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1 Introduction

The heterotic string enjoys very particular features that are not present in type II string

theories. First and foremost, the theory comes with a gauge sector at a perturbative level.

This is not the case in type II superstrings, where non-abelian gauge fields appear only

when considering the full non-perturbative effects due to the presence of D-branes. This

unfortunately comes at a cost: the presence of the Green-Schwarz anomaly cancellation

condition imposes highly non-trivial relations between the gauge bundle, the flux and the

geometry at first order in the string parameter α′. This poses an additional challenge to

the construction of heterotic background compactifications with maximally supersymmetric

spacetime.

In this paper we study heterotic compactifications on 7-dimensional manifolds giving

3-dimensional AdS3 spacetime quantum field theories with minimal supersymmetry N = 1.

The geometry of these compactifications is a warped product of AdS3 and a 7-dimensional

compact manifold together with a gauge bundle with a connection. We call the geometrical

structure which preserves supersymmetry a heterotic G2 system, and solutions of this

system satisfy the equations of motion of the theory. These compactifications were first

studied in references [1–11].

There are various properties that make these systems attractive. For instance, they

allow not only Minkowski but also Anti-de Sitter spacetime solutions. This interesting

feature is absent in the Hull-Strominger system [12, 13] which gives supersymmetric four

dimensional theories on Minkowski space when compactifying on 6-dimensional manifolds.

The 7-dimensional compact manifolds relevant to heterotic compactifications must pos-

sess an integrable G2 structure [2, 4] which guarantees the existence of a unique connection

with totally antisymmetric torsion [3]. In addition, the perturbative heterotic string comes

with a gauge bundle with a connection which must be a G2-instanton [5–7, 14]. These are

higher-dimensional analogues of the 4-dimensional Anti Self-Dual (ASD) instantons [15]

and they have been gathering attention both in the mathematics and physics communities

for a long time, see [1, 16–27] for a non-exhaustive list of works on this topic. Thus, the

heterotic G2 system constitutes a natural environment for the study of these connections.

The heterotic G2 system also requires an anomaly cancellation condition which guarantees

that supersymmetric solutions satisfy the equations of motion [8, 13, 28].
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Finally, the infinitesimal moduli space of heterotic G2 systems was recently studied

[29–34]. The anomaly cancellation condition plays a major role here: the G2-structure

and the instanton connections on the compact manifold are intertwined with the flux.

This requirement is very strong. Ignoring the anomaly cancellation condition gives an

infinitesimal moduli space which is infinite dimensional (except when the compactifying

manifold has G2 holonomy). However, for the full heterotic G2 system, it turns out to be

finite dimensional. One of our main goals is to construct solutions that are amenable to a

deformation theory interpretation.

Unfortunately, not many explicit solutions to the heterotic G2 system with minimal

supersymmetry are available in the literature despite the efforts of the community in recent

years [34–38]. In fact, some of these solutions have been shown [39] to have more than one

supersymmetry. In this paper, we construct new families of solutions that present all the

interesting features that we have mentioned: AdS3 spacetime, a collection of G2-instantons

on the compact G2-structure manifold, and the possibility of regarding the family as a

finite version of the infinitesimal deformations of [31].

In the remainder of this introductory section we review the geometry of those 7-

dimensional manifolds which allow for the preservation of minimal N = 1 supersymmetry

in three dimensions. As we have already stressed, the 7-dimensional compact manifold

must admit an integrable G2-structure. Therefore, we begin with a review of G2-structures

in section 1.1. In section 1.2 we review the heterotic G2 system in detail, describing the

geometric structures that are required to obtain supersymmetric vacua. In particular we

briefly point out how Anti-de Sitter 3-dimensional spacetimes emerge.

In section 2 we focus on specific examples of compact 7-manifolds with an integrable

G2-structure. We will later use them to construct solutions of the heterotic G2 system with

AdS3 spacetime. This had only been achieved so far for the solutions in [38]. We review

in section 2.1 the definition and mathematical properties of 3-Sasakian manifolds. These

manifolds are naturally equipped with a G2-structure that can be deformed by rescaling

the metric along certain SU(2) fibres. This process is known as squashing and we call

these manifolds with squashed metrics squashed 3-Sasakian manifolds. In section 2.2 we

specialise to the case of homogeneous compact squashed 3-Sasakian manifolds. To be

precise, these are the squashed 7-sphere and the squashed Aloff–Wallach space. Squashed

7-spheres first appeared in the physics literature in the context of compactifications of

11-dimensional supergravity down to 4 dimensions, see for example [40–42].

Instanton connections are the centre of attention of section 3. In particular, we de-

scribe several G2-instantons on bundles over squashed 3-Sasakian manifolds—with special

emphasis on the tangent bundle and the case of homogeneous manifolds. In section 3.1

we review the construction of the canonical connection [43, 44] and we check it is a G2-

instanton. In section 3.2 we extend a G2-instanton construction by Clarke and Oliveira

[45] to all squashed metrics and different representations. Lastly, in section 3.3 we describe

explicitly a one-parameter family of instantons on the tangent bundle for both the squashed

7-sphere and the squashed Aloff–Wallach space.

We then proceed in section 4 to set up the Bianchi identity for the anomaly cancellation

condition. This identity is a rather complicated relation involving all the theory’s degrees
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of freedom, that is: the torsion of a G2 compatible connection the manifold, the curvature

of the instanton connection on the gauge vector bundle, and the curvature of the instanton

connection on the tangent bundle. The relevant curvature terms can be found in sections 4.1

to 4.3 for each of the instanton connections we consider.

Finally, we put all the previous data together to construct explicit solutions of the

heterotic G2 system. As anticipated, the highly non-trivial heterotic Bianchi identity sig-

nificantly constrains the potential solutions. For that reason, we can only find solutions for

particular combinations of instantons. This is explained in full detail in section 5. We have

included tables detailing the ranges of the solutions obtained as well as figures illustrating

their behaviour.

We comment on our results and point out several possible future directions in section 6.

We have also included various appendices collecting some of the relevant quantities for the

computations we have performed.

1.1 G2-structures

A G2-structure
1 on a manifold Y is a reduction of the structure group of the tangent bundle

of Y to the group G2 . This condition is equivalent to the existence of a non-degenerate

positive three-form φ on Y that we call the associative three-form. Locally, this form can

be written as

φ = e123 + e145 + e167 + e246 − e257 − e347 − e356 , (1.1)

where {e1, . . . , e7} form an orthonormal basis of one-forms and we are writing eij = ei∧ej .
The four-form ψ = ∗φ is called the coassociative four-form and it locally takes the form

ψ = e1357 + e2345 + e2367 + e4567 − e1247 − e1256 − e1346 . (1.2)

If Y admits a G2-structure, we can decompose all tensors in terms of representations of

the group G2 . For differential forms we have

Λ0 = Λ0
1 ,

Λ1 = Λ1
7 ,

Λ2 = Λ2
7 ⊕ Λ2

14 ,

Λ3 = Λ3
1 ⊕ Λ3

7 ⊕ Λ3
27 ,

(1.3)

where Λk denotes the space of k-forms on Y and Λk
p denotes the subspace of Λk consisting

of k-forms transforming in the p-dimensional irreducible representation of G2 . The decom-

position for higher degrees follows from Hodge duality. The associative and coassociative

forms can be used to build projection operators to these subspaces, see for example [48].

To illustrate this, note that Λ2
14 , which corresponds to the two-forms contained in the Lie

algebra of G2 , can be described as

Λ2
14 = {β ∈ Λ2 : β⌟φ = 0} = {β ∈ Λ2 : β ∧ ψ = 0} . (1.4)

1For more detailed accounts on G2-structures, see [46] or [47].
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We say that a manifold Y has G2 holonomy if it has a G2-structure φ which is covariantly

constant with respect to the Levi-Civita connection. This condition is equivalent to

dφ = 0 , dψ = 0 , (1.5)

and we then say that the G2-structure is torsion-free. For a general G2-structure, the

exterior derivatives of the associative and coassociative forms are non-zero and its decom-

position in G2 representations gives the torsion classes of the G2-structure:

dφ = τ0 ψ + 3 τ1 ∧ φ+ ∗τ3 ,
dψ = 4 τ1 ∧ ψ + ∗τ2 .

(1.6)

Here the torsion classes τk are k-forms with τ3 ∈ Λ3
27 and τ2 ∈ Λ2

14 . We are interested

in G2-structures such that τ2 = 0 , which are called integrable. Given an integrable G2-

structure there exists a unique metric connection compatible with the G2-structure with

totally antisymmetric torsion [47] given by the three-form

T (φ) =
1

6
τ0 φ− τ1⌟ψ − τ3 . (1.7)

We call this the torsion of the G2-structure.

1.2 Heterotic G2 systems

We now introduce heterotic G2 systems following [31], see also [2–8]. These systems describe

N = 1 supersymmetric vacuum solutions of heterotic string theory on a manifold of the

form M3 × Y , where M3 is a maximally symmetric 3-dimensional Lorentzian space (the

spacetime), Y is a compact 7-dimensional manifold and the metric is a warped product.

A heterotic G2 system is given by a quadruple [(Y, φ), (V,A), (TY,Θ), H] satisfying the

following properties:

• Y is a 7-dimensional manifold and φ is a three-form on Y defining an integrable

G2-structure on Y . We call ψ = ∗φ.

• V is a vector bundle on Y with a connection A that is a G2-instanton, so that its

curvature FA satisfies FA ∧ ψ = 0.

• TY is the tangent bundle of Y and Θ is a connection on TY which is a G2-instanton,

so that its curvature RΘ satisfies RΘ ∧ ψ = 0.2

• H is a three-form on Y defined by the formula

H = dB +
α′

4
(CS(A)− CS(Θ)) , (1.8)

2We denote the curvature of a gauge connection A by FA and the curvature of a metric connection Θ

by RΘ . We omit the subscript only if it is clear the connection we are making reference to.
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where CS denotes the Chern–Simons form of the corresponding connection, B is

the antisymmetric two-form and α′ > 0 is the string parameter. In addition, H is

constrained to satisfy

H = T (φ) =
1

6
τ0 φ− τ1 ⌟ψ − τ3 . (1.9)

where T (φ) denotes the torsion three-form of the G2-structure as defined in (1.7).

These conditions ensure that we have a solution to the Killing spinor equations, thus

preserving N = 1 supersymmetry. Together with the anomaly cancellation condition, they

provide a solution of the equations of motion of the 10-dimensional supergravity action [8].

Taking the exterior derivative of (1.8) we obtain the heterotic Bianchi identity

dH =
α′

4
(trFA ∧ FA − trRΘ ∧RΘ) , (1.10)

and finding a solution of (1.10) automatically guarantees that a solution to the anomaly

cancellation condition (1.8) exists.

As pointed out in [49], the cosmological constant of the 3-dimensional spacetime is

related to the external component of the flux h, which is determined by the torsion classes

of the compact manifold: h = 1
3 τ0 . Therefore,

Λ ∼ −h2 =⇒ Λ ∼ − τ20 , (1.11)

and we obtain that for τ0 ̸= 0 the non-compact spacetime is AdS3. For a Minkowski space-

time, τ0 = 0 and, due to the dilaton condition τ1 = 1
2 dϕ, the G2-structure is cocalibrated

of pure type as observed in [4].

2 Squashed 3-Sasakian manifolds

2.1 General aspects, squashing and G2-structures

In this section we introduce 3-Sasakian manifolds, which are one of the main elements in

our solutions of the heterotic G2 system. A more detailed account of 3-Sasakian manifolds

can be found in [50] and [51]. See also [52] for the 7-dimensional case.

Let (Y, g) be a Riemannian manifold of dimension n, where n = 4k + 3 for k ≥ 1. We

say (Y, g) is 3-Sasakian if its metric cone (C(Y ), ḡ) = (R+ × Y,dr2 + r2g) is a hyperkähler

manifold. We are interested in the 7-dimensional case so from now on we fix n = 7.

Every 3-Sasakian manifold Y has a triple of orthonormal Killing vector fields (ξ1, ξ2, ξ3)

satisfying the relation [ξi, ξj ] = 2 ϵ k
ij ξk , where ϵijk is the Levi-Civita symbol. It then

follows that these Killing vector fields generate an integrable distribution and define a 3-

dimensional foliation of Y . Moreover, it turns out that the space of leaves of this foliation

is a compact orbifold and we can think of Y as the total space of a bundle over an orbifold.3

3The simplest example of a 3-Sasakian manifold is the 7-sphere S7, which is the total space of an

SU(2)-bundle over the 4-sphere as described by the Hopf fibration S3 −→ S7 −→ S4.
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We can locally complete the triple (ξ1, ξ2, ξ3) to an orthonormal basis {ξ1, . . . , ξ7} of

the 3-Sasakian manifold Y and work with the dual basis of one-forms {ξ1, . . . , ξ7}. We

define for later convenience:

ω1 = ξ4 ∧ ξ5 + ξ6 ∧ ξ7 , ω2 = ξ4 ∧ ξ6 − ξ5 ∧ ξ7 , ω3 = − ξ4 ∧ ξ7 − ξ5 ∧ ξ6 . (2.1)

In fact, the orthonormal basis can be constructed in such a way that the following formulas

hold4

dξi = 2ωi − ϵijk ξ
j ∧ ξk , (2.2)

dωi = − 2 ϵijk ξ
j ∧ ωk , (2.3)

where i, j, k ∈ {1, 2, 3}.
We can deform the metric of Y away from the 3-Sasakian metric by rescaling the

metric along the fibres while keeping the base orbifold metric fixed. This process is known

as squashing and we obtain a one-parameter family of metrics

ds2 =

3∑
i=1

s2 ξi ⊗ ξi +

7∑
α=4

ξα ⊗ ξα , (2.4)

where s > 0 is the squashing parameter and we recover the original metric for s = 1 .

We call these manifolds squashed 3-Sasakian manifolds. It will be convenient to define an

orthonormal coframe {η1, . . . , η7} for each value of s

ηi = s ξi for i = 1, 2, 3 ; ηα = ξα for α = 4, 5, 6, 7 . (2.5)

The two-forms ωi from (2.1) have an analogous expression in this basis, and the formulas

(2.2) and (2.3) now take the form

dηi = 2 s ωi − 1

s
ϵijk η

j ∧ ηk , (2.6)

dωi = − 2

s
ϵijk η

j ∧ ωk , (2.7)

making manifest that the 3-Sasakian structure is lost by the squashing procedure.

We can define a G2-structure on Y for each value of the squashing parameter. The

associative three-form is given by5

φs = η123 + η1 ∧ ω1 + η2 ∧ ω2 + η3 ∧ ω3 , (2.8)

where ηµνρ = ηµ ∧ ην ∧ ηρ. It is important to remark that the structure depends on the

parameter s. This can be seen explicitly writing (2.8) in terms of the {ξµ} basis:

φs = s3 ξ123 + s ξ1 ∧ ω1 + s ξ2 ∧ ω2 + s ξ3 ∧ ω3 . (2.9)

4The underlying reason for this is the existence of an almost contact metric 3-structure on the 3-Sasakian

manifold. Our choice of basis agrees up to relabelling with that of [50, 51] or [52].
5For s = 1 this is called the canonical G2-structure of the 3-Sasakian manifold in [52].
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Therefore we are defining a one-parameter family of G2-structures that change with the

metric as the squashing parameter s varies. Following [53], we rewrite φs = F1 + F2 with

F1 = η123 , F2 = η1 ∧ ω1 + η2 ∧ ω2 + η3 ∧ ω3 . (2.10)

We obtain

∗sF1 =
1

6

3∑
i=1

ωi ∧ ωi , ∗sF2 = η2 ∧ η3 ∧ ω1 + η3 ∧ η1 ∧ ω2 + η1 ∧ η2 ∧ ω3 , (2.11)

and

dF1 = 2 s ∗sF2 , dF2 = 12 s ∗sF1 + 2
1

s
∗sF2 , (2.12)

where ∗s is the Hodge star with respect to the metric associated with the G2-structure φs .

This determines the coassociative four-form

ψs = ∗sφs = ∗sF1 + ∗sF2 . (2.13)

We can then compute the exterior derivative of the G2-forms

dφs =
12

7

(
2 s+

1

s

)
ψs +

(
10 s− 2

s

)(
∗sF1 −

1

7
ψs

)
,

dψs = 0 ,

(2.14)

and the torsion classes of the G2-structure can be extracted from these expressions as in

equation (1.6).

τ0(φs) =
12

7

(
2 s+

1

s

)
, (2.15)

τ1(φs) = 0 , (2.16)

τ2(φs) = 0 , (2.17)

τ3(φs) =

(
10 s− 2

s

)(
F1 −

1

7
φs

)
. (2.18)

For all values of the squashing parameter the G2-structure is coclosed. In particular it is

always integrable, τ2 = 0 , and thus can be used to construct solutions of the heterotic G2

system. Since τ1 vanishes, all these solutions will have constant dilaton. Note as well that

τ3 vanishes if and only if s = 1/
√
5 , in this case the only nonzero torsion class is τ0 and we

say that the G2-structure is nearly parallel.6

Since the torsion class τ0 is nonzero for all values of the squashing parameter s, heterotic

solutions constructed using these manifolds only give rise to AdS3 spacetimes. This is

interesting as the only solutions of this kind available in the literature so far are those of

[38].

6We later apply these results to the 7-sphere and it is important to remark that the canonical 3-Sasakian

G2-structure we obtain from (2.8) when s = 1 is not nearly-parallel. It is therefore different from the

standard G2-structure of the round 7-sphere, which is known to be nearly-parallel.
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From (1.7) we find for each value of the parameter s the unique connection which is

metric, compatible with the G2-structure and has totally antisymmetric torsion

T (φs) = 2 sφs +

(
2

s
− 10 s

)
F1 , (2.19)

in agreement with [54].

2.2 Homogeneous 3-Sasakian manifolds

We turn our attention to homogeneous 3-Sasakian manifolds. These can be described in

terms of a coset G/H where G is a Lie group and H is a closed subgroup of G. The

coset description of homogeneous manifolds is discussed in further detail in [43, 44, 55].

Homogeneous 3-Sasakian manifolds are fully classified, see [50], and in 7 dimensions we

only have the 7-sphere S7 = Sp(2)/Sp(1) and the squashed Aloff–Wallach space N1,1 =

SU(3)/U(1)1,1 . These are the only regular 3-Sasakian manifolds in dimension 7 [56] and

we present them in sections 2.2.1 and 2.2.2.

The coset structure of these manifolds can be used to describe an orthonormal coframe

realising the 3-Sasakian structure (2.2) and (2.3), as we now explain. Recall that a Lie

group G acts on itself by left translations and left-invariant vector fields can be identified

with elements of the Lie algebra g, so that left-invariant one-forms are identified with

elements of the dual g∗.

Consider G as a principal H-bundle over G/H. Let h be the Lie algebra of H and

assume the homogeneous space is reductive, that means there exists a subspace m of g

such that g = h ⊕ m and m is invariant under the adjoint action of H, [h,m] ⊂ m. Under

this assumption m is an h-module and can be identified with the tangent space of the

homogeneous space, see [43].

The Maurer–Cartan form of G is defined as the unique g-valued one-form that acts as

the identity on the elements of g. Let {I1, . . . , Irank(g)} be a basis of g and let {e1, . . . , erank(g)}
be the dual basis, the Maurer–Cartan form in this basis is given by

θ =

rank(g)∑
α=1

Iα ⊗ eα . (2.20)

The curvature of the Maurer–Cartan form vanishes identically: this is known as the

Maurer–Cartan equation. As a result, the coframe must satisfy the structure equations

deα = − 1

2
fαβγ e

β ∧ eγ , (2.21)

where α, β, γ = 1, . . . , rank(g), and fαβγ are the structure constants of the Lie algebra g.

A scalar product on g determines a left-invariant metric on G. The metric descends

to the homogeneous space G/H if it is invariant under the adjoint action of H. We choose

a metric with this property and declare our basis to be orthonormal with respect to that

metric. We can split the basis of g in generators of m, {I1 , . . . , Irank(m)}, and generators
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of h, {Irank(m)+1 , . . . , Irank(g)}. Since our space is reductive, the commutation relations can

then be written as

[Iν , Iρ] = fµνρ Iµ + faνρ Ia , [Ib, Iν ] = fµbν Iµ , [Ib, Ic] = fabc Ia , (2.22)

where µ, ν, ρ = 1 , . . . , rank(m) and a, b, c = rank(m) + 1 , . . . , rank(g). The structure equa-

tions (2.21) are rewritten as

deµ = −fµaν ea ∧ eν −
1

2
fµνρ e

ν ∧ eρ , dea = − 1

2
faνρ e

ν ∧ eρ − 1

2
fabc e

b ∧ ec , (2.23)

where again µ, ν, ρ = 1 , . . . , rank(m) and a, b, c = rank(m) + 1 , . . . , rank(g).

Take a local patch U ⊂ G/H and a local section L of the principal bundle π : G −→
G/H, that is, a map L : U −→ G such that π ◦L is the identity. We use L to pull back the

one-forms {eα} to the homogeneous space, {L∗eα = ξα}. In particular the one-forms {eµ}
with µ = 1 , . . . , rank(m) are pulled back to a coframe {ξµ} of G/H.7 The pullback of the

metric on G defines a metric on G/H with respect to which {ξµ} is orthonormal. Note as

well that the structure equations are still satisfied by the pulled-back forms

dξµ = −fµaν ξa ∧ ξν −
1

2
fµνρ ξ

ν ∧ ξρ , dξa = − 1

2
faνρ ξ

ν ∧ ξρ − 1

2
fabc ξ

b ∧ ξc . (2.24)

In the case of 7-dimensional homogeneous 3-Sasakian manifolds the coframe {ξ1 , . . . , ξ7}
can be chosen so that equations (2.2) and (2.3) are satisfied, making the 3-Sasakian struc-

ture explicit. This is achieved when the coframe is orthonormal with respect to the 3-

Sasakian metric.8 One can then consider a squashing of the metric as in (2.4): define an

orthonormal coframe as we did in (2.5) and rename ηa = ξa for a = 8 , . . . , rank(g), then

(2.24) can be rewritten as

dηi = −f iaj ηa ∧ ηj − s f iaα η
a ∧ ηα − f ijα η

j ∧ ηα − 1

2 s
f ijk η

j ∧ ηk − s

2
f iαβ η

α ∧ ηβ , (2.25)

dηα = − 1

s
fαai η

a ∧ ηi − fαaβ η
a ∧ ηβ − 1

s
fαjβ η

j ∧ ηβ − 1

2 s2
fαij η

i ∧ ηj − 1

2
fαβγ η

β ∧ ηγ ,

(2.26)

dηa = − 1

s
faiα η

i ∧ ηα − 1

2 s2
faij η

i ∧ ηj − 1

2
faαβ η

α ∧ ηβ − 1

2
fabc η

b ∧ ηc , (2.27)

where i, j, k ∈ {1, 2, 3} , α, β, γ ∈ {4 , . . . , 7} , a, b, c ∈ {8 , . . . , rank(g)} and s is the squash-

ing parameter. We now particularize this result to the two manifolds we are interested

in.

7The pulled-back one-forms ξa with a = rank(m)+1, . . . , rank(g) can be rewritten in terms of the coframe

as ξa = caµξ
µ for some functions caµ. Nevertheless, it is convenient for computations to work with the forms

ξa directly and we will continue to do so for the rest of the paper.
8When the homogeneous space is a 3-Sasakian manifold, the Killing vector fields induce a natural

splitting m = sp(1) ⊕ m′. Consider the scalar product on g given by 1
2
B|m′ + B|sp(1)⊕h, where B is the

Killing form on g. After rescaling, this scalar product gives rise to a metric in G which descends to the

3-Sasakian metric on G/H [50].
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2.2.1 The squashed 7-sphere

The 7-sphere is a homogeneous 3-Sasakian manifold given by the coset

S7 = Sp(2)/Sp(1) , (2.28)

where Sp(n) denotes the quaternionic unitary groups9

Sp(n) = {M ∈ Mn×n(H) such that MM † = 1}. (2.29)

There are two diagonal Sp(1) ≃ SU(2) subgroups inside Sp(2). Quotienting one of them

gives the 7-sphere, and the quotient map Sp(2) −→ S7 describes a principal SU(2)-bundle

over S7. If we further quotient S7 by the remaining Sp(1), the resulting homogeneous

manifold is the 4-sphere and we recover the Hopf fibration S3 −→ S7 −→ S4, which makes

the 3-Sasakian structure manifest.

As explained above for the general case, we need to specify a convenient basis of the

Lie algebra of Sp(2) in order to describe a coframe of the 7-sphere. See also [57] for an

alternative equivalent method to obtain a local section using the Hopf fibration. Our

conventions can be found in appendix A. The coframe structure equations are obtained by

substituting the structure constants in (2.25), (2.26) and (2.27), obtaining

dη1 = − 2

s
η2 ∧ η3 + 2 s η4 ∧ η5 + 2 s η6 ∧ η7 ,

dη2 = − 2

s
η3 ∧ η1 + 2 s η4 ∧ η6 − 2 s η5 ∧ η7 ,

dη3 = − 2

s
η1 ∧ η2 − 2 s η4 ∧ η7 − 2 s η5 ∧ η6 ,

dη4 = − 1

s
η1 ∧ η5 − 1

s
η2 ∧ η6 + 1

s
η3 ∧ η7 − η5 ∧ η8 − η6 ∧ η9 + η7 ∧ η10 ,

dη5 = +
1

s
η1 ∧ η4 + 1

s
η2 ∧ η7 + 1

s
η3 ∧ η6 + η4 ∧ η8 − η7 ∧ η9 − η6 ∧ η10 ,

dη6 = − 1

s
η1 ∧ η7 + 1

s
η2 ∧ η4 − 1

s
η3 ∧ η5 + η7 ∧ η8 + η4 ∧ η9 + η5 ∧ η10 ,

dη7 = +
1

s
η1 ∧ η6 − 1

s
η2 ∧ η5 − 1

s
η3 ∧ η4 − η6 ∧ η8 + η5 ∧ η9 − η4 ∧ η10 ,

dη8 = −2 η9 ∧ η10 − 2 η4 ∧ η5 + 2 η6 ∧ η7 ,
dη9 = −2 η10 ∧ η8 − 2 η4 ∧ η6 − 2 η5 ∧ η7 ,
dη10 = −2 η8 ∧ η9 + 2 η4 ∧ η7 − 2 η5 ∧ η6 .

(2.30)

It can be checked the structure equations satisfy (2.6) and (2.7) so the coframe describes

the squashed 3-Sasakian structure of the 7-sphere.

2.2.2 The squashed Aloff–Wallach space

The Aloff–Wallach spaces were first described in [58], we introduce them following [59].

Consider the matrix group SU(3), let k, l ∈ Z and let U(1)k,l be the circle subgroup of

9For n = 1, 2 we have alternative characterizations due to some accidental isomorphisms: Sp(1) ≃ SU(2)

and Sp(2) ≃ Spin(5).
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SU(3) whose elements are of the form:eikθ 0 0

0 eilθ 0

0 0 eimθ

 , (2.31)

where k + l +m = 0 and θ ∈ R. The Aloff–Wallach space Nk,l is given by the coset

Nk,l = SU(3)/U(1)k,l . (2.32)

The only 3-Sasakian Aloff–Wallach space is N1,1 and this is the only case that we will study

in this paper. Our choice of coframe for SU(3) differs slightly from the ones in [59] and

[60] and can be found in appendix B. After squashing we obtain the following structure

equations

dη1 = − 2

s
η2 ∧ η3 + 2 s η4 ∧ η5 + 2 s η6 ∧ η7 ,

dη2 = − 2

s
η3 ∧ η1 + 2 s η4 ∧ η6 − 2 s η5 ∧ η7 ,

dη3 = − 2

s
η1 ∧ η2 − 2 s η4 ∧ η7 − 2 s η5 ∧ η6 ,

dη4 = − 1

s
η1 ∧ η5 − 1

s
η2 ∧ η6 + 1

s
η3 ∧ η7 − η5 ∧ η8 ,

dη5 = +
1

s
η1 ∧ η4 + 1

s
η2 ∧ η7 + 1

s
η3 ∧ η6 + η4 ∧ η8 ,

dη6 = − 1

s
η1 ∧ η7 + 1

s
η2 ∧ η4 − 1

s
η3 ∧ η5 + η7 ∧ η8 ,

dη7 = +
1

s
η1 ∧ η6 − 1

s
η2 ∧ η5 − 1

s
η3 ∧ η4 − η6 ∧ η8 ,

dη8 = − 6 η4 ∧ η5 + 6 η6 ∧ η7 .

(2.33)

It is again easy to check that (2.6) and (2.7) are satisfied and the coframe describes the

squashed 3-Sasakian structure of the Aloff–Wallach space.

3 Instanton connections

The construction of solutions to the heterotic G2 systems requires the existence of G2-

instanton connections on certain vector bundles. In this section we introduce instanton

connections on 3-Sasakian manifolds and their squashed deformations, which will play a

role in the new solutions we present later.

3.1 Canonical connection

Homogeneous manifolds are equipped with a natural bundle and connection, as explained

for example in [44]. Let G be a Lie group, H a closed Lie subgroup and let g and h be their

Lie algebras. Theorem 11.1 from [43] states that if the homogeneous space G/H is reductive

then the h-component of the Maurer–Cartan one-form of G (2.20) defines a connection on
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the principal H-bundle G −→ G/H which is left-invariant under the G-action. We call

this the canonical connection on the principal bundle and write it as

Acan =
∑
a

Ia ⊗ ea , (3.1)

where {ea} are the vertical one-forms and {Ia} is the associated dual basis of h. Note the

canonical connection does not depend on the metric so for the case of squashed 3-Sasakian

manifolds it is well-defined for all values of the squashing parameter s.

For applications to heterotic G2 systems we are interested in considering a represen-

tation of the group H and work with the canonical connection on the associated vector

bundle. The reductiveness of the homogeneous space provides a natural representation of

H as follows: write g = h⊕m where m is identified with the tangent space at the identity

of G/H. The elements of h act on m via the adjoint action, and the condition [h,m] ⊂ m

ensures that the action defines a representation of h in m. This provides a representation of

H whose associated vector bundle is the tangent bundle of the homogeneous space G/H.

The existence of a canonical connection on the tangent bundle is not exclusive to homo-

geneous manifolds. As shown in [61] all 3-Sasakian manifolds have a canonical connection

constructed using the forms10 preserved by the Sp(1)-structure of the 3-Sasakian manifold

P =
1

3
ξ123 − 1

3

3∑
i=1

ξi ∧ ωi , Q = ∗F1 =
1

6

3∑
i=1

ωi ∧ ωi . (3.2)

The Christoffel symbols of the canonical connection on the tangent bundle are

Γi
µν = LCΓi

µν + 3Piµν , Γν
µi = − LCΓi

µν − 3Piµν , Γβ
µα = LCΓβ

µα , (3.3)

where µ, ν ∈ {1 , . . . , 7} , i ∈ {1, 2, 3} , α, β ∈ {4, 5, 6, 7} , LCΓ denotes the Christoffel

symbols of the Levi-Civita connection and P is the form defined in (3.2). The torsion is

given by

T i = 3Piµν ξ
µ ∧ ξν , Tα =

3

2
Pαµν ξ

µ ∧ ξν . (3.4)

This connection is also compatible with all the squashed metrics. In the case of squashed

homogeneous 3-Sasakian manifolds, we can regard the structure equations (2.24) of the

homogeneous space as Cartan structure equations for the canonical connection

dξµ = −ωµ
ν ∧ ξν + ξµ⌟T . (3.5)

From this we can read the connection one-form of the canonical connection

ωµ
ν = fµaν ξ

a , (3.6)

as well as the torsion

ξµ⌟T = − 1

2
fµνρ ξ

ν ∧ ξρ , (3.7)

10Note our conventions differ slightly from [61].
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where µ, ν, ρ = 1 , . . . , 7 and a = 8 , . . . , rank(g). This agrees with (3.4), and we note that

with our conventions the canonical connection has totally antisymmetric torsion only when

s = 1/
√
2 .11

We now turn to the question of whether this connection is a G2-instanton. It is shown

in [61] that the canonical connection on the tangent bundle is an Sp(1)-instanton. This

is done by proving that the indices of the curvature of the connection have interchange

symmetry and then observing that it has sp(1)-holonomy. Since the Sp(1)-structure is

given by the forms {(ξi, ωi)i=1,2,3} and the G2-structure is determined by (2.8), the G-

structures are such that sp(1) ⊂ g2 , see [39]. As a result, the canonical connection on

the tangent bundle is in fact a G2-instanton, and this remains true for all values of the

squashing parameter.

Let us show that the G2-instanton condition also holds for the canonical connection on

the principal bundle (3.1): consider a squashed 3-Sasakian homogeneous manifold.12 The

curvature

Fcan = dAcan +
1

2
[Acan ∧Acan] , (3.8)

of the canonical connection (3.1) can be computed using the structure equations (2.27),

obtaining

Fcan =
∑
a

Ia ⊗
(
− 1

s
fajα η

j ∧ ηα − 1

2 s2
fajk η

j ∧ ηk − 1

2
faαβ η

α ∧ ηβ
)
, (3.9)

where j, k ∈ {1, 2, 3} , α, β ∈ {4 , . . . , rank(m)} , a ∈ {rank(m) + 1 , . . . , rank(g)} and s is

the squashing parameter. Comparing (2.6) and (2.25) we can rewrite the two-forms ωi in

terms of the structure constants

ωi = − 1

2 s
f iaj η

a ∧ ηj − 1

2
f iaα η

a ∧ ηα − 1

2 s
f ijα η

j ∧ ηα − 1

4
f iαβ η

α ∧ ηβ . (3.10)

In fact, these expressions are greatly simplified in the 7-dimensional case since most of the

structure constants vanish, see (A.1) and (B.1). We have

Fcan =
∑
a

Ia ⊗
(
− 1

2
faαβ η

α ∧ ηβ
)
, ωi = − 1

4
f iαβ η

α ∧ ηβ , (3.11)

this can be used together with (2.11) and (2.13) to express the coassociative form in terms

of the structure constants

ψs =
1

96

3∑
i=1

f iαβ f
i
γρ η

αβγρ − 1

8
ϵijk f

k
αβ η

ijαβ , (3.12)

11This is because for s = 1/
√
2 the metric we are considering in the homogeneous space is proportional to

the Killing form.
12Our approach is similar to [62] and we show it case-by-case rather than giving a general derivation. Even

though canonical connections seem to always satisfy an instanton condition, to the best of our knowledge

there is not a general argument for this in the full general case.
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where i, j, k ∈ {1, 2, 3} , α, β, γ, ρ ∈ {4, . . . , 7}. The instanton condition Fcan ∧ ψ = 0 for

the canonical connection can then be written in terms of the structure constants as

fa[αβ f
k
γρ] = 0 , (3.13)

for all k ∈ {1, 2, 3} , α, β, γ, ρ ∈ {4 , . . . , 7} , a ∈ {8 , . . . , rank(g)}. It is immediate to check

this is satisfied for both the squashed 7-sphere and the squashed Aloff–Wallach space, so

the canonical connection is a G2-instanton for both of them, for all values of the squashing

parameter s.

3.2 Clarke–Oliveira connection

An additional G2-instanton connection on squashed 3-Sasakian manifolds is described in

[45]. We briefly review the construction and adapt it to our purposes. This involves a

straightforward generalization to all values of the squashing parameter s.

Any 3-Sasakian manifold Y is described as the total space of an SU(2)-bundle over a

Riemannian orbifold Z. We can regard this bundle as the lift to SU(2) of the SO(3)-bundle

of frames of self-dual two-forms on Z. As a result, the Levi-Civita connection of Z induces

a connection on the bundle Y −→ Z,

aZ =
3∑

i=1

Ii ⊗ ξi , (3.14)

where Ii ∈ su(2) with [Ii, Ij ] = 2 ϵ k
ij Ik for i, j, k ∈ {1, 2, 3}, and ξi denotes the pullback of

the 3-Sasakian one-forms to Z.13 Consider now the trivial SU(2) bundle over Y , and pull

back the connection (3.14) to the bundle Y × SU(2) −→ Y to obtain14

a(x1, x2, x3) =
3∑

i=1

xi Ii ⊗ ξi . (3.15)

Here xi ∈ R are free parameters to be fixed later by the instanton condition. As we squash

the metric, the connection in terms of the orthonormal coframe (2.5) is given by

a(x1, x2, x3) =
3∑

i=1

xi
s
Ii ⊗ ηi . (3.16)

The curvature of the connection

F = da+
1

2
[a ∧ a] , (3.17)

13When the 4-dimensional orbifold Z is a homogeneous space, this is just the canonical connection on

the Y −→ Z bundle as described in section 3.1.
14The main focus of [45] is the study of Spin(7)-instantons on cones over squashed 3-Sasakian manifolds,

which makes convenient to choose the vector bundle associated to the fundamental SU(2) representation

and to introduce a radial dependence in the connection. We do not make a choice of representation so there

is no radial factor present in our version of the construction.
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changes with the squashing and can be computed using (2.6), obtaining

F (x1, x2, x3) =

3∑
i=1

2xi ω
i +

3∑
j,k=1

ϵijk
1

s2
(−xi + xj xk) η

j ∧ ηk
⊗ Ii . (3.18)

The G2-instanton condition F ∧ ψ = 0 for this connection reduces to three equations(
2− 1

s2

)
xi +

1

s2
xj xk = 0 , where i, j, k ∈ {1, 2, 3} and i ̸= j ̸= k . (3.19)

Imposing these equations leads to two different non-zero kinds of instantons. For a fixed

squashing of s = 1/
√
2 setting any two of the xi parameters to zero gives a solution for

any value of the remaining xi . Therefore, there are three one-parameter families of G2-

instantons for s = 1/
√
2 . Unfortunately, the curvature of these connections is such that

they do not provide solutions of the heterotic G2 system.

The other group of instantons is defined for any value of s and can be found by setting

the xi parameters to ±(1 − 2 s2) with the following restriction: either we choose all signs

positive,15 or we choose one of them positive and the rest negative. This provides four

different G2-instantons for all values of s which we will use to construct new solutions

of the heterotic system. Note that all of them reduce to the trivial flat connection for

s = 1/
√
2 .

3.3 Tangent bundle instantons

In this section we focus on the tangent bundle and describe a one-parameter family of

G2-instantons. We briefly review how to compute the connection one-form and fix our

notation, which agrees with [63]. Given a connection on the tangent bundle, consider the

Cartan structure equations in the orthonormal coframe

dηµ = −ωµ
ν ∧ ην + ηµ⌟T , (3.20)

where ωµ
ν = Γµ

αν ηα is the connection one-form and T is the torsion tensor, with µ, ν, ρ =

1 , . . . , 7 and α = 1 , . . . , rank(g). The torsion is antisymmetric in the last two indices,

Tµ
νρ = −Tµ

ρν , and ηµ⌟T = Tµ = 1
2 T

µ
νρ ην ∧ ηρ.

Manipulating the Cartan equations (3.20) we can write the connection one-form as

ωµ
ν = LCωµ

ν +Kµ
ρν η

ρ . (3.21)

where LCω is the connection one-form of the Levi-Civita connection, given by

LCΓµνρ = −1

2
[(dηµ)νρ − (dην)ρµ + (dηρ)µν ] , (3.22)

and K is the contorsion tensor

Kµνρ =
1

2
(Tµνρ + Tνµρ + Tρµν) , (3.23)

15For the nearly-parallel case s = 1/
√
5 this connection has xi = 3/5 for i = 1, 2, 3 and it is precisely the

instanton connection described in Example 2 of [45].
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which is antisymmetric in the first and last indices, ensuring the connection we define is

compatible with the metric. Indices are raised and lowered with the orthonormal metric.

Note that since the Levi-Civita connection is determined by the structure equations, (3.21)

shows that connections are completely specified by the choice of torsion tensor.

Every manifold with a G2-structure [47] has a two-parameter family of metric connec-

tions preserving the G2-structure. The torsion can in fact be written explicitly and it is

given by [31]

1

2
Tµνρ(a, β) =

1

12
τ0 φµνρ −

1

6
τ2σ[ν φρ]µ

σ + a τ3µνρ +
1

4
(1 + 2 a)S σ

µ φνρσ+

+
1

3
(β − 1)(τ1⌟ψ)µνρ +

2

3
(1 + 2β)τ1[ν gρ]µ ,

where Sµν = 1
4 φ

ρσ
(µ (τ3)ν)ρσ and a, β ∈ R. For squashed 3-Sasakian manifolds the torsion

classes τ2 and τ1 vanish, see (2.16) and (2.17), so the family reduces to one parameter16

1

2
Tµνρ(a) =

1

12
τ0 φµνρ + a τ3µνρ +

1

4
(1 + 2 a)S σ

µ φσνρ . (3.24)

Using the torsion classes computed in (2.15) and (2.18) we obtain the torsion of the family17

of G2-compatible connections for squashed 3-Sasakian manifolds in terms of s and a

Tijk =

[
(2 + 20 a) s− 4 a

1

s

]
φijk , (3.25)

Tiab = 2 sφiab , (3.26)

Taib =

[
−
(
1

2
+ 5 a

)
s+

(
1

2
+ a

)
1

s

]
φaib , (3.27)

where i, j, k = 1, 2, 3 and a, b = 4, 5, 6, 7. The curvature of this family of connections has to

be computed in a case-by-case basis since it depends on the Levi-Civita connection of the

manifold, recall (3.21). We have done this for the 7-dimensional squashed homogeneous 3-

Sasakian manifolds in appendix D and used it to check the G2-instanton equations F ∧ψ =

0.

We find that the connections with torsion (3.24) are G2-instantons for all values of

the parameters s and a for both the squashed 7-sphere and the squashed Aloff–Wallach

space.18

We finish with a comment on other possible instantons: note the heterotic G2-system

introduced in section 1.2 does not require the tangent bundle instanton to be compatible

with the G2-structure. Therefore, we could look for instantons outside the family (3.24).

We have explored this possibility for the homogeneous cases and several families of instan-

tons can be found. Nevertheless, the curvatures of these connections are quite involved and

16The choice of parameter a = −1/2 corresponds the unique G2-compatible connection with totally

antisymmetric torsion (2.19).
17For the nearly-parallel case s = 1/

√
5 the vanishing of τ3 reduces the family to a single connection which

is the one with totally antisymmetric torsion.
18 This family includes the canonical connection with the representation on the tangent bundle we de-

scribed in section 3.1, which is recovered for the choice of parameter a(s) = 1+s2

2−10s2
. On the other hand,

the Clarke–Oliveira connection does not belong to this one-parameter family.
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imposing the heterotic Bianchi identity (1.10) becomes difficult. Therefore, we will not use

these instantons in our solutions. It would be interesting to verify if it is indeed possible

to use these other connections to obtain solutions.

4 The heterotic Bianchi identity

As described in section 1.2, the heterotic G2 system includes an instanton connection A

on a vector bundle V as well as an instanton connection Θ on the tangent bundle. The

curvatures of these connections must satisfy the heterotic Bianchi identity

dH =
α′

4

(
tr(FA ∧ FA)− tr(RΘ ∧RΘ)

)
, H = T . (4.1)

In section 3 we have presented several instanton connections on different bundles over 7-

dimensional squashed homogeneous 3-Sasakian manifolds. In order to use these instantons

to construct solutions to the heterotic G2 system and verify that they satisfy the heterotic

Bianchi identity, in this section we compute the curvature terms tr(F ∧ F ) and tr(R ∧R).
Considering the curvature as a Lie algebra-valued two-form, the trace is taken over

a product of Lie algebra generators tr(IaIb). The value of this trace will depend on the

Lie algebra representation associated to the vector bundle where the connection is defined.

Some of the connections introduced in section 3 are defined on principal bundles, so a

representation of the gauge group has to be chosen to obtain an associated vector bundle.

We will explicitly see how the value of tr(F ∧ F ) depends on this choice.

4.1 Canonical connection

Recall the canonical connection of a homogeneous manifold was described in section 3.1

Acan =
∑
a

Ia ⊗ ea . (4.2)

Using the structure equations (2.21), we computed the curvature of the canonical connec-

tion for 7-dimensional squashed homogeneous 3-Sasakian manifolds

Fcan =
∑
a

Ia ⊗
(
−1

2
faαβ η

α ∧ ηβ
)
, (4.3)

and now it is immediate to compute

tr(Fcan ∧ Fcan) =
∑
a,b

tr(IaIb)⊗
(
1

4
faαβ f

b
γρ η

αβγρ

)
, (4.4)

where α, β, γ, ρ ∈ {4, . . . , 7} , a ∈ {8 , . . . , rank(g)}. As we have said before, a representation

of the gauge group has to be chosen to compute explicitly tr(IaIb), so we need to distinguish

between the 7-sphere and the Aloff–Wallach space.
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4.1.1 The squashed 7-sphere

The canonical connection on the squashed 7-sphere is defined on a principal SU(2)-bundle.

Representations of SU(2) are in bijective correspondence with representations of su(2) and

are well understood, see for example [64] or [65]. Complex representations of su(2) are

classified by a single Dynkin label (m), so that (m) corresponds to the (m+1)-dimensional

representation.

The su(2) generators {I8 , I9 , I10} satisfy the commutation relations [Ia, Ib] = 2 ϵ c
ab Ic .

The trace of a product of generators of a representation is directly related to the Dynkin

index of the representation. With our conventions, the index of the representation (m) is

given by

c(m) =
1

3
m(m+ 1)(m+ 2) , (4.5)

and the trace of the representation (m) is

tr(IaIb) = − c(m) δab . (4.6)

Consider now a general finite-dimensional representation of SU(2) and the canonical con-

nection on the associated vector bundle V . The corresponding su(2) representation is

a direct sum of k irreducible representations with Dynkin labels m1, . . . ,mk . Since the

Dynkin index is additive and using the structure constants (A.1), we obtain from (4.4)

tr(Fcan ∧ Fcan) = 24 (c(m1) + · · ·+ c(mk)) ∗sF1 , (4.7)

where ∗sF1 = η4567 was defined in (2.11).

Some representations deserve a special mention. First of all, note that the smallest

value of the trace is obtained for the fundamental representation, where

tr(Fcan ∧ Fcan) = 48 ∗sF1 , (4.8)

whereas the adjoint representation gives

tr(Fcan ∧ Fcan) = 192 ∗sF1 . (4.9)

We stressed in section 3.1 that the canonical connection has a natural representation on

the tangent bundle due to the homogeneous space G/H being reductive. This is given

by the adjoint representation on m ⊆ g, and the matrices representing the generators are

obtained from the structure constants

(Ia)µν = fµaν . (4.10)

The explicit matrices can be found in appendix C.1 and they satisfy

tr(IaIb) = −4 δab . (4.11)

Therefore, the canonical connection in the tangent bundle representation has

tr(Fcan ∧ Fcan) = 96 ∗sF1 . (4.12)

Equivalently, the tangent bundle representation of the canonical connection can be de-

scribed using Cartan structure equations as we showed in (3.6), obtaining the Christoffel

symbols (3.3) of [61].
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4.1.2 The squashed Aloff–Wallach space

In the case of the squashed Aloff–Wallach space, the canonical connection is on a prin-

cipal U(1)-bundle. Since U(1) is abelian, all irreducible complex representations are one-

dimensional and described by maps from the circle to itself classified by an integer q

U(1) ∋ eiθ 7−→ eiqθ ∈ U(1) . (4.13)

The Lie algebra generator is then given by

I8 = i q , (4.14)

which results in

tr(I8I8) = −q2 . (4.15)

On the other hand, we can consider irreducible (non-trivial) real representations. These

are all two-dimensional, taking values in SO(2) and classified by a positive integer p

U(1) ∋ eiθ 7−→

(
cos (pθ) − sin (pθ)

sin (pθ) cos (pθ)

)
∈ SO(2) . (4.16)

The Lie algebra generator is then given by

I8 =

(
0 −p
p 0

)
, (4.17)

which results in

tr(I8I8) = −2 p2 . (4.18)

Let us consider now a general finite-dimensional representation of U(1) and the associated

vector bundle V together with the corresponding canonical connection. The representation

is given by a direct sum of irreducible representations. Suppose we have k irreducible

complex representations with indices p1, . . . , pk and ℓ irreducible real representations with

indices q1, . . . , qℓ. Using the structure constants (B.1), we obtain from (4.4)

tr(Fcan ∧ Fcan) = 72
(
q21 + · · ·+ q2k

)
∗sF1 + 144

(
p21 + · · ·+ p2ℓ

)
∗sF1 , (4.19)

where ∗sF1 = η4567 was defined in (2.11).

In this case, the smallest value possible for the trace term is obtained for a single

complex representation

tr(Fcan ∧ Fcan) = 72 ∗sF1 . (4.20)

Interestingly, a real representation with index q gives the same trace value as a direct sum

of two complex representations with indices ±q. This means different representations can

be used in exactly the same way to obtain solutions.

Consider now the natural representation of the canonical connection on the tangent

bundle described in section 3.1. The matrix representation of the generator is given by

(I8)µν = fµ8ν , (4.21)
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the matrix is explicitly written in appendix C.1 and satisfies

tr(I8I8) = −4 . (4.22)

The canonical connection in the tangent bundle representation gives

tr(Fcan ∧ Fcan) = 288 ∗sF1 . (4.23)

It is clear from the explicit matrix form that the tangent bundle representation is a direct

sum of the trivial representation on the coordinates 1, 2, 3 and two real representations with

index p = 1 on the coordinates 4, 5 and 7, 6. This can be used to recover the trace term

from the general formula (4.20). Alternatively, one can describe the canonical connection

using Cartan structure equations as in (3.6), and the computation of the curvature becomes

very simple since U(1) is abelian.

4.2 Clarke–Oliveira connection

As found in section 3.2 the Clarke–Oliveira connection

a(x1, x2, x3) =

3∑
i=1

xi
s
Ii ⊗ ηi , (4.24)

is an instanton for all values of the squashing parameter s if we set the xi parameters to

±(1− 2 s2) with the following restriction: either we choose all signs positive, or we choose

one of them positive and the rest negative.

Since the Clarke–Oliveira connection is defined on an SU(2)-principal bundle, we can

choose representations in the same way as for the canonical connection on the squashed 7-

sphere in section 4.1.1: the (m+1)-dimensional complex representations of su(2) is denoted

by the Dynkin label (m), and the trace of its generators is given by

tr(IiIj) = − c(m) δij , (4.25)

where c(m) is the Dynkin index of the representation, given in our conventions by

c(m) =
1

3
m(m+ 1)(m+ 2) . (4.26)

For every representation the nonzero contribution to tr(IiIj) comes from the terms with

i = j, so from the curvature (3.18) we obtain, for all four choices of xi we have previously

indicated

tr(F ∧ F ) =
3∑

i=1

8 (1− 2 s2)2
(
∗sF1 − ϵijk ω

i ∧ ηj ∧ ηk
)
tr(IiIi) , (4.27)

Take a finite-dimensional representation of SU(2), the corresponding su(2) representation is

a direct sum of k irreducible representations with Dynkin labels m1, . . . ,mk. Substituting

tr(IiIi) for this representation in (4.27) we obtain the general formula

tr(F ∧ F ) = − 8 (1− 2 s2)2 (c(m1) + · · ·+ c(mk)) (3 ∗sF1 − 2 ∗sF2) , (4.28)
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where ∗sF1 and ∗sF2 were defined in (2.11).

The Clarke–Oliveira connection is obtained via pullback by regarding the squashed

3-Sasakian manifold as the total space of an SU(2)-bundle. Therefore, the su(2) algebra

has a natural adjoint action on the tangent bundle of the 3-Sasakian manifold which can

be used to construct a representation of the Clarke–Oliveira connection. For homogeneous

manifolds this is analogous to the tangent bundle representation of the canonical connection

and the explicit matrices are given by the structure constants

(Ii)µν = fµiν . (4.29)

The matrices are the same for both the squashed 7-sphere and the squashed Aloff–Wallach

space and they can be found in appendix C.2. They satisfy

tr(IiIj) = −12 δij , (4.30)

so that the Clarke–Oliveira connection on the tangent bundle satisfies

tr(F ∧ F ) = − 96 (1− 2 s2)2 (3 ∗sF1 − 2 ∗sF2) . (4.31)

4.3 Tangent bundle instantons

In section 3.3 we introduced a one-parameter family of instantons on the tangent bundle

of the squashed 7-sphere and the squashed Aloff–Wallach space consisting on the most

general metric connections compatible with the G2-structures. The explicit expressions of

the connections and curvatures can be found in appendix D and can be used to compute

the term tr(F ∧ F ) for both manifolds. For simplicity, let us denote

κ(a, s) = (1 + 10 a) s+ (1− 2 a)
1

s
, (4.32)

for the squashed 7-sphere we then find

tr(F ∧ F ) = − 72 s2
(
κ(a, s)2 − 4

3 s2

)
∗sF1 − 12 s κ(a, s)2

(
κ(a, s)− 2

s

)
∗sF2 , (4.33)

whereas for the squashed Aloff–Wallach space we obtain

tr(F ∧ F ) = − 72 s2
(
κ(a, s)2 − 4

s2

)
∗sF1 − 12 s κ(a, s)2

(
κ(a, s)− 2

s

)
∗sF2 . (4.34)

5 New solutions

In this section we provide new solutions to the heterotic G2 system introduced in section 1.2.

This means we have to specify a quadruple

[(Y, φ), (V,A), (TY,Θ), H] . (5.1)

The 7-dimensional manifold with an integrable G2-structure (Y, φ) is a squashed homo-

geneous 3-Sasakian manifold with squashed metric (2.4) and G2-structure given by (2.8),
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for a certain value of the squashing parameter s that we do not fix for now. The flux H

is then completely determined and equal to the torsion of the unique connection which

is metric, compatible with the G2-structure and has totally antisymmetric torsion. The

explicit expression is given by (2.19). Using (2.12) and (2.14) we can compute

dH = 24 s2 ∗sF1 + 8 (1− 2 s2) ∗sF2 . (5.2)

For an instanton connection Θ on the tangent bundle TY , we consider either the one-

parameter family we introduced in section 3.3, or the tangent bundle representations of

either the canonical connection or the Clarke–Oliveira connection.

For the vector bundle V and the instanton connection A, one option is to choose the

canonical connection or the Clarke–Oliveira connection with a representation of the gauge

bundle where they were defined. Another option is to take the gauge vector bundle to

be the tangent bundle and use the one-parameter family of instantons. We would like

to emphasize from the beginning that this is not the so-called standard embedding [66]

because we will choose different connections on each bundle.

The final step to solve the heterotic G2 system is to impose the heterotic Bianchi

identity (1.10)

dH =
α′

4
(tr(F ∧ F )− tr(RΘ ∧RΘ)) , (5.3)

with positive string parameter α′ > 0.

The elements dH, tr(F ∧ F ) and tr(RΘ ∧RΘ) consist of a sum of two terms propor-

tional to ∗sF1 and ∗sF2 , as defined in (2.11). By grouping the coefficients of ∗sF1 and

∗sF2 in the heterotic Bianchi identity we obtain two independent equations for s, α′ and

any additional coefficients of the connections. These equations impose non-trivial relations

between the G2-structure and the curvature of the instantons. In fact, for some choices of

connections it is not possible to find a solution, whereas for the rest, the valid ranges of

s and α′ are restricted. We summarize our findings in table 1, which apply to both the

squashed 7-sphere and the squashed Aloff–Wallach space.

We give details of these solutions for both the squashed 7-sphere and the squashed

Aloff–Wallach space in the following sections, following the order of table 1 row by row.

Let us first comment on some general features of our solutions. First of all, we are not

able to find solutions for the nearly-parallel squashed metric for which s = 1/
√
5 . One of the

reasons is that the one-parameter family of connections on the tangent bundle collapses to

a single connection which is in fact the one with totally antisymmetric torsion. Therefore,

the set of instanton connections at our disposal for this particular value of s is much smaller.

On the other hand, we do find solutions for all other values of s > 0. It is interesting

to analyse the behaviour of the solutions close to the limits s = 0 and s = ∞. Since the

nonzero elements of the Ricci tensor [52] are given by

Rii = 6 (2− s2) , Rαα =
2 + 4 s4

s2
, (5.4)
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(V,A)

(TY,Θ) Canonical

connection

Clarke–Oliveira

connection

One-parameter

family

Canonical

connection

Solutions only for

s = 1/
√
2 , fixed α′

Solutions for

isolated values of s

and α′

Solutions in

different ranges of s

with α′ determined

Clarke–Oliveira

connection
No solution No solution

Solutions in

different ranges of s

with α′ determined

One-parameter

family
No solution

Solutions in

different ranges of s

with α′ determined

Solutions with

arbitrary s and α′

within a certain

range

Table 1. Summary of solutions obtained for squashed homogeneous 7-dimensional 3-Sasakian

manifolds in terms of the choice of instanton connections.

where i = 1, 2, 3 and α = 4, 5, 6, 7, we see the Ricci tensor blows up both for s = 0 and

s = ∞. Therefore, these are singular limits and we do not have well-defined solutions for

them. Nevertheless, we have a geometrical understanding of the origin of the singularities.

When s→ 0 the SU(2) ≃ S3 fibres of the squashed 3-Sasakian manifold are shrunk to

zero size, obtaining a singular space. In this limit dH → 0 and we always find α′ → 0. This

means that the string parameter vanishes as the fibres shrink. We stress that we obtain

well-defined solutions only while s > 0.

The case s → ∞ corresponds to a large volume limit. The radius of the SU(2) ≃
S3 fibres of the squashed 3-Sasakian manifold increases and in the limit the manifold

decompactifies. Since the G2-structure becomes singular our solutions are only well-defined

while s <∞. In this limit dH blows up and typically so do the curvatures of the connections

involved in the heterotic Bianchi identity (1.10). Hence, the asymptotic behaviour of α′

depends on the particular solution and we find that α′ can tend to 0, ∞ or a fixed constant.

See more details about this behaviour in section 5.4.

As mentioned earlier, another aspect all the solutions we have constructed have in

common is that the τ0 torsion class (2.15) is always nonzero. Therefore, the 3-dimensional

spacetime emerging from these compactifications is Anti-de Sitter space. Note that the

AdS3 curvature is proportional to τ20 and therefore tends to ∞ both in the limits s → 0

and s→ ∞. The minimum value of the curvature is achieved for s = 1/
√
2 .

Finally, we explain how the solutions can be described when the one-parameter family

of instantons of section 3.3 is chosen. These solutions are richer, as was to be expected

since we are introducing an extra parameter a in our equations. As we see from (4.33)

and (4.34), the contribution of this one-parameter family of connections to the heterotic

Bianchi identity is cubic in a. Thus, the heterotic Bianchi identity can be rewritten as a

cubic equation in a with coefficients depending on s. We list the coefficients of the cubic
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equations in appendix E.

These can be solved explicitly: for each value of s we have up to three different real so-

lutions a(s) of the cubic equation, depending on the sign of the discriminant. For later con-

venience we define the following functions, motivated by the discriminants in the squashed

7-sphere and the squashed Aloff–Wallach case respectively

f(s) = −4

9

32 s6 − 96 s4 + 78s 2 − 23

2 s2 − 1
, g(s) = − 4

27

32 s6 − 96 s4 + 42 s2 − 5

2 s2 − 1
. (5.5)

From a(s) we can then obtain the value of α′ that solves the heterotic Bianchi identity

and ensure it is positive. In most cases the precise expressions of the solutions are not

particularly illuminating and we will not show them explicitly.

We present our solutions below and summarize them in tables 2 to 6. We order them

according to the values of the real solutions a(s) of the cubic equation. Thus, solution 1

always corresponds to the smallest real solution a(s). We indicate in the different tables

the ranges of values of the squashing parameter s for which the different solutions of the

heterotic G2 system exist—that is, the values of s for which the corresponding a(s) is real,

α′ is positive and they solve the heterotic Bianchi identity.

From the point of view of physics, we are interested in solutions for which the string

parameter α′ is small. We will highlight these solutions along our presentation.

5.1 Canonical connection on the vector bundle

If we want to use the canonical connection on the vector bundle we need to make a choice of

representation for the principal bundle. This differs slightly depending on the homogeneous

space we choose as we now recall, see section 4.1 for further details.

The canonical connection for the squashed 7-sphere is defined on an SU(2)-bundle. We

choose an arbitrary su(2) representation, which is given as a direct sum of k irreducible

representations with Dynkin labels m1, . . . ,mk . Let us denote for simplicity

c = (c(m1) + · · ·+ c(mk)) , (5.6)

note c can take any natural even value. Then the contribution of the canonical connection

to the heterotic Bianchi identity (4.7) is given by

tr(Fcan ∧ Fcan) = 24 c ∗sF1 . (5.7)

The canonical connection on the squashed Aloff–Wallach space is defined on a U(1)-bundle.

An arbitrary representation is given as a direct sum of k irreducible complex representations

with indices p1, . . . , pk and ℓ irreducible real representations with indices q1, . . . , qℓ. Let us

denote for simplicity

q =
(
q21 + · · ·+ q2k

)
+ 2

(
p21 + · · ·+ p2ℓ

)
, (5.8)

note q can take any natural value. Then the contribution of the canonical connection to

the heterotic Bianchi identity (4.19) is given by

tr(Fcan ∧ Fcan) = 72 q ∗sF1 . (5.9)

We study the available solutions depending on the choice of tangent bundle instanton.
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5.1.1 Canonical connection on the tangent bundle

We only find a single solution in each case. For the squashed 7-sphere, using (4.12) we

obtain a solution of the heterotic G2 system if and only if we set

s =
1√
2
, α′ =

2

c− 4
. (5.10)

Note the vector bundle representation has to be chosen such that c > 4 in order to have a

solution, which discards the SU(2) representations on C and C⊕ C.
For the squashed Aloff–Wallach space, using (4.23) the solution of the heterotic G2

system is obtained if and only if we set

s =
1√
2
, α′ =

2

3(q − 4)
. (5.11)

Note that the representation has to be such that q > 4, which rules out several low-

dimensional representations.

Even though these solutions are isolated, they present the interesting feature that

solutions with arbitrary small string parameter α′ can be found by choosing a gauge bundle

representation of sufficiently large dimension.

5.1.2 Clarke–Oliveira connection on the tangent bundle

Using (4.31) we have two isolated solutions for each representation, both of them with

the same value of α′. One is always obtained for s = 1/
√
2 , where the Clarke–Oliveira

connection reduces to the trivial flat connection on the tangent bundle. For the squashed

7-sphere the solutions are

s =
1√
2

or s =

√
12 + c

2
√
6

, α′ =
2

c
, (5.12)

whereas for the squashed Aloff–Wallach space we have

s =
1√
2

or s =

√
4 + q

2
√
2
, α′ =

2

3 q
. (5.13)

In both cases all bundle representations are allowed. The string parameter α′ can be made

arbitrarily small by choosing a bundle representation of arbitrary large dimension.

5.1.3 One-parameter family of connections on the tangent bundle

The contribution of the one-parameter family to the heterotic Bianchi identity can be found

in (4.33) for the squashed 7-sphere or in (4.34) for the squashed Aloff–Wallach space. The

solutions we find follow three different behaviours depending on the value of c or q. The

range of values of s where the solution is defined is controlled by the discriminant of the

cubic equation in a, whose coefficients can be found in appendix E.

The first case corresponds to representations with c = 4 for the squashed 7-sphere

or q = 4 for the squashed Aloff–Wallach space,19 in this case the discriminant vanishes

19Note these representations include in particular the tangent bundle representation of the canonical

connection. Since that particular representation is part of the one-parameter family—see footnote 18—

these solutions also appear when the one-parameter family is chosen on the vector bundle.
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identically and we obtain a unique solution for all s except for the nearly parallel s = 1/
√
5

and round s = 1 values. The solution takes the same form for both the squashed 7-sphere

and the squashed Aloff–Wallach space

a(s) = − 5 s2 − 3

10 s2 − 2
, α′(s) =

s2

12 (s2 − 1)2
. (5.14)

We show this solution in fig. 1. Note the string parameter tends to 0 when s → 0 and

when s → ∞, whereas it blows up whenever s → 1. This means that the most interesting

solutions from the point of view of physics are away from the round metric s = 1.

0.5 1.0 1.5 2.0
s

-4

-2

2

4

α'(s)

a(s)

Figure 1. Values of α′(s) and a(s) in terms of s for the squashed 7-sphere and the squashed Aloff–

Wallach space solution (5.14). The instanton on the tangent bundle belongs to the one-parameter

family, with parameter a(s). The instanton on the gauge bundle is the canonical connection in a

representation with c = 4. The dashed grey lines indicate the values of s = 1/
√
5 , 1 , where no

solutions exist.

For other values of c or q we find three different solutions which are well-defined only in

certain ranges of s. We summarize them in table 2, where we have introduced the quantity

s1 ∈ (1/
√
2, 1) given implicitly by

f(s1) = c or g(s1) = q , (5.15)

for the squashed 7-sphere or the squashed Aloff–Wallach space, respectively. Recall f(s)

and g(s) were defined in (5.5).

Solution 1 for c > 4 or q > 4 is well defined for all s except for s = 1/
√
5 . It is

continuous at s = s1 , whereas at s = 1/
√
2 there is a discrete jump: the left and right limits

correspond to two different valid solutions

(
a, α′) = (1

6
,

2

z + 8

)
,

(
a, α′) = (− 1

2
,

2

z − 4

)
, (5.16)

where z represents either c or q. Similarly to the c, q = 4 case, we have α′ → 0 for both

s → 0 and s → ∞. Nevertheless, α′ does not blow up for any value of s. This provides

a large number of solutions with a small value of the string parameter α′. We show this
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Range of s
(
0, 1√

5

) (
1√
5
, 1√

2

] [
1√
2
, s1

]
[s1,∞)

c > 4 or q > 4

Solution 1 ✓ ✓ ✓ ✓
Solution 2 ✓
Solution 3 ✓

c < 4 or q < 4

Solution 1 ✓ ✓ ✓
Solution 2 ✓
Solution 3 ✓ ✓

Table 2. Ranges of solutions obtained for squashed homogeneous 7-dimensional 3-Sasakian mani-

folds with one-parameter family of connections on the tangent bundle and canonical connection on

the vector bundle.

solution for the squashed 7-sphere with the choice c = 8 in fig. 2. As for solutions 2 and

3 in the case c > 4 or q > 4, they are only defined in a very small range and they remain

very close to the s = 1/
√
2 solutions described in (5.16).

0.5 1.0 1.5 2.0
s

-3

-2

-1

1

2

3

α'(s)

a(s)

Figure 2. Values of α′(s) and a(s) in terms of s for solution 1 in the squashed 7-sphere case. The

instanton on the tangent bundle belongs to the one-parameter family, with parameter a(s). The

instanton on the gauge bundle is the canonical connection in a representation with c = 8. The

dashed grey lines indicate the values of s = 1/
√
5 , 1/

√
2 . At s = 1/

√
5 no solution exists whereas at

s = 1/
√
2 there is a discontinuity.

When c < 4 or q < 4, solution 1 now presents a discrete jump at s = s1 . This solution

still presents the physically interesting behaviour α′ → 0 when s → 0 or s → ∞. On the

other hand, solutions 2 and 3 satisfy α′ → ∞ as s → ∞. Even though these solutions

are perfectly valid from a mathematical point of view, they are less attractive for physical

purposes—we should think of α′ as a small perturbative parameter, a property which is

clearly not satisfied in this case. We illustrate this behaviour for solution 2 for the squashed

Aloff–Wallach space case with q = 1 in fig. 3.
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s

500

1000

1500

2000

α'(s)

a(s)

Figure 3. Values of α′(s) and a(s) in terms of s for solution 2 in the squashed Aloff–Wallach case.

The instanton on the tangent bundle belongs to the one-parameter family, with parameter a(s).

The instanton on the gauge bundle is the canonical connection in a representation with q = 1. The

grey region indicates values of s < s1 where no solutions exist.

5.2 Clarke–Oliveira connection on the vector bundle

In order to use the Clarke–Oliveira connection on the vector bundle we need to make a

choice of representation for the SU(2) principal bundle as explained in section 4.2. Take

an arbitrary su(2) representation, which is given as a direct sum of k irreducible represen-

tations with Dynkin labels m1 , . . . ,mk . Let us denote for simplicity

c = (c(m1) + · · ·+ c(mk)) . (5.17)

Note c can take any natural even value. Then the contribution of the Clarke–Oliveira

connection to the heterotic Bianchi identity (4.28) is given by

tr(F ∧ F ) = −8 (1− 2 s2)2 c (3 ∗sF1 − 2 ∗sF2) , (5.18)

We study the available solutions depending on the choice of tangent bundle instanton.

5.2.1 Canonical connection on the tangent bundle

This particular choice of connections contributes with a negative coefficient to the ∗sF1

term in the Bianchi identity, as can be seen from (4.12) or (4.23) and (5.18). On the other

hand, the coefficient of dH is positive, see (5.2). Therefore, there are no solutions with

positive string parameter α′.

5.2.2 Clarke–Oliveira connection on the tangent bundle

In this case the ∗sF1 and ∗sF2 terms corresponding to the connections in the heterotic

Bianchi identity are proportional to each other, and they can not be equal to the dH

contribution while keeping α′ > 0 .
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5.2.3 One-parameter family of connections on the tangent bundle

For each value of c we find three different solutions. The domain of these solutions depends

on the value of c itself and on the chosen homogeneous space, so we describe the solutions

for the squashed 7-sphere and the squashed Aloff–Wallach space separately.

For the squashed 7-sphere, the contribution of the one-parameter family to the het-

erotic Bianchi identity can be found in (4.33). The domain of solutions is determined by

the discriminant of the cubic equation in a (see appendix E) and the positive sign of α′,

as explained around equation (5.5). This is controlled by three quantities which depend

on the chosen value of c. We denote them by s2 , s3 and s4 . We define s2 and s4 as the

positive roots of the equation

−f(s) = c , (5.19)

where f(s) was defined in (5.5), 1/
√
2 < s4 and s2 is only present in the case c > 10,

determined by s2 < 1/
√
2. We define s3 as the positive real root of the polynomial

−
(
c (1− 2 s2)

)3 − 48 s2(1− s2)
(
c (1− 2 s2)

)2
+ 48 (1− 4 s2) c (1− 2 s2) + 128 . (5.20)

We show the ranges of the solutions in table 3.

Range of s
(
0, 1√

5

) (
1√
5
, s2

]
(s2, s3)

[
s3,

1√
2

] [
1√
2
, s4

]
[s4,∞)

c < 8

Solution 1 ✓ ✓ ✓
Solution 2 ✓
Solution 3 ✓ ✓ ✓ ✓

10 < c < 40

Solution 1 ✓ ✓
Solution 2 ✓ ✓
Solution 3 ✓ ✓ ✓

40 ≤ c

Solution 1 ✓ ✓
Solution 2 ✓
Solution 3 ✓ ✓

Table 3. Ranges of solutions obtained for the squashed 7-sphere with one-parameter family of

connections on the tangent bundle and Clarke–Oliveira connection on the vector bundle.

Only two cases are absent in the table. For the case c = 10 the equation (5.19) has a

third positive root that we denote s̃2, with s̃2 < s2 < s4 . The behaviour in this case is as

in 10 < c < 40, but solutions 1 and 2 are now also well-defined in the interval (0, s̃2] .

For the case c = 8 something remarkable happens. Solution 1 has the same range

as for c < 8 and solution 2 incorporates the interval (1/
√
5 , s2] to the range we find for

c < 8. Solution 3, on the other hand, is very special: it is defined everywhere except for

the nearly-parallel value s = 1/
√
5 and the string parameter is fixed to a constant value

α′ = 1/4 . We show this solution in fig. 4. This is, to the best of our knowledge, the first

example of a family of solutions of the heterotic G2 system with a fixed value of α′ < 1.

Keeping the string parameter α′ fixed, we can deform the G2-structure and the instanton

connection on the tangent bundle from a fixed value of s. We comment further on this in

section 6.
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s

-1.0

-0.5
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1.0

α'(s)

a(s)

Figure 4. Values of α′(s) and a(s) in terms of s for solution 3 in the squashed 7-sphere case. The

instanton on the tangent bundle belongs to the one-parameter family, with parameter a(s). The

instanton on the gauge bundle is the Clarke–Oliveira connection in a representation with c = 8.

The dashed grey line indicates the value s =1/
√
5 where no solution exists.

Now we discuss table 3 in more generality. For all values of c, solution 1 is discontinuous

at s = s4 . The value of α′ remains small for all the range of s and in fact α′ → 0 when

s → ∞. This means for every choice of c we can obtain solutions with arbitrary small

string parameter α′.

Solutions 2 and 3 present a slightly different behaviour. We illustrate this presenting

solution 2 for c = 40 in fig. 5 below.

2 4 6 8 10
s

-0.3

-0.2

-0.1 α'(s)

a(s)

Figure 5. Values of α′(s) and a(s) in terms of s for solution 2 in the squashed 7-sphere case. The

instanton on the tangent bundle belongs to the one-parameter family, with parameter a(s). The

instanton on the gauge bundle is the Clarke–Oliveira connection in a representation with c = 40.

The grey region indicates values of s < s4 where no solutions exist.

First of all, these solutions do not present discontinuities in their domains. Within

the interval (1/
√
5, 1/

√
2), the solutions are typically defined over a very small range and the

value of α′ blows up. Therefore, that part of the solutions is less amenable to an interesting

physical interpretation. On the other hand, we always find the limiting behaviour α′ → 2/c
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when s→ ∞. In fact, the solutions soon stabilize in values close to α′ = 2/c . This means

we find solutions with an almost constant value of α′ which can be made arbitrarily small

by choosing different representations of the gauge bundle.

For the squashed Aloff–Wallach space, the contribution of the one-parameter family

to the heterotic Bianchi identity can be found in (4.34). The domain of the solutions is

simpler and we just distinguish two cases. These are shown in table 4: all solutions are

well defined beyond a certain value s4 , which is given by the highest root of the equation

−3 g(s) = c , (5.21)

for g(s) as defined in (5.5). When c = 2 we have an additional interval in the domain

determined by the smallest positive root of equation (5.21), which we denote by s2 .

Range of s (0, s2]
(
s2,

1√
2

] [
1√
2
, s4

]
[s4,∞)

c = 2

Solution 1 ✓ ✓ ✓
Solution 2 ✓ ✓
Solution 3 ✓

c > 2

Solution 1 ✓ ✓
Solution 2 ✓
Solution 3 ✓

Table 4. Ranges of solutions obtained for the squashed Aloff–Wallach space with one-parameter

family of connections on the tangent bundle and Clarke–Oliveira connection on the vector bundle.

We present an illustrative example of solution 1 with c = 20 in fig. 6.

1 2 3 4 5
s

-0.4

-0.2

0.2

0.4

0.6

0.8

α'(s)

a(s)

Figure 6. Values of α′(s) and a(s) in terms of s for solution 1 in the squashed Aloff–Wallach

case. The instanton on the tangent bundle belongs to the one-parameter family, with parameter

a(s). The instanton on the gauge bundle is the Clarke–Oliveira connection in a representation with

c = 12. The grey region indicates values of s < 1/
√
2 where no solutions exist, and the dashed line

indicates a discontinuity of the solution at s = s4 .

The behaviour of the solutions is very similar to the squashed 7-sphere case we have

just described. For all values of c, solution 1 is discontinuous at s = s4 and we have α′ → 0
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when s → ∞. As for solutions 2 and 3, we find again the same behaviour α′ → 2/c when

s→ ∞ and solutions stay almost constant for the whole range of s.

5.3 One-parameter family of connections on the vector bundle

For this last set of solutions we choose the tangent bundle TY as the vector bundle V ,

and a connection from the one-parameter family of section 3.3 as the vector bundle G2-

instanton. As we will see, our solutions have different connections on each bundle. We

denote the parameter of this family as b, and the contribution to the heterotic Bianchi

identity is given by (4.33) for the squashed 7-sphere

tr(F ∧ F ) = − 72 s2
(
κ(b, s)2 − 4

3 s2

)
∗sF1 − 12 s κ(b, s)2

(
κ(b, s)− 2

s

)
∗sF2 . (5.22)

and (4.34) for the squashed Aloff–Wallach space

tr(F ∧ F ) = − 72 s2
(
κ(b, s)2 − 4

s2

)
∗sF1 − 12 s κ(b, s)2

(
κ(b, s)− 2

s

)
∗sF2 . (5.23)

where κ(b, s) = (1 + 10 b)s+ (1− 2 b)/s. We find different solutions in terms of the choice

of tangent bundle instanton.

5.3.1 Canonical connection on the tangent bundle

The equations for ∗sF1 and ∗sF2 in this case have a unique solution that is exactly as the

one presented in (5.14) but with opposite α′ sign. As a result, we can not impose α′ > 0

and there are no solutions for this choice of instantons.

5.3.2 Clarke–Oliveira connection on the tangent bundle

We treat the squashed 7-sphere and the squashed Aloff–Wallach space separately. For

each of them we have three solutions with domains given by the discriminant of the cubic

equation for the parameter b together with the condition α′ > 0, as explained around

equation (5.5). The coefficients of the cubic equation are listed in appendix E.

For the squashed 7-sphere, there are three relevant numbers s5, s6 and s7 that we

define as follows: s5 and s7 are the positive roots of the polynomial

16s6 + 6s4 − 15s2 + 2 , (5.24)

with s5 < s7. On the other hand, s6 is the only positive root of the polynomial

−36s6 + 36s4 − 15s2 + 2 . (5.25)

We have detailed the range of the solutions in table 5. In addition to the ranges depicted,

solutions 1 and 2 can be extended to s =
√

2/3 .

Note that solution 1 is the only one defined for s→ ∞, in this limit we have α′ → ∞.

It is also the only solution defined for s→ 0 and in this case we find α′ → 0. It is continuous

at s6 and s7. These features can be observed in fig. 7. Solutions 2 and 3 are defined in two
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Range of s (0, s5)
[
s5,

1√
5

) (
1√
5
, s6

] (
s6,

1√
2

] (
1√
2
,
√

2
3

) (√
2
3 , s7

]
(s7,∞)

Solution 1 ✓ ✓ ✓ ✓ ✓

Solution 2 ✓ ✓

Solution 3 ✓ ✓

Table 5. Ranges of solutions obtained for the squashed 7-sphere with Clarke–Oliveira connection

on the tangent bundle and one-parameter family of connections on the vector bundle.

0.5 1.0 1.5 2.0 2.5 3.0
s

-4

-2

2

4

α'(s)

b(s)

Figure 7. Values of α′(s) and b(s) in terms of s for solution 1 in the squashed 7-sphere case. The

instanton on the tangent bundle is the Clarke–Oliveira connection in the tangent bundle represen-

tation. The instanton on the gauge bundle belongs to the one-parameter family, with parameter

b(s). The grey regions indicate values of s5 < s < 1/
√
5 and 1/

√
2 < s <

√
2/

√
3 where no solutions

exist.

small intervals and the string parameter α′ blows up for one of them, making the solutions

less interesting.

For the squashed Aloff–Wallach space, the ranges are simpler. We introduce the num-

ber

s8 =

√
3
√
33− 11

4
, (5.26)

and we list the domain of each solution in table 6. In addition to the ranges depicted,

solutions 2 and 3 can be extended to s = 1/
√
2 preserving continuity from the left.

Range of s
(
0, 1√

5

) (
1√
5
, s8

] [
s8,

1√
2

) (
1√
2
,∞
)

Solution 1 ✓ ✓ ✓ ✓

Solution 2 ✓

Solution 3 ✓

Table 6. Ranges of solutions obtained for the squashed Aloff–Wallach space with Clarke–Oliveira

connection on the tangent bundle and one-parameter family of connections on the vector bundle.
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Solution 1 is continuous at s8 and discontinuous at 1/
√
5 and 1/

√
2 , where no solutions

exist. We find α′ → ∞ as s → ∞ and α′ → 0 as s → 0. We plot the solution in fig. 8.

Solutions 2 and 3 are again defined in a very small interval and α′ blows up.

0.5 1.0 1.5 2.0 2.5 3.0
s

-2

-1

1

2

α'(s)

b(s)

Figure 8. Values of α′(s) and b(s) in terms of s for solution 1 in the squashed Aloff–Wallach

case. The instanton on the tangent bundle is the Clarke–Oliveira connection in the tangent bundle

representation. The instanton on the gauge bundle belongs to the one-parameter family, with

parameter b(s). The dashed grey lines indicate the values of s = 1/
√
5 , 1/

√
2 , where no solutions

exist.

5.3.3 One-parameter family of connections on the tangent bundle

In this case we choose connections from the one-parameter family both for the vector bundle

and the tangent bundle, and we denote the parameters by b and a respectively. Having

two continuous parameters allows for a wider range of solutions, as we now explain.

Both instantons contribute in a similar fashion to the heterotic Bianchi identity but

with opposite signs. This means the equations for ∗sF1 and ∗sF2 have the same coefficients

for a and b up to the sign. The ∗sF1 equation is quadratic in a and b whereas the ∗sF2

equation is cubic in a and b. We impose these equations together with the condition α′ > 0.

Both for the squashed 7-sphere and the squashed Aloff–Wallach space, we find that

for every value of the squashing parameter s except for s = 1 and s = 1/
√
5 , and for every

value of the string parameter α′ such that

α′ >
s2

12 (s2 − 1)2
, (5.27)

we have two sets of values for a(s, α′) and b(s, α′) that solve the heterotic Bianchi identity

(1.10) and provide solutions of the heterotic G2 system. We present plots of the solutions

in figs. 9 and 10.

If we consider the limit value α′ = s2

12 (s2−1)2
, we find a unique solution of the form

a(s) = − 5 s2 − 3

10 s2 − 2
, b(s) = − s2 + 1

10 s2 − 2
. (5.28)
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a(s)

b(s)

Figure 9. First set of values of a(s, α′) and b(s, α′) in terms of s and α′. These provide solutions

for both the squashed 7-sphere and the squashed Aloff–Wallach space. The instantons on both the

tangent bundle and the gauge bundle belong to the one-parameter family, with parameters a(s, α′)

and b(s, α′) respectively. The grey planes indicate values of s = 1/
√
5 , 1 , where no solutions exist.

Note this is precisely the same solution we found in (5.14). This is because for this specific

choice of parameter b(s) the instanton coincides with the tangent bundle representation of

the canonical connection, see footnote 18.

The solutions we find present a very interesting profile. As is the case with other

solutions, the parameters of the connections blow up at s = 1/
√
5 reflecting the fact that

the family of instantons collapses to a single connection. For s = 1 it is not possible to

obtain a solution with finite α′, analogously to the solution depicted in fig. 1. In fact, a

whole region around s = 1 is excluded by the condition (5.27).

When s → 0 or s → ∞, the parameters of both connections tend to the same value

independently of the value of α′.20 For the first set (fig. 9) we find a, b → −5/6 as s → 0,

and a, b→ −11/30 as s→ ∞. For the second set (fig. 10) we find a, b→ 1/2 as s→ 0, and

a, b→ −1/10 as s→ ∞. Interestingly, for s > 1 the parameters of the connections remain

almost constant. Analogously, varying the string parameter α′ has a very mild effect on

the parameters.

One of the most remarkable features of these solutions is that they can be regarded as

20Note in these limits the connections tend to a configuration analogous to the standard embedding,

where the curvatures from both connections cancel each other.
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a(s)

b(s)

Figure 10. Second set of values of a(s, α′) and b(s, α′) in terms of s and α′. These provide solutions

for both the squashed 7-sphere and the squashed Aloff–Wallach space. The instantons on both the

tangent bundle and the gauge bundle belong to the one-parameter family, with parameters a(s, α′)

and b(s, α′) respectively. The grey planes indicate values of s = 1/
√
5 , 1 , where no solutions exist.

finite deformations from a given solution. For a fixed value of α′, the solutions describe a

deformation with the squashing parameter s as the deformation parameter. Together with

the solution depicted in fig. 4, these are the first examples of finite deformations of the

heterotic G2 system. See [31] for a description of the infinitesimal deformations.

We show an example in fig. 11. Taking α′ = 1/2 and starting from the solution with

s = 5/2, we can perform a finite deformation by increasing or decreasing the squashing

parameter. We keep a solution of the heterotic G2 system if we deform the instantons in a

very specific way as we change s. Note that deformation towards higher s is unrestricted,

whereas when decreasing s we find that deformations beyond s =
√

3/2 are not allowed.

therefore, the solutions with s < 1 can not be accessed through a continuous deformation

within the family we have considered.

This would seem to suggest that the moduli space of the heterotic G2 system is dis-

connected. Nevertheless, we stress that we are just presenting a very particular direction

of the whole moduli space. Therefore, the existence of different families of deformations

connecting the solutions with s >
√

3/2 and s < 1 can not be ruled out.

– 36 –



1 2 3 4
s
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0.4

0.6

0.8

1.0
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b(s)

Figure 11. One set of values of a(s, α′) and b(s, α′) in terms of s and with α′ = 1/2 fixed.

These provide solutions for both the squashed 7-sphere and the squashed Aloff–Wallach space. The

instantons on both the tangent bundle and the gauge bundle belong to the one-parameter family,

with parameters a(s, α′) and b(s, α′) respectively. The blue dots represent the starting point for

the deformation, s = 5/2. The grey region indicates values of
√

2/3 < s <
√

3/2 where no solutions

exist, and the dashed line indicates the value s = 1/
√
5 where no solution exists.

5.4 Summary of results

We now summarize the results of this section, emphasizing the differences between the

solutions obtained.

In sections 5.1.1 and 5.1.2 we have described some isolated solutions where the string

parameter α′ can be made arbitrarily small by choosing a convenient representation of the

gauge bundle. Nevertheless, from the point of view of heterotic string theory the gauge

bundle representation must be contained in the adjoint representation of the gauge group

E8 × E8. This imposes some restrictions on the representations we can actually choose, in

particular the dimension of the representation can not be arbitrarily large.

In sections 5.1.3, 5.2.3 and 5.3.2 we obtained solutions for a variety of ranges of the

squashing parameter s, with the string parameter α′ depending on the value of s. Some of

the solutions are well-defined only in very small intervals for which the string parameter

quickly blows up. These solutions are less interesting from a physical point of view, since

α′ should be understood as a small perturbation parameter.

For solutions defined on a wider range, it is interesting to analyze the behaviour in

the limit where the squashing parameter becomes very large s→ ∞. Recall that this limit

corresponds to the case where the SU(2) ≃ S3 fibres have large radius. Equivalently, the

volume of the compact manifold blows up and the space decompactifies. In sections 5.1.3

and 5.3.2 we find solutions where α′ → ∞ in this limit. These solutions, although com-

pletely valid from a mathematical point of view, are not satisfactory for string theory as

the parameter α′ can not be made small.

In section 5.2.3 we find solutions where α′ tends to a constant value as s → ∞.

The exact value of this constant depends on the gauge bundle representation and can

therefore be chosen as small as desired. This gives raise to plenty of solutions where the
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string parameter is small. Furthermore, in sections 5.1.3 and 5.2.3 we find solutions where

α′ → 0 as s increases, providing further examples relevant for physics. These solutions

correspond to a large volume limit: as the string parameter vanishes the volume of the

compact manifold blows up.

It is also worth exploring the limit s → 0. Geometrically, this corresponds to a situa-

tion where the SU(2) ≃ S3 fibres are shrunk to a point and the compact manifold becomes

singular. For the solutions in sections 5.1.3, 5.2.3 and 5.3.2 where this limit can be con-

sidered, we always encounter α′ → 0. Hence, the string parameter vanishes in the limit of

maximum squashing.

At this point we would like to compare our results with the interesting solutions of

Lotay and Sá Earp [38]. They construct solutions to the heterotic G2 system on contact

Calabi-Yau 7-folds, which are manifolds obtained from a circle fibration over a Calabi-

Yau 3-fold. These present some common features with our solutions: first of all, whereas

we rescale the metric along SU(2) fibres and our G2-structure depends on the squashing

parameter s, they perform a rescaling along the U(1) fibre and their G2-structure depends

on the corresponding parameter—which they denote ε.

The authors of [38] obtain connections which depend on the parameter ε, in the same

way as our connections depend on the parameter s. However, their tangent bundle con-

nections satisfy the instanton condition only at first order in α′, so they are approximate

G2-instantons. Our tangent bundle connections are exact G2-instantons. We use them to

solve the heterotic G2 system given in section 1.2, which is itself valid at first order in α′.21

In [38], the authors find solutions with an AdS3 spacetime where the string parameter

α′(ε) depends on the parameter ε, as is the case for most of our solutions where α′(s)

depends on s. The behaviour α′ → 0 that we find when s → 0 is also present in their

solutions when ε → 0. Nevertheless, the curvature of the AdS3 tends to zero in their

solutions whereas it blows up in our case. As we have mentioned before, our solutions are

such that that spacetime can never be Minkowski space.

Finally, let us stress that in all the solutions of [38] there is a mutual dependence

between the parameters α′ and ε. Our solutions in sections 5.1.3, 5.2.3 and 5.3.2 present

an analogous feature in terms of α′ and s. Nevertheless, we have also managed to construct

solutions where α′ does not depend on the squashing parameter s.

This is the case of the solutions of section 5.3.3, which deserve special attention. By

using two different instanton connections from the one-parameter family, we construct a

family of solutions where s and α′ are two parameters that can be chosen independently

within a certain region. This provides a large family of solutions. Furthermore, we can

regard these backgrounds as finite deformations: taking any solution as the starting point,

we can keep the string parameter α′ fixed while we modify the squashing parameter s.

This results in a deformation of the G2-structure as well as the instanton connections.

These are the first explicit examples of families of finite deformations of solutions

of the heterotic G2 system with AdS3 spacetime (together with a very particular solution

described in section 5.2.3) and they provide a finite version of the infinitesimal deformations

21In [67] it was argued that these equations remain valid to all orders in α′ after suitable field redefinitions.
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discussed in [31]. Making a thorough study of the relation between infinitesimal and finite

deformations will be the subject of future work.

6 Conclusions and outlook

In this paper we have constructed new solutions of the heterotic G2 system on squashed ho-

mogeneous 3-Sasakian manifolds. We have given a detailed description of the specific family

of G2-structures used in the construction as well as the instanton connections employed.

These solutions are grouped into different families in terms of the choice of instanton con-

nections on the gauge and tangent bundles. The resulting spacetime is AdS3 for all the

solutions found and, together with those of [38], constitute the only few explicit examples

of this type.

Moreover, these families of solutions include the first examples of heterotic G2 back-

grounds that can be described as finite deformations from a given solution. For any par-

ticular solution of those presented in section 5.3.3—as well as for the solution depicted in

fig. 4 in section 5.2.3—we can keep the string parameter α′ fixed and obtain new, deformed

solutions by performing a squashing of the metric and deforming the bundle instantons.

In [39] it is explained how heterotic G2 solutions can secretly present enhanced N = 2

supersymmetry. The authors showed that this was indeed the case for one of the so-

lutions constructed in [35]. Nevertheless, the supersymmetry enhancement requires the

3-dimensional spacetime to be Minkowski space. This is not the case for our solutions, so

we can guarantee these are proper N = 1 background solutions of the heterotic G2 system.

There are several possible future directions to pursue. First of all, it would be very

interesting to use our solutions to improve our understanding of the moduli space of the

heterotic G2 system. An easy first step would be to compute the infinitesimal version of

the deformation described by our solutions and relate it to the formalism of [31]. One could

also try to explicitly compute the cohomologies encoding the infinitesimal deformations.

We have obtained solutions that follow one particular deformation direction, but we

expect further deformations to be allowed. A possibility would be to look into alternative

deformations of the G2-structure, such as the ones described for the Aloff–Wallach space

in [59], and try to find solutions extending the ones we have constructed.

Alternatively, we could explore further choices of instanton connections and study if

these provide new solutions of the heterotic G2 system. One possibility would be to use the

instantons on the tangent bundle we described at the end of section 3.3. Further options are

available in the literature: for example a 15-dimensional family of G2-instantons for the 7-

sphere is described in [68]. Additionally, a detailed description of infinitesimal deformations

of G2-instantons for nearly-parallel G2-manifolds can be found in [69]. Finally, connections

on homogeneous 3-Sasakian manifolds are described in some generality in [70].

A natural direction—beyond the study of deformations—would be to generalize our

construction to obtain completely different solutions. A first option would be to consider

alternative G2-structures (not necessarily connected to our family via deformations) such as

the standard nearly parallel G2-structures of [52]. Going further, one could try to extend
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our construction to squashed non-homogeneous 3-Sasakian manifolds, or to generalized

3-(α,δ) Sasakian manifolds: [71, 72]. It would also be interesting to construct solutions

involving Sasaki or Sasaki–Einstein manifolds, or more general Aloff–Wallach spaces Np,q

making use of the connections of [59]. Another option would be to generalize the solutions

of [35, 37] to other nilmanifolds using the detailed study of [73]. Finally, one could attempt

to exploit the existence of almost contact metric 3-structures on manifolds with a G2-

structure to try to generalize the example of section 5.1 of [39].

In [34] T-dual solutions of the heterotic G2 system are constructed. Applying a T-

duality to our families of solutions—for example on the circle inside the 3-Sasakian fibre—to

obtain new T-dual solutions is a tantalizing possibility. One could also attempt to perform

a full non-abelian T-duality on the SU(2) fibre [74].

Finally, compactifications on manifolds with a G-structure present additional world-

sheet symmetries [75, 76]. In the case of G-holonomy, it has been argued that this corre-

sponds to extensions of the worldsheet superconformal algebra by additional chiral opera-

tors [77–79]. It would be interesting to perform a worldsheet study of the solutions we have

presented. This question has been addressed for G2 twisted connected sums in [80], and for

G2 extra twisted connected sums as well as Spin(7) generalized connected sum manifolds in

[81]. As the spacetime of our solutions is AdS3, we expect the worldsheet superconformal

algebra of the compact manifold to be the one introduced in [82].
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A Sp(2) structure equations

A local coframe for Sp(2) is obtained from a basis of the Lie algebra sp(2) as described in

section 2.2. We choose the following basis

e1 =

(
i 0

0 0

)
, e2 =

(
j 0

0 0

)
, e3 =

(
k 0

0 0

)
,

e4 =

(
0 −1

1 0

)
, e5 =

(
0 i

i 0

)
, e6 =

(
0 j

j 0

)
, e7 =

(
0 −k
−k 0

)
,

e8 =

(
0 0

0 i

)
, e9 =

(
0 0

0 j

)
, e10 =

(
0 0

0 k

)
.
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The nonzero structure constants on this basis are

2 = f123 = −f145 = −f167 = f231 = −f246 = f257 = f312 = f347 = f356 ,

1 = f415 = f426 = −f437 = −f514 = −f527 = −f536 = f617 = −f624 = f635 = −f716 = f725 = f734 ,

1 = f458 = f469 = −f47 10 = −f548 = f56 10 = f579 = −f649 = −f65 10 = −f678 = f74 10 = −f759 = f768 ,

2 = f89 10 = f845 = −f867 = f910 8 = f946 = f957 = f1089 = −f1047 = f1056 .

(A.1)

Substituting (A.1) in (2.21) we obtain the structure equations of the Sp(2) coframe

de1 = − 2 e2 ∧ e3 + 2 e4 ∧ e5 + 2 e6 ∧ e7,
de2 = − 2 e3 ∧ e1 + 2 e4 ∧ e6 − 2 e5 ∧ e7,
de3 = − 2 e1 ∧ e2 − 2 e4 ∧ e7 − 2 e5 ∧ e6,
de4 = − e1 ∧ e5 − e2 ∧ e6 + e3 ∧ e7 − e5 ∧ e8 − e6 ∧ e9 + e7 ∧ e10,
de5 = + e1 ∧ e4 + e2 ∧ e7 + e3 ∧ e6 + e4 ∧ e8 − e7 ∧ e9 − e6 ∧ e10,
de6 = − e1 ∧ e7 + e2 ∧ e4 − e3 ∧ e5 + e7 ∧ e8 + e4 ∧ e9 + e5 ∧ e10,
de7 = + e1 ∧ e6 − e2 ∧ e5 − e3 ∧ e4 − e6 ∧ e8 + e5 ∧ e9 − e4 ∧ e10,
de8 = − 2 e9 ∧ e10 − 2 e4 ∧ e5 + 2 e6 ∧ e7,
de9 = − 2 e10 ∧ e8 − 2 e4 ∧ e6 − 2 e5 ∧ e7,
de10 = − 2 e8 ∧ e9 + 2 e4 ∧ e7 − 2 e5 ∧ e6.

(A.2)

B SU(3) structure equations

We construct a coframe for SU(3) using a convenient basis of the Lie algebra su(3), given

by an appropriate normalization of the Gell–Mann matrices

e1 =

i 0 0

0 −i 0
0 0 0

 , e2 =

 0 1 0

−1 0 0

0 0 0

 , e3 =

0 i 0

i 0 0

0 0 0

 ,

e4 =
√
2

0 0 i

0 0 0

i 0 0

 , e5 =
√
2

 0 0 1

0 0 0

−1 0 0

 , e6 =
√
2

0 0 0

0 0 i

0 i 0

 ,

e7 =
√
2

0 0 0

0 0 −1

0 1 0

 , e8 = − i

3

1 0 0

0 1 0

0 0 −2

 .

The nonzero structure constants satisfy fρµν = −fρνµ and take the values:

2 = f123 = −f145 = −f167 = f231 = −f246 = f257 = f312 = f347 = f356 ,

1 = f415 = f426 = −f437 = −f514 = −f527 = −f536 = f617 = −f624 = f635 = −f716 = f725 = f734 ,

1 = f458 = −f548 = −f678 = f768 ,

6 = f845 = −f867.
(B.1)
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Now from (2.21) we deduce that the corresponding basis of left-invariant one-forms satisfy

the following structure equations:

de1 = − 2 e2 ∧ e3 + 2 e4 ∧ e5 + 2 e6 ∧ e7 ,
de2 = − 2 e3 ∧ e1 + 2 e4 ∧ e6 − 2 e5 ∧ e7 ,
de3 = − 2 e1 ∧ e2 − 2 e4 ∧ e7 − 2 e5 ∧ e6 ,
de4 = − e1 ∧ e5 − e2 ∧ e6 + e3 ∧ e7 − e5 ∧ e8 ,
de5 = + e1 ∧ e4 + e2 ∧ e7 + e3 ∧ e6 + e4 ∧ e8 ,
de6 = − e1 ∧ e7 + e2 ∧ e4 − e3 ∧ e5 + e7 ∧ e8 ,
de7 = + e1 ∧ e6 − e2 ∧ e5 − e3 ∧ e4 − e6 ∧ e8 ,
de8 = − 6 e4 ∧ e5 + 6 e6 ∧ e7 .

(B.2)

C Explicit representation matrices of bundle adjoint action

C.1 Canonical connection

From the structure constants of the Lie algebra of Sp(2) (A.1) we can read off the adjoint

action of SU(2) on the tangent bundle of the squashed 7-sphere, given by the following

matrices

I8 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 −1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 −1 0


, I9 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 −1 0

0 0 0 0 0 0 −1

0 0 0 1 0 0 0

0 0 0 0 1 0 0


, I10 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 −1 0

0 0 0 0 1 0 0

0 0 0 −1 0 0 0


. (C.1)

It can be checked that these matrices satisfy the normalization [Ia, Ib] = 2 ϵ c
ab Ic , and we

also find

tr(IaIb) = − 4 δab . (C.2)

For the squashed Aloff–Wallach space case, we use the structure constants (B.1) and find

the action described by

I8 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 −1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 −1 0


, (C.3)

and we have

tr(I8I8) = − 4 . (C.4)
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C.2 Clarke–Oliveira connection

From the structure constants of the Lie algebra of Sp(2) (A.1) and SU(3) (B.1) we can

read off the adjoint action on the tangent bundle of the SU(2) associated to the 3-Sasakian

triple of Killing vector fields. These matrices are valid for both the squashed 7-sphere and

the squashed Aloff–Wallach space

I1 =



0 0 0 0 0 0 0

0 0 −2 0 0 0 0

0 2 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 −1 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 −1 0


, I2 =



0 0 2 0 0 0 0

0 0 0 0 0 0 0

−2 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 −1

0 0 0 −1 0 0 0

0 0 0 0 1 0 0


, I3 =



0 −2 0 0 0 0 0

2 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 −1

0 0 0 0 0 −1 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0


. (C.5)

It can be checked that these matrices satisfy the normalization [Ii, Ij ] = 2 ϵ k
ij Ik , and we

also find

tr(IiIj) = − 12 δij . (C.6)

D Most general G2-compatible metric connection

We introduced in section 3.3 a one-parameter family of instantons on the tangent bundle

given by metric connections compatible with the G2-structure. We list here their explicit

expressions, obtained from substituting the Levi-Civita connection and contorsion in (3.21).

First, we define

κ(a, s) = (1 + 10 a) s+ (1− 2 a)
1

s
. (D.1)

The nonzero connection one-forms (up to antisymmetry ωµ
ν = −ων

µ) for the squashed

7-sphere are given by

ω1
2 = −κ(a, s) η3 , ω2

3 = −κ(a, s) η1 ,

ω3
1 = −κ(a, s) η2 ,

ω4
5 =

1

2
κ(a, s) η1 − η8 , ω6

7 =
1

2
κ(a, s) η1 + η8 ,

ω4
6 =

1

2
κ(a, s) η2 − η9 , ω5

7 = − 1

2
κ(a, s) η2 − η9 ,

ω4
7 = − 1

2
κ(a, s) η3 + η10 , ω5

6 = − 1

2
κ(a, s) η3 − η10 ,

and for the squashed Aloff–Wallach space they are given by

ω1
2 = −κ(a, s) η3 , ω2

3 = −κ(a, s) η1 ,

ω3
1 = −κ(a, s) η2 ,

ω4
5 =

1

2
κ(a, s) η1 − η8 , ω6

7 =
1

2
κ(a, s) η1 + η8 ,

ω4
6 =

1

2
κ(a, s) η2 , ω5

7 = − 1

2
κ(a, s) η2 ,

ω4
7 = − 1

2
κ(a, s) η3 , ω5

6 = − 1

2
κ(a, s) η3 .
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From F = dω + ω ∧ ω we compute the curvature. For the squashed 7-sphere (up to

antisymmetry Fµν = −Fνµ) the nonzero terms are

F12 = −κ(a, s)

[(
κ(a, s)− 2

s

)
η1 ∧ η2 + 2 s ω3

]
,

F23 = −κ(a, s)

[(
κ(a, s)− 2

s

)
η2 ∧ η3 + 2 s ω1

]
,

F31 = −κ(a, s)

[(
κ(a, s)− 2

s

)
η3 ∧ η1 + 2 s ω2

]
,

F45 =
1

2
κ(a, s)

(
κ(a, s)− 2

s

)
η2 ∧ η3 + s

(
κ(a, s) +

2

s

)
η4 ∧ η5 + s

(
κ(a, s)− 2

s

)
η6 ∧ η7 ,

F67 =
1

2
κ(a, s)

(
κ(a, s)− 2

s

)
η2 ∧ η3 + s

(
κ(a, s)− 2

s

)
η4 ∧ η5 + s

(
κ(a, s) +

2

s

)
η6 ∧ η7 ,

F46 =
1

2
κ(a, s)

(
κ(a, s)− 2

s

)
η3 ∧ η1 + s

(
κ(a, s) +

2

s

)
η4 ∧ η6 − s

(
κ(a, s)− 2

s

)
η5 ∧ η7 ,

F57 = − 1

2
κ(a, s)

(
κ(a, s)− 2

s

)
η3 ∧ η1 − s

(
κ(a, s)− 2

s

)
η4 ∧ η6 + s

(
κ(a, s) +

2

s

)
η5 ∧ η7 ,

F47 = − 1

2
κ(a, s)

(
κ(a, s)− 2

s

)
η1 ∧ η2 + s

(
κ(a, s) +

2

s

)
η4 ∧ η7 + s

(
κ(a, s)− 2

s

)
η5 ∧ η6 ,

F56 = − 1

2
κ(a, s)

(
κ(a, s)− 2

s

)
η1 ∧ η2 + s

(
κ(a, s)− 2

s

)
η4 ∧ η7 + s

(
κ(a, s) +

2

s

)
η5 ∧ η6 ,

whereas for the squashed Aloff–Wallach space we find

F12 = −κ(a, s)

[(
κ(a, s)− 2

s

)
η1 ∧ η2 + 2 s ω3

]
,

F23 = −κ(a, s)

[(
κ(a, s)− 2

s

)
η2 ∧ η3 + 2 s ω1

]
,

F31 = −κ(a, s)

[(
κ(a, s)− 2

s

)
η3 ∧ η1 + 2 s ω2

]
,

F45 =
1

2
κ(a, s)

(
κ(a, s)− 2

s

)
η2 ∧ η3 + s

(
κ(a, s) +

6

s

)
η4 ∧ η5 + s

(
κ(a, s)− 6

s

)
η6 ∧ η7 ,

F67 =
1

2
κ(a, s)

(
κ(a, s)− 2

s

)
η2 ∧ η3 + s

(
κ(a, s)− 6

s

)
η4 ∧ η5 + s

(
κ(a, s) +

6

s

)
η6 ∧ η7 ,

F46 =
1

2
κ(a, s)

[(
κ(a, s)− 2

s

)
η3 ∧ η1 + 2 s ω2

]
,

F57 = − 1

2
κ(a, s)

[(
κ(a, s)− 2

s

)
η3 ∧ η1 + 2 s ω2

]
,

F47 = − 1

2
κ(a, s)

[(
κ(a, s)− 2

s

)
η1 ∧ η2 + 2 s ω3

]
,

F56 = − 1

2
κ(a, s)

[(
κ(a, s)− 2

s

)
η1 ∧ η2 + 2 s ω3

]
.
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E Coefficients of cubic equations

Here we list the coefficients of the cubic equations that need to be satisfied in order to solve

the heterotic Bianchi identity in sections 5.1.3, 5.2.3 and 5.3.2.

The coefficients of the positive powers of a are the same for all the cubics, whereas the

independent term varies case by case. All of them are listed below.22

Power of a Coefficient

a3
12
(
5 s2 − 1

)3
s2 (2 s2 − 1)

a2
6
(
5s2 − 1

)2 (
7s2 − 1

)
s2 (2 s2 − 1)

a
3
(
5 s2 − 1

) (
11 s2 − 5

) (
s2 + 1

)
s2 (2 s2 − 1)

Table 7. List of cubic coefficients for positive powers of a.

Section Independent term Coefficient

5.1.3
7-sphere

2 c
(
2 s2 − 1

)
+ 15 s6 + 21 s4 − 19 s2 − 1

2 s2 (2 s2 − 1)

Aloff–Wallach space
3
(
2 q
(
2 s2 − 1

)
+ 5 s6 + 7 s4 − 17 s2 + 5

)
2 s2 (2 s2 − 1)

5.2.3
7-sphere

− 2 c
(
2 s2 − 1

)
+ 15 s6 + 21 s4 − 19 s2 − 1

2 s2 (2 s2 − 1)

Aloff–Wallach space
− 2 q

(
2 s2 − 1

)
+ 3

(
5 s6 + 7 s4 − 17 s2 + 5

)
2 s2 (2 s2 − 1)

5.3.2
7-sphere

15 s6 + 117 s4 − 115 s2 + 23

2 s2 (2 s2 − 1)

Aloff–Wallach space
3
(
5 s6 + 39 s4 − 49 s2 + 13

)
2 s2 (2 s2 − 1)

Table 8. List of independent terms of the cubics.

22In section 5.3.2 the parameter of the connection is denoted by b instead of a.
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[18] H.N. Sá Earp, G2-instantons over asymptotically cylindrical manifolds, Geom. Topol. 19

(2015) 61 [1101.0880].

[19] T. Walpuski, G2-instantons on generalised Kummer constructions, Geom. Topol. 17 (2013)

2345 [1109.6609].
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