− S(σΩK ) in two different ways.

1. First, by the structure theorem of Σ(ΩK):

S(ρ?ΩK )− S(σΩK ) = ln

 ∑
ζ∈CHopf

Nζ(K)dζ

 . (6.11)

2. Second, we use the quantum Markov state condition of ρ? and solve a maximiza-

tion problem on the marginals ABC, BC and BCD. The final answer is

S(ρ?ΩK )− S(σΩK ) =
∑

µ,ν∈Cflux:
tp(µ)=tq(ν)

d2
µd

2
ν

d2
tp(µ)

. (6.12)
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By comparing these two equations, one derives the desired result. The rest of the

proof is devoted to the proof of Eq. (6.12).

To prove Eq. (6.12), we first consider what the spiral map does on probability distri-

bution {pµ}µ∈Cflux
. Let us define fp({pµ}) ≡ {rµ}µ∈Cflux

, where

rν =
∑

µ: tp(µ)=ν

pµ. (6.13)

We further denote F ({pµ}) ≡
∑

µ pµ ln
(
d2
µ

pµ

)
.

The problem is to solve

max
{pµ},{qν}:

fp({pµ})=fq({qν})

(F ({pµ}) + F ({qν})− F (fp({pµ}))) . (6.14)

This is because this is the general expression for the entropy difference S(λΩK )−S(σΩK )

for any state λ obtained by merging states in Σ(ABC) and Σ(BCD). (Here, the two

states are
∑

µ pµρ
µ
ABC and

∑
ν qνρ

ν
BCD respectively.) The condition fp({pµ}) = fq({qν})

is the necessary and sufficient condition for two states be merged. The solution leads

to Eq. (6.12).

Example 6.7. Here we check the equality for trefoil knot, (p, q) = (2, 3).

1. For the 3d toric code model, the prediction from (3.26) is
∑

ζ Nζ(K) = 2. This

is consistent with the action of the spiral map, since only (µ, ν) = (C1, C1) and

(Cs, C1) contribute to the sum.

2. For the 3d S3 quantum double model
∑

ζ Nζ(K)dζ = 12 from the data shown in

(3.27). This is consistent with the value in terms of the spiral map from Table 5.

Corollary 6.7.1 (Universal bound for torus knots). For any torus knot K:∑
ζ∈CHopf

Nζ(K)dζ ≤ D4. (6.15)

Proof. ∑
µ,ν∈Cflux:
tp(µ)=tq(ν)

d2
µd

2
ν

d2
tp(µ)

≤
∑

µ,ν∈Cflux

d2
µd

2
ν

d2
tp(µ)

≤
∑

µ,ν∈Cflux

d2
µd

2
ν = D4. (6.16)
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Remark. The upper bound says that the knot multiplicity for any torus knot cannot

be too large for a given value of D. (This is because dζ ≥ 1; see Appendix E.) We

do not know if this universal bound can be improved further, i.e., replacing D4 by

Dα with α < 4. Because γ = lnD is the topological entanglement entropy of the 3d

system, this bound can be thought of as bound in terms of the topological entanglement

entropy [6, 7, 49]. Furthermore, it is an interesting question if any hyperbolic knot or

satellite knot may violate this bound.

With a slight generalization of the method one can derive a similar constraint for

the multiplicities Nη
ζ (p, q) (defined in Eq. (3.31)); see §6.4. Therein, we shall present a

proof using a slightly different method.

6.4 A consistency relation for unknot minus a torus knot

Proposition 6.8. Let K be a (p, q) torus knot, then

∑
ζ∈CHopf

Nη
ζ (p, q)dζ =

∑
µ∈Cflux:

tp(µ)=t(p,q)(η)

d2
µdη

d2
tp(µ)

. (6.17)

Proof. Consider the region shown in Fig. 29. It has three boundaries, and the associated

multiplicities are {Nη
ζη′}. Let {Nη

ζϕ∨(µ)} be a subset of these multiplicities. Here ϕ∨ :

Cflux ↪→ CHopf is an embedding defined as ϕ : Cflux ↪→ Cloop ⊂ CHopf followed by the

transformation η → η∨. By the associativity theorem,

Nη
ζ (p, q) =

∑
µ∈Cflux

Nη
ζϕ∨(µ). (6.18)

Next, we show ∑
ζ∈CHopf

Nη
ζϕ∨(µ)dζ =

d2
µdη

d2
tp(µ)

δtp(µ),t(p,q)(η). (6.19)

Suppose η and ϕ∨(µ) can label the two boundaries in Fig. 29 for some state in

Σ(ABCD). Then we must have tp(µ) = t(p,q)(η). This is because, that is the con-

dition for the marginal on ABC (completed determined by η) and the marginal on

BCD (completely determined by ϕ∨(µ)) to match on the overlapping region BC.

If δtp(µ)6=t(p,q)(η) then Nη
ζϕ∨(µ) = 0 for any ζ. This is consistent with Eq. (6.19).

If δtp(µ)=t(p,q)(η) we are able to merge ρηABC and ρ
ϕ∨(µ)
BCD . The existence of a merged

state, which we denote as τ ηµABCD, implies that
∑

ζ N
η
ζϕ∨(µ) > 0. To derive an equality,

we consider the entropy difference S(τ ηµABCD)−S(τ 11
ABCD) and note that τ 11

ABCD = σABCD.
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(p, q) for BC

(1, 0) for AD
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ζ
η
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D
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C

B

B

A

Figure 29: A decomposition of a torus shell minus a (p, q) torus knot. The figure is precise for

(p, q) = (2, 3), i.e., when the torus knot is a trefoil.

With the structure of Σ(ABCD), we have

S(τ ηµABCD)− S(τ 11
ABCD) = ln dη + ln dϕ∨(µ) + ln(

∑
ζ

Nη
ζϕ∨(µ)dζ). (6.20)

On the other hand, by looking at the marginals, we get

S(τ ηµABCD)− S(τ 11
ABCD) = 2 ln dη + 2 ln dϕ∨(µ) − 2 ln dtp(µ). (6.21)

By comparing these two equations, we get:

∑
ζ

Nη
ζϕ∨(µ)dζ =

dηd
2
µ

d2
tp(µ)

. (6.22)

Here, we have plugged in dϕ∨(µ) = d2
µ. This verifies Eq. (6.19) and completes the

proof.

7 Discussion and open questions

We have extended the entanglement bootstrap approach to 3d gapped phases. Starting

with the two axioms on the entanglement entropy, we are able to make concrete state-

ments of the general structures of the theory. The focus of this work is on a detailed

analysis of the diverse excitation types and the fusion spaces and processes that appear

in these systems. This also set up the foundation for future investigation of braiding

statistics [20].

There are many approaches to studying gapped quantum many-body systems in

three spatial dimensions. Under some assumptions that rule out fracton phases, one

expects the extreme low-energy physics to be governed by a suitable topological field

theory [32, 33, 50, 51]. Given the exception represented by fracton phases, one may
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wonder precisely when such a framework applies. One of the goals of the entanglement

bootstrap approach is to answer this question.

The logic we use is completely independent from these prior studies. Here is a

physical summary of what we learned:

1. We are able to obtain the vacuum state on the 3-sphere from a vacuum state

(i.e., the reference state) on a ball. This “sphere completion” is the first step

toward a bigger goal: constructing closed space manifolds (and possibly spacetime

manifolds) of different topologies from “local” knowledge of a ground state [20].

2. The set of point particles is nontrivial whenever the set of loop excitations is

nontrivial. In other words, it is impossible to have a 3d topological order with

only loop excitations, nor can there be a 3d topological order with only particle

excitations. In particular, the total quantum dimension computed from particles

equals that computed from flux loops (Proposition 3.4).

3. The simplest class of loop excitations we identify are the flux loops. Fluxes are

both simple and nontrivial. For example, there is a way to fuse the flux loops

spirally into a new flux loop. The spiral map provides an understanding of this

process. Interestingly, this spiral map seem to escape all available dimensional

reductions, e.g. in §3.3 and in Appendix E.

4. Loop excitations can be linked and knotted. The excitations on Hopf links pro-

vide the most general superselection sectors on a closed loop.25 The set of loop

excitations that can exist alone on a single knot K ⊂ S3 must be a subset of

Hopf sectors.

5. For a non-Abelian theory (where quantum dimensions differ from unity), the

knot complement can serve as a quantum memory; this is in the same manner as,

e.g., the complement of a few Fibonacci anyons on a sphere in 2d. One notable

difference is that we need only one knot. The fusion space associated with the

knot excitations are identified in §3.4, and the coherence is verified by examples

in §4.3.

6. For torus knots, we are able to verify consistency relations for their knot multi-

plicities (§6). In particular, there is a universal bound for their knot multiplicities,

(6.15). It would be interesting to see if any hyperbolic knot or satellite knot may

violate this bound.

25Here, closed loops are embedded circles. On a graph, there can be other excitation types.
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7. We assumed that the global Hilbert space is the tensor product of local Hilbert

spaces. This assumption limits our analysis to systems made of bosons. How-

ever, the topological point particle excitations can be either emergent bosons or

emergent fermions. It would be interesting to (1) come up with a way to tell

which emergent particles are bosons and which emergent particles are fermions

and (2) modify this assumption to allow the study of fermionic systems.

8. We assumed that the reference state is defined on a ball, and the ball is “smooth”

in the sense that both axioms are satisfied on all bounded-radius balls contained

in that ball. On the other hand, some of the statements we prove require a weaker

assumption (e.g., Proposition 5.4 and 5.6). Statements like these can be adapted

to 3d systems with codimension-1, 2, and 3 defects.

9. In 2d, no known system with nonzero chiral central charge obeys the precise

version of the axioms. One may wonder if we miss a certain exotic class of gapped

phases of matter by assuming the exact axioms. We do not have a concrete no-

go theorem. In 2d, one hope is to develop a robust version of entanglement

bootstrap to accommodate chiral phases. While a robust version is currently

unavailable, a piece of supporting evidence is that related tools are shown to

be useful in guessing a new formula for chiral central charge [11]. In 3d, axiom

A1 does exclude fractons, which violate this axiom with a linear term. It is

interesting to ask if there are other interesting 3d gapped phases that escape the

description (meaning that no representative wave function of the phase satisfies

the two axioms precisely).

We conclude with some other outstanding open questions.

1. The isomorphism between embedded regions gives rise to a well-defined notion

of particle types. For a chosen disk, a universal “reference frame” for comparing

anyon types exists in 2d (Lemma 4.3 of [1]). The basic intuition here is that an

embedded annulus cannot flip within a disk. The same observation generalizes to

the sphere shell in 3d. A nontrivial automorphism does exist for loop excitations

because a torus can flip within a ball. The sphere completion lemma provides

extra flexibility: on a sphere, an annulus can be turned inside through a sequence

of embedded intermediate configurations. This provides a nice way to think about

antiparticles.

Immersion provides additional flexibility for the choice of regions as well as the

ways regions can deform. For example, the torus shell can be mapped to itself

in many different ways through immersion. One simple thing that we already

learned from immersion is the product rule of the spiral maps. On the other
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hand, many open questions remain, suggesting that we may be able to learn

more from immersion. Instead of providing a long list of such questions, we

mention a simple one. In 3d, a sphere shell can be flipped inside out through

immersion [46, 47, 48]; this can be done within a ball rather than the S3 obtained

from sphere completion. This generates a permutation of the labels in Cpoint. Is

it true that this permutation always maps the vacuum sector 1 ∈ Cpoint back to

itself?

It will be interesting to understand the homotopy properties of the space of

(immersed) paths between regions, for example, in the definition of the spiral

map.

2. We have studied two types of dimensional reduction in Appendix E.1. The idea

is to identify 2d regions related to the 3d region by a revolution. A couple of

open questions remain. One question is if the dimensional reduction for any

nontrivial flux is a 2d system that allows a gapped boundary. Another question

is if inequivalent dimensional reduction arises by considering a revolution of type

(p, q).

3. Are sectorizable regions always of the formM× I, i.e., a manifold (possibly with

boundary) times an interval?

4. The naive analog of the shrinking rule (6.3) for knots other than the unknot is

not true. Perhaps the correct generalization can be found by combining the con-

sistency conditions for ball minus torus and for torus minus knot. Such a gener-

alization would help us understand the correct interpretation of fusion equations

such as (3.30).

5. In the quantum double examples, we can see an intimate relationship between

the information convex set of a knot complement and its fundamental group, the

knot group, and more specifically with the Wirtinger presentation of the knot

group. While ground states of the quantum double on the knot complement with

a particular gapped boundary condition are in one-to-one correspondence with

representations of the knot group in the gauge group G (modulo conjugation)

[52], the elements of the information convex set are instead density matrices.

This seems to be a new mathematical structure on which the knot group can act;

it is interesting to ask about the ability of such actions to distinguish knots from

each other.

6. In this paper, we have focused on torus knots. It is an open question whether

the structure of the information convex set shows some dramatic difference for
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satellite knots or hyperbolic knots. We conjecture that the bounds (6.15) of §6.3

can be violated for more general knots.
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A Glossary of notation

notation meaning definition appears in

σ the reference state

I(A : C) mutual information: SA + SC − SAC
I(A : C|B) conditional mutual information: SAB + SBC − SB − SABC

∆(B,C) SC + SBC − SB (1.2)

∆(B,C,D) SBC + SCD − SB − SD (1.2)

Γ(Ω) the set of bounded-radius balls on the region Ω §2.1
on which we impose the axioms

Γ̃(Ω+) the set of balls arising as preimages in Ω+ under p §2.1
of balls in Γ(p(Ω+))

I interval §2.2.1
∂Ω the thickened boundary of region Ω §2.2.2

Σ(Ω) the information convex set of region Ω §1,Def. 2.3

ΣI(Ω) the subset of Σ(Ω) in sector I on ∂Ω (2.11)

VI(Ω) fusion space of Ω with I boundary conditions Theorem 2.14

S(V) density matrices on V Theorem 2.14

NI(Ω) dimVI(Ω) §2.3
dI quantum dimension of excitation type I Def. 2.11

ρ ./ σ the result of merging the states ρ and σ Lemma 2.6

ext(Σ(Ω)) the set of extreme points of Σ(Ω) §3.2
X sphere shell §3.2
T solid torus §3.2
T torus shell §3.2
Cpoint the set of labels on ext(Σ(X)) (3.3)

Cflux the set of labels on ext(Σ(T )) (3.5)

CHopf the set of labels on ext(Σ(T)) (3.7)

Cloop the set of shrinkable loops (3.10)

ϕ embedding of Cflux into Cloop (3.10)

φ embedding of Cpoint into Cloop (3.11), §6.2.2
ΩK complement of the knot K in S3 (3.22)

(G)ir irreps of G §4
(G)cj conjugacy classes of G §4
Eg the centralizer of g ∈ G §4
Cg the conjugacy class of g ∈ G §4
E(g,h) Eg ∩ Eh §4
C(g,h) {(tgt−1, tht−1)|t ∈ G} §4
Tn nth spiral map on Σ(T ) (5.1)

tn nth spiral map on fluxes (5.6)
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B Proof of associativity theorem

In this appendix, we present the proof of the associativity theorem (Theorem 2.22).

B.1 Proof of Lemma 2.20

Below is the proof of Lemma 2.20.

Proof. The first statement is simple to prove. The fact that ρΩL and λΩR can be merged

follows from (1) I(ALBL : CR|CL)ρ = 0 and I(CL : BRAR|CR)λ = 0, and (2) ρΩL and

ρΩR are consistent on C.

To prove the second statement, it is enough to verify the extreme point criterion

stated in Lemma 2.13, namely (SΩ + SΩ\∂Ω − S∂Ω)τ = 0, where τ is the merged state.

This identity follows algebraically from the following entropy conditions on τ :

SΩL + SBL − SAL − SC = 0,

SΩR + SBR − SAR − SC = 0,

I(ALBL : ARBR|C) = 0,

SBC + SC − SB = 0,

I(BL : BR) = 0,

I(AL : AR) = 0.

(B.1)

The first and the second lines are the factorization property for ρΩL and λΩR respec-

tively. The third line follows from the quantum Markov chain property of the merged

state. The fourth, fifth, and sixth lines are consequences of the factorization property

of extreme points and SSA; in more details, the fourth line needs τ restricted to C to

be an extreme point whereas the fifth and sixth lines use the fact that τ restricted to

BL and AL are extreme points respectively.

To see explicitly the actual algebra that leads to the final answer, we rewrite each

line of Eq. (B.1) and see, for the state τ :

0 = −SΩL − SBL + SAL + SC ,

0 = −SΩR − SBR + SAR + SC ,

SΩ = SΩL + SΩR − SC ,
SΩ\∂Ω = SB − SC ,

0 = −SB + SBL + SBR ,

−S∂Ω = −SAL − SAR .

(B.2)

By adding each side of all the six lines, we arrive at (SΩ + SΩ\∂Ω − S∂Ω)τ = 0. Thus

the merged state τ is an extreme point of Σ(Ω). This completes the proof.
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B.2 Proof of Theorem 2.22 (associativity)

Below is the proof of the associativity theorem (Theorem 2.22). This theorem relates

the dimensions of the fusion spaces of a region obtained by merging two subregions

along a whole boundary component to those of the subregions being merged. In the

writing of the proof, we omit the subsystem labels, and denote NaR
aL

(Ω), N i
aL

(ΩL) and

NaR
i (ΩR) as NaR

aL
, N i

aL
and NaR

i for simplicity.

Proof. If NaR
aL

= 0, then we must have
∑

i∈CC N
i
aL
NaR
i = 0. If this were not the case,

it would imply that Σi
aL

(ΩL) and ΣaR
i (ΩR) were both nonempty. Then it would be

possible to take an element from each set and merge them; the end result would be an

element in ΣaR
aL

(Ω). This would contradict the statement that NaR
aL

= 0.

If NaR
aL
≥ 1, then ΣaR

aL
(Ω) is nonempty. This implies that

∑
i∈CC N

i
aL
NaR
i ≥ 1. On

general grounds,

lnNaR
aL

= S(ρ
(aL,aR)max

Ω )− S(ρ
(aL,aR)min

Ω ) (B.3)

where ρ
(aL,aR)max

Ω is the maximum-entropy state of ΣaR
aL

(Ω) and ρ
(aL,aR)min

Ω is an extreme

point of ΣaR
aL

(Ω).

The maximum-entropy state ρ
(aL,aR)max

Ω obeys a quantum Markov chain condition:

I(ALBL : ARBR|C) = 0. (B.4)

This follows from Lemma 2.21; if the maximum-entropy state were not Markov, we

could merge the marginals to a state with larger entropy. In addition, while not every

extreme point (i.e., minimum-entropy state) satisfies Eq. (B.4) in general, it is possible

to choose an extreme point with this property. Consider a superselection sector i0 ∈
Σ(C) such that N i0

aL
NaR
i0
≥ 1. Choose an extreme point from Σi0

aL
(ΩL) and ΣaR

i0
(ΩR)

respectively and merge them; in this way, we obtain an extreme point of ΣaR
aL

(Ω) that

does obey Eq. (B.4); see Lemma 2.20. In the following, ρ
(aL,aR)min

Ω refers to the specific

extreme point associated with the choice i0.

Quantum Markov chains saturate SSA and therefore (B.3) becomes

lnNaR
aL

= (SΩL + SΩR − SC)ρ(aL,aR)max − (SΩL + SΩR − SC)ρ(aL,aR)min . (B.5)

Now consider three partial traces of ρ
(aL,aR)max

Ω :

TrARBR ρ
(aL,aR)max

Ω =
∑
i

p
(aL,aR)
i ρ

(aL,i)max

ΩL
,

TrALBL ρ
(aL,aR)max

Ω =
∑
i

p
(aL,aR)
i ρ

(i,aR)max

ΩR
,

TrAB ρ
(aL,aR)max

Ω =
∑
i

p
(aL,aR)
i ρiC .

(B.6)
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Here the sum over i runs over CC , the set of superselection sectors for sectorizable

region C. {p(aL,aR)
i } is a probability distribution, and it is the same in each of these

expressions because the marginals must agree. We set p
(aL,aR)
i = 0 when N i

aL
NaR
i = 0

for the same reason.

Next, we determine {p(aL,aR)
i } by maximizing the entropy difference. The consis-

tency relations associated with the optimal choice reveals the associtivity. Using our

knowledge of the structure of the information convex sets of each of these regions, we

can evaluate each of the differences on the RHS of (B.5).

δSΩL =
∑
i

p
(aL,aR)
i

(
ln
di
di0

+ lnN i
aL
− ln p

(aL,aR)
i

)
,

δSΩR =
∑
i

p
(aL,aR)
i

(
ln
di
di0

+ lnNaR
i − ln p

(aL,aR)
i

)
,

δSC =
∑
i

p
(aL,aR)
i

(
2 ln

di
di0
− ln p

(aL,aR)
i

)
.

(B.7)

Therefore

lnNaR
aL

= max
{p(aL,aR)
i }

[∑
i

p
(aL,aR)
i

(
ln(N i

aL
NaR
i )− ln p

(aL,aR)
i

)]

= ln

(∑
i

N i
aL
NaR
i

) (B.8)

where the maximum is achieved by p
(aL,aR)
i =

N i
aL
N
aR
i∑

i′ N
i′
aL
N
aR
i′
. Therefore

NaR
aL

=
∑
i

N i
aL
NaR
i .

This completes the proof.

C Calculation details for 3d quantum double

In this appendix, we provide some details of the calculation of 3d quantum double

models as well as additional examples of regions. The essential tools to understand the

calculations are finite groups and their representations; Appendix C.1. The remaining

parts are examples of regions to illustrate the fusion spaces and consistency relations.
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Region Multiplicities Subsection

Ball minus unknot {Na
l } Appendix C.2

Ball minus trefoil {Na
ζ (trefoil)} Appendix C.3

Solid torus minus trefoil {Nη
ζ (2, 3)} Appendix C.4

Borromean ring complement {Nη1η2η3} Appendix C.5

Table 6: The regions and the multiplicities we consider and where to find them.

C.1 Group theory notation and useful properties

We start by reviewing some basic notation of finite groups and representations. Also

reviewed are a few properties that will be handy in doing the calculation.

C.1.1 Notation and facts

Let g ∈ G be an element of finite group G. We denote its inverse as g−1. 1 is the

identity of the group. |G| is the number of group elements in G. G×H is the tensor

product of finite groups G and H, namely G×H = {(g, h)|g ∈ G, h ∈ H}. The group

multiplication is: (g1, h1)(g2, h2) = (g1g2, h1h2).

We shall denote the set of conjugacy classes of G as (G)cj. Cg is the conjugacy

class of G that contains g. C(g,h) ≡ {(tgt−1, tht−1)|t ∈ G}, where g, h ∈ G. Eg = {t ∈
G | tgt−1 = g} is the centralizer of g. E(g,h) ≡ {t ∈ G|(g, h) = (tgt−1, tht−1)} = Eg∩Eh.

We shall only consider unitary representations. (G)ir is the set of irreducible repre-

sentations of G. dimR is the dimension of representation R.

ΓR(g) is the unitary matrix of representation R for the group element g ∈ G. For

each representation R, there is a dual representation R̄ defined such that ΓR̄(g) =

Γ̄R(g), where Γ̄R(g) is the complex conjugation of ΓR(g). The character of representa-

tion R is χR(g) = Tr ΓR(g) =
∑dimR

i=1 ΓiiR(g).

Here is a list of facts:

1. Orthogonality:

1

|G|
∑
g∈G

ΓabR (g)Γa
′b′∗
R′ (g) =

1

dimR
δR,R′δa,a′δb,b′ for R,R′ ∈ (G)ir. (C.1)

2. Character χR(g) is a function of conjugacy class. Furthermore, χR(1) = dimR,

χR(g−1) = χ∗R(g) = χR̄(g). Denote 〈χR|χR′〉 ≡ 1
|G|
∑

g∈G χR(g)χ∗R′(g), then

〈χR|χR′〉 = δi,j for R,R′ ∈ (G)ir. (C.2)
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Therefore, for any representation H of G, and R ∈ (G)ir:

〈χR|χH〉 = the number of R contained in H. (C.3)

3. The group G×H has (G×H)ir = {R× π|R ∈ (G)ir, π ∈ (H)ir}, where

dim(R× π) = dimR · dimπ and χR×π = χR · χπ. (C.4)

4. Consider the Hilbert space HG ≡ span{|g〉|g ∈ G}, with 〈g|k〉 = δg,k. Under

the unitary operator of G: Γ(g)|h〉 = |gh〉, for g, h ∈ G, HG decomposes into

irreducible representations of G as:

HG =
⊕

R∈(G)ir

dimR ·R. (C.5)

Under the unitary operation of G×G: Γ(m,n)|h〉 = |mhn−1〉, for (m,n) ∈ G×G
and h ∈ G, HG decomposes into irreducible representations of G×G as:

HG =
⊕

R∈(G)ir

R⊗ R̄. (C.6)

C.1.2 Conjugation-invariant density matrices

We prove a general statement about conjugation-invariant density matrices in a group

theoretical context. This statement will be useful in solving the conjugation constraints

of minimal diagrams.

Proposition C.1 (Conjugation-invariant density matrices). Let H =
⊕

R∈(G)ir
nRR,

with nR ∈ Z≥0, be a representation of G. We denote the unitary group operation on H
as ΓH(g), g ∈ G. Then, the set of density matrices ρ on H which satisfy

ΓH(g)ρΓ†H(g) = ρ, ∀g ∈ G, (C.7)

forms a convex set Σ(H), which is the convex hull of orthogonal subsets ΣR(H) of the

form

ΣR(H) =

{
ρR
∣∣∣∣ ρR ∈ S(VR)⊗ IddimR

dimR

}
, R ∈ (G)ir, (C.8)

where S(VR) is the state space of nR dimensional Hilbert space VR, and IddimR is the

identity operator on a dimR dimensional Hilbert space.

We shall say a density ρ on H is conjugation invariant if it satisfies Eq. (C.7).

90



Proof. It is easy to verify that if two density matrices ρ1, ρ2 are conjugation invariant,

their convex combination p1ρ1 + (1 − p)ρ2, p ∈ [0, 1] is also conjugation invariant.

Therefore, Σ(H) is a convex set.

Next we need to show its extreme points are elements of S(VR)⊗ IddimR

dimR
forR ∈ (G)ir.

We prove this by analyzing the possible forms of the extreme points.

Consider the density matrices in the form ρ = 1
|G|
∑

g∈G ΓH(g)λΓ†H(g), where λ is

an arbitrary density matrix. We see ρ is conjugation invariant. Furthermore, the set

of all such ρ is precisely Σ(H).

Since λ can be written as λ =
∑

α pα |α〉 〈α|, and 1
|G|
∑

g∈G ΓH(g) |α〉 〈α|Γ†H(g) for

each α is conjugation invariant, all the extreme points are elements of the set

S ≡

{
1

|G|
∑
g∈G

ΓH(g) |α〉 〈α|Γ†H(g), |α〉 ∈ H

}
(C.9)

This is because extreme points cannot be expressed as convex combination of two other

points with positive coefficients.

We consider following orthonormal basis of H:

H = span{|R, µ, a〉 |R ∈ (G)ir, µ = 1, · · · , nR, a = 1, · · · , dimR} (C.10)

(We omit R for which nR = 0.) Moreover, we shall write |R, µ, a〉 as |R, µ〉 ⊗ |a〉 when

needed. Let |α〉 =
∑

R,µ,aCRµa |R, µ, a〉, then

1

|G|
∑
g∈G

ΓH(g) |α〉 〈α|Γ†H(g)

=
∑
Rµa

∑
R′,µ′,a′

CRµaC
∗
R′µ′a′

(
1

|G|
∑
g∈G

ΓH(g) |R, µ, a〉 〈R′, µ′, a′|ΓH(g)†

)

=
∑
R,µ,a,b

∑
R′,µ′,a′,b′

(
1

|G|
∑
g∈G

ΓabR (g)Γa
′b′∗
R′ (g)

)
CRµaC

∗
R′µ′a′ |R, µ, b〉 〈R′, µ′, b′|

=
∑
R,µ,a,b

∑
R′,µ′,a′,b′

(
1

dimR
δR,R′δa,a′δb,b′

)
CRµaC

∗
R′µ′a′ |R, µ, b〉 〈R′, µ′, b′|

=
∑

R∈(G)ir

[
nR∑
µ=1

nR∑
µ′=1

(∑
a

CRµaC
∗
Rµ′a

)
|R, µ〉 〈R, µ′| ⊗

(
1

dimR

dimR∑
b=1

|b〉 〈b|

)]

The summands in the last expression are orthogonal for different R ∈ (G)ir. Therefore

the extreme points are elements of S(VR)⊗ IddimR

dimR
for R ∈ (G)ir.
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C.2 Ball minus unknot

Here we calculate the multiplicities for the shrinking rule: {Na
l } defined in (3.17). Here

a ∈ Cpoint and l ∈ Cloop. As a reminder, the relevant rules for minimal diagram are

reviewed in §4.2. The content of the next few sections are essentially a continuation of

§4.3.

The region that characterizes the multiplicities {Na
l } is a ball minus an unknot

(D3 \ T ). We consider the minimal diagram shown in Fig. 30. This minimal diagram

contains a boundary link (labeled by b), a bulk link (labeled by k), and two vertices v1

and v2. There is no face in this diagram.

Figure 30: The minimal diagram for a ball minus an unknot.

By solving the three types of constraints described in §4.2.2, we arrive at a closed-

form formula for any finite group G.

Na
l = the number of Rl × R̄a ∈ (Eg ×G)ir contained in Hb. (C.11)

Here, l = (Cb, Rl), Rl ∈ (Eb)ir and a = Ra ∈ (G)ir; Hb is a representation of Eb × G
defined according to the following steps:

1. Choose a Cb that we want to study.

2. Hb, as a Hilbert space, is defined as span{|k〉|k ∈ G}.

3. Hb is a representation of Eb ×G by the group action:

Γ(t)|k〉 = |t1kt−1
2 〉, ∀t = (t1, t2) ∈ Eb ×G. (C.12)

The final result has a simple closed-form in terms of characters:

Na
l =

1

|Eb|
∑
g∈Eb

χRl(g)χ∗Ra(g). (C.13)

Here we used the fact that Eb is a subgroup of G. In words, Na
l equals to the number

of Rl contained in Ra, treating Ra as a representation of the subgroup Eb ⊂ G.

92



l

Na
l a

IdS3 SignS3
ΠS3

(C1, IdS3) 1 0 0

(C1, SignS3
) 0 1 0

(C1,ΠS3) 0 0 1

(Cr, IdZ3) 1 1 0

(Cr, ωZ3) 0 0 1

(Cr, (ω
2)Z3) 0 0 1

(Cs, IdZ2) 1 0 1

(Cs, SignZ2
) 0 1 1

Table 7: For 3d S3 quantum double. Multiplicities {Na
l } associated with a ball minus an unknot.

The columns are point particle types (a ∈ Cpoint), and the rows are shrinkable loop types (l ∈ Cloop).

ω ≡ e2πi/3 and ω2 label the nontrivial irreps of Z3.

For the group G = S3, an explicit calculation leads to Table 7. By recalling the

quantum dimensions da = dimRa and dl = |Cb| · dimRl and checking each column of

table 7, we can verify consistency relations:

da =
1

D2

∑
l

Na
l dl,

dl =
∑
a

Na
l da,

(C.14)

where D =
√∑

a d
2
a =
√

6. This is Proposition 6.2.1.

C.3 Ball minus a trefoil

We now compute the multiplicities {Na
ζ (K)} defined in §3.4, for K a trefoil knot. This

multiplicity is associated with region D3 \K, i.e., a ball minus a trefoil.

The minimal diagram is shown in Fig. 31. This minimal diagram has three bulk

links (labeled by a, b and k), two boundary links (labeled by g and h), and two

vertices v1 and v2. Faces are not shown. Note that, this diagram share similarity with

the one for the knot complement (Fig. 16). In particular, we take advantage of the

structure of the knot group π1(D3 \K) = π1(S3 \K). For a trefoil, the knot group is

π1(D3 \ trefoil) = 〈a, b|a2 = b3〉.

By solving the minimal diagram for this problem, we find the general solution:

Na
ζ (trefoil) = the number of Rζ × R̄a ∈ (E(g,h) ×G)ir contained in H(g,h). (C.15)
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Figure 31: The minimal diagram for a ball minus a trefoil knot.

Here, ζ = (C(g,h), Rζ), Rζ ∈ (E(g,h))ir a = Ra ∈ (G)ir and the H(g,h) is a representation

of E(g,h) ×G defined according to the following steps:

1. Choose a E(g,h) that we want to study. Here g, h ∈ G and gh = hg.

2. Find the set of ordered pairs {a, b}, a, b ∈ G, such that Eq. (4.22) holds.

3. H(g,h), as a Hilbert space, is defined as span{|a, b, k〉|{a, b} from step 2, and k ∈
G}.

4. H(g,h) is a representation of E(g,h) ×G by the group action:

Γ(t)|a, b, k〉 = |t1at−1
1 , t1bt

−1
1 , t1kt

−1
2 〉, ∀t = (t1, t2) ∈ E(g,h) ×G. (C.16)

The solution to this problem for finite group S3 is summarized in Table 8. A formula

involving characters analogous to (4.26) can summarize these rules.

C.4 Solid torus minus trefoil

Below, we calculate a subset of {Nη
ζ (2, 3)} (defined in §3.4.1) by setting η ∈ Cloop.

We shall denote this subset as {N l
ζ(2, 3)}. We restrict to this set for two reasons.

First, these are the multiplicities we need, in order to verify the consistency relation

Na
ζ (trefoil) =

∑
lN

l
ζ(2, 3)Na

l , i.e., a special case of Eq. (6.2). Second, the minimal

diagram for calculating {N l
ζ(2, 3)} is simpler than the minimal diagram that can handle

the general calculation of {Nη
ζ (2, 3)}.

The region associated with this calculation is an (unknotted) solid torus minus

a trefoil T \ K, below K is a trefoil. The minimal diagram is shown in Fig. 32.

It contains 4 boundaries links (labeled by g, h, g′, h′), and 2 bulk links (labeled by

{a, k}). It has two vertices v1 and v2 (and faces which are not shown). We emphasis
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ζ

Na
ζ (trefoil) a

IdS3 SignS3
ΠS3

(C(1,1), IdS3) 1 0 0

(C(1,1), SignS3
) 0 1 0

(C(1,1),ΠS3) 0 0 1

(C(1,r), IdZ3) 1 1 0

(C(1,r), ωZ3) 0 0 1

(C(1,r), (ω
2)Z3) 0 0 1

(C(1,s), IdZ2) 2 1 3

(C(1,s), SignZ2
) 1 2 3

Table 8: For the 3d S3 quantum double model. Multiplicities associated with a ball minus a trefoil.

The columns are point particle types (a ∈ Cpoint), and the rows are trefoil excitation types (ζ ∈ CHopf).

Only nonzero multiplicities are shown. Note that the label of ζ can depend on the framing of the g.

that this minimal diagram is designed to handle the calculation for g′ = 1, which

corresponds to restricting η to shrinkable loops. Because g′ = 1, the knot group

π1(S3 \ K) = 〈a, b|a2 = b3〉 is still useful in this problem. (Note that π1(T \ K) is

different.) Here, as the label suggests, a corresponds to the knot group generator a.

b ≡ kh′−1k−1 play the role of the other generator b.

Figure 32: The minimal diagram for a solid torus minus a trefoil. We use it to calculate the

multiplicities {N l
ζ(2, 3)}.

The multiplicities {N l
ζ(2, 3)} are specified by two labels of the superselection sectors.

ζ = (C(g,h), Rζ) for the excitation on the trefoil and l = {Ch′ , Rl} for the excitation on

the unknotted torus.

The knot group constraints give

g = a2 = b3, h = a−1b, where b ≡ kh′
−1
k−1. (C.17)
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ζ

N l
ζ(2, 3) l

(C1, IdS3) (C1, SignS3
) (C1,ΠS3)

(C(1,1), IdS3) 1 0 0

(C(1,1), SignS3
) 0 1 0

(C(1,1),ΠS3) 0 0 1

(C(1,s), IdZ2) 1 0 1

(C(1,s), SignZ2
) 0 1 1

ζ

N l
ζ(2, 3) l

(Cr, IdZ3) (Cr, ωZ3) (Cr, (ω
2)Z3)

(C(1,r), IdZ3) 1 0 0

(C(1,r), ωZ3) 0 0 1

(C(1,r), (ω
2)Z3) 0 1 0

(C(1,s), IdZ2) 1 1 1

(C(1,s), SignZ2
) 1 1 1

Table 9: Multiplicities N l
ζ(2, 3) associated with a solid torus minus a trefoil. The columns are

shrinkable loop types (l ∈ Cloop), and the rows are trefoil excitation types (ζ ∈ CHopf). Only the

nonzero multiplicities are shown.

The solution to the other two constraints leads to the final answer:

N l
ζ(2, 3) = the number of Rζ × R̄l ∈ (E(g,h) × Eh′)ir contained in H(g,h,h′). (C.18)

Here, ζ = (C(g,h), Rζ) and l = (Ch′ , Rl). H(g,h,h′) is a representation of E(g,h) × Eh′

defined according to the following steps:

1. Choose the E(g,h) and Eh′ that we want to study. g, h, h′ ∈ G are the representa-

tives specified by the lower indices, gh = hg.

2. Find the set of ordered pair {a, k}, a, k ∈ G such that Eq. (C.17) holds.

3. H(g,h,h′), as a Hilbert space, is defined as span{|a, k〉|{a, k} from step 2}.

4. H(g,h,h′) is a representation of E(g,h) × Eh′ by the group action:

Γ(t)|a, k〉 = |t1at−1
1 , t1kt

−1
2 〉, ∀t = (t1, t2) ∈ E(g,h) × Eh′ . (C.19)

The solution to this problem for the specific finite group S3 is summarized in Table 9.

From Tables 8,7,9, it is not difficult to check the consistency relations between

different multiplicities:

Na
ζ (trefoil) =

∑
l∈Cloop

N l
ζ(2, 3)Na

l (C.20)
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This is Eq. (6.2) of the main text.

C.5 Complement of Borromean Rings in S3

Figure 33: Minimal diagram for Borromean rings complement.

Here, we study the information convex set of the complement of the Borromean

rings in S3. We shall denote this region as ΩBor. Unlike previous studies of a re-

lated topic [53], our physical context is to have three loop excitations on the three

Borromean rings. We highlight a feature of non-Abelian models, i.e., nontrivial fusion

multiplicities associated with this arrangement of three loops. Below we denote this

set of multiplicities as {Nη1,η2,η3 ≡ dimVη1,η2,η3 (ΩBor)}.

As with our study of knot complements, we find that the fundamental group of the

Borromean rings complement [54] is useful:26

π1(ΩBor) = {m1,m2,m3|[m1, [m
−1
2 ,m3]] = 1, [m2, [m

−1
3 ,m1]] = 1, [m3, [m

−1
1 ,m2]] = 1}.

(C.21)

Here [α, β] ≡ αβα−1β−1, which is a particular useful abbreviation to use in this section.

The minimal diagram shown in Fig. 33 contains 6 boundary links (labeled by

m1, l1,m2, l2,m3, l3), 2 bulk links (labeled by k1, k2) and 3 vertices v1, v2 and v3.

Faces are not shown.

The zero-flux constraints from the faces in ΩBor then imply:

[m1, [m̃
−1
2 , m̃3]] = 1, [m̃2, [m̃

−1
3 ,m1]] = 1, [m̃3, [m

−1
1 , m̃2]] = 1, (C.22)

l1 = [m̃−1
2 , m̃3], l̃2 = [m̃−1

3 ,m1], l̃3 = [m−1
1 , m̃2], (C.23)

where m̃2 ≡ k1m2k
−1
1 , m̃3 ≡ k2m3k

−1
2 , l̃2 ≡ k1l2k

−1
1 , l̃3 ≡ k2l3k

−1
2 . (C.24)

26Comparing to Ref. [54], Eq. (C.21) has a minor difference due to the convention of ordering that

we adopt.
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The purpose of introducing ˜ is to bring the variables to the same base point. It is

easy to see, {m1, m̃2, m̃3} plays the role of the generators {m1,m2,m3}, whereas the

former set are group elements in G.

The solution to this problem is

Nη1η2η3 = the number of Rη1 ×Rη2 ×Rη3 ∈ (E(l1,m
−1
1 ) × E(l2,m

−1
2 ) × E(l3,m

−1
3 ))ir

contained in H(l1,m1,l2,m2,l3,m3).

(C.25)

Here, ηi = (C(li,m
−1
i ), Rηi) and Rηi ∈ (E(li,m

−1
i ))ir. H(l1,m1,l2,m2,l3,m3) is a representation

of E(l1,m
−1
1 ) × E(l2,m

−1
2 ) × E(l3,m

−1
3 ) defined according to the following steps:

1. Choose the {E(li,m
−1
i )}3

i=1 that we want to study. Here we require [li,mi] = 1.

2. Find the set of ordered pair {k1, k2}, k1, k2 ∈ G such that Eqs. (C.22), (C.23)

and (C.24) hold.

3. H(l1,m1,l2,m2,l3,m3), as a Hilbert space, is defined as span{|k1, k2〉|{k1, k2} from step 2}.

4. H(l1,m1,l2,m2,l3,m3) is a representation of E(l1,m
−1
1 )×E(l2,m

−1
2 )×E(l3,m

−1
3 ) by the group

action:

Γ(t)|k1, k2〉 = |t1k1t
−1
2 , t1k2t

−1
3 〉, ∀t = (t1, t2, t3) ∈ E(l1,m

−1
1 )×E(l2,m

−1
2 )×E(l3,m

−1
3 ).

(C.26)

One can write down a more explicit form of Eq. (C.25) using characters, as

Nη1,η2,η3 =

(
3∏
i=1

1

|E(li,m
−1
i )|

) ∑
ti∈E(li,m

−1
i

)

i=1,2,3

χ∗Rη1 (t1)χ∗Rη2 (t2)χ∗Rη3 (t3)χH(t1, t2, t3), (C.27)

where

χH(t1, t2, t3) =
∑

allowed (k1,k2)

δk1,t1k1t
−1
2
δk2,t1k2t

−1
3

(C.28)

is the character forH(l1,m1,l2,m2,l3,m3) as a representation of E(l1,m
−1
1 )×E(l2,m

−1
2 )×E(l3,m

−1
3 ).

Abelian case: If the group G is Abelian, the set of constraints are translated into

l1 = l2 = l3 = 1. (C.29)

Meanwhile, m1,m2,m3, k1, k2 ∈ G and they can be chosen independently. The problem

can be solved easily, and the intuition is simple. For Abelian models, fluxes can be put

on the three rings independently, as if they are “transparent”. We can put three pure
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fluxes (µ1, µ2, µ3) on the three loops, respectively. We can also create three particles

a1, a2, a3 such that Na1,a2,a3 = 1. We fuse the point particles onto each flux. So each

loop is associated with a pair (µi, ai); this describes a shrinkable loop sector. (Note

that this is only true for Abelian models.) In summary, for Abelian models:

• Nη1η2η3 = 1 when η1, η2, η3 ∈ Cloop and Rη1 ×Rη2 ×Rη3 = IdG.

• Nη1η2η3 = 0, otherwise.

non-Abelian case: The multiplicities are more interesting for non-Abelian models.

As usual, we take S3 quantum double as an illustration.

Figure 34: A demonstration that m3 is trivial in the arrangement of loops relevant to the Borromean

fusion of pure fluxes of (3.42).

First, let us study the case relevant to the Borromean fusion process of flux loops

introduced in §3.5. In that case the generator m3 is trivial (see Fig. 34). The relations

(C.22) are then automatically satisfied. The condition relating the inputs of the fusion

and its output is the third relation in (C.23): l̃3 = [m−1
1 , m̃2]. This is the relation

claimed in our discussion in Example 3.15. (Since the inputs are pure fluxes, l1 and l2
are trivial as well, consistent with the first two equations of (C.23)). The multiplicity

can be solved by the general procedure described above. In particular, (C.25) can be

evaluated by calculating the characters (C.27).

In Table 10, we are interested in a subset of {Nη1,η2,η3} which are relevant to the

Borromean fusion process of flux loops, introduced in Eq. (3.42). For this purpose, we

set {η1, η2, η3} = {ϕ(µ), ϕ(ν), ϕ∨(λ)}, where µ, ν, λ ∈ Cflux. The map ϕ∨ : Cflux ↪→ CHopf

is defined to be ϕ followed by the operation η → η∨. In the table, we choose a short-

hand notation nλµν ≡ Nϕ(µ)ϕ(ν)ϕ∨(λ). Although the relation between these multiplicities

to the Borromean fusion is indirect, one thing can be said concretely. If nλµν = 0 then

λ cannot be the fusion outcome of µ and ν in (3.42).
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ν

∑
λ n

λ
µνλ µ

C1 Cr Cs

C1 C1 C1 C1

Cr C1 2C1 Cr
Cs C1 Cr C1 + Cr

Table 10: Multiplicities relevant to the Borromean fusion process. The data is for the 3d S3 quantum

double model. nλµν ≡ Nϕ(µ)ϕ(ν)ϕ∨(λ).

We note that the entries in table 10 pass a consistency check:∑
λ∈Cflux

nλµν =
∑

a∈Cpoint

Na
ϕ(µ)N

ā
ϕ(ν). (C.30)

Here {Na
l } are the multiplicities for the shrinking rule. We omit the derivation since

it is a simple variation of Proposition. 6.1.

Finally, let us list the multiplicities when none of m1,m2,m3 is the identity group

element, for the case of G = S3. For these cases, each of the three rings is occupied by

a certain genuine loop excitation.

1. When {(l1,m1), (l2,m2), (l3,m3)} = {(1, r), (1, r), (1, r)}:

Nη1,η2,η3 =


4 R1 = R2 = R3 = IdZ3

2 Ri = IdZ3 , Ri+1, Ri+2 ∈ {ωZ3 , ω
2
Z3
} for i = 1, 2, 3

0 otherwise.

Here we set R4 = R1, R5 = R2.

2. When {(l1,m1), (l2,m2), (l3,m3)} = {(1, s), (r, r), (r, r)}, for all choices of R1, R2

and R3, we have Nη1,η2,η3 = 1.

3. When {(l1,m1), (l2,m2), (l3,m3)} = {(1, s), (r, r2), (r, r2)}, for all choices of R1,

R2 and R3, we have Nη1,η2,η3 = 1.

4. When {(l1,m1), (l2,m2), (l3,m3)} = {(1, s), (1, s), (1, s)}

Nη1,η2,η3 =


1 R1 = R2 = R3 = IdZ2

1 Ri = IdZ2 , Ri+1 = Ri+2 = SignZ2
for i = 1, 2, 3

0 otherwise

These exhaust all nontrivial cases for G = S3 when each of the three loops is occupied

by a genuine loop excitation.
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D Useful entropy combinations

The main goal of this appendix is a coherent summary of useful entropy conditions on

the reference states. We introduce the following short-hand notations:

∆(B,C)ρ ≡ (SBC + SC − SB)ρ (D.1)

∆(B,C,D)ρ ≡ (SBC + SCD − SB − SD)ρ. (D.2)

In Sec. D.1, we identify a set of conditions of the reference state σ that will be useful

to prove things; as corollaries, the value for other extreme points can be inferred. In

Sec. D.2, we discuss a few equivalent definitions of topological entanglement entropy

coming from various partitions.

We recall the following useful conditions, which follow from SSA:

∆(B,C) ≥ 0,

∆(B,C) ≥ ∆(BB′, C),

∆(B,CE) ≥ ∆(BE,C),

∆(B,C,D) ≥ 0,

∆(B,C,D) ≥ ∆(BB′, C,DD′),

∆(B,CEF,D) ≥ ∆(BE,C,DF ).

(D.3)

D.1 Useful entropy combinations

The main purpose of this section is to derive and summarize a set of conditions satisfied

by the reference state σ, of the form ∆(B,C,D)σ = 0 and ∆(B,C)σ = 0. Since the

combinations of entropies are of similar form to the axioms A0 and A1, this can be

regarded as analogs of the axioms on more diverse topologies. While the conditions

studied here are less fundamental than the axioms in that they are derived properties,

they are handy in proofs.

Finally, we derive the entropy combination for all extreme points as a corollary.

A certain condition of this form can serve as an alternative definition of quantum

dimension, which does not require the existence of a vacuum sector.

We start with the decoupling lemma for entropy conditions, which uncovers some

connections between these conditions on different configurations.

Lemma D.1 (Decoupling lemma). Let Ω be an immersed region. Let ρ
〈e〉
Ω be an extreme

point of Σ(Ω). Let ∂Ω = BD, ∂(Ω \ (BD)) = C and D′ = ∂(Ω \ (BCD)). (A possible
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B

Ω \ ∂Ω

D

B
C

DD′′

B
C
D′

D

Figure 35: Regions showing the idea of proving Eq. (D.4) of the decoupling lemma. ∂Ω = BD,

∂(Ω \ (BD)) = C, D′′ = Ω \ (BCD) and D′ = ∂D′′. The partition ∂Ω into BD is arbitrary. In

general, ∂Ω is allowed to have multiple connected components.

choice of regions is illustrated in Fig. 35.) Then

∆(B,Ω \ ∂Ω, D)ρ〈e〉 = ∆(B,C,DD′)ρ〈e〉 . (D.4)

∆(B,Ω \ ∂Ω, D)ρ〈e〉 = ∆(BD′, C,D)ρ〈e〉 . (D.5)

The remarkable fact is that on the right-hand side of Eq.(D.4), all regions are near

the boundary of region Ω. The result is independent of the detailed partition of ∂Ω

into BD, and it is flexible enough to cover the cases where Ω has multiple boundary

components and various higher dimensional settings.

Proof. The idea of the proof of Eq. (D.4) is illustrated by the color setting of Fig. 35.

First, we show

∆(B,Ω \ ∂Ω, D)ρ〈e〉 = ∆(B,C,DD′′)ρ〈e〉 . (D.6)

This is true because for the extreme point ρ
〈e〉
Ω ,

SDD′′ = SD + SD′′ ,

SBC − SD′′ = SB(Ω\∂Ω).
(D.7)

Both conditions follow from the factorization property and SSA. Second, we find that

∆(B,C,DD′′)ρ〈e〉 = ∆(B,C,DD′)ρ〈e〉 . (D.8)

This is because for the extreme point ρ
〈e〉
Ω ,

SDD′ − SDD′′ = SD′′\D′

SCDD′ − SCDD′′ = SD′′\D′ .
(D.9)
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Both conditions follow from the factorization property and SSA. This completes the

proof of Eq. (D.4).

The proof of Eq. (D.5) is similar since ∆(B,C,D) is invariant under the exchange

of B and D.

D.1.1 Two-dimensional regions

Proposition D.2. Let σ be a 2d reference state on a disk (which satisfies axioms A0

and A1). The entropy combinations

1. ∆(B,C)σ = 0 for the partition in Fig. 36(a).

2. ∆(B,C,D))σ = 0 for the partition in Fig. 36(b) and (c).

Proof. To prove the first statement, ∆(B,C)σ = 0 for Fig. 36(a), we consider a ball for

which enlarged A0 holds. We then use the decoupling lemma to go the sphere shell.

Now the left-hand side of Eq. (D.5) becomes zero (due to enlarged A0, and we have

set D = ∅); the right-hand side becomes the desired answer. An alternative method of

proving the first statement is to use the vacuum lemma (Lemma 3.2) and the extreme

point criterion (Lemma 2.13).

∆(B,C,D)σ = 0 for Fig. 36(b) follows from enlarged A1 and the decoupling lemma.

The logic is analogous to the first method described in the previous paragraph.

∆(B,C,D)σ = 0 for Fig. 36(c) follows from that for Fig. 36(b) and the sphere

completion lemma. The useful observation is that one can flip the inside and the

outside of an annulus by smoothly deforming it on a sphere.

(a) (b) (c)

: B
: C
: D

Figure 36: An annulus embedded in a disk and its three basic partitions. For all three partitions,

BD (D = ∅ for (a)) is the thickened boundary of the annulus, whereas C is the interior.

With these relatively simple conditions, one can derive more conditions by applying

the decoupling lemma. Below are some examples.
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(a) (b1) (b2) (b3)

: B
: C
: D

Figure 37: All regions are contained in a disk. For all these partitions, BD is the thickened boundary

and C is the interior.

Example D.3. ∆(B,C,D)σ = 0 for any BCD configuration in Fig. 37.

To illustrate the idea, here are the steps that justifies case (a) of Fig. 37:

−→ −→
: B
: C
: D

(D.10)

The three figures here correspond to the three in Fig. 35 translated to this particular

case.

Quantum dimension in 2d. Below, we obtain an expression for the quantum

dimension by replacing the reference state with an appropriate extreme point.

Proposition D.4. For the extreme points with labels specified in the table:
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∆(B,C,D) when 2d regions

2 ln da ∀a ∈ C a a
: B
: C
: D

4 ln da ∀a ∈ C a

2 ln da ∀a, b, c ∈ C ca b

2(ln da + ln db) ∀a, b, c ∈ C ca b

2(ln da + ln db + ln dc) ∀a, b, c ∈ C ca b

Proof. This is proved by three steps: (1) Use the decoupling lemma to reduce the

problem to the thickened boundary of the region in question, (2) take entropy differ-

ences between the extreme point in question and the reference state, and (3) use the

definition of the quantum dimension (2.10).

Remark. One remarkable thing lies behind Proposition D.4. By calculating the en-

tropy of a single wave function, one can identify the quantum dimension of an individual

superselection sector. This proposition is a useful alternative definition of the quantum

dimension compared to Eq. (2.10). This definition can work in contexts not covered

by Eq. (2.10), e.g., for immersed regions and in the presence of defects, where the

existence of a vacuum sector is not guaranteed.

Furthermore, as a corollary, one can easily infer that the quantum dimension

da ≥ 1, ∀a ∈ C, (D.11)
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which is a consequence of SSA, namely ∆(B,C,D) ≥ 0. While this may also be derived

from the highly constraining fusion rules [1], this new logic is succinct and elementary.

We shall see the usefulness of this logic in 3d later.

D.1.2 Three-dimensional regions

Proposition D.5. Let σ be a 3d entanglement bootstrap reference state (which satisfies

the 3d version of axioms A0 and A1). The entropy combinations

1. ∆(B,C)σ = 0 for Fig. 38(a) and (c).

2. ∆(B,C,D)σ = 0 for Fig. 38(b) and (d).

(a) (b)
(c) (d)

: B
: C
: D

Figure 38: A few basic partitions for 3d. The subsystems are partitions of either a sphere shell or a

solid torus. These regions are embedded in a ball.

Proof. The statement ∆(B,C)σ = 0 for sphere shell Fig. 38(a) can follow from enlarged

A0 and the decoupling lemma. Here, A0 is on a ball that contains the sphere shell,

and the decoupling lemma allows us to remove the interior of the ball, getting the

condition we look for. By an alternative method, the vacuum lemma (Lemma 3.2) and

the extreme point criterion (Lemma 2.13), one can see ∆(B,C)σ = 0 is true for both

Fig. 38(a) and (c).

The statement that ∆(B,C,D)σ = 0 for Fig. 38(b) follows from enlarged A1 and

the decoupling lemma. Again, the decoupling lemma allows us to remove the interior

of the ball. ∆(B,C,D)σ = 0 for Fig. 38(d) is a special case of Lemma 5.7, which is

proved in the main text.

Proposition D.6. Let σ be a reference state on a ball. The entropy combination

∆(B,C,D)σ = 0 for the partition of solid torus T = BCD shown in Fig. 39(a).
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B
C

D

(a)

(b)

BD BD

C CD′

(c)

C ′
BD′′

Figure 39: (a) A solid torus T embedded in a ball and its partition T = BCD. (This is a reprint of

Fig. 20.) (b) Add disk D′. (c) An illustration of C ′ ⊃ C and D′′ ⊂ DD′, where BC ′D′′ is a partition

of a ball for which an enlarged A1 (∆(B,C ′, D′′)σ = 0) holds. Note that C ′ ∩B = ∅.

Proof. Since σ is the reference state, we can reversibly fill in the “hole” of the solid

torus T with a region D′ (which does not touch B); see Fig. 39(b). This means

∆(B,C,D)σ = ∆(B,C,DD′)σ. (D.12)

Note that TD′ is a ball. Now we extend C into C ′ ⊃ C (C ′∩B = ∅) shown in Fig. 39(c)

and let D′′ ≡ CDD′ \ C ′. Now BD′′ is a sphere shell surrounding C ′. The right-hand

side of Eq. (D.12) is then constrained to vanish:

∆(B,C,DD′)σ ≤ ∆(B,C ′, D′′)σ

= 0.
(D.13)

The first line is a consequence of SSA (the last line of Eq. (D.3)). The second line

follows from enlarged A1. This completes the proof.

Below is a statement for a generic coprime (p, q) partition of a solid torus, which

generalizes Lemma 5.7 of the main text.

Proposition D.7. Let σ be a reference state on a ball. The entropy combination

∆(B,C,D)σ = 0 for the partition of solid torus T = BCD shown in Fig. 40, for any

pair of relatively-prime integers (p, q).

Proof. The special case of p = 1 (or q = 1) is proved in Lemma 5.7. The idea is to

use the sphere completion lemma, and consider the decomposition of the 3-sphere as

S3 = T ∪ T̃ , where ∂T = ∂T̃ = BD. To solve the generic coprime (p, q), we shall
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(p, q)

: B
: C
: D

Figure 40: The torus T = BCD is embedded in a ball. The partition involves a (p, q) rotation,

where p and q are coprime integers.

Figure 41: An illustration of the belt trick, which can add ±4π twist to a closed ribbon. Note that

the second step needs immersion.

convert the problem to the simpler cases ((1,m) or (n, 1)) using deformations of solid

tori through a sequence of nontrivial immersion.

This key technique is a well-known (and popular) way to show “in the spherical

braid group the coil has order two” (see figure 4 on Page 133 of Ref. [55]). This trick

is also known as “the Dirac belt trick” [56]. In our setup, this trick can be phrased as:

it is possible to add a 4π twist to a closed ribbon through immersion in 3d space27; see

Fig. 41 for an illustration.

If we think of the thickening of the closed ribbon in Fig. 41 as the solid torus

T = BCD that we are interested in, then T can map back to T . Furthermore, with

the technique in Fig. 19 we see that the reference state σT is mapped back to itself.

Nonetheless, the process induces a change on the topological class of the partition

BCD, and (p, q) changes:

(p, q)→ (p, q ± 2p). (D.14)

The reason is that there are p braids in the spiral region D and each is twisted by 4π.

Furthermore, by the sphere completion lemma, there is a “dual” solid torus T̃ = BAD,

where A = S3 \BCD. Applying the same trick to T̃ , we have

(p, q)→ (p± 2q, q). (D.15)

Now it is clear that if we start from an arbitrary coprime (p, q), we can always end up

with (1, 0), (0, 1), (1, 1) or (1,−1). This is because one of the operations in Eq. (D.14)

27One important point is that 4π is possible while 2π is not.
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and (D.15) can decrease the absolute value of the entry that has a larger absolute value,

and that (p, q) is equivalent to (−p,−q). This completes the proof.

Here are a few more examples. They follow directly from the decoupling lemma

and the basic configurations discussed above. The sphere completion lemma is needed

in some cases.

Example D.8. The following statements hold:

1. ∆(B,C)σ = 0 for Fig. 42(a).

2. ∆(B,C,D)σ = 0 for Fig. 42(b) and (c).

3. ∆(B,C,D)σ = 0 for Fig. 42(d), for any coprime (p, q).

(a) (b)

(c)

(p, q)

(d)

: B
: C
: D

Figure 42: All configurations are contained in a ball for which the reference state is defined. For

(d), any coprime pair (p, q) is allowed while the depiction is accurate for p = 2.

Quantum dimension in 3d: Similar to 2d cases, the quantum dimensions of

various superselection sectors show up when considering an extreme point.
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Proposition D.9. For the extreme points with labels specified in the table:

∆(B,C,D) when 3d regions

2 ln da ∀a ∈ Cpoint a
: B
: C
: D

0 ∀µ ∈ Cflux
µ

2 ln dµ ∀µ ∈ Cflux
D

C

B

µ

4
(
ln dµ − ln dtp(µ)

)
∀µ ∈ Cflux, ∀(p, q) coprime

(p, q)

µ

2
(
ln dη − ln d2

µ

)
∀η ∈ CHopf , µ = t(1,0)(η) η

µ

4
(
ln dη − ln d2

µ

)
∀η ∈ CHopf , µ = t(1,0)(η) η

µ

2
(

ln dη − ln d2
t(p,q)(η)

)
∀η ∈ CHopf

(p, q)

η

Here tp : Cflux → Cflux is the spiral map on fluxes, as is defined in Eq. (5.6); t(p,q) :

CHopf → Cflux is the map defined in Eq. (5.19).

Among these statements, the one for Fig. 39(a), (i.e. condition 3) requires some

explanation. Below is the proof of it. (We omit the proof of other conditions because

they follow directly from Eq. (2.10), the definition of the quantum dimension.)
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Proof. Because ∆(B,C,D)σ = 0 for the partition in Fig. 39(a) (Proposition D.6), all

we need is to calculate the entropy differences between the extreme point labeled by µ

and the vacuum 1. Below we denote the reduced density matrix of extreme point ρµT
on its subsystem X as ρµX . Since B is a ball,

∆SB ≡ S(ρµB)− S(σB) = 0. (D.16)

Both BC and CD are solid tori, so

∆SBC ≡ S(ρµBC)− S(σBC) = 2 ln dµ. (D.17)

∆SCD ≡ S(ρµCD)− S(σCD) = 2 ln dµ. (D.18)

Finally, D is a genus-two handlebody. But because there are no excitations in C, there

is a reversible quantum channel taking the state of D to a solid torus in the sector µ.

This channel preserves entropy differences, so

∆SD ≡ S(ρµD)− S(σD) = 2 ln dµ. (D.19)

Putting these together, we have ∆(B,C,D)ρµ = ∆SBC+∆SCD−∆SB−∆SD = 2 ln dµ,

which completes the proof of condition 3.

Corollary D.9.1 (Bounds for quantum dimensions). The following statements hold:

1. da ≥ 1, for any a ∈ Cpoint.

2. dµ ≥ 1 for any µ ∈ Cflux.

3. dµ ≥ dtp(µ), for any µ ∈ Cflux and any integer p.

4. dη ≥ d2
t(p,q)

(η), for any η ∈ CHopf .

D.2 Equivalent definitions of topological entanglement entropy

In this appendix, we discuss a few equivalent definitions of the topological entanglement

entropy (TEE) in 2d and 3d. Below σ is a reference state on a large enough disk (ball).

Our statement can be inferred from previous literature [6, 7, 38] if the familiar form of

strict area law S(A) = α` − γ is assumed. The purpose of this appendix is to derive

the statements merely from axioms A0 and A1 on bounded radius disks (balls).
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(a)

BA

C

(b)

A

BB

C

(c)

B

B

DD C

Figure 43: Partitions for 2d TEE. All regions are subsystems of a disk.

D.2.1 2d topological entanglement entropy

Proposition D.10. The following definitions of 2d TEE are equivalent:

1. In terms of Fig. 43(a), γ = (SAB + SBC + SCA − SA − SB − SC − SABC)σ.

2. In terms of the subsystems in Fig. 43(b), γ = 1
2
I(A : C|B)σ.

3. In terms of the subsystems in Fig. 43(c), γ = 1
2
∆(B,C,D)σ.

Proof. First of all, each linear combination is a topological invariant. This is because

axiom A1 implies that smoothly deforming the boundary of the regions preserves the

entropy combination. This argument can be found in Fig. 4 and 5 of [1]; the proof of

1⇔ 2 is done in Proposition 5.2 of the same reference. Below we show 2⇔ 3.

Because of the sphere completion lemma, one can do the analysis on a sphere. Let

the complement of BCD of Fig. 43(c) to be A = S2 \ (BCD). Let the reference state

on the sphere be |ψS2〉. We immediately see

I(A : C|B)|ψS2 〉 = ∆(B,C,D)σ. (D.20)

Now the ABC partition is the same as that in Fig. 43(b). Thus, 2⇔ 3. This completes

the proof.

D.2.2 3d topological entanglement entropy

Proposition D.11. The following definitions of 3d TEE are equivalent:

1. In terms of Fig. 44(1) γ = 1
2
I(A : C|B)σ. Here ABC is a solid torus.

2. In terms of Fig. 44(2) γ = 1
2
I(A : C|D)σ. Here ADC is a sphere shell.

3. In terms of Fig. 44(3) γ = 1
2
∆(B,C,D)σ.

4. In terms of Fig. 44(4) γ = 1
2
I(A′ : C|B)σ.
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A C

B

B

(1) (2)

A

DD

C

(3)

B

B

DD C

(4)

B

B

C

A′

(5)

DD C

A′

Figure 44: Partitions for 3d TEE. All regions are subsystems of a ball.

5. In terms of Fig. 44(5) γ = 1
2
I(A′ : C|D)σ.

Proof. Same as the 2d cases, each linear combination is invariant under smooth defor-

mation of the subsystems. We now apply the sphere completion lemma to obtain a

pure reference state |ψS3〉 on a 3-sphere, S3 = ABCD. Here |ψS3〉 is the completion of

reference state σ to S3. It follows that,

I(A : C|B)|ψS3 〉 = I(A : C|D)|ψS3 〉 = ∆(B,C,D)|ψS3 〉. (D.21)

The geometry of ABC, ADC and BCD are the same as that in item 1, 2 and 3,

respectively. This proves that 1⇔ 2⇔ 3.

Next, we prove 1 ⇔ 4 and 2 ⇔ 5. Let us do the analysis on the 3-sphere S3 =

ABCD. Let A = A′A′′, where A′′ is the ball that is surrounded by sphere shell A′.

The strong subadditivity implies that

I(A : C|B)|ψS3 〉 ≥ I(A′ : C|B)|ψS3 〉 (D.22)

This “≥” can actually be replaced by “=”. This is because the enlarged A0 implies

∆(A′, A′′)|ψS3 〉 = 0, which bounds the difference between the two sides of (D.22) to

zero. This proves that 1⇔ 4. The proof for 2⇔ 5 is analogous (done by replacing B

with D). This completes the proof.

E Dimensional reduction and beyond

In this appendix, we develop a dimensional reduction point of view, which provides

additional insight into some of the basic fusion data identified in §3.2 and §3.3. This

dimensional reduction picture (Appendix E.1) is rigorous in the sense that we are

able to obtain a 2d entanglement bootstrap reference state, and from there, we can

“bootstrap” the related 2d superselection sectors and fusion rules. We then map these
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objects back to 3d. We summarize the facts about antiparticles, quantum dimensions,

and the fusion rules associated with these basic data (Appendix E.2).

On the other hand, there are constraints on 3d fusion data that are beyond the

description of the dimensional reduction picture that we develop. One important class

of such constraints comes from topologically nontrivial paths of deforming a region

back to itself. We discuss some of these constraints in Appendix E.3.

E.1 Dimensional reduction

We initiate a study of dimensional reduction in the entanglement bootstrap program.

We shall describe two rigorous dimensional reduction procedures. In §E.1.1 we describe

a dimensional reduction of the vacuum sector (vacuum reduction); the end result is a

2d system with a gapped boundary. In §E.1.2 we describe the dimensional reduction for

an arbitrary flux sector (flux reduction). Open questions about yet-to-be-understood

(possibly inequivalent) dimensional reduction procedures are discussed.

E.1.1 Dimensional reduction of the vacuum

Below, we show that the reference state on a 3d ball can be viewed as a reference state

on a 2d disk adjacent to a gapped boundary. This is done by making connections to

the 2d region that undergoes the revolution; see Fig. 45 for an illustration. We shall

see, on this 2d reference state, both the bulk axioms and the boundary axioms are

satisfied.28 The 3d versions of A0 and A1 are enough for the dimensional reduction

to work. No rotational symmetry is assumed.

This procedure associates a region in 2d with its revolution in 3d. The Hilbert

space and the quantum state of the 3d region are carried over to the associated 2d

region. The dimensional reduction, thus, provides a quantum state in 2d. In fact, this

quantum state is a valid 2d entanglement bootstrap reference state. (For this case,

both the bulk axioms and the boundary axioms are satisfied.) To see this, we observe

that:

• A disk in the bulk of the 2d system corresponds to a solid torus in 3d. The 2d

bulk version of A0 and A1 follow from Proposition D.5.

• A disk adjacent to the boundary of the 2d system corresponds to a ball in 3d.

The 2d boundary version of A0 (A1) follows directly from the 3d version of A0

(A1) for its preimage.
28A gapped boundary is a gapped domain wall [57, 2] separating the vacuum and a 2d topological

order.
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Figure 45: (Vacuum reduction) The reference state on a ball can be viewed as a 2d entanglement

bootstrap reference state on a disk adjacent to a gapped boundary. The gapped boundary is shown

in purple. Various superselection sectors and fusion multiplicities can be understood from this dimen-

sional reduction picture.

Remark. Suppose Ω↓ is a 2d region, and Ω is its revolution. Then the information

convex set Σ(Ω↓), defined for the 2d reference state, is, in general, not isomorphic to

the information convex set Σ(Ω) of the 3d region defined for the 3d reference state. In

general, Σ(Ω↓) is a smaller set. This is because a state in Σ(Ω↓) is indistinguishable

from the 2d reference state on a set of small balls, and when viewed in 3d, this state is

indistinguishable from the 3d reference state on a set of thin solid tori.

With this knowledge, we can apply 2d entanglement bootstrap [1, 2] to under-

stand various superselection sectors in 3d. Superselection sectors and fusion processes

understood with this picture are:

1. Cpoint corresponds to the boundary excitations.

2. Cloop corresponds to the anyons. This is because an extreme point in the informa-

tion convex set of a 2d annulus corresponds to a state in the information convex

set of a 3d torus shell (the revolution of the 2d annulus), labeled by an element

in C[1]
Hopf.

3. The shrinking rule Eq. (3.17) corresponds to fusing an anyon onto the boundary.

4. The Cflux corresponds to the subset of anyons that can condense onto the bound-

ary. (The quantum dimensions of the fluxes, however, have an extra square root,

by our convention.) This is the dimensional reduction view of the embedding

Cflux

ϕ
↪→ Cloop, considered in Eq. (3.10).
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The existence of anti-sectors and consistency relations of the fusion rules can be seen

with this line of reasoning. See Appendix E.2 for the details.

Remark. A few remarks are in order:

1. This vacuum reduction can be implemented on S3 as well. The result is a pure

reference state on a disk D2. It has an entire boundary. The bulk/boundary

versions of the axioms are satisfied for the entire disk.

2. Because the 2d reference state obtained in this way allows a gapped boundary,

the system cannot be chiral. From the recent perspective [12], this manifests in

the fact that the modular commutator is zero.

3. The existence of a gapped boundary of the dimensional reduction does not imply

the existence of a gapped boundary of the 3d system. It remains an open ques-

tion whether the following conjecture in Ref. [33], ”all 3+1D bosonic topological

orders have gappable boundary.” can be verified in the framework of entanglement

bootstrap.

E.1.2 Dimensional reduction of flux sectors

Below, we introduce a more flexible dimensional reduction. It generates a reference

state σ[µ] on a 2d disk (within the bulk), for each flux µ ∈ Cflux. The idea is to take

an extreme point of a solid torus and make use of the revolution; see Fig. 46 for an

illustration. The 2d bulk version of axioms A0 and A1 are checked explicitly. This is

because the revolution of a disk in the 2d bulk is a solid torus, and these conditions

are verified by Lemma 2.13 and Proposition D.9.

ρµT ∈ Σ(T )

flux reduction

revolution

σ[µ]

Figure 46: (Flux reduction) An extreme point of the solid torus (ρµT ∈ Σ(T )) can be viewed as a

valid entanglement bootstrap reference state in 2d (σ[µ]), defined on a disk; σ[µ] satisfies axioms A0

and A1 in the 2d bulk. Various superselection sectors and fusion spaces of 3d can be understood by

this picture.

The set C[µ]
Hopf is mapped to the anyons in the 2d entanglement bootstrap problem

defined by the reference state σ[µ]. Thus, it makes sense to talk about the fusion
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and braiding of these loop excitations from this dimensional reduction viewpoint. For

µ = 1, this corresponds to the fusion and braiding of shrinkable loops. This has been

covered in the vacuum reduction above. When µ 6= 1, this corresponds to the fusion

and braiding of two loops that are linked with a third loop. The configuration of the

loop excitations is the same as that in the 3-loop braiding statistics [29, 30].

Remark. Here are a few open problems:

1. It remains an open problem if the 2d reference state σ[µ] allows a gapped boundary

for µ 6= 1.

2. Another set of dimensional reduction, for each flux, can be obtained by taking the

rotation in Fig. 46 be the (1, 1) rotation, instead of the ordinary (1, 0) rotation.29

We do not know if this set of dimensional reductions is different or not.

3. The dimensional reduction with (1, 1) is already interesting for the vacuum sector.

It provides another vacuum reduction. The S3 has a global Hopf fibration, and

therefore this dimensional reduction maps a reference state on S3 to a reference

state on S2. This dimensional reduction does not generate a boundary explicitly.

It is an open question (1) if the 2d reference state so obtained allows a gapped

boundary, and (2) if it is within the same phase as the vacuum reduction shown

in Fig. 45.

4. Even more generally, a solid torus can be obtained by a revolution labeled by a

pair (p, q), where p and q are coprime integers. Every such revolution provides a

quantum state on a 2d disk. This is more general since it covers new cases, e.g.,

(2, 1) and (2, 3). For the most general choice of flux, however, A1 can break for a

special disk in 2d.30 These dimensional reductions might provide references with

a non-Abelian anyon, or possibly a topological defect [22, 58], on the disk. We

leave this for future investigation.

5. Another open question is whether it is possible to come up with a dimensional

reduction such that the 2d system is on a non-orientable surface (possibly with

boundaries).

29We consider (1, 1) instead of the more general (1, p) because, these can be reduced to either (1, 1)

or (1, 0) by the belt trick (Fig. 41).
30This is closed related to “standard fibered torus”, a notion used in the study of Seifert fiber

space.In this language, A1 may be violated at a disk, which becomes a solid torus containing an

exceptional fiber under the (p, q) revolution.
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E.2 Fusion rules, quantum dimensions and consistency rela-

tions

We summarize facts about anti-sectors and the constraints of the fusion rules. These

facts can be derived straightforwardly by applying a standard method of entanglement

bootstrap (see, for instance, Section 4.3 of Ref. [1]). We comment on which of the

statements can be understood by the dimensional reduction methods developed in

Appendix E.1.

Point particles: The fusion multiplicities for point particles {N c
ab} for a, b, c ∈

Cpoint satisfy:

1. Associativity ∑
i∈Cpoint

Nd
aiN

i
bc =

∑
j∈Cpoint

N j
abN

d
jc. (E.1)

2. Conditions related to the vacuum and the existence of antiparticles:

N c
1a = δa,c

N1
ab = δb,ā

N c
ab = N c̄

b̄ā.

(E.2)

3. The antiparticle of a ∈ Cpoint, denoted as ā ∈ Cpoint, satisfies 1̄ = 1 and ¯̄a = a.

4. The set of quantum dimensions {da}a∈Cpoint
, defined according to Eq. (2.10), is

the unique positive solution of

dadb =
∑
c

N c
abdc. (E.3)

This further implies, d1 = 1 and dā = da ≥ 1.

5. Symmetry under the exchange of the two lower labels:

N c
ab = N c

ba. (E.4)

Remark. All the statements in the list above, except Eq. (E.4), can be understood

from the dimensional reduction of the vacuum. The symmetry N c
ab = N c

ba is, however,

not true for a generic 2d gapped boundary, where a, b, c are the boundary excitations.

This implies that the gapped boundary obtained by the dimensional reduction of a 3d

theory is special.
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Shrinkable loops and fluxes: By the dimensional reduction of the vacuum, the

set of shrinkable loops in Cloop corresponds to the set of anyons of a 2d entanglement

bootstrap problem. More precisely, we have a map,

R : Cloop → C[1]
anyon. (E.5)

Here, C[1]
anyon represents the set of anyons obtained by the dimensional reduction of the

vacuum. This map preserves the multiplicities and the quantum dimensions:

N l3
l1l2

= N
R(l3)
R(l1)R(l2), dl = dR(l), ∀l1, l2, l3, l ∈ Cloop. (E.6)

We define the anti-sector for shrinkable loops, such that R(l̄) is the anti-anyon of R(l).

An interesting consequence is:

Proposition E.1. In the 3d theory, we have

N ā
l̄ = Na

l , (E.7)

dl =
∑

a∈Cpoint

Na
l da, l ∈ Cloop, (E.8)

da =
1

D2

∑
l∈Cloop

Na
l dl, a ∈ Cpoint, (E.9)

D2 =

√ ∑
l∈Cloop

d2
l . (E.10)

Here, D is the total quantum dimension of the 3d system, defined in Eq. (3.4).

(Note that we gave 3d proofs of (E.8) and (E.9) in §6.2.1.)

Proof. First, we apply the dimensional reduction of the vacuum to convert the problem

to that of a 2d system with a gapped boundary. After that, we see that each statement

is converted to a consistency relation for anyons and boundary excitations. We use

the known 2d results for gapped boundaries, previously derived in the framework of

entanglement bootstrap; see Ref. [2] and also Section VI E of [16].

The subset {N1
l } ⊂ {Na

l } is the set of condensation multiplicities. For a generic

gapped boundary, some of these numbers can be greater than 1. However, because the

boundary obtained by the dimensional reduction is special, we have:

N1
l =

∑
µ∈Cflux

δl,ϕ(µ). (E.11)

Here the map ϕ : Cflux → Cloop is that defined in Eq. (3.10). We see that N1
l must be

either 0 or 1, because ϕ is an embedding. From the dimensional reduction point of

view, µ̄ is the flux such that ϕ(µ̄) is the anti-sector of ϕ(µ).
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Remark. In fact, the number of point particles is always equal to be number of fluxes:

|Cpoint| = |Cflux|. This result has been conjectured in [27]. We shall provide an entan-

glement bootstrap derivation of this formula in [20].

The set C[µ]
Hopf : Properties of C[µ]

Hopf can be studied by the flux reduction. We denote

the map to the 2d anyon theory as:

R : C[µ]
Hopf → C

[µ]
anyon. (E.12)

Here, C[µ]
anyon represents the set of anyons obtained by the dimensional reduction of flux

µ. This map preserves the multiplicities:

Nη3
η1η2

= N
R(η3)
R(η1)R(η2), ∀η1, η2, η3 ∈ C[µ]

Hopf . (E.13)

The quantum dimensions are related by

dη = d2
µ dR(η), ∀η ∈ C[µ]

Hopf . (E.14)

Proposition E.2. Let D[µ]
anyon be the total quantum dimension of the anyons in C[µ]

anyon.

D is the total quantum dimension of the 3d system. Then

D[µ]
anyon =

D2

d2
µ

, ∀µ ∈ Cflux. (E.15)

Furthermore, √√√√ ∑
η∈C[µ]

Hopf

d2
η = D2, ∀µ ∈ Cflux. (E.16)

Proof. The µ = 1 case follows from Proposition E.1. The total quantum dimension

D[1]
anyon = D[µ]

anyon · d2
µ, and this follows from the calculation of the difference of the

topological entanglement entropies for the dimensional reduction of µ and 1. Finally,

Eq. (E.16) is derived by applying Eq. (E.14).

E.3 Constraints from topologically-nontrivial paths

In the previous section, we already observed a few facts that are not obvious from

dimensional reduction but are, nonetheless, simple to see from the 3d point of view.

The most obvious one is N c
ab = N c

ba for point particles. This is a consequence of

the (generalized) isomorphism theorem. The crucial observation is the existence of a
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nontrivial path that permutes the two holes of a ball minus two balls. In the 3d view,

deformations not obvious in 2d can be seen.

Below, we discuss several constraints that arise from similar considerations. The

goal is to illustrate the general idea. Some are already mentioned in previous sections

or references.

First, let us consider paths formed by regions embedded in a ball.

• The absence of topologically nontrivial path is of importance as well. In 2d, it

is impossible to flip an annulus inside out by deforming it on a large disk. This

gives rise to a well-defined “reference frame” to compare anyon types (Lemma 4.3

of Ref. [1]).

• In 3d, the same observation generalizes: a sphere shell cannot be flipped inside

out by deformations within a ball. Here we require that the sphere shell to remain

embedded.

• In 3d, it is easy to flip a solid torus. This path is topologically nontrivial and it

gives rise to the map µ→ µ̄; we have illustrated this map in Fig. 9(b).

• A similar flip on the torus shell T generalizes a relabeling of CHopf. Let us denote

this map as f : CHopf → CHopf. Then it is obvious that if η ∈ CHopf then f(η) ∈
C[µ̄]

Hopf . Therefore, f maps Cloop to itself. As a consequence

Na
f(l) = Na

l , f ◦ φ(a) = φ(a), f ◦ ϕ(µ) = ϕ(µ̄). (E.17)

The first two conditions can be seen by examining the deformation of a ball minus

an unknot. The third condition is implied by the discussion above.

Secondly, let us consider paths formed by regions embedded in a sphere. (Spheres

are available by the sphere completion lemma 3.1.)

• In 2d, on a sphere, it is possible to flip the annulus inside out. This nontrivial

path induces an automorphism of the information convex set of the annulus. This

maps a→ ā, and it provides an intuitive understanding of antiparticles.

• In 3d, on a 3-sphere, it is possible to flip a sphere shell inside out. Similarly,

this generates an automorphism of the information convex set of the sphere shell,

such that particles are mapped to antiparticles: a→ ā, for a ∈ Cpoint.

• The complement of torus shell T on 3-sphere is the Hopf link. A path which

permutes the pair of linked loops generates the map η → η∨ (§3.2).

• Knot complement S3 \K can be deformed back to itself by nontrivial paths as

well. (This applies to trefoil knot, for example.) It remains to be seen what can

be learned from this.
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Thirdly, we discuss the extra freedom of deformation provided by paths with im-

mersed regions.

• Paths with immersed regions can turn a sphere shell inside out; this is essentially

sphere eversion [46, 47, 48]. We conjecture that all sphere eversion processes

generate the same permutation of labels in Cpoint, namely a→ ā. (Note that this

process does not have any 2d analog. An annulus cannot be turned inside out

with a sequence of immersed regions as intermediate steps within a large disk

because the winding number of the boundary is an invariant.)

• Paths with immersed regions can turn a torus shell inside out as well. In fact,

there are many inequivalent ways to do so; see [59, 60]. These maps should

provide inequivalent ways of mapping CHopf to itself. It remains to be seen what

can be learned from these maps.

Finally, let us remark that these do not exhaust all the techniques to generate con-

straints on the fusion data beyond dimensional reduction. Other known examples

include restricting a sectorizable region to a subsystem (Proposition 2.23), and the

spiral maps (§5), which combine both partial trace and homotopy through immersions.
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