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Abstract

The �uctuations of the atom number between a Bose-Einstein condensate and

the surrounding thermal gas have been the subject of a long standing theoreti-

cal debate. This discussion is centered around the appropriate thermodynamic

ensemble to be used for theoretical predictions and the e�ect of interactions

on the observed �uctuations. Here we introduce the so-called Fock state sam-

pling method to solve this classic problem of current experimental interest for

weakly interacting gases. A suppression of the predicted peak �uctuations is

observed when using a microcanonical with respect to a canonical ensemble.

Moreover, interactions lead to a shift of the temperature of peak �uctuations

for harmonically trapped gases. The absolute size of the �uctuations further-

more depends on the total number of atoms and the aspect ratio of the trapping

potential. Due to the interplay of these e�ect, there is no universal suppression

or enhancement of �uctuations.
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1 Introduction

Bose-Einstein condensates are at the heart of current e�orts to understand complex many
body quantum systems. Typically, investigations of these systems evaluate mean values
of a given observable such as the number of atoms in a given state. Further important
insights are often o�ered by higher moments of the relevant probability distribution and
thus a full statistical description of such systems would be highly desirable. However, the
statistics of complex systems is one of the fundamental problems in many areas of physics
and a full description of a gas of bosonic particles - called a Bose gas in this context -is not
available.

In this paper, we present a new method to study statistical properties of the ideal and
weakly interacting Bose gas at equilibrium. This problem has been studied since the 1940s
when E. Schrödinger noticed that the commonly used grand canonical ensemble description
of the non-interacting Bose gas leads to absurdly large �uctuations if applied to an isolated
system [1]. The questions was further corroborated in the work of R. Zi�, G. Uhlenbeck,
M. Kac [2]. They concluded that the canonical �uctuations do not su�er the problem
noticed by E. Schrödinger and thus showed that the commonly used statistical ensembles
are not equivalent with respect to condensate �uctuations. The statistical problem gained
renewed interest [3�10] after 1995, when the �rst Bose-Einstein condensate in a dilute
gas was produced [11, 12]. To reach the necessary temperatures for atomic Bose-Einstein
condensation, the gas is isolated as much as possible from its environment. Thus, its
statistics should be close to the microcanonical ensemble predictions and it was shown
that the microcanonical �uctuations of the three-dimensional (3D) non-interacting gas are
expected to be signi�cantly lower than canonical �uctuations [8,9]. Figure 1 is a sketch that
outlines the expected atom number �uctuations of a a non-interacting Bose gas calculated
using the statistical ensembles discussed above for the case of N = 1000 atoms trapped in
a 3D harmonic trap. This clearly shows that the expected �uctuations strongly depend on
the chosen ensemble.

For a long time, the problem of condensate �uctuations was an academic one. First
observations were performed in an exotic non-isolated condensate made of light [13] show-
ing the grand canonical �uctuations [14]. For atomic condensates, such measurements
turned out more di�cult since the technical �uctuations of the total number of atoms,
due to the noise in the cooling process, were much larger than the equilibrium �uctuations
of the condensed gas. The situation changed with recent experiments that allowed for
unprecedented control of the number of atoms [15, 16]. This enabled the �rst measure-
ments of the condensate �uctuations [17] and con�rmed that the observed �uctuations are
closer to the microcanonical predictions [18]. Despite using as many as 5 × 105 atoms,
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Figure 1: Illustration of the variance of the number of ground state atoms in three statistical
ensembles as a function of temperature T in units of the canonical critical temperature Tc.
When the temperature of an ultracold Bose gas is lowered towards Tc a grand canonical
ensemble calculation predicts unphysically large �uctuations (green line). A canonical
ensemble calculation does not su�er from this problem and predicts a peak in �uctuations
below Tc (orange line). These �uctuations decrease as the number of atoms in the thermal
states declines for lower temperatures. A microcanonical calculation (blue line) shows the
same features but predicts quantitatively lower peak �uctuations which can be shifted
in temperature with respect to the canonical result. This sketch is based on a numerical
calculation for N = 1000 non-interacting atoms in a three dimensional symmetric harmonic
trap.

the experiments are conducted far from the known asymptotic (N → ∞) predictions for
the �uctuations [7, 9]. Crucially, for such a large number of atoms, no exact result for
microcanonical �uctuations is available.

Moreover, the e�ect of interactions on condensate �uctuations remains a controversial
problem. The only solid results are o�ered by the Bogoliubov approximation. It has been
shown that the �uctuations of an interacting condensate, in the limit of large atom numbers,
are up to two times smaller than the ones of the non-interacting gas [19]. The Bogoliubov
approximation has been applied for the problem of �uctuations in the canonical [19�24]
and then in the microcanonical ensemble [25, 26]. However, this approach only holds for
low temperatures and weak interactions. In particular, it does not apply in the vicinity of
the critical temperature where the maximal �uctuations of the number of condensed atoms
are best determined in the experiment. All other results are either limited to 1D [27] or
are sensitive to not very-well-controlled approximations [10, 28]. Various methods give
qualitatively di�erent results, as summarized in Fig. 4 of [17]. In the case of 3D interacting
systems, methods capable to study statistics for all temperatures exist only to the canonical
and the grand canonical ensembles.

In this paper we introduce a new numerical method, called Fock state sampling, to e�-
ciently study the statistical properties of non-interacting and weakly-interacting systems in
the canonical ensemble and, in the most restricted, microcanonical ensemble. The method
generates a set of representative con�gurations in a well-chosen con�gurational space. By
appropriate post-selection, we interpolate smoothly between micro- and canonical ensem-
bles. For the non-interacting gas microcanonical results are obtained for as many as 105

atoms in a spherically symmetric trap.
To benchmark our method we �rst study the Bose gas in a one dimensional box potential

with periodic boundary conditions and in a harmonic trap. In these systems, comparisons
with exact �ndings and with the other approximate methods (such as the Bogoliubov and
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the classical �eld approximation) are possible. We then proceed to apply our method to
the experimentally more relevant three dimensional systems.

The paper is organized as follows. In Sec. 2 we recall the basics of statistical ensem-
bles and formulate our problem. The Fock state sampling method is described in Sec. 3.
Section 4 presents our results in one dimensional systems. The results obtained in three
dimensional systems are discussed in Sec. 5. This includes the regime between the canon-
ical and the microcanonical ensemble and the interaction-induced shift of the condensate
�uctuations in both ensembles. We summarize our �ndings in Sec. 6.

2 Statistical description of a Bose gas

In statistical mechanics the systems of interest at �nite temperature are described by
statistical ensembles following Gibbs [29]. Such an ensemble is just a collection of copies
of the system that ful�lls the appropriate conditions. The statistical ensembles are de�ned
by a set of control parameters that correspond to physical constraints imposed on the
system. Conceptually, the simplest is the microcanonical ensemble for which the control
parameters are: the total number of particles N , the total energy E, and the volume V .
For the commonly used harmonic trap this volume is replaced with the trap frequency.
This ensemble describes the statistical properties of a fully isolated system, both in terms
of exchange of particles and energy. In its quantum version, the properties of the system
in a microcanonical ensemble are determined by the partition function Γ(E,N), equal to
the number of states of N atoms, with total energy E. Next in complexity is the canonical
ensemble, which also describes a �xed number of particles N but assumes contact with a
thermal reservoir imposing a temperature T . As a consequence, the energy of the system
�uctuates. The least constraining is the grand canonical ensemble which assumes not only
a contact with a heat bath but also with a reservoir of particles. The corresponding control
parameter µ is called the chemical potential and plays a role analogous to temperature with
respect to particle number. Paradoxically, from the point of view of the computational
complexity, the order of ensembles appears inverted, with the grand canonical being the
easiest and the microcanonical the most di�cult to use.

In this paper, we consider statistical properties of N ultracold trapped bosonic atoms.
The Hamiltonian is

Ĥ =

∫
d3r Ψ̂†(r)ĥΨ̂(r) +

g

2

∫
d3r Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r), (1)

where Ψ̂(r) is a bosonic annihilation operator, ĥ = − h̄2∆̂
2m + V (r) is the energy density of

atoms with mas m placed in a trapping potential V (r) and g is a coupling constant related
to short range interactions. Here ∆̂ is just the Laplace operator. Note that we consider
only contact repulsive interactions, that is g > 0.

We consider both, a box potential of length L with periodic boundary condition, i.e.
V = 0, and a more common harmonic potential V (x, y, z) = 1

2m
(
ω2
⊥(x2 + y2) + ω2

zz
2
)
,

where we limit our considerations to at most two di�erent frequencies, ω⊥ and ωz respon-
sible for radial and longitudinal con�nement, respectively. In the following we refer to
λ = ω⊥/ωz as the aspect ratio. In particular, the results for a non-interacting trapped
Bose gas do not depend on the explicit values of the trap frequencies, but solely on the
parameter λ. In what follows, whenever we discuss a gas in a harmonic trap we shift the
spectrum such that the ground state energy of the non-interacting gas equals zero.

A convenient basis is spanned by the Fock states |N〉 := |N0, N1 . . .〉, where Nj are
occupations of the orbitals φj(r) and we choose φj(r) as the eigenstates of a single particle
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trapped in a potential V (r). In this basis, the �eld operator Ψ̂(r) is

Ψ̂(r) =

∞∑
j=0

φj(r) âj , (2)

where âj (â
†
j) are the bosonic annihilation (creation) operators of atoms in the j-th orbital.

The lowest energy state, denoted with φ0(r), is the ground state in the non-interacting

case. Its occupation N̂0 = â†0â0 �uctuates in all ensembles. The �uctuations are given by

∆2N0 = Tr
{
N̂2

0 ρ̂
}
−
(

Tr
{
N̂0ρ̂

})2
, (3)

where ρ̂ is the density matrix of the gas at equilibrium. The de�nition of the density matrix
depends on the chosen ensembles as given below.

• The microcanonical density matrix is

ρ̂micro =
1

Γ (N,E)
δ
(
Ĥ − E

)
, (4)

where δ is the Dirac delta function and Γ (N,E) is the microcanonical partition
function, namely the number of ways to distribute N atoms between energy levels
such that the total energy is E.

• In the canonical ensemble, the density matrix is de�ned as

ρ̂cano =
1

Z (N, β)
e−βĤ , (5)

where Z is the canonical partition function Z(N, β) := Tr
{
e−βĤ

}
, β := 1/(kBT )

and kB is the Boltzmann constant.

The partition function restricted to the excited states and excited atoms only, is very
useful for the computation of the statistics of a condensate. It is denoted with Γex (Nex, E)
and Zex (Nex, β) in the microcanonical and canonical ensembles, respectively. In particular,
Γex (Nex, E) is the number of ways to distribute Nex atoms between excited energy levels
such that the total energy still equals E.

In the microcanonical ensemble, the probability that there are N0 atoms in the conden-
sate is thus

pmicro (N0, N, E) := Γex (N −N0, E) /Γ (N,E) . (6)

Analogously, in the canonical ensemble we de�ne

Zex (Nex, β) :=
∑

N1+N2+...=Nex

〈N0, N1, . . . |e−βĤ |N0, N1, . . .〉, (7)

where the sum is over all Fock states with exactly Nex atoms in all excited energy levels
together. The probability of having N0 atoms in the canonical ensemble is then

pcano(N0, N, β) := Zex (N −N0, β) /Z (N, β) . (8)

In principle, given the probabilities pmicro and pcano one could compute the average
number of ground state atoms and their �uctuations using

〈N0〉ens =

N∑
N0=0

pens (N0, N,E) N0 (9)

(
∆2N0

)
ens

=

N∑
N0=0

pens (N0, N,E) N2
0 − 〈N0〉2ens (10)

5



SciPost Physics Submission

where the subscript ens indicates the ensemble, labeled micro and cano in the following.
Computations in the canonical and the microcanonical ensembles are thus conceptu-

ally the same. However, while there are e�cient methods for calculating the probabilities
pcano in the canonical ensemble [5, 6] the analogous calculations are much more demand-
ing for the microcanonical ensemble. Apart from a few exceptional cases, calculations in
the microcanonical ensemble are hence restricted to small systems. Accurate modelling
of experiments, therefore, requires the development of computational methods. Below we
describe a new numerical method that allows us to perform reliable calculations in both
statistical ensembles with up to 105 atoms, without reconstructing the probability distri-
butions pmicro and pcano.

3 Fock state sampling method

In practice, the Fock state sampling (FSS) method is a realization of the Metropolis algo-
rithm, widely used in Monte-Carlo simulations [30]. The algorithm generates a Boltzmann-
distributed random walk in the space of possible con�gurations of the system. The set of
visited points is interpreted as a collection of microstates of the system representing the
canonical ensemble. Importantly, we can also generate points representing the microcanon-
ical ensemble by post-selection from the collection of states. The �nal collection can be
used to compute average values of physical quantities as it is done in the statistical ensem-
bles. Moreover, the method is applicable to weakly interacting Bose gases in the canonical
and microcanoncial ensembles as described below.

Our earlier application of the Metropolis algorithm was performed in the framework
of the classical �eld approximation (CFA) [31]. However, in the CFA a fraction of an
atom can �ow from orbital to orbital due to the lack of discretization. This leads to an
unavoidable dependence of the results on the energy cut-o�, which is analogous to the
ultraviolet catastrophe of the black body radiation prior to M. Planck's introduction of
photons.

In our novel FSS method, the algorithm walks among all the Fock states satisfying∑
Nj = N . In practice, we also truncate the orbitals at some high value, but now the

results are cut-o� independent, provided that the cut-o� is su�ciently high.
The novelty, apart from the choice of the underlying set of states, rests in the de�nition

of the steps of the random walk. In this respect, the Metropolis algorithm is very �exible -
one obtains the correct results provided that the whole space of states is accessible and
that the steps satisfy the condition of detailed balance [30]. The FSS method is described
in detail below, starting with the non-interacting gas case.

Our walk prescription is physically motivated and quickly provides representative col-
lections of the ensemble copies. In this algorithm every atom has equal chances of jumping
away from their occupied mode, that is the probability of a jump from a given orbital is
proportional to its occupation. The orbital which the atom jumps to is drawn in propor-
tion to its occupation � a well-known Bose-enhancement factor � plus one, which represents
spontaneous transitions. This is analogous to A. Einstein's discussion of A and B coef-
�cients for the spontaneous and stimulated emission processes. The probability that an
atom jumps from the j-th orbital to the k-th orbital is thus proportional1 to Nj(Nk + 1).
The new con�guration is accepted and added to the set of copies representing the canonical
ensemble if a drawn random number r ∈ [0, 1] is smaller than exp (−β(Ef − Ei)), where Ei

and Ef denote the energy of the Fock state at the beginning of the step and the energy of

1Notice that if j = k, then the probability is proportional N2
j , i.e. we account for the fact that the

atom was �rst removed and then it returns.
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the candidate Fock state, respectively. A further acceleration of the algorithm is described
in appendix A.

Since the initial state can be arbitrary, a number of steps must be made before the
random walk begins to represent the ensemble. This initial part of the walk, during which
the system "thermalizes" (also referred to as "burn-in" in the Markov Chain Monte Carlo
literature), is rejected from the analysis for practical reasons.

We extend this method beyond the non-interacting gas by considering weak contact
interactions. In this case, the energy in the Boltzmann factor includes not only the kinetic
and potential energy in the trap but also the contribution of the interaction energy. The
mean value of the interaction energy, given by the last term in Eq. (1), in the Fock state is
given by

Eint =
g

2

∫
d3r 〈N0, N1 . . . |Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r)|N0, N1 . . .〉, (11)

and resembles the lowest order perturbation term.
In the case of a harmonic trap, the condensate wave function of the interacting gas

di�ers from the simple Gaussian solution of the single particle ground state. Nonetheless,
we only consider the statistics of the population in the lowest orbital in the present version
of the method, even in the interacting case. Therefore, we restrict our consideration to
very weak interactions. Note however, that for a box with periodic boundary conditions
this additional complication does not arise, and φ0(r) = 1/

√
V remains the condensate

wave-function even in the presence of interactions.
Once a set of states representing the canonical ensemble is generated we can perform

a post-selection routine by choosing a subset that satis�es additional constraints. In par-
ticular, one can reduce the set all the way to the microcanonical ensemble by restricting
the spread of energies. This is done by introducing a shrinking energy window around the
mean energy and removing the states with energies outside this window. In the limiting
case where the width of the energy window approaches zero typically only a few states
remain. To avoid large statistical error in this case, we determine the microcanonical val-
ues by extrapolating the results from wider windows. Further details of this procedure are
given in Sec. 5 for an experimentally relevant case.

We extract the important quantities for the discussion of the �uctuations in a Bose-
Einstein condensate as follows. The mean number of condensed atoms is given by

N̄0 :=
1

W

W∑
i=1

N0, i, (12)

and its variance is

∆2N0 :=
1

W

W∑
i=1

(N0, i)
2 − N̄2

0 , (13)

where W is the number of con�gurations, represented in what follows, by Fock states
generated by our algorithm. Here N0, i is the occupation of the ground state in the i-th
copy.

To obtain results for the microcanonical ensemble we use the same formulas (12) and
(13), but we restrict the sum to the Fock states that remain after the post-selection, de-
scribed above and in Sec. 5.

In relation to recent experiments it is furthermore of great interest to evaluate the ratio

S :=
maxE

(
∆2N0

)
micro

maxT (∆2N0)cano

, (14)
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Figure 2: Fluctuations of a non-interacting Bose gas containing N = 100 atoms in a 1D
ring trap. The variance of N0 as a function of temperature in 1D in canonical ensemble
is obtained from several di�erent approaches: FSS method, classical �eld approximation,
Bogoliubov approach (BOA) and an exact method (see text). In addition a microcanonical
calculation using the FSS method is presented, showing the clear reduction of the expected
�uctuations in this ensemble. The temperature T is given in units 2π2h̄2/(mkBL

2).

between peak �uctuations in the microcanonical and canonical ensembles. In particular,
when S di�ers signi�cantly from unity, measurements can be used to identify the appropri-
ate ensemble, which recently demonstrated the microcanonical nature of the Bose-Einstein
condensation in ultracold gases [18]. Figure 1 illustrates these peak �uctuation in both
ensembles.

Importantly, the post-selection process allows for an investigation of the transition
from the canonical to microcanonical ensembles. However, it does not give access to the
transition from grand canonical to canonical ensembles, which is of interest for photonic
condensates [13] and will be the topic of future research.

4 Fluctuations in 1D Bose gases

In a �rst step we apply the Fock state sampling method in a one dimensional setting. This
has the advantage that a number of available solutions allow for a more comprehensive
benchmarking of the numerical method than the three dimensional case. In particular, we
analyze two distinct trapping geometries in 1D. First a ring trap corresponding to a 1D box
with periodic boundary conditions is analysed and then a harmonic trap is discussed. In
both cases we compare the �uctuations with and without interactions. After benchmarking
our method with the canonical ensemble, we use it to discuss the microcanonical case.

4.1 1D box with periodic boundary conditions (ring trap)

Figure 2 shows the �uctuations of a Bose gas in a ring trap obtained from canonical en-
semble calculations using several di�erent approaches. This includes results based on exact
counting statistics [5], the classical �eld approximation [31], the Bogoliubov approximation,
and the Fock state sampling method presented here.

For the non-interacting gas, our present FSS method, as well as the classical �eld ap-
proximation with a well chosen cut-o� [32,33], perfectly reproduce the exact result which is
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Figure 3: Fluctuations of a weakly-interacting Bose gas containing N = 100 atoms in a
1D ring trap. The variance of N0 as a function of temperature is obtained from several
di�erent approaches: FSS method, classical �eld approximation, and Bogoliubov approach.
A microcanonical calculation shows a signi�cant suppression of the �uctuations. The exact
canonical result from Fig. 2 is shown for comparison. (inset) Variance at a low temperature
T = 5 (orange, axis on the right) and at the temperature of maximal �uctuations (blue, axis
on the left) as a function of the interaction strength g, obtained with the FSS method in
the canonical ensemble. The arrows indicate the appropriate axis. The interaction strength
g and temperature T are given in units 2h̄2π2/(mL) and 2π2h̄2/(mkBL

2) respectively.

known analytically in this case [33]. Moreover, we also �nd good agreement with the result
based on the Bogoliubov approximation within its range of validity at low temperatures.
This validates our method for the case of the non-interacting Bose gas in 1D. Moreover,
we employ the post-selection process to the FSS method to evaluate the �uctuation in the
microcanonical ensemble. This shows a clear reduction of the �uctuation with respect to
the canonical expectation.

We now include weak interactions as shown in Fig. 3. No exact canonical results are
available for this case, but at low temperature reliable results can be obtained within
the Bogoliubov approximation, valid for low temperatures and low interaction strengths.
The results based on the Bogoliubov approximation show the expected suppression of
�uctuations at low temperature in good agreement with our FSS method computation and
earlier results based on the classical �eld approximation [33]. However, the FSS results show
that this suppression is not general, but that the �uctuations surpass the non-interacting
case at higher temperature.

Note that this result is a signi�cant change of paradigm. The reduction of �uctuations
due to interactions for a Bose gas in a box was stressed in a number of papers that relied on
the Bogoliubov approximation [19]. On the basis of Fig. 3 it is now clear that this prediction
is limited to low temperatures only. In particular, Fig. 3 shows that the �uctuations of
an interacting gas are larger near their maximal value as our canonical results exceed the
non-interacting exact prediction.

This is further corroborated in Fig. 3 (inset). It shows the �uctuations as a function of
the interaction strength g in two regimes. At a low temperature T = 5 (orange) the �uc-
tuations decrease as a function of interaction strength as predicted within the Bogoliubov
approximation. However, at the temperature of the peak �uctuations they increase as a
function of interaction strength.

This e�ect is even more pronounced in a microcanonical calculation, which can be seen

9
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by comparing the microcanonical results in Fig. 2 and Fig. 3. Both results are strongly
reduced with respect to their corresponding canonical results. In addition the weakly
interacting microcanonical result lies considerably below the non-interacting one at low
temperatures. At higher temperatures the e�ect reverses and the weakly-interacting mi-
crocanonical variance is larger than non-interacting one . This is evident from a comparison
of the green symbols in Fig. 2 and Fig. 3, where the non-interacting canonical result can
serve as a guide to the eye.

4.2 1D harmonic trap

In a next step we extend our analysis to the experimentally more relevant case of a 1D
harmonic trap. For the non-interacting gas, the probability distribution of �nding N0

atoms in the ground state in the canonical ensemble is given by

pcano(N0, N, β) = e−β(N−N0) h̄ω
N∏

n=N−N0

(
1− e−β n h̄ω

)
. (15)

The exact result for the �uctuations based on this distribution is shown in Fig. 4. Moreover,
we show the result based on the Bogoliubov approximation which again agrees with the
exact result within its range of validity at low temperatures. Importantly, the FSS method
perfectly reproduces the exact result at all temperatures in the 1D harmonic trap.

Based on this agreement, we again include interactions in our analysis. Figure 4 includes
the �uctuations of the interacting gas based on the Bogoliubov approximation, which is
valid for low temperatures at weak interactions. In clear contrast with the previous case this
analysis shows that the �uctuations increase at low temperatures due to the interactions.

The results from our FSS method analysis provide an explanation for this behaviour.
At low temperature it agrees well with the results based on the Bogoliubov approximation.
However, for higher temperatures the primary e�ect of interactions is a shift of the temper-
ature of peak �uctuations. This indeed qualitatively corresponds to an expected shift of the
critical temperature due to interactions in the system. The peak value of the �uctuations
remains almost unchanged and it stays in the range of statistical errors of the FSS method
results. Thus the apparent increase of �uctuations at low temperature is primarily caused
by the shift of the critical temperature.

Now we turn our attention to the microcanonical ensemble. In this case, there are no
closed formulas for the condensate �uctuations, even for the non-interacting gas. Instead
one may �nd the ground state statistics using recurrence relations. Here, one can bene�t
from the fact that the statistical problem for the 1D harmonic trap is directly related to
the classic combinatorial problem of the number of partitions of an integer.

The relevant combinatorial �gure in this problem is the number of partitions of an
integer E into a sum of Nex ≤ N strictly positive numbers. For the 1D harmonic trap
this number is nothing else but Γex(Nex, E) introduced above, where the integer E is the
energy expressed in harmonic oscillator units. For example Γex(Nex, Nex + 1) equals 1, as
there is only one way to write the number Nex + 1 as a sum of Nex positive integers: a
single integer equal to 2 and Nex− 1 integers equal to 1. In general, the value Γex(Nex, E)
may be obtained using the recurrence relation

Γex(Nex, E) = Γex(Nex, E −Nex) + Γex(Nex − 1, E − 1). (16)

The �rst term in this relation, Γex(Nex, E − Nex), is the number of partitions in which
the number 1 does not appear. In fact, if we subtract 1 from each element of such a
partition, there still remain Nex non-zero integers, only that their sum will be E −Nex. In

10



SciPost Physics Submission

0 5 10 15 20 25

T

0

50

100

150

200

250

300
∆

2
N

0

g = 0, exact, cano.

g = 0, exact, micro.

g = 0, FSS, cano.

g = 0.1414, FSS, cano.

g = 0, BOA, cano.

g = 0.1414, BOA, cano.

g = 0, FSS, micro.

g = 0.1414, FSS, micro.

Figure 4: Fluctuations of Bose gas containing N = 100 atoms as a function of temperature
in a 1D harmonic trap. The �uctuations with and without interactions are computed with
several methods: FSS method (symbols), Bogoliubov approach (orange dotted and dot-
dashed lines), and exact methods for the non-interacting gas (black solid and dashed lines).
Interactions lead to a shift of the temperature of peak �uctuations, resulting in increased
�uctuations at low temperature. In addition calculations using a microcanonical (black
dashed line, green symbols) ensemble show the signi�cantly lower �uctuations expected in

this case. The interaction strength g and temperature T are given in units of
√
h̄3ω/m

and h̄ω/kB, respectively.

turn, for every partition of E in which the number 1 appears, one can take this 1 away.
Such a new set will contain Nex − 1 non-zero elements, summing up to E − 1. There are
Γex(Nex − 1, E − 1) such partitions.

The full partition function in the microcanonical ensemble is

Γ(N, E) =

N∑
Nex=0

Γex(Nex, E), (17)

and one can easily �nd the probability distribution of �nding N0 atoms in the single particle
ground state pmicro (N0, N, E) = Γex(N −N0, E)/Γ(N, E). Having pmicro (N0, N, E) we
invoke formulas (9) and (10) to �nd the average value and �uctuations of N0.

This exact microcanonical result provides a benchmark for the post-selection process
based on the FSS method analysis. As outlined above, the �uctuations in a microcanonical
ensemble are calculated by post-selection from a set of states obtained using the FSS
method approach in the canonical ensemble, which amounts to a reduction of the energy
spread. Figure 4 includes a comparison of our numerical result with the exact calculation.
The two are in excellent agreement for the entire temperature range and show that the
�uctuations in the microcanonical ensemble are always smaller than in the canonical one.

The post-selection works equally well for interacting systems and Fig. 4 also shows
microcanonical the ground state atom number �uctuations in a weakly interacting Bose
gas. Similar to the canonical interacting result the maximal �uctuations are shifted to
lower temperature (energy) in qualitative agreement with the expected shift of the critical
temperature due to interactions. Once again, the microcanonical �uctuations are also
reduced with respect to the canonical result. Note, that there is no exact calculation which
could serve as a benchmark for this case, since to our knowledge, there exists no other
method for the weakly interacting gas in the microcanonical ensemble.

11
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Figure 5: Ratio S between the peak �uctuations in a microcanonical and a canonical
ensemble calculation as a function of atom number for a 1D harmonic trap and a 1D box
with periodic boundary conditions. The results for the 1D harmonic trap are obtained from
an exact calculation (see text). In the case of the 1D box potential, the FSS method was
employed.

4.3 Comparison of canonical and microcanonical �uctuations in 1D

Equipped with the analysis above, it is possible to address the natural question, whether
the �uctuations in a 1D non-interacting gas depend on the choice of the statistical ensemble
in the limit of large atom number N → ∞. To this end we �rst compare the results for
the canonical and the microcanonical ensemble using the exact results for the 1D harmonic
oscillator. They allow us to evaluate the ratio S of the peak variance in both ensembles
as introduced in Eq. (14). Figure 5 (blue points) shows the result, where S tends to 1,
indicating that the microcanonical and canonical �uctuations in the 1D harmonic oscillator
asymptotically become equal, in agreement with previous discussions [28].

We also study the same problem for non-interacting atoms in a 1D box potential with
periodic boundary conditions as discussed in Sec. 4.1. In this case, no method of �nding
the exact values of the �uctuations in the microcanonical ensemble is available. Instead,
we use our numerical FSS method analysis to obtain the ratio S as shown in Fig. 5 (orange
points). Again, we observe that S tends to 1, indicating that the microcanonical and
canonical �uctuations in the 1D box potential become equal in the limit of large atom
number.

This �nding supports the typical notion that results in the thermodynamic limit should
be independent of the thermodynamic ensemble. Note however, that this equivalence
between the ensembles is not universal, as pointed out previously [9, 28]. In particular we
show in the following section, devoted to the experimentally relevant 3D case, that the
microcanonical and canonical �uctuations di�er even in the limit of large atom numbers.

5 Fluctuations in 3D systems

Despite its fundamental importance, the question of atom number �uctuations in Bose-
Einstein condensates [28] remained largely an academic problem until a few years ago.
Recently however, the situation has changed, since improved control of the total number
of atoms in ultracold gases has allowed for �rst measurements of the �uctuations [17,18].

In the limit of very large atom numbers in a 3D system the asymptotic atom number
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Figure 6: Histograms of the distribution of energies of sets of states generated with the FSS
method. The sets represent N = 104 atoms in a 3D harmonic trap with aspect ratio λ = 4
at temperatures, from left (blue) to right (green), kBT/(h̄ωz) = 47.5, 47.75, 48, 48.25, 48.5.

�uctuations in a microcanonical ensemble calculation [9] are given by

lim
N→∞

(
∆2N0

)
micro

N
=

(
ζ(2)

ζ(3)
− 3

4

ζ(3)

ζ(4)

)
≈ 0.53, (18)

where ζ denotes the Riemann zeta function. However, in the following we show that despite
the large number of up to 105 atoms, the asymptotic value in Eq. (18) is still not applicable.
On the other hand, these experimentally relevant atom numbers are so large that one cannot
compute the expected microcanonical �uctuations using previously existing methods, even
in the non-interacting case. Here we show how this problem can be solved for large atom
numbers by computing the relevant microcanonical �uctuations with the FSS method after
appropriate post-selection.

As outlined above, we �rst generate a set of states representing the non-interacting gas
at thermal equilibrium in the canonical ensemble. The atom number variance in such a set
is compared with the results obtained from the recurrence relations [5], which ensures that
the resulting set is indeed a good representation of the canonical ensemble.

The set of states representing the system at a given temperature has a distribution of
energies dictated by statistics in the canonical ensemble. Figure 6 shows histograms of
these energies for N = 104 atoms in a 3D harmonic trap with aspect ratio λ = 4 at various
temperatures.

To obtain a set of states representative to the microcanonical ensemble we perform a
post-selection analysis also outlined above. In practice, we post-select a set of states at
a given temperature to reduce the variance of energies by subsequential removal of states
at the highest and lowest energies, symmetrically with respect to the mean energy. The
�nal set thus has an energy in the interval [Emean −∆E/2, Emean + ∆E/2], where Emean

is the mean energy and the energy window is ∆E. By reducing the energy interval, the
microcanonical ensemble, i.e. the limit ∆E → 0 is approached.

The resulting variance of the condensate atom number is shown in Fig. 7, for N = 104

atoms in a 3D harmonic trap with di�erent aspect ratios at the temperatures Tmax for which
the canonical �uctuations are maximal. The variances are presented as a function of the
fraction f , which is de�ned as the fraction of the number of remaining states with respect
to the initial states. We repeat our analysis several times, starting from di�erent sets of
states in the canonical ensemble and the error bars in Fig. 7 correspond to our statistical
uncertainty. For signi�cant post-selection and small resulting sets of states (small f) the
uncertainty of our result can become signi�cant. Therefore a polynomial �t is used to �nd
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Figure 7: Fluctuations of atom number obtained after post-selection. The atom number
variance ∆2N0 for di�erent aspect ratios λ is shown as a function of the fraction f after post-
selection. Thus the �gure represents the transition from a canonical to a microcanonical
result from left to right with solid black lines showing the polynomial �ts. The initial
sets represent N = 104 atoms at the temperature Tmax at which the canonical variance is
maximal.

the asymptotic value of the variance for ∆E → 0, which corresponds to the size of the
�uctuations in a microcanonical ensemble.

Note that experiments typically su�er from atom loss and technical heating. Moreover,
the experimental results are extracted from multiple experimental realizations by using a
correlation technique [17, 18]. Hence, even in the absence of interactions the experiment
would not correspond to this ideal ∆E → 0 limit and we therefore expect the measured
atom number variance in the Bose-Einstein condensate to lie somewhere between its ex-
tremal values, i.e. between the microcanonical and canonical �uctuations.

Figure 7 shows that the atom number variance ∆2N0 is signi�cantly reduced in the
transition from the canonical (f = 1) to the microcanonical ensemble (limit f → 0). While
the results are qualitatively similar, the quantitative reduction depends on the aspect ratio
of the trapping potential λ. Importantly, the �uctuations di�er signi�cantly in a canonical
and a microcanonical calculation even in a very elongated trap (λ = 10) for N = 104 atoms.

5.1 Comparison of canonical and microcanonical �uctuations in 3D

Based on the analysis in a 3D harmonic trap, once again the question arises whether the
�uctuations depend on the choice of the statistical ensemble in the limit of large atom
number N →∞. We study this problem for the non-interacting 3D harmonically trapped
gas by evaluating the ratio S between microcanonical and canonical �uctuations for exper-
imentally relevant aspect ratios λ from 1 to 20 and up to 105 atoms.

Figure 8 shows the ratio between microcanonical and the canonical �uctuations eval-
uated with an FSS method analysis and using exact recurrence relations for small atom
numbers. Note that the FSS method does not provide the ratio S directly and we therefore
take the following approach. In the analysis the set of states representing the canonical
ensemble for which ∆2N0cano is maximal is reduced by post-selection and converges to a
set consistent with the microcanonical ensemble. However, this is not necessarily the set
for which the �uctuations ∆2N0micro reach their maximum and we therefore denote the
resulting ratio of the �uctuations by S̃. It may di�er from S due to two reasons. Firstly,
the microcanonical �uctuations should be labelled by the proper control parameter, i.e.
energy. However, in the FSS method we assume that the temperature is inherited from
the canonical ensemble. Secondly, for a small number of atoms, the maximal �uctuations
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Figure 8: Ratio between microcanonical and the canonical �uctuations in a non-interacting
harmonically trapped 3D gas. The coe�cients S (the ratio of the peak �uctuations in both
ensembles, see eq. 14) and S̃ (see text) characterizing this ratio are shown as a function
of the number of atoms N for di�erent aspect ratios. Data points indicate solutions of
the FSS method analysis. Solid lines represent exact results obtained using the recurrence
relations given in Appendix B.

are reached at slightly di�erent temperatures in both ensembles. To evaluate the e�ect, we
compute S̃ and S using an exact method (see Appendix B) as shown in Fig. 8. This shows
that the two ratios agree for atom numbers above a few hundred atoms and validates the
use of S̃ obtained from our FSS method analysis for larger atom numbers.

Overall, Fig. 8 shows that the ratio between microcanonical and the canonical �uctu-
ations �rst grows and then starts to decrease. This growth for small number of atoms is
easily understood. In an elongated trap, the atoms easily populate the low lying energy
levels associated with the longitudinal direction and thus the system becomes e�ectively
one-dimensional, discussed in the previous section. For N su�ciently large, however, the
3D character of the trap becomes relevant, since the levels in the transverse directions also
become populated. This is in striking contradiction with the result in the strict 1D case
where S approaches 1 (compare with Fig. 5) and clearly breaks with the notion that results
in the large atom limit should be independent of the thermodynamic ensemble.

Note that the expected value of S in the limit N →∞ is given by

S3D =

(
1− 3ζ(3)2

4ζ(4)ζ(2)

)
≈ 0.39 (19)

which is the ratio between the asymptotically known microcanonical �uctuations, Eq. (18),
and �uctuations in the canonical ensemble [7]

lim
N→∞

(
∆2N0

)
cano

N
=
ζ(2)

ζ(3)
. (20)

The FSS method analysis for 105 atoms in a spherical trap results in S ≈ 0.45 which
approaches the asymptotic value 0.39.

5.2 Microcanonical �uctuations in an interacting 3D gas

Finally, the Fock state sampling method allows for the investigation of weak repulsive
interactions in a 3D harmonically trapped gas, which remains a controversial problem. In
particular, di�erent theoretical approaches do not even agree whether interactions lead to
an increase or a decrease of �uctuations (as summarized in Fig. 4 of [17]). In the case
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Figure 9: Atom number �uctuations with and without interactions in a 3D harmonically
trapped gas containing N = 100 atoms, computed in the canonical (top) and microcanon-
ical (bottom) ensemble. The variance of the atom number is shown as a function of tem-
perature for a spherically symmetric λ = 1, (blue) and an elongated λ = 7 (orange) trap
with and without interactions. The horizontal dashed lines correspond to the maximal con-
densate atom number �uctuations for the non-interacting gas in each case. The reference
temperature Tmax is the temperature of maximal �uctuations of the non-interacting gas in
the canonical ensemble. The units of the interaction strength g are (mωz)

3
2ω⊥/

√
h̄.

of 1D con�nement this was discussed in Sec. 4. There it was shown that the direction of
the shift due to interactions is temperature dependent and thus theories valid at di�erent
temperatures come to di�erent conclusions. Moreover, the direction of the shift depends on
the particular system e.g. at low temperatures interactions lead to decrease of �uctuation
in the 1D ring trap, while an increase is observed for the 1D harmonic potential.

In this sense, it is of particular importance to evaluate the interactions in the exper-
imentally relevant 3D harmonic potential. The FSS method allows for such an analysis
for very weak interactions where the state of the Bose-Einstein condensate does not di�er
signi�cantly from the lowest harmonic oscillator state. Moreover, the post-selection pro-
cess introduced above allows for the calculation of the �uctuations in the microcanonical
ensemble.

Figure 9 shows the atom number �uctuations for a non-interacting and interacting gas,
in the canonical (upper panel) and the microcanonical (lower panel) ensembles. A compar-
ison between the upper and lower panel shows the clear overall suppression of �uctuations
in the microcanonical case as discussed in Sec. 5.1. Moreover, each panel shows that the
�uctuations in a spherical trap are generally lower than the ones observed in an elongated
geometry in accordance with the previous �ndings of Fig. 8.

To discuss the temperature dependence, it is normalized to the temperature of maximal
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�uctuations of the non-interacting gas in the canonical ensemble Tmax. This avoids an
ambiguity in the de�nition of the critical temperature for �nite systems. In the canonical
case the interactions lead to a shift of the peak �uctuations to lower temperatures as
expected for a shift of the critical temperature due to interactions. This is reminiscent of
the e�ect observed in the 1D harmonic con�guration of Fig. 4. The shift leads to increased
�uctuations at low temperature and a decrease at Tmax. Importantly, the value of the peak
�uctuations depends on the aspect ratio λ and can both increase or decrease as shown in
Fig. 9 (upper panel).

Finally, the experimentally most relevant case are the �uctuations in the microcanonical
ensembles as shown in Fig. 9 (lower panel). Similar to the previous case interactions lead
to a shift of the peak �uctuations and a resulting increase at low temperature. The peak
�uctuations do not show a uniform behaviour as they increase in an elongated trap but
remain constant in a spherical geometry.

Our results clearly show that the e�ect of interactions on the atom number �uctuations
in a Bose-Einstein condensate depend both on the temperature and the trapping geometry
of the gas. In that sense one can not expect a single answer to the question whether
interactions increase or decrease the �uctuations in a Bose-Einstein condensate.

6 Conclusion

In this paper the �uctuations of a Bose-Einstein condensate were investigated in the non-
interacting gas and in the case of very weak interactions. Using the Fock state sampling
method we studied the �uctuations in di�erent trap geometries, and in the canonical and
microcanonical ensembles as a function of temperature.

In a 1D system with periodic boundary conditions our results agree with the classic
result of S. Giorgini, L. Pitevskii and S. Stringari [19] based on the Bogoliubov approxima-
tion for low temperatures. However, the �uctuations increase for higher temperatures and
the maximal �uctuations are indeed larger than to the non-interacting result. Thus, we
resolved a long standing controversy by showing that the Bogoliubov approximation only
leads to reliable results at low temperatures.

For the case of the 1D harmonically trapped gas we showed that interactions lead to
a clear shift of the peak �uctuations to lower temperatures. This is in general agreement
with the expected shift of the critical temperature and leads to increased �uctuations at
low temperatures. Moreover, we employed a post-selection process to the FSS method to
evaluate the �uctuation in the microcanonical ensemble. This showed a clear reduction of
the �uctuations with respect to the canonical expectation for a gas containing 100 atoms.
Nonetheless, a general analysis showed that the canonical and microcanonical results agree
in the limit of large atom numbers in 1D.

Finally, we investigated the experimentally most relevant case of a 3D harmonically
trapped gas. In this case the microcanonical calculation yields a reduction of the peak
�uctuations which depends on both aspect ratio and atom number. Importantly, our FSS
method results for large atom numbers slowly approach the expected asymptotic value and
thus con�rm that the canonical and microcanonical �uctuations do not agree in the limit
of large atom numbers in 3D.

The weakly interacting 3D harmonically trapped gas shows �uctuations which are both
shifted in temperature and altered in amplitude depending on temperature and trapping
geometry. Thus it is clearly not possible to provide a universal rule for the e�ect of inter-
actions on the �uctuations of a Bose-Einstein condensate.

In view of these results, recent experiments [18] should be compared to calculations in
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the microcanonical ensemble. In future work we will extend the FSS method to include the
realistic condensate wave-function. This will allow us to make quantitative predictions for
the �uctuations in realistic experimental systems. Moreover, we will be able to map out
the e�ect of the ensemble choice and the interactions in a large parameter space.
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A Technical details of the algorithm

The FSS method is a realization of the Metropolis algorithm that samples multimode Fock
state con�gurations in the canonical ensemble. Let |θ〉 = |N0, N1, . . .〉, |θ′〉 = |N ′0, N ′1, . . .〉
be the Fock states representing respectively the initial state and a slightly modi�ed can-
didate. In the FSS method, we restrict ourselves in generating θ′ to only the ones that
amount to moving a single particle from one orbital φi to another φj , compared to the
original state θ, that is N ′i = Ni − 1, N ′j = Nj + 1 and N ′k = Nk for k 6= i ∧ k 6= j. Let
qA(θ, i) and qB(θ, j) be the probabilities of randomly selecting orbitals φi and φj (note the
explicit dependence on the state θ). We de�ne the proposal distribution

Q(θ′|θ) = qA(θ, i)qB(θ, j) (21)

with
qA(i) ∝ exp(−γEi)Ni, qB(j) ∝ exp(−γEj)(Nj + 1), (22)

where γ > 0 is a parameter of the method and Ei, Ej are the single particle energies of
their respective orbitals. The exponential factors are introduced to remedy the wasteful
jumps in high energy orbitals. The parameter γ allows for tuning of the acceptance rate of
the algorithm and thus optimizing its convergence rate. The proposal distribution is not
symmetric for γ 6= 0, that is Q(θ′|θ) 6= Q(θ|θ′) and it is taken into account, however the
ratio Q(θ′|θ)/Q(θ|θ′) ≈ 1 when the number of particles is large (on the order of 100 and
above). The tuning parameter γ takes for example values of about 0.2 and 0.1 for 100 and
1000 particles, respectively, in a spherical harmonic trap.

In our implementation of the algorithm, the complexity of calculating the energy dif-
ference between states θ and θ′ is O(log2N) in the non-interacting case and O(N2) in the
interacting case, where N is the total number of particles. The algorithm scales perfectly
for large computer clusters or CPUs with large number of cores as multiple independent
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instances can be launched simultaneously and after thermalization, each instance produces
independent samples from the same ensemble.

B Recurrence relations used to compute the partition func-

tions

B.1 Recurrences for microcanonical partition function in a harmonic
trap

Following [34] we introduce, a new function of three arguments, Γ̃ex(N,E, ε). This function
is the number of ways to distribute N particles between excited energy levels such that the
total energy is E, but with the restriction that energy levels above ε are empty.

With this de�nition we have the relation

Γ̃ex(N,E, ε = 0) = δN,0 δE,0, (23)

where, as before, we assume that the the energy levels are written in oscillator units and
are therefore given by integers.

The values of Γ̃ex(N,E, ε) for other energy thresholds ε follow the recurrence

Γ̃ex(N,E, εj) =
N∑

nj=0

Γ̃ex(N − nj , E − nj εj , εj − 1)

(D(εj) + nj − 1

D(εj)− 1

)
, (24)

where D(εj) is a degeneracy of the energy level εj .
The label nj in the recurrence (24) has the meaning of the number of atoms occupying

the energy level εj . There are
(D(εj)+nj−1
D(εj)−1

)
ways of distributing nj indistinguishable bosons

between D(εj) levels. If exactly nj atoms seats in the energy level εj , then the remaining
N − nj ones occupy energy levels up to εj − 1, such that their total energy is E − nj εj .

The microcanonical partition function for the excited atoms, i.e. Γex(Nex, E), can be
obtained from the auxiliary function Γ̃ex(N,E, ε) using the relation

Γex(N,E) = Γ̃ex(N,E,E), (25)

which expresses the fact that there is no partition leading to the total energy E which
would involve energy levels higher than E.

As described in the main text, the microcanonical partition function is given by

Γ(N,E) =

N∑
Nex=0

Γex(Nex, E), (26)

and the probability of �nding N0 atoms in the ground state is

pmicro (N0, N, E) = Γex(N −N0, E)/Γ(N,E). (27)

Alternatively, one can directly use a recurrence for an auxiliary partition function
Γ̃(N,E, k), de�ned similarly to the previous one, but including atoms in the ground state.
It still obeys the recurrence relation (24), but with a slightly di�erent initial condition
Γ̃(N,E, k = 0) = δE, 0. In this implementation the probability of �nding exactly Nex

excited atoms is

pmicro (N0, N, E) =
1

Γ̃(N,E,E)

(
Γ̃(N −Nex, E,E)− Γ̃(N −Nex − 1, E,E)

)
. (28)

There are other recurrence relations, see for instance [5], but (24) turned out easy to
program and relatively e�cient.
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B.2 Recurrence for canonical partition function in a � harmonic trap

To compute the canonical partition function Z(N, β) we invoke the recurrence relation

Z(N, β) =
1

N

N∑
n=1

Z(1, nβ)Z(N − n, β). (29)

This relation appears in many contexts and is nicely described in [5].
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