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Abstract

We describe the ”Linear Response Transport Centre” (LinReTraCe), a package
for the simulation of transport properties of solids. LinReTraCe captures quantum
(in)coherence effects beyond semi-classical Boltzmann techniques, while incurring
similar numerical costs. The enabling algorithmic innovation is a semi-analytical
evaluation of Kubo formulae for resistivities and the coefficients of Hall, See-
beck and Nernst. We detail the program’s architecture, its interface and usage
with electronic-structure packages such as WIEN2k, VASP, and Wannier90, as well as
versatile tight-binding settings.
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1 Introduction

Signatures of external electrical fields, magnetic fields, thermal gradients, or combinations
thereof can be used to monitor induced charge and energy currents in materials. Analyzing
these transport properties, the ability to conduct charge, heat, or entropy, not only provides
fundamental insight, but also quantifies potential functionalities.

A key to the interpretation of measurements and to predict or optimize such properties are
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transport simulations. Here, we describe the Linear Response Transport Centre LinReTraCe

(github.com/linretrace/linretrace), a software package that facilitates the computation of a
variety of transport observables. The unique feature of LinReTraCe is the treatment of ther-
mal and lifetime broadening on an equal footing [1–3], while still incurring numerical costs
as low as semi-classical Boltzmann approaches in the relaxation-time approximation. We
exploit that linearizing the dynamics of many-body renormalizations (self-energy) allows for
a semi-analytical (instead of numerical) evaluation of leading contributions in Kubo’s linear
response theory [1, 2, 4]. LinReTraCe’s principle input are electronic excitation energies and
associated quasi-particle weights and lifetimes, as well as optical transition matrix elements.
Being agnostic to the input’s origin, LinReTraCe can be used in a variety of settings, including
electronic structures from tight-binding or Wannier projections [5], density functional theory
(DFT) [6], many-body perturbation theory [7,8], dynamical mean-field theory (DMFT) [9,10],
or approaches beyond [11, 12]. Scattering amplitudes and many-body renormalizations can
be phenomenological, extracted from electronic self-energies (obtained, e.g., from DMFT),
or could incorporate results from electron-phonon codes [13–19]. In this release we include
interfaces to the DFT codes WIEN2k [20, 21] and VASP [22], the band interpolation tool of
BoltzTraP2 [23, 24], maximally localized Wannier functions of Wannier90 [25], as well as
tools for general tight-binding systems. We further provide templates for the implementa-
tion of interfaces to other codes. With an emphasis on numerical accuracy and scalability,
LinReTraCe will be of value also for high-throughput studies [26–31] and for tight-binding
descriptions of very large unit-cells.

1.1 Methodological context

To highlight the merits of LinReTraCe, let us group previous packages for electronic transport
properties of solids into two categories: semi-classical Boltzmann and Kubo linear response
codes. Owing to their numerical efficiency and ease of handling, Boltzmann codes [13,14,23,
24,32] have become popular tools. Typically, they are used in conjunction with band-theory,
i.e., they utilize well-defined excitation energies. The selection of carriers participating in
conduction is then solely determined from the thermal broadening (activation) via the Fermi
function. In the usually employed relaxation-time approximation (RTA), electron scattering
then only results in amplitude-scaling prefactors for a given momentum k and state n, e.g.,
for the conductivity σ ∝

∑
kn Γ−1

kn ×· · · , cf. Eq. (38). Often, the scattering rate Γ is moreover
assumed to be equal for all states and momenta. Then, the lifetime τ = ~

2Γ scales the
Boltzmann conductivity globally, while the Seebeck and Hall coefficient become independent
of τ . With this assumption, insight into electronic transport can be gained without explicit
knowledge of scattering amplitudes and their physical origin. As a consequence, Boltzmann
transport kernels are relatively simple and the algorithmic complexity of, e.g., BoltzTraP [23,
24] and BoltzWann [32] (and the difference between them), lies in how they achieve convergence
in the sampling of the Brillouin zone.

There are however circumstances, when the approximations inherent to band theory and
the semi-classical treatment of transport fail. Inadequacies of band-theory for strongly cor-
related materials are well-documented: Examples not only include Mott insulators, where
correlation effects fully invalidate the band-picture [33]. Also the electronic structure of cor-
related metals [34–37] and correlated narrow-gap semiconductors [38,39] are severely altered
and have to be accounted for with methodologies that include dynamical renormalizations
(self-energies). However, even if such many-body corrections are captured on the level of

3

https://github.com/linretrace/linretrace


SciPost Physics Codebases Submission

electronic structure theory, plugging them into a semi-classical transport methodology may
still lead to severe pathologies: Irrespective of the size of the scattering rate, the resistivity,
the Seebeck, and the Hall coefficient of a clean semiconductor diverge in the zero temperature
limit within Boltzmann’s relaxation time approximation. A diverging activation law for the
T → 0 resistivity is physically admissible—but it is never observed. A diverging Seebeck
coefficient, |S(T → 0)| → ∞, instead, violates the third law of thermodynamics (there can be
no entropy transport at T = 0 for non-degenerate ground-states).

A quantum mechanical description of transport using Kubo’s linear response theory [40]
overcomes these artefacts by correctly treating effects of finite lifetimes (incoherence) of charge
carriers [1, 2, 41]. To allow, beyond the thermal, also for a lifetime broadening of excitations,
Kubo formulas require an integration over energies. This evaluation may become expensive
for large systems and is hazardous at low temperatures and when the scattering rate is small.
With LinReTraCe we conquer this bottleneck by performing frequency integrations analyt-
ically instead of numerically. This step becomes possible after linearizing the dynamics of
many-body renormalizations (the self-energy Σ), yielding the LinReTraCe input: the scatter-
ing rate Γ, the quasi-particle weight Z, and possible static offsets <Σ. This approximation is
warranted as the self-energy typically varies slowly inside the narrow energy-window probed by
transport (a few kBT ).1 Following common practice of Kubo implementations [35–37,42–49],
LinReTraCe neglects particle-hole scattering, so-called vertex corrections.2 The ensuing an-
alytical transport functions are then not only numerically inexpensive and stable, they also
reveal valuable microscopic information: In particular they show that the scattering is not a
mere prefactor (scaling the amplitude of conduction), but a relevant energy scale that has a
complex interplay with other energies of the system, e.g., the charge gap in a semiconduc-
tor [2]. In all, LinReTraCe combines the best of both (Boltzmann & Kubo) worlds: an efficient
and stable evaluation of transport observables that treats thermal and lifetime broadening on
an equal footing. For a detailed derivation of the theory, see Ref. [2, 3].

1.2 Transport coefficients

Physical observables of transport processes are described by charge and heat currents

jαe = Lαβ11 E
β − 1

T
Lαβ12 ∂βT (1)

jαq = −Lαβ21 E
β − 1

T
Lαβ22 ∂βT, (2)

generated by an external electric field E and a temperature gradient ∇T perturbing the
system. This non-equilibrium state can be described within linear response theory. There,

1Unless there are relevant pole-like structures in the self-energy, as is the case in Mott insulators.
2Vertex corrections mediated, e.g., by the Coulomb interaction (leading to, e.g., excitons or π-tons [50])

or disorder scattering (effects of, e.g., weak localization [51]), that dress the excited particle-hole pairs, are
actively researched [50,52–56], but are often small in practice [55]. Formally, they vanish in the (DMFT) limit
of infinite dimensions [9], at least in the one-orbital case [57].
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the coupling constants (the Onsager coefficients) become

Lαβab =
π~e(4−a−b)

V

∑
n,m
k,σ

Kab(k, n,m)Mαβ(k, n,m) (3)

LB,αβγab =
4π2~e(5−a−b)

3V

∑
n,m
k,σ

KBab(k, n,m)MB,αβγ(k, n,m) (4)

with a, b ∈ {1, 2} defining the coupling in the Cartesian α, β, γ ∈ {x, y, z} direction and the
summations running over all possible band combinations (n,m), momenta in the Brillouin

zone k ∈ BZ and spins σ. The coefficients LB,αβγab are the linear correction terms in the
presence of a magnetic flux (B) in the γ-direction. Employing the Onsager-Casimir relation

Lαβab (B) = Lβαba (−B) (5)

on the expansion
Lαβab (B) = Lαβab + LB,αβγab Bγ +O(B2), (6)

which we treat up to linear order in B, one finds the connections

Lαβab = Lβαba (7)

LB,αβγab = −LB,βαγba (8)

when the B-field is the only source of time-reversal symmetry breaking.3 The Onsager coeffi-
cients combine the transport kernel functions, describing the (in our case: free) particle-hole
propagation of the excited system,

Kab(k, n,m) =

∫ ∞
−∞

dω ω(a+b−2)

(
−∂f
∂ω

)
Akn(ω)Akm(ω) (9)

KBab(k, n,m) =

∫ ∞
−∞

dω ω(a+b−2)

(
−∂f
∂ω

)
A2

kn(ω)Akm(ω) (10)

with the optical matrix elements M (B),αβ(γ), describing the coupling of the external pertur-
bation to the system. From them, the electrical conductivity (σ), electrical resistivity (ρ),
Peltier coefficient (Π), Seebeck coefficient (S), thermal conductivity (κ), Hall conductivity
(σB), Hall coefficient (RH), Nernst coefficient (ν)4, Hall mobility (µH) and its analogue, the
thermal mobility (µT ) [62] can be calculated. Note that, here, we limit the transport kernels
to symmetric contributions. Anti-symmetric terms leading to anomalous transport from a
non-trivial topological state [59, 63–65] are neglected. For a detailed dimensionality analysis
of all involved quantities, see Appendix C.

3In magnetized materials the Onsager relations take the form of Lβαba (H,M) = Lαβab (−H,−M) instead (H:
magnetic field strength; M : magnetization density), leading to the anomalous Hall effect and a linear magneto
resistance [58–60].

4We use the historical convention for the sign of the Nernst coefficient [61].
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σαβ = Lαβ11 (11)

ραβ =
(
L−1

11

)αβ
(12)

Παβ = −
(
L−1

11

)αi Liβ12 (13)

Sαβ = − 1

T

(
L−1

11

)αi Liβ12 (14)

καβ =
1

T

[
Lαβ22 − L

αi
12

(
L−1

11

)ij Ljβ12

]
(15)

σBαβγ = LB,αβγ11 (16)

RH,αβγ =
(
L−1

11

)αi LB,ijγ11

(
L−1

11

)jβ
(17)

ναβγ = − 1

T

(
L−1

11

)αi [LB,ijγ11 Ljk12 − L
B,ijγ
12 Ljk11

] (
L−1

11

)kβ
(18)

µH,αβγ =
(
L−1

11

)αi LB,iβγ11 (19)

µT,αβγ =
(
L−1

12

)αi LB,iβγ12 (20)

2 Transport equations and optical elements

2.1 Kubo kernel expressions

The equations implemented in LinReTraCe result from the analytic integration of Eqs. (9-10),
assuming a Lorentzian spectral function A(ω)

Akn(ω) =
Zkn

π

Γkn

(ω − akn)2 + Γ2
kn

. (21)

This form is motivated by a linearization of the self-energy (for a discussion, see Ref. [2])5

Σkn(ω) ≈ <Σkn(0) + (1− Z−1
kn )ω − iΓ0

kn. (22)

Eq. (21) describes a quasi-particle peak of weight Zkn with renormalized scattering rates
Γkn = ZknΓ0

kn and renormalized energies akn = Zkn(ε0
kn − µ + <Σkn(0)). Then, as detailed

in Ref. [2], the kernels Eqs. (9,-10) can be calculated analytically. For the intra-band kernels
(n ≡ m) one finds, with polygamma functions ψn(z) [66] evaluated at z = 1

2 + β
2π (Γ + ia):

5Eq. (22) shows the expansion (to linear order) of the self-energy around the Fermi level (ω = 0). Typically,
an expansion around the finite quasi-particle energy akn is more accurate and can be provided by the user.
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K11(k, n) =
Z2β

4π3Γ

[
<ψ1(z)− βΓ

2π
<ψ2(z)

]
(23)

K12(k, n) =
Z2β

4π3Γ

[
a<ψ1(z)− aβΓ

2π
<ψ2(z)− βΓ2

2π
=ψ2(z)

]
(24)

K22(k, n) =
Z2β

4π3Γ

[
(a2 + Γ2)<ψ1(z) +

βΓ

2π

(
Γ2 − a2

)
<ψ2(z)− aβΓ2

π
=ψ2(z)

]
(25)

KB11(k, n) =
Z3β

16π4Γ2

[
3<ψ1(z)− 3βΓ

2π
<ψ2(z) +

β2Γ2

4π2
<ψ3(z)

]
(26)

KB12(k, n) =
Z3β

16π4Γ2

[
3a<ψ1(z)− 3aβΓ

2π
<ψ2(z)− βΓ2

2π
=ψ2(z) +

aβ2Γ2

4π2
<ψ3(z) +

β2Γ3

4π2
=ψ3(z)

]
(27)

KB22(k, n) =
Z3β

16π4Γ2

[
(3a2 + Γ2)<ψ1(z)− βΓ

2π
(3a2 + Γ2)<ψ2(z)− aβΓ2

π
=ψ2(z)

− β2Γ2

4π2
(Γ2 − a2)<ψ3(z) +

aβ2Γ3

2π2
=ψ3(z)

] (28)

The inter-band (n 6= m) kernels become

K11(k, n,m) =
Z1Z2β

2π3 [(a1 − a2)2 + (Γ1 − Γ2)2] [(a1 − a2)2 + (Γ1 + Γ2)2]

×

[
<
{ [

(a1 − a2)2 + Γ2
2 − Γ2

1 − 2iΓ1(a2 − a1)
]

Γ2ψ1 (z1)
}

+<
{ [

(a2 − a1)2 + Γ2
1 − Γ2

2 − 2iΓ2(a1 − a2)
]

Γ1ψ1 (z2)
}]

(29)

K12(k, n,m) =
Z1Z2β

2π3 [(a1 − a2)2 + (Γ1 − Γ2)2] [(a1 − a2)2 + (Γ1 + Γ2)2]

×

[
<
{

(a1 − iΓ1)
[
(a1 − a2)2 + Γ2

2 − Γ2
1 − 2i (a2 − a1) Γ1

]
Γ2ψ1(z1)

}
+<
{

(a2 − iΓ2)
[
(a2 − a1)2 + Γ2

1 − Γ2
2 − 2i (a1 − a2) Γ2

]
Γ1ψ1(z2)

}]
(30)

K22(k, n,m) =
Z1Z2β

2π3 [(a1 − a2)2 + (Γ1 − Γ2)2] [(a1 − a2)2 + (Γ1 + Γ2)2]

×

[
<
{

(a1 − iΓ1)2
[
(a1 − a2)2 + Γ2

2 − Γ2
1 − 2i (a2 − a1) Γ1

]
Γ2ψ1 (z1)

}
+<
{

(a2 − iΓ2)2
[
(a2 − a1)2 + Γ2

1 − Γ2
2 − 2i (a1 − a2) Γ2

]
Γ1ψ1 (z2)

}]
,

(31)

where ψ1(z1/2) is evaluated at z1/2 = 1
2 + β

2π (Γ1/2 + ia1/2). These kernels represent a gen-
eralization of Eqs. (23-25) and per Eq. (9) obey band-swapping symmetry Kab(k, n,m) ≡
Kab(k,m, n). See Appendix D for the generic intra-band limit (fm → fn, f = Z,Γ, a).
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The magnetic inter-band (n 6= m) kernels evaluate to

KB11(k, n,m) =
Z1Z

2
2Γ1Γ2

2β

2π4

×

[
<
{ 1

Γ1
ψ1(z1)

1

[a1 − a2 − i(Γ1 + Γ2)]2 [a1 − a2 − i(Γ1 − Γ2)]2

}
−<
{ β

4πΓ2
2

ψ2(z2)
1

[a2 − a1 − i(Γ1 + Γ2)] [a2 − a1 + i(Γ1 − Γ2)]

}
+=
{ 1

Γ2
2

ψ1(z2)
(a2 − a1 − iΓ2)

[a2 − a1 − i(Γ1 + Γ2)]2 [a2 − a1 + i(Γ1 − Γ2)]2

}
+<
{ 1

2Γ3
2

ψ1(z2)
1

[a2 − a1 − i(Γ1 + Γ2)] [a2 − a1 + i(Γ1 − Γ2)]

}]
(32)

KB12(k, n,m) =
Z1Z

2
2Γ1Γ2

2β

2π4

×

[
<
{ 1

Γ1
ψ1(z1)

(a1 − iΓ1)

[a1 − a2 − i(Γ1 + Γ2)]2 [a1 − a2 − i(Γ1 − Γ2)]2

}
−=
{ 1

2Γ2
2

ψ1(z2)
1

[a2 − a1 − i(Γ1 + Γ2)] [a2 − a1 + i(Γ1 − Γ2)]

}
−<
{ β

4πΓ2
2

ψ2(z2)
(a2 − iΓ2)

[a2 − a1 − i(Γ1 + Γ2]) (a2 − a1 + i(Γ1 − Γ2))

}
+=
{ 1

Γ2
2

ψ1(z2)
(a2 − iΓ2)(a2 − a1 − iΓ2)

[a2 − a1 − i(Γ1 + Γ2)]2 [a2 − a1 + i(Γ1 − Γ2)]2

}
+<
{ 1

2Γ3
2

ψ1(z2)
(a2 − iΓ2)

[a2 − a1 − i(Γ1 + Γ2)] [a2 − a1 + i(Γ1 − Γ2)]

}]

(33)

KB22(k, n,m) =
Z1Z

2
2Γ1Γ2

2β

2π4

×

[
<
{ 1

Γ1
ψ1(z1)

(a1 − iΓ1)2

[a1 − a2 − i(Γ1 + Γ2)]2 [a1 − a2 − i(Γ1 − Γ2)]2

}
−=
{ 1

Γ2
2

ψ1(z2)
(a2 − iΓ2)

[a2 − a1 − i(Γ1 + Γ2)] [a2 − a1 + i(Γ1 − Γ2)]

}
−<
{ β

4πΓ2
2

ψ2(z2)
(a2 − iΓ2)2

[a2 − a1 − i(Γ1 + Γ2)] (a2 − a1 + i(Γ1 − Γ2))

}
+=
{ 1

Γ2
2

ψ1(z2)
(a2 − iΓ2)2(a2 − a1 − iΓ2)

[a2 − a1 − i(Γ1 + Γ2)]2 [a2 − a1 + i(Γ1 − Γ2)]2

}
+<
{ 1

2Γ3
2

ψ1(z2)
(a2 − iΓ2)2

[a2 − a1 − i(Γ1 + Γ2)] [a2 − a1 + i(Γ1 − Γ2)]

}]

(34)

where ψn(z1/2) is, again, evaluated at z1/2 = 1
2 + β

2π (Γ1/2 + ia1/2).
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2.2 Boltzmann approximation

The semiclassical Boltzmann transport expressions can be obtained by expanding the polygamma
functions of our approach around Γ = 0

ψn

(
1

2
+

β

2π
(Γ + ia)

)
= ψn

(
1

2
+
iβa

2π

)
+
βΓ

2π
ψn+1

(
1

2
+
iβa

2π

)
+O

(
Γ2
)
, (35)

and recognizing that

fFD(a) =
1

2
− 1

π
=ψ
(

1

2
+
iβa

2π

)
(36)

−∂afFD(a) =
β

2π2
<ψ1

(
1

2
+
iβa

2π

)
. (37)

The Boltzmann intra-band expressions are then recovered from the expansions as the leading
terms in Γ. Our quantum mechanical formalism thus contains the semi-classical description
as the coherent (infinite lifetime) limit. To assure that the Boltzmann inter-band kernels
reduce to the Boltzmann intra-band expressions in the limit of degenerate states (with the
same lifetime), they have to include terms beyond the leading order. Instead, if the Boltzmann
approximation only takes into account the leading terms, the limit a1 → a2; Γ1 → Γ2 will yield
inconsistent results. To our knowledge this ensemble of inter-band Boltzmann expressions has
not been derived previously:

KBoltzmann
11 (k, n) = − Z2

2πΓ
∂afFD(a) (38)

KBoltzmann
12 (k, n) = −aZ

2

2πΓ
∂afFD(a) (39)

KBoltzmann
22 (k, n) = −

(
a2 + Γ2

)
Z2

2πΓ
∂afFD(a) (40)

KBoltzmann,B
11 (k, n) = − 3Z3

8π2Γ2
∂afFD(a) (41)

KBoltzmann,B
12 (k, n) = − 3aZ3

8π2Γ2
∂afFD(a) (42)

KBoltzmann,B
22 (k, n) = −

(
3a2 + Γ2

)
Z3

8π2Γ2
∂afFD(a) (43)

9
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KBoltzmann
11 (k, n,m) = − Z1Z2

π [(a1 − a2)2 + (Γ1 − Γ2)2] [(a1 − a2)2 + (Γ1 + Γ2)2]

×

[ [
(a1 − a2)2 + Γ2

2 − Γ2
1

]
Γ2∂a1fFD(a1) +

[
(a2 − a1)2 + Γ2

1 − Γ2
2

]
Γ1∂a2fFD(a2)

] (44)

KBoltzmann
12 (k, n,m) = − Z1Z2

π [(a1 − a2)2 + (Γ1 − Γ2)2] [(a1 − a2)2 + (Γ1 + Γ2)2]

×

[{[
(a1 − a2)2 + Γ2

2 − Γ2
1

]
a1 − 2Γ2

1(a1 − a2)
}

Γ2∂a1fFD(a1)

+
{[

(a2 − a1)2 + Γ2
1 − Γ2

2

]
a2 − 2Γ2

2(a2 − a1)
}

Γ1∂a2fFD(a2)

] (45)

KBoltzmann
22 (k, n,m) = − Z1Z2

π [(a1 − a2)2 + (Γ1 − Γ2)2] [(a1 − a2)2 + (Γ1 + Γ2)2]

×

[{[
(a1 − a2)2 + Γ2

2 − Γ2
1

]
(a2

1 − Γ2
1)− 4Γ2

1a1(a1 − a2)
}

Γ2∂a1fFD(a1)

+
{[

(a2 − a1)2 + Γ2
1 − Γ2

2

]
(a2

2 − Γ2
2)− 4Γ2

2a2(a2 − a1)
}

Γ1∂a2fFD(a2)

] (46)

KBoltzmann,B
11 (k, n,m) = − Z1Z

2
2

2π2Γ2

×

[
<
{ 2Γ3

2

[a1 − a2 − i(Γ1 + Γ2)]2 [a1 − a2 − i(Γ1 − Γ2)]2

}
∂a1fFD(a1)

+=
{ 2Γ1Γ2(a2 − a1 − iΓ2)

[a2 − a1 − i(Γ1 + Γ2)]2 [a2 − a1 + i(Γ1 − Γ2)]2

}
∂a2fFD(a2)

+<
{ Γ1

[a2 − a1 − i(Γ1 + Γ2)] [a2 − a1 + i(Γ1 − Γ2)]

}
∂a2fFD(a2)

]
(47)

KBoltzmann,B
12 (k, n,m) = −Z1Z

2
2β

2π2Γ2

×

[
<
{ 2Γ3

2(a1 − iΓ1)

[a1 − a2 − i(Γ1 + Γ2)]2 [a1 − a2 − i(Γ1 − Γ2)]2

}
∂a1fFD(a1)

−=
{ Γ1Γ2

[a2 − a1 − i(Γ1 + Γ2)] [a2 − a1 + i(Γ1 − Γ2)]

}
∂a2fFD(a2)

+=
{ 2Γ1Γ2(a2 − iΓ2)(a2 − a1 − iΓ2)

[a2 − a1 − i(Γ1 + Γ2)]2 [a2 − a1 + i(Γ1 − Γ2)]2

}
∂a2fFD(a2)

+<
{ Γ1(a2 − iΓ2)

[a2 − a1 − i(Γ1 + Γ2)] [a2 − a1 + i(Γ1 − Γ2)]

}
∂a2fFD(a2)

]
(48)

10
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KBoltzmann,B
22 (k, n,m) = − Z1Z

2
2

2π2Γ2

×

[
<
{ 2Γ3

2(a1 − iΓ1)2

[a1 − a2 − i(Γ1 + Γ2)]2 [a1 − a2 − i(Γ1 − Γ2)]2

}
∂a1fFD(a1)

−=
{ 2Γ1Γ2(a2 − iΓ2)

[a2 − a1 − i(Γ1 + Γ2)] [a2 − a1 + i(Γ1 − Γ2)]

}
∂a2fFD(a2)

+=
{ 2Γ1Γ2(a2 − iΓ2)2(a2 − a1 − iΓ2)

[a2 − a1 − i(Γ1 + Γ2)]2 [a2 − a1 + i(Γ1 − Γ2)]2

}
∂a2fFD(a2)

+<
{ Γ1(a2 − iΓ2)2

[a2 − a1 − i(Γ1 + Γ2)] [a2 − a1 + i(Γ1 − Γ2)]

}
∂a2fFD(a2)

]
(49)

In all, these Boltzmann approximations stem from a Taylor expansion of the terms in square
brackets in Eqs. (23-28). Notably, there, terms linear in Γ cancel exactly in the expansion of
the intra band kernels, thus higher order terms ‘only‘ become important if βΓ is significant
in size. Consequently Boltzmann results are accurate (comparable to Kubo) at elevated
temperatures despite failing to fulfill fundamental theorems of thermodynamics in the zero
temperature limit.

2.3 Quasi-particle renormalizations

The kernel expressions in Sec. 2.1, based on the self-energy linearization Eq. (22), clearly
exhibit a non-trivial dependency on the quasi-particle renormalization: Z-factors emerge,
both, as part of the overall pre-factor (à la Boltzmann) as well as in the argument of the
polygamma functions via a renormalization of the energy (a) and the scattering (Γ):

Consider a metallic system with bare dispersion ε0(k) and a bare scattering rate Γ0 at
temperatures where the Boltzmann approximation is accurate. If the same quasi-particle
renormalizations is applied to all states, a partial cancellation of the pre-factors in Eqs. (38-
43) occurs due to renormalization of the scattering rate Γ = ZΓ0. The Boltzmann response
kernels then verify

K(B)
ij ∝ Za

i+j−2∂afFD(a). (50)

The conductivity kernel (i = j = 1) that is even in the energy a = Zε0 is to good approx-
imation unaffected by Z due to a compensation of two effects: Z simultaneously decreases
the weights of the selected states, and pushes more states into the (thermal) selection win-
dow through band-narrowing.6 Odd kernels (L12, LB12) on the other hand distinguish between
electron and hole contributions via the sign of a. Through this differentiation the overall sum-
mation will be tilted to either direction depending on the asymmetry of the system. Energy
renormalization in this context then can be thought of as an amplification of this asymmetry,

6This is exact for 0 < Z ≤ 1, in the limit of infinite bandwidth and a flat density of states. In realistic
scenarios, however, there can be a notable Z-dependence for strong renormalizations and narrow band-widths,
elevated temperatures, or a strongly energy-dependent density of states.

11
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increasing the non-interacting signal7

K(B)
12 (Z) ∝ 1

Z
K(B)

12 (Z = 1) (51)

providing a correlation mechanism to boost the Seebeck [67,68] and Nernst coefficient, realized,
e.g., in heavy-fermion systems [34]. The above arguments in general do not hold for insulating
systems where we find a more nuanced interplay of band gap, energies, chemical potential and
quasi-particle renormalization. At the very least Z < 1 will result in a band gap reduction
∆ = Z∆0, which affects thermal activation, and hence conduction, exponentially.

2.4 Matrix elements

2.4.1 Dipole optical elements

Given the Fermi velocities (matrix elements of the momentum operator)

vαknn′ =
1

m

〈
kn′|Pα|kn

〉
(52)

with α indicating a Cartesian direction, m the electron mass, and 〈r|kn〉 = χkn(r) a band-
momentum basis, the amplitude of optical dipole (q = 0) transitions is given by

Mαβ(k, n,m) = vα∗knmv
β
kmn (53)

and can be calculated within band-theory; for WIEN2k’s implementation see Ref. [69].

2.4.2 Peierls approximation

In tight-binding or model settings, in which there is no access to wavefunctions, the above
matrix elements cannot be calculated. Instead, one couples the electromagnetic vector po-
tential directly to the lattice fermions using the Peierls substitution approach [70]. Following
this (approximate) procedure, Fermi velocities are momentum-derivatives of the (one-particle)
Hamiltonian. Performing the derivative in the band-basis, there are only intra-band velocities,
vαknm ∝ δnmvαkn, for which

vαkn =
1

~
∂kαεn(k), (54)

and

Mαβ(k, n, n) = vαknv
β
kn. (55)

Using the band-curvatures cαβk = 1/~ ∂kα∂kβε(k), also the matrix elements for magnetic quan-
tities can be derived. One finds [71]

MB,αβγ(k, n, n) = εγijv
α
knc

βi
knv

j
kn (56)

7By assuming a linearized density of states centered around the thermal selection window, D(ε) = D0 +αε,
it is apparent that only the linear (constant) term is responsible for finite values of kernels that are odd (even)
in the energy a. Quasi-particle renormalizations drop out for the constant term and amplify the effect of the
linear term, leading to the increase of 1

Z
of Eq. (51).

12



SciPost Physics Codebases Submission

with εijk the Levy-Civita symbol in three dimensions. These expressions for M (B) are common
to LinReTraCe, BoltzTraP and other codes.

Clearly, however, taking momentum-derivatives does not commute with a general basis
transformation U : ∂kU

†(k)H(k)U(k) 6= U †(k)(∂kH(k))U(k). Therefore, transport properties
using the Peierls approach will be basis-dependent [72]. One can show [42] that the Peierls
approximation is best (closest to the true dipole element) the more localized the basis is. In the
tight-binding and Wannier mode, LinReTraCe therefore performs the momentum-derivative
in the local/Wannier basis χRl(r) = 〈r|Rl〉:

vαkll′ =
1

~
∂kαH

ll′(k)− i(ραl′ − ραl )H ll′(k) (57)

where H(k) is the Fourier transform of H(R). In this generalized Peierls approach [42], the
second term arises for unit-cells with more than one atom, with intra-cell coordinates ρl of the
atom hosting orbital l. This extra-term in particular assures that an arbitrary extension of
the unit-cell (conventional cell or equivalent supercells) gives the same result as calculations
for the primitive unit-cell. Velocities evaluated in the local basis (orbitals indexed with l) are
then rotated into the band-basis (band-index n). Because of the mentioned non-commutation
of momentum-derivative and basis-transformation, the generalized Peierls approach may yield
inter-band transitions à la Eq. (53) that are absent in Eq. (54). Generalizations of the band-
curvatures to the Wannier basis have not yet been derived, i.e., magnetic transport functions
in LinReTraCe rely on Eq. (56).

3 Implementation

Programming languages
— Fortran 95 and Python 3
Required dependencies
— HDF5 (≥ 1.12.1)
— h5py, numpy, scipy, ase (≥ 3.18.0), spglib (≥ 1.9.5)
Optional dependencies
— MPI (Fortran 95), matplotlib, boltztrap2 (≥ 20.7.1), cmake, pip, git

3.1 Installation

The program package can be obtained directly from the command line

$ git clone https://github.com/linretrace/linretrace.git

or by downloading the files from the github page with a browser. The pre- and post-processing
is handled via Python3 where HDF5 data files are interfaced with h5py and computationally
costly work is performed with scipy and numpy. Ase [73] and Spglib [74] are used to detect
crystal symmetries and create irreducible momentum meshes, if they are not provided by the
DFT code. In order to achieve maximal operability, BoltzTraP2 [24], as well as matplotlib

are recommended. BoltzTraP2 is interfaced to interpolate bands, necessary to generate band
derivatives and curvatures used in the magnetic optical elements, and matplotlib is used for
graphical plotting. A quick way to obtain all (necessary and optional) dependencies is via the
pip package manager
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$ pip install matplotlib h5py numpy scipy ase spglib

$ pip install boltztrap2

After that, the LinReTraCe Python scripts can be executed directly from the source folder.
Alternatively, in the LinReTraCe folder, execute

$ python3 setup.py install

to make them globally available.8 The main program is written in MPI parallelized For-
tran95 for which an HDF5 installation is required.9 Its installation needs a configuration file
make_include in the linretrace folder. Here the Fortran compiler (FC, FCDG), Fortran
flags (FFLAGS), Fortran precompiler flags (FPPFLAGS) and library paths (HDF5) are to be
provided. For a single core installation FC and FCDG are identical. Multi core installations
require the MPI compiler in FC to be compatible with FCDG. The MPI installation is ‘acti-
vated’ via the FPPFLAGS variable -DMPI. An exemplary make configuration make_include

for a multi-core intel setup looks like

FC = mpiifort

FCDG = ifort

FFLAGS = -O3

FPPFLAGS = -DMPI

HDF5 = -I/opt/hdf5-1.12.1_icc/include

HDF5 += -L/opt/hdf5-1.12.1_icc/lib -lhdf5_fortran -lhdf5hl_fortran

while a single-core gfortran setup could be

FC = gfortran

FCDG = gfortran

FFLAGS = -O3

HDF5 = -I/opt/hdf5-1.12.1_gcc/include

HDF5 += -L/opt/hdf5-1.12.1_gcc/lib -lhdf5_fortran -lhdf5hl_fortran

The LinReTraCe executable is compiled with

$ make

which creates bin/linretrace.

$ make install

can be used to copy the linretrace binary to the bin folder in the user’s home directory. For
some compilers (notably gfortran) an explicit link to the dynamic HDF5 library is necessary
before executing the binary, made available with

$ export LD_LIBRARY_PATH=/opt/hdf5-1.12.1_gcc/lib:$LD_LIBRARY_PATH

e.g., in the .bashrc file. A more detailed step-by-step installation guide is provided in the
repository’s documentation/userguide.pdf, also available here.

8If root access is not available, use python3 setup.py install --user instead. This command has to be
rerun after every version update.

9The LinReTraCe installation includes an HDF5 wrapper written by one of the authors, see https://

github.com/linretrace/hdf5_wrapper for more details. There, you can also find an installation guide for the
required HDF5 library. Ensure that the HDF5 library and LinReTraCe use the same compiler.
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3.2 Flowchart

LinReTraCe calculations follow the flow chart of Fig. 1 and require two mandatory files: an
energy file and a config file. The former is a direct result of one of the various interfaces and
contains all the necessary energies ε(k, n), optical elements M (B),αβ(γ), and other auxiliary
data. Depending on the data source only some of these optical elements can be generated, as,
e.g., the magnetic field optical elements require band velocities and curvatures, not available
in stand-alone WIEN2k calculations. The transport calculation itself is configured via a config
text file for which lconfig provides a minimal starting point. More elaborate options, e.g.,
impurity states, need to be added by hand, see Sec. 3.5. In the config file one has access to
simplistic scattering rate (and quasi-particle weight) dependencies: polynomials in tempera-
ture. More control over these dependencies can be gained via a scattering file where one has
the option to specify all available data points individually, see Sec. 3.4. The results of the
transport calculation are then saved in the HDF5 output file containing all the Onsager coef-
ficients Lαβab , LB,αβγab among other auxiliary information, including the configuration, structure
information, etc. lprint provides easy access to these data containers as well as their com-
binations that form the physical transport quantities. In the next sections we go into more
detail about each step, for a quick set of instructions see the cheat sheet in Appendix A.

3.3 Energy File

The center piece of the LinReTraCe input is the LRTC energy file. It contains the band
energies ε(k, n), associated optical elements Mαβ(k, n,m), MB,αβγ(k, n,m) and all relevant
information on the unit cell and the momentum mesh in HDF5 format. While the band-
diagonal elements (energies; intra-bandMαβ(k, n, n); intra-bandMB,αβγ(k, n, n)) are saved as
fully continuous datasets, we explicitly separate the off-diagonal elements into a tree structure.
Each momentum point then is represented by an HDF5 group whose datasets contain only its
personal directional and band dependencies. This is done so that the (momentum parallelized)
Fortran program is able to load in the elements in a more efficient manner. The overall tree
structure of these files then looks as follows (‘...’ signals more datasets in these groups).

/.bands Group

/.bands/energyBandMax Dataset

...

/.kmesh Group

/.kmesh/nkp Dataset

...

/.unitcell Group

/.unitcell/volume Dataset

...

/energies Dataset

/kPoint Group

/kPoint/0000000001 Group

/kPoint/0000000001/moments Dataset

/kPoint/0000000001/momentsBfield Dataset

...

/momentsDiagonal Dataset

/momentsDiagonalBfield Dataset
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LRTC energy file

ε(k, n), Mαβ(k, n, m) [, MB,αβγ(k, n, m)]

HDF5 direct access

lwann

Wannier90

ldft

VASP/Wien2K

ltb

model H(R)

linterface

generic ε(k)

LRTC scattering file

Γ(μ |T, k, n), Z(μ |T, k, n) [, ℜΣ(μ |T, k, n)]

optional

LRTC output file

ℒαβ

ab(μ |T ), ℒB,αβγ
ab (μ |T ) lprint

LRTC config file

 — modeμ |T

lconfig

bin/linretrace

lscat

lprint

transport output

structure outputHDF5 direct access

Figure 1: Flow chart of the LinReTraCe package: The energy file can be generated
by interfacing various electronic structure codes or modelling your own dependen-
cies. Combined with a config file and, optionally, full scattering dependencies, this
constitutes the input of the core program bin/linretrace. The HDF5 output file
can either be accessed effortlessly by lprint or via any external HDF5 library.

All the information that can be accessed in these pre-processed files can be listed with our
multi-purpose interface lprint. Point the script at a specific input file and execute

$ lprint <LRTCinput file> list

We support the output of a structure information summary, the (spin-resolved) density of
states and high-symmetry band paths via

$ lprint <LRTCinput file> info

$ lprint [-p] <LRTCinput file> dos

$ lprint [-p] <LRTCinput file> path

Where the -p (--plot) flag results in a graphical on-screen output. The path option relies
on the ase library [73], which finds the high-symmetry points of the internal unit cell and
displays them on-screen. Then, a custom k-path can be selected and plotted with
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$ lprint [-p] <LRTCinput file> path GKMG # Gamma-K-M-Gamma

3.3.1 Density functional theory codes

Natively, we provide full support for the density functional theory codes WIEN2k [21] and
VASP [22], and include connections to the BoltzTraP2 [24] library. In its basic form, to
generate the LRTC energy file, the interface ldft simply has to be pointed at the folder of
the (converged) DFT calculation

$ ldft <DFT folder> [--output lrtc-dft.hdf5]

This automatically detects if a valid calculation is present, initializes the according interface
and detects the type of calculation that was performed (spin polarized, unpolarized, with or
without spin-orbit-coupling).The --output flag sets the output file name, if none is provided
we default to ”lrtc-dft.hdf5”.

WIEN2k (version ≥ 18.x). We rely on the following files to be present10

• case.scf (number of electrons) [fallback: case.in2(c)]11

• case.struct (atoms, symmetry operations)

• case.klist (k-points, multiplicities)

• case.energy (band structure)

The interface to the optical matrix elements (generated with x optic [69]) is done via the
case.symmat files. The energy and optic file endings vary depending on the type of the calcu-
lation performed, which we detect automatically. Please note that ldft expects exactly 3, 6
or 9 columns in the symmat files. These correspond to the following case.inop configurations

• 3: Re xx, Re yy, Re zz

• 6: Re xx, Re yy, Re zz, Re xy, Re xz, Re yz,

• 9: Re xx, Re yy, Re zz, Re xy, Re xz, Re yz, Im xy, Im xz, Im yz

The read-in of the optical elements M is activated via the --optic flag

$ ldft <WIEN2k folder> --optic

Alternatively, Peierls velocities can be used for Mαβ via BoltzTraP2. The MB,αβγ for mag-
netic quantities are only provided via the Peierls approach, see below.

10LinReTraCe assumes a serial WIEN2k run to be present. In case a parallelized calculation was performed,
WIEN2K’s join vectorfiles tool must be used to combine the energy files.

11If the converged WIEN2k calculation was saved with save lapw the case.scf file will not be present. In
this case we fall back to case.in2 / case.in2c to retrieve the number of electrons. However, when using the
BolzTraP2 interface, case.scf must be present, so you will have to copy the saved scf-file.
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VASP (version ≥ 5.x). Identically, simply point ldft to the VASP calculation folder where
the file vasprun.xml must be present:

$ ldft <VASP folder>

If, as in VASP, no optical elements Mαβ are provided by the electronic structure package,
the interface to BoltzTraP2 is required to generate the necessary input for transport calcula-
tions. For the magnetic elements, MB,αβγ , BoltzTraP2 is always needed in conjunction with
ldft.

BoltzTraP2 interpolation. We employ the Python3 library functionality of BoltzTrap2

to interpolate the band structure and construct derivatives and curvatures. These are then
used to build the optical matrix elements according to Eq. (55-56). The interpolation is
activated via

$ ldft <DFT folder> --interp [m]

The --interp optionally takes an additional interpolation parameter corresponding to the
BoltzTraP2 -m option in the btp2 interpolate command. The default value is 3, meaning
for every k-point of the input, BoltzTraP2 tries to sample 3 additional irreducible k-points
to generate the coefficients of the trigonometric polynomial representing the band structure.
If the interpolation was done on an irreducible grid, we properly symmetrize the constructed
optical elements Mαβ and MB,αβγ , see Sec. 4.1. Since VASP does not provide the symmetry
matrices at default settings, we extract the space group via the ase library [73]. For compli-
cated structures and symmetry-broken calculations, we interactively ask the user to confirm
the detected space group number or to assign the correct one.

Band truncation. For all input combinations we provide the possibility to truncate the
energy levels around the Fermi level in order to reduce computational costs.

$ ldft <DFT folder> --trunc -5 +5

for example restricts the energy interval from −5 to +5eV around the DFT Fermi level and
truncates every band that is fully outside of that interval. Please note that, contrary to, e.g.,
WIEN2k, we set the chemical potential of a fully gapped system to the center-point of the
fundamental gap, i.e., µDFT = [min(Evalence) + max(Econduction)]/2.

3.3.2 Wannier90

Wannier90 [25], a program to calculate maximally localized Wannier functions [5], is based
on minimizing the total spread of the Wannier function in real space. The output we are
interested in are the real-space hopping parameters, Hll′(R), which we extract from the files

• case.nnkp (lattice vectors, k-points, projections)

• case_hr.dat (hopping Hll′(R))

• case.wout (units)
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The multi-orbital Hamiltonian in reciprocal space and its derivatives (velocities v and curva-
tures c) are then constructed from Fourier transforms

Hll′(k) =
∑
R

eik·RHll′(R) (58)

vαkll′ = i
∑
R

Rαeik·RHll′(R) (59)

cαβkll′ = −
∑
R

RαRβeik·RHll′(R) (60)

where Rα is the Cartesian component α ∈ {x, y, z} of the unit-cell vector R. For unit-cells
with more than one atom, the velocities include an extra term from the generalized Peierls
approach [42], see Eq. (57). We diagonalize the Hamiltonian matrices to go into the Kohn-
Sham basis via

ε(k) = U−1(k)H(k)U(k). (61)

Applying the same unitary matrices onto the velocity and curvature matrices allows us to
construct the transition matrices in the band basis. This procedure is more justified [42] than
performing the momentum derivatives in the Kohn-Sham basis (see above). To interface a
Wannier90 calculation simply point lwann at the corresponding folder

$ lwann <Wannier90 folder> [--charge <N>] [--output lrtc-wann.hdf5]

where we try to extract the required charge N in the wannierized bands ourselves by rounding
the calculated charge (at Wannier90’s µ = 0) to its nearest integer value. This can be adjusted
by providing the charge yourself with the optional --charge flag. The default output name
lrtc-wann.hdf5 can be adjusted with the --output flag. Since wannierizations are usually
calculated on a restricted momentum grid, we provide options to refine the momentum grid
directly:

$ lwann <Wannier90 folder> --kmesh <nkx> <nky> <nkz>

can be used to increase the reducible grid, where the new mesh has to conform to the old
mesh’s symmetry. Since reducible calculation can be costly we also provide an additional
WIEN2k sub-interface that allows for setting up large irreducible meshes:

$ lwann <Wannier90 folder> --wien2k

Here the additional files

• case.klist

• case.struct

must be present in the same folder with the same file prefix (case) as used by Wannier90, as
is standard when using wien2wannier [75]. Case.klist (generated with WIEN2k via x kgen)
provides a new (irreducible) momentum mesh with associated multiplicities while the symme-
try operations in case.struct are used to symmetrize the calculated velocities and curvatures,
see Sec. 4.1.

19



SciPost Physics Codebases Submission

3.3.3 Tight binding models

In the same vein we provide an interface to generate input data from arbitrary tight-binding
parameter sets. To this end we internally interface spglib [74] to generate the unit cell.
Akin to Wannier90 we require the primitive lattice vectors and the hopping parameters. In
addition, a list of (in)equivalent atoms inside the unit cell is required to determine the unit-cell
symmetries. With this information the tight binding input can be created via

$ ltb <tb file> <nkx> <nky> <nkz> <filling>

where we additionally provide the desired number of k-points in each direction and an initial
band filling.12 The underlying equations are identical to Sec. 3.3.2. An exemplary tight
binding file looks as follows

begin hopping

# a1 a2 a3 orb1 orb2 hopping.real [hopping.imag]

0 0 0 1 1 0.3 # on site energy

+1 0 0 1 1 1.0 # nearest neighbor hopping

0 +1 0 1 1 1.0

-1 0 0 1 1 1.0

0 -1 0 1 1 1.0

end hopping

begin atoms

# sort rx ry rz

1 0 0 0 # fractional coordinates

end atoms

begin real_lattice

# x y z

5 0 0 # a1 lattice vector in units of Angstroem

0 5 0 # a2

0 0 1 # a3

end real_lattice

A number of different structures are saved as templates in the LinReTraCe repository. The
hopping parameters are specified within the begin hopping and end hopping markers where
each row represents the directional hopping amplitude along the lattice vectors (first three
columns), the associated orbital indices (next two columns, numbering starts at 1) and finally
the hopping amplitude (in units eV) in the last (two) column(s). The optional, 7th column
allows for imaginary contributions to inter-orbital (orb16=orb2) hoppings. Important to men-
tion here is that, contrary to Wannier90, we use the sign convention commonly used in the

12For insulators and semiconductors, the nominal filling should be given. The generated energy file can then
be used also for doping studies, as the number of carriers (and also the band gap) can be modified via the
config.lrtc file, see Appendix B.
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strongly correlated electron community13

H(k) = −
∑
R

eik·R(1− 2δR,0δl,l′)Hll′(R). (62)

The fractional atomic positions in the unit cell are listed within the begin atoms and
end atoms markers where each row represents one atom. The first columns counts the atomic
‘species’ starting at one, whereas the next three columns describe the fractional position within
the unit cell with respect to the provided lattice vectors, i.e., all directional values are in the
range 0 ≤ ri < 1.14 The orbital numbers in the hopping section are not connected to these
atomic positions. Atoms are only relevant to determine the symmetries of the unit cell.
Note that if the symmetry of the real-space hopping Hamiltonian is lower than the crystal-
symmetry inferred from the atoms, the construction of the irreducible k-mesh will fail. In that
case ”virtual” atoms have to be placed to manually break excess unit-cell symmetries. Finally,
the lattice vectors in units of Ångstrom are saved as rows in between the begin real_lattice

and end real_lattice markers.
Currently, the ltb interface only supports spin-unpolarized tight-binding files. A gener-

alizations is straight forward. The filling argument is needed to pre-compute the chemical
potential. Note that the counting is such that a fully filled orbital hosts 2 electrons. Again,
for doping studies, the number of electrons can later be adjusted via the config file.

3.3.4 Generic interface

linterface contains the class StructureFromArrays, derived from the abstract base class
ElectronicStructure. An object is instantiated with the number of k-points in the three
reciprocal lattice directions, list of real space lattice vectors, and the total charge in the system.
After loading in the multiplicity, the energies, and optical elements in form of lists or numpy

arrays with the corresponding loadData method, the output method outputData takes care
of calculating the chemical potential, the setting of required flags and the file output itself.
Since this interface is agnostic to the origin of the input, it can be used to interface any data
source, including other density functional codes, dynamical mean field theory codes and so
on. If developers write an interface to their electronic structure code, we will be happy to
include it in the package.

3.4 Scattering File

For typical runs, information on the scattering rate and quasi-particle weights is set-up in
the config file, see below. However, to include the full state- and momentum-dependence of
the scattering amplitude Γ, the quasi-particle weight Z and band-shifts <Σ, an otherwise
optional LRTC scattering file has to be created. Therewith, Γ, Z, and <Σ extracted from,
e.g., a many-body calculation can be directly used to compute transport properties. To keep
this route as generic as possible the user is required to interact with Python3 code, where
at its core a scattering object is instantiated. First, the LRTC energy file from the previous
section is read in to initialize states and momenta. Then, the only steps necessary are the
definition of the calculation axis (chemical potential or temperature scan), the load in of user

13Hoppings are positive, with the gain of kinetic energy accounted for by a global minus sign, e.g., ε(k) =
−2t

∑
α=1,2,3 cos(kα) with t > 0.

14see https://spglib.github.io/spglib/python-spglib.html for details (last accessed 12.06.2022).
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defined numpy arrays that describe the scattering dependencies, and the final output. The
work flow is as follows:

1. Copy lscat_template from the installation folder into your working direction.

2. Insert the linretrace folder into the system path.15

3. Reference to correct energy file.

4. Define calculation axis (µ or T -scan).

5. Define scattering rates as a numpy array.
Optionally: define quasi particle weights and/or band shifts.

6. Execute script to generate LRTC scattering file:

$ python3 lscat_template

A minimalistic script can look as simple as

15If the Python package was installed via python3 setup.py install this step is not necessary.
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import sys

import numpy as np

sys.path.insert(0,’/home/user/linretrace’) # Step 1: installation folder

from scattering.fullscattering import FullScattering

scatobj = FullScattering(’energies.hdf5’) # Step 2:

# reference LRTC energy file

# main dependencies: spins, kpoints, bands

spins, nkp, nbands = scatobj.getDependencies()

kgrid = scatobj.getMomentumGrid() # [ nkp, 3 ]

energies = scatobj.getEnergies() # [ spins, nkp, nbands ]

mudft = scatobj.mudft # chemical potential

# Step 3: define temperature range in Kelvin

nt = 100

scatobj.defineTemperatures(tmin = 10, \

tmax = 300, \

nt = nt, \

tlog = True)

# Step 4: Create array that defines scattering rates in eV

gamma = np.zeros((nt, spins, nkp, nbands), dtype=np.float64) # Gamma

gamma[0,...] = (energies-mudft)**2. / 10000.

gamma[1:,...] = gamma[0,...]

# Optional Step 5: Create arrays that define Z and ReSigma(0)

qpweight = np.ones_like(gamma, dtype=np.float64) # Z

bandshift = np.zeros_like(gamma, dtype=np.float64) # ReSigma

scatobj.defineScatteringRates(gamma, qpweight, bandshift)

scatobj.createOutput(’scattering_file.hdf5’)

How to handle the other dependencies is illustrated in code snippets in the provided lscat and
lscat_template. In case scattering-rates and quasi-particle weights do not depend on band
and momentum, and follow a simple temperature dependence, they can be more conveniently
specified in the LinReTraCe configuration file, see the next section.

3.5 Configuring and running LinReTraCe

LinReTraCe is configured via a free format text configuration file. A minimalist starting point
for this config file can be generated with lconfig. Here, through interactive questioning a
basic config file is generated and saved as config.lrtc. From there, more elaborate options
can be added manually. For more advanced settings, see Appendix B, for a full documentation
of all possibilities, see the configuration specification in documentation/configspec.

In its basic form the configuration file sets the run mode and defines which quantities
should be calculated and at which precision. LinReTraCe can either scan through a range
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of temperatures for a given number of electrons (RunMode = temp) or scan through various
chemical potentials (RunMode = mu) at fixed temperature. Further, one is also able to modify
some information from the energy file on-the-fly, like the bandgap or the number of electrons
in the system, e.g., for doping studies.

The run modes are then configured in their own respective section of the config file.
Without a scattering file, the temperature mode is configured by specifying a temperature
range and provides the option to include impurity states as well as homogeneous doping, see
Sec. 4.2. Scattering rates can be specified for a simple polynomial temperature dependence
(Γ(T ) = Γ0 + Γ1T + Γ2T

2 + · · · ) when acting on all bands and momenta equally. For the
inclusion of arbitrary scattering rates, a scattering file needs to be created, see Section 3.4
and Appendix B.3. The chemical potential mode instead works at a fixed temperature and
only requires information on the range over which the scan is performed and which scattering
rate and quasi-particle renormalization to use.
For a temperature scan, the output of lconfig looks as follows

[General] # input/output configuration

RunMode = temp # scan through temperatures

EnergyFile = lrtc-dft.hdf5 # any energy file from Sec. 3.3

OutputFile = output.hdf5 # output file name

BFieldMode = T # calculate L11B L12B L22B

Interband = F # T/F enable/disable inter-band

Intraband = T # enable intra-band

Boltzmann = T # Kubo AND Boltzmann responses

QuadResponse = T # kernel evaluation: quad precision

FermiOccupation = F # digamma function as occupation

[TempMode] # temperature mode sub configuration

[[Scattering]]

TMinimum = 100.0 # temperature range [K]

TMaximum = 700.0

TPoints = 100

TLogarithmic = T # logarithmic temperature steps

ScatteringCoefficients = 1e-5 0 1e-8 # G0 G1 G2 ...

# G(T) = G0 + G1 * T + G2 * T**2 ...

QuasiParticleCoefficients = 1 # renormalization Z0 ...

# Z(T) = Z0 ...

The configuration of the chemical potential mode looks like
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[General]

RunMode = mu

...

[MuMode] # mu mode sub configuration

[[Scattering]]

Temperature = 300.0 # fixed temperature [K]

MuMinimum = -5.0 # chemical potential range [eV]

MuMaximum = +5.0 # with respect to mu_DFT

MuPoints = 100

ScatteringRate = 1e-5 # fixed Gamma [eV]

QuasiParticleWeight = 1.0 # fixed Z [0 < Z <= 1]

Once the input and configuration has been prepared, LinReTraCe is run by executing the
binary with the generated config file as argument. The MPI installation is invoked via

$ mpirun -np <cores> bin/linretrace config.lrtc

and the single core installation via

$ bin/linretrace config.lrtc

The internal program flow is listed in Table 1. During execution, first an options summary,
then continuous run information is printed to the standard output. After a successful exit, the
generated HDF5 output file contains the calculated Onsager coefficients as well as all relevant
config information and some auxiliary datasets, see the next section.

3.6 Output File

In the HDF5 output file, all the calculated Onsager coefficients are saved as a combina-
tion of their identifier L11, L12, L22, L11B, L12B, L22B and the type of response that was
used: intra, inter, intraBoltzmann, interBoltzmann. Non-magnetic datasets contain
the momentum- and band-summed quantities with array shape [steps, spins, 3, 3] and
magnetic datasets contain the momentum- and band-summed quantities with array shape
[steps, spins, 3, 3, 3] where the last 2 (3) dimensions refer to the Cartesian directions
[α, β] ([α, β, γ]). Please note that we also include the possibility to output the Onsager
coefficients with either their full dependency (k, n), only momentum-k-summed and only
band-n-summed, see Appendix B. The standard tree structure of the output file looks as
follows
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function name file

initialize MPI interface mpi initialize mpi org.F90
read config file read config config.f90
initialize HDF5 interface hdf5 init hdf5 wrapper.F90
preprocess energy file read preproc energy input.f90
optional : preprocess scattering file read preproc scattering hdf5 input.f90

or: read preproc scattering text input.f90
optional : read µ(T ) read muT hdf5 input.f90

or: read muT text input.f90
distribute MPI k-load mpi genkstep mpi org.F90
read ε(k, n), M(k, n, n) read energy input.f90
optional : read MB(k, n, n) read energy input.f90
allocate data structures allocate response response.F90
optional : read M(k, n,m) read full optical elements input.f90
optional : read MB(k, n,m) read full magnetic elements input.f90
initialize HDF5 output output auxiliary output.F90

LOOP: temperature T
or chemical potential µ

optional : read Γ(k, n, µ|T ) read scattering hdf5 input.f90
if necessary : calculate µ(T ) find mu root.F90
calculate ψn(k, n) calc polygamma response.F90
initialize data structures initialize response response.F90
LOOP: momentum k

response intra km response.F90
calculate KabMαβ, KBabMB,αβγ response inter km response.F90

response intra km Q response.F90
... response.F90

save / output Lαβab , LB,αβγab response h5 output response.F90
response h5 output Q response.F90

output µ, T, ne, nh, · · ·
close MPI and HDF5 interface

Table 1: Internal program flow of LinReTraCe.
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/.config Group

/.quantities Group

/.quantities/mu Dataset

/.quantities/tempAxis Dataset

...

/.scattering Group

...

/.structure Group

/.structure/charge Dataset

...

/.unitcell Group

/.unitcell/vol Dataset

...

/L11 Group

/L11/intra Group

/L11/intra/sum Dataset

/L12 Group

/L12/intra Group

/L12/intra/sum Dataset

/L22 Group

/L22/intra Group

/L22/intra/sum Dataset

While extracting information directly from these files is possible (necessary for the full de-
pendence output), it can be quite cumbersome. To this end we provide the post-processing
interface lprint. Simply point lprint to the specific output file (or use ”latest” to search
for the latest valid output file) and execute

$ lprint <LRTCoutput file> list

to list all available physical datasets to print (olist to list all the Onsager coefficients). The
configuration is listed via

$ lprint <LRTCoutput file> config

and datasets can be output (text/plot) by referring to the keys listed in the ”list” option. To
name a few selected datasets: the chemical potential can be plotted via

$ lprint [-p] <LRTCoutput file> mu

Transport tensors are evaluated from the Onsager coefficients via Eqs. 11-20, and can be
extracted/plotted using the keywords from Tab. 2. lprint can be supplied with Cartesian
directions chained after each other, e.g., the xx and yy entries of the conductivity tensor can
be obtained via

$ lprint [-p] <LRTCoutput file> c-intra xx yy

If no direction is supplied, all combinations xx, xy, xz, yx, ... are plotted. Magnetic tensors,
e.g., the Nernst coefficient require three directions, where the third defines the Cartesian
direction of the applied magnetic field, cf. Eq. (6). E.g., for the Nernst coefficient:
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quantity key component

Onsager coefficients Lij Lij- intra, inter
Onsager coefficients LBij LijB- intra, inter

conductivity σ c- intra, inter, total
resistivity ρ r- intra, inter, total
Peltier Π p- intra, inter, total
Seebeck S s- intra, inter, total
power factor S2σ pf- intra, inter, total
thermal conductivity κ tc- intra, inter, total
thermal resistivity Rλ tr- intra, inter, total
Hall conductivity σB cb- intra, inter, total
Hall coefficient RH rh- intra, inter, total
Nernst coefficient ν n- intra, inter, total
Hall mobility µH muh- intra, inter, total
thermal mobility µT mut- intra, inter, total

Table 2: Syntax of lprint: The Onsager and transport tensors are accessed by com-
bining the key and the component, e.g., s-intra for the intra-band Seebeck coeffi-
cient. The ”total” contributions only exists if both intra- and inter-band transitions
are present. For the Onsager coefficients Lij(B) possible indices are ij ∈ {11, 12, 22}.

$ lprint [-p] <LRTCoutput file> n-intra xyz

Spin resolved output is obtained by adding ’u’ or ’d’ to the directions (uxx dxx for the up
and down component of the xx entry, respectively).
Identical datasets of different files can be compared with the -c (--compare) flag:

$ lprint [-p] <out1> L12-inter dzz -c <out2> <out3>

This flag in particular helps assessing the convergence of transport observables with the num-
ber of k-points, cf. Section 5.1.
Switching to the alternative print/plot axis, inverse temperature instead of temperature:
T [K]→ β[eV−1], or, carrier concentration instead of chemical potential: µ[eV]→ n[cm−3], is
done via -x (--axis).

$ lprint [-p] -x <LRTCoutput file> s-total xx

The full functionality is described in the help option

$ lprint --help

4 Technical details

4.1 Matrix elements on irreducible grids

Periodic unit cells can be assigned a point group that is commonly represented by a set of
n square matrices Pi (detPi = ±1) that describe all applicable symmetry operations acting
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in real space. In reciprocal space this can be exploited as one can reduce the number of
momenta necessary to represent the full Brillouin zone (for a symmetry reduction algorithm
scaling linearly with the number of points see [76]). Each so-called irreducible k-point kirr

then represents a set of momenta {ki} that are all connected to each other via the transposed
matrices P Ti

ki = P Ti kirr. (63)

The number of unique momenta generated from kirr is called its multiplicity m, where each
point in the set will be generated exactly n

m times. Naturally, the energies within this set
remain unchanged

∀i,kirr : ε(kirr) = ε(P Ti kirr) (64)

which then also applies to the kernel functions Eqs. (9-10). Crucially, owing to their direc-
tionality, this does not hold for the associated optical elements, band velocities and band
curvatures, hence Eqs. (3-4) must not be evaluated directly on the irreducible grid. Instead,
matrix elements have to be symmetrized: By averaging over all connected optical elements

M symmetrized
opt (kirr) =

1

n

n∑
i=1

Mopt(P
T
i kirr) (65)

one is able to absorb all the required symmetry information. Please note that these schemes
require the momentum mesh to respect the same point group symmetries as the unit cell itself,
e.g., a cubic crystal structure requires nkx = nky = nkz. If this were not the case, P Ti kirr

generates points outside the initial grid.16

While density functional theory codes like WIEN2k provide dipole matrix elements on an
irreducible grid, optical elements as listed in Sec. 2.4.2 need to be symmetrized explicitly.
Since Eq. 65 relies on information from the full Brillouin, the symmetrization is implemented
via real-space rotations. Band velocities then transform as

v(P Ti kirr) =
[
K−1P−1

i K
]
v(kirr) (66)

whereas band curvatures c transform as

c(P Ti kirr) =
[
K−1P−1

i K
]
c(kirr)

[
K−1P−1

i K
]T

(67)

as they correspond to a single and twofold momentum derivative, respectively. In the same
vein the optical elements M themselves transform as the curvatures in Eq. (67). Here K
is the matrix formed by the reciprocal lattice vectors (the rows of K). This transforms the
point group matrix into Cartesian directions and is explicitly necessary for non-orthogonal
unit cells. The generated velocities and curvatures are then combined to optical elements
via Eqs. (55-56), over which the symmetrization is performed. To showcase the correctness
of these equations, see Fig. 2 where we compare a graphene-inspired honeycomb lattice on a
reducible and corresponding irreducible momentum grid.

16An incommensurate reducible grid could still be reduced, by deselecting invalid momenta. Also an exact
symmetry mapping of every single irreducible k-point to all m connected momenta would solve this issue. Our
current implementation, however, requires the user to make a sensible choice for the grid.
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Figure 2: Reducible calculations compared to calculations on an irreducible grid
with and without optical element symmetrization. Left: Density of states of the
honeycomb lattice with hopping of tAB = tBA = 1eV and lattice length |a| =
1Å. Middle and right: Onsager coefficients Lxx11 and Lxyz12 performed for 180 × 180
reducible (8191 irreducible) k-points at a constant chemical potential of µ = 0.20eV
(vertical dashed line) and scattering rate Γ = 10−5eV. Only a properly symmetrized
irreducible grid leads to consistent data. Note that for this 2D system, Onsager
coefficients needed to be multiplied with the (fictitious) c-lattice constant to yield
proper units, as, e.g., L11 is linked to a conductance [σ2D] = 1/Ω instead of a
conductivity [σ] = 1/(Ωm), see Appendix C.3.

4.2 Chemical potential search

Determining the chemical potential is a common root finding problem: The numerical search
of µ can be represented by

N −
∑
k,n

f(εk,n − µ)
!

= 0. (68)

For the case of no band renormalizations (Z ≡ 1) the occupation f(εk,n − µ) is either deter-
mined from the Fermi function

f(εk,n − µ) = fFD(εk,n − µ) =
1

1 + eβ(εk,n−µ)
(69)

or from the lifetime-broadened spectrum Eq. (21), entailing (see Ref. [2, 4])

f(εk,n − µ) =
1

π
−=ψ

(
1

2
+

β

2π
(Γk,n + i(εk,n − µ))

)
. (70)

In some cases, employing root-finding algorithms on Eq. (68) can lead to severe problems.
While metallic systems suffer mostly from too coarse momentum grids, gapped systems tend to
exhibit massive numerical instabilities.17 Due to the additional Γ-smearing in our formalism,
this problem is absent for reasonably large scattering rates (Γ ≥ 10−6eV) and reasonable band
gaps (∆ < 10eV) at all temperatures when using Eq. (70). Using the Fermi-Dirac distribution
for insulators, on the other hand, the root-finding is strongly restricted in the temperatures
that can be safely captured, irrespective of the numerical accuracy, see double and quadruple
precision calculations (blue and green lines) in Fig. 3, respectively. In order to circumvent

17Which is why Boltzmann codes typically use a fixed chemical potential instead of searching for it.
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Figure 3: Chemical potentials in a gapped system determined via Eq. (68) with
double (blue) and quadruple precision (green) compared to the chemical potential
via the reformulated Eq. (71) (red). In all three cases the Fermi distribution is used.
For the given band gap ∆ = 0.1eV the ‘standard’ root finding breaks down below
T = 40K and T = 10K as the floating point accuracy is exhausted at double and
quadruple precision, respectively. The reformulated problem on the other hand is
stable down to T = 0.05K (below plotted range), see text.

this problem the root-finding problem can be reformulated to∑
k,n≥CB

f(εk,n − µ)︸ ︷︷ ︸
activated electrons

−
∑

k,n≤VB

f(−(εk,n − µ))︸ ︷︷ ︸
activated holes

!
= 0 (71)

in fully gapped systems with µ inside the gap: The chemical potential is determined by
balancing the electrons in the conduction bands with the holes in valence bands. As a con-
sequence one is not limited by machine precision anymore and can exploit the full floating
point range. Nonetheless, due to finite bit length, temperatures are still bounded. The lowest
possible achievable temperature corresponds to resolving density contributions down to the
smallest positive number representable in quadruple precision: 2−16494. If the occupation is
determined via the Fermi function and the chemical potential is in the middle of the band
gap ∆, it follows from

1

eβε + 1
≈ e−βε = e−β

∆
2

that the lowest temperature bound is

Tµbound[K] =
∆[eV]

2 ln(2)16494kB
≈ 0.5∆[eV]. (72)

The chemical potential determined via this refined root-finding problem is also illustrated in
Fig. 3.

4.2.1 Impurity levels

LinReTraCe allows the inclusion of passive impurity states: Neglecting explicit contributions
to the transport functions, the charge of these extra states affects the transport data merely
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through the position of the chemical potential. The above refinement algorithm is especially
important when employing impurity states inside the gap.18 Including impurity states is
straight forward:

1. calculate (intrinsic) electron occupation f(µ) according to Eq. (69) or Eq. (70)

2. calculate (extrinsic) impurity contribution nimp according to Eq. (73) or Eq. (74)

3. calculate total occupation: n(µ) = f(µ) − nDimp + nAimp (given a donor (acceptor) level,
the chemical potential has to increase (decrease) to compensate)

4. determine µ according to Eq. (68) or Eq. (71)19

Here the impurity contribution differs between donor (D) and acceptor (A) levels

nDimp =
ρD

1 + geβ(µ−EDimp)
(73)

nAimp =
ρA

1 + geβ(EAimp−µ)
(74)

where ρD/A is the impurity density, g is the impurity degeneracy and Eimp is the impurity
position. For a donor level in the vicinity of the conduction band edge the chemical potential
has to increase to compensate for the additional impurity occupation. Fig. 4 illustrates the
effect for varying impurity densities. Using the Fermi distribution for intrinsic states, the
chemical potential approaches the center point between the impurity level EDimp and the closest
conduction state (instead of the band-gap middle point, realized for ρD = 0). From a transport
perspective the effective band gap transforms from ∆ = Ec − Ev at high temperatures to
∆ = Ec−Eimp at low temperatures. The transition temperature is controlled by the impurity
density and partially by the degeneracy of the impurity level. In addition to single impurity
levels LinReTraCe also offers finite-size impurity bands with various shapes including box
(constant), half-circle, and squared sine, see Appendix B.2.

4.2.2 Homogeneous doping

Besides explicit impurity states, LinReTraCe also supports generic doping. Contrary to im-
purity levels where the chemical potential converges for T → 0 to a point inside the gap, any
global doping forces the chemical potential eventually to move outside the gap. Leading up
to this, the root finding works identical as in Sec. 4.2.1. Here the ‘impurity contribution‘ is
simply the doping which, now, is not affected by temperature and the position of the chemical
potential. Please note that, technically, this kind of doping is more nuanced than a simple
change of the total electron occupation. For the refinement algorithm to work inside the gap,
an underlying integer filling is mandatory. Thus instead of changing the filling, we introduced
an explicit Doping keyword in the config, see Appendix B.

In Fig. 5 we showcase the same underlying band-structure as in Sec. 4.2.1 with various
electron doping levels. Note the differences to Fig. 4: For the largest shown doping level
(δe = 10−6) the crossing into the conduction band (shaded gray) already happens at around
T = 100K.

18Without them, one could approximate the chemical potential obtained via the Fermi function, by extrap-
olating µ towards the band-gap mid-point at T = 0 [4].

19The reformulated root-finding problem of Eq. (71) becomes:
∑

k,n∈CB f(εk,n − µ)−
∑

k,n∈VB f(−(εk,n −
µ))− nDimp + nAimp

!
= 0.
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Figure 4: Comparison of the chemical potential for different impurity densities ρD
for a donor level located at EDimp inside a semiconducting gap of 100meV. Intrinsic
states were chosen to be described by the Fermi distribution (Γ = 0).
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Figure 5: Comparison of the chemical potential for different levels of electron doping
δe in a semiconductor. This example uses the Fermi distribution (Γ = 0) to find the
chemical potential.

4.3 Polygamma evaluation

While all Fermi-function related equations can be implemented efficiently with native Fortran
functions up to quadruple precision, the evaluation of the digamma and polygamma functions
is more delicate. The digamma function is the derivative of the natural logarithm of the
Gamma function whose series representation is closely related to the harmonic numbers

ψ(z) =
d

dz
ln Γ(z) =

Γ′(z)

Γ(z)
(75)

ψ(z) = −γ +

∞∑
n=1

(
1

n
− 1

n+ z − 1

)
(76)
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where γ is the Euler–Mascheroni constant. The polygamma function ψm (m > 0) is the
mth derivative of the digamma function whose series expansion follows directly from the
differentiation

ψm(z) =
dm

dzm
ψ(z) m ∈ N+ (77)

ψm(z) = (−1)m+1m!

∞∑
n=1

1

(n+ z − 1)m+1
. (78)

Eqs. (76,78) are used extensively in our analytic derivation of the transport kernels [2]. Nu-
merical implementations instead use different expressions depending on the location of the
argument z in the complex plane. In particular, for large <(z), an asymptotic Bernoulli
expansion makes the evaluation very efficient [66]:

ψ(z) = ln(z)− (2z)−1 −
n−1∑
k=1

B2k

2k
z−2k +O(z−2n) | arg(z)| ≤ π − ε, ε > 0 (79)

with the Bernoulli numbers B2k. In LinReTraCe, we adapt the cernlib [77] Fortran routine
wpsipg (v1.2) for polygamma functions with complex argument, originally described by Kölbig
[78]. We upgraded the routine to quadruple precision and commensurately increased the
Bernoulli expansion order (to up to k = 16).20

4.4 Code scaling

As the code is meant to be a hybrid—designed to solve models and large realistic materials—
the scaling behavior of the parallelization is important: LinReTraCe is parallelized over the
number of Brillouin zone momenta nk (see Sec. 5.1 for a momentum convergence test). The
resulting scaling is illustrated in Fig. 6. As expected, a purely linear behavior (runtime
t ∝ nk) emerges.21 While a single core installation experiences almost no overhead, the MPI
implementation requires roughly 200 data points per core to become efficient. The quadruple
precision evaluation of kernels roughly doubles the runtime.

In intra-band calculations the runtime will necessarily further scale linearly with the num-
ber of bands, while the inter-band portion of the code will scale with the square of the
number of bands, as each band permutation must be evaluated. In normal circumstances,
i.e., for small primitive unit cells, the number of bands is usually limited to between O(10)
and O(100) where necessarily the momentum mesh must remain dense. On the contrary, in
super cells one reallocates the computational load from the momentum mesh to the number
of bands. The increased unit cell size requires fewer momenta to achieve convergence, which
is counterbalanced by an increased number of atoms in the cell and thus an increased number
of bands. To combat this intrinsic scaling problem one is encouraged to truncate the number
of bands to a specific energy range around the Fermi level, see Section 3.3.1. Super cells espe-
cially benefit from this drastic decrease of the number of bands while maintaining numerical
accuracy.

20At T = 5.8K and Γ = 0 this setting reproduces the analytical Fermi function fFD(ω) with an error of less
than 10−27 for any ω.

21The calculations contain 100 temperature steps and were performed on a single node of the Vienna Scientific
Cluster 4. Each node consists of two sockets with one Intel Xeon Platinum 8174 Processor @ 3.1 GHz (formerly
Skylake) on each socket, leading to 48 physical cores. We used the Intel Fortran compiler ifort and mpiifort
(2020 release) for the single core and multi core installation, respectively, with -O3 optimization.
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Figure 6: Runtime t of a one-band model over a wide range of momentum grids with
nk points. A clear linear scaling emerges which is somewhat delayed in the MPI runs
due to the communication and input overhead. ”quad” and ”double” indicate the
employed internal precision.
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Figure 7: (a) Resistivity and (b) Seebeck coefficient for the two-dimensional elec-
tronic structure of Eq. (80) with Γ = 10−4eV, system charge N = 1.2 and various
numbers of k-points nk. The convergence temperature Tc (inset in (a)) scales as
Tc ∝ n−0.5

k = n−1
kx

(fitted, dashed line). A dense momentum grid is required to reach
convergence (fat gray line) for reasonably low temperatures. There, we observe an
almost temperature independent resistivity and a linear-in-T behavior of the Seebeck
coefficient. The identical behavior is observed in the three dimensional equivalent
where instead the convergence temperature scales as Tc ∝ n−0.33

k = n−1
kx

(not shown).

5 Test cases

In this section we are going to apply the previously described transport methodology. Our
aim is to highlight some of the features implemented in LinReTraCe on systems that cover
a wide range of phenomena, without, however, exhausting the code’s full functionality. We
start off with simple models in Sec. 5.1, Sec. 5.2 and Sec. 5.3 and transition to realistic crystal
structures in Sec. 5.4 and Sec. 5.5. Input and configuration files of all examples can be found
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in the github.com/linretrace/linretrace examples repository.22

5.1 One-band metal in two dimensions

We consider the simple electronic structure

ε0kn = −2t
∑
α=x,y

cos (kα) (80)

with hopping amplitude t = 0.25eV, lattice spacing ax = ay = 1Å and optical elements
determined with the Peierls approximation. In order to introduce particle-hole asymmetry
(to generate a finite thermopower) we set the system’s charge to N = 1.2 and determine the
chemical potential with the digamma occupation Eq. (70). Figure 7 shows the conductivity
and Seebeck coefficient for a temperature-independent scattering rate Γ = 10−4eV, no quasi-
particle renormalization Z = 1, and various momentum grids. Once k-convergence is reached,
the conductivity is essentially temperature independent. Then, as expected from the Mott
formula [79], a linear-in-T behaviour appears in the Seebeck coefficient. As the system is above
half-filling, the carriers are of hole-type, and the Seebeck coefficient is positive. Unsurprisingly,
a dense momentum grid is required to reach convergence at low temperatures. For the largest
momentum grid employed here (nk = nkx×nky = 5000×5000) the results are converged down
to approximately Tc = 6K. Please note that due to the chemical potential search, discrepancies
for coarse k-meshes are the results of a mixture of chemical potential and kernel sampling
errors. In all, even if the k-convergence in LinReTraCe is more stable than in Boltzmann
codes, a thorough check of the Brillouin-zone discretization is mandatory—at least when the
response is metallic.

5.2 Two-band insulator in three dimensions

Next, we consider the two-band electronic structure used in Ref. [2]

ε0kn = −
∑

α=x,y,z

2tn cos (kα) + (−1)n(6tn + ∆0/2) (81)

with valence band hopping amplitude t1 = 0.25eV and lattice spacing ax = ay = az =
1Å. Here, we use the Peierls approach in the band-basis, see Eq. (55), to compute matrix
elements, limiting the response to intra-band transitions. For the temperature scan we use
a conduction band hopping t2 = −0.30eV and a band gap of ∆0 = 0.1eV while for the
chemical potential scan we use t2 = −0.25eV and ∆0 = 1eV. On the calculated temperature
range, full momentum-grid convergence is achieved for 60× 60× 60 k-points. Contrary to the
metallic system, the transport coefficients of this insulator must be evaluated with quadruple
precision for Γ > 0 in order to avoid numeric instabilities in the polygamma functions at
low temperatures. Instead, evaluating the Boltzmann kernels, a much denser momentum
grid, that scales similarly to the metallic system of Sec. 5.1 is required for convergence (not
shown). Therefore, the more proper treatment of scattering amplitudes in our formalism
actually facilitates the numerical evaluation with respect to semi-classical approaches.

22For storage reasons, the hosted HDF5 input files contain data on a coarser momentum mesh than that
used for the results shown here. For the model systems, however, the user can directly reproduce our results by
generating their own HDF5 input files using the number of k-points specified in the text. The same is possible
for the material test cases, but requires performing ones own DFT calculations.
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5.2.1 Temperature scan

The introduced band asymmetry leads to an imbalance of electronic carriers as the chemical
potential lies above µ = 0, see bottom panel of Fig. 8a. The thermal activation across
the charge gap is reflected in all considered physical observables where one naturally finds

ρ,RH ∝ e−
∆0

2kBT and S, ν ∝ 1
T at high enough temperatures. At low enough temperatures,

however, a saturation regime is observed in ρ and RH , stemming from the Kubo transport
kernels, see Ref. [2] for details. Further, entropy transport is thermodynamically consistent,
as S ∝ T and ν ∝ T towards absolute zero. Taking lifetime broadening into account also for
the occupation, the chemical potential µψ(T ) is necessarily (since |t2| > |t1|) forced towards
the conduction band from which a second activated regime is generated below 100K, see
Fig. 8a (top panel). This intrinsic chemical potential behavior can also be achieved, in
principle, through a guidance of µFD(T ) via explicit impurity states, see Fig. 8b. Here,
sharper transitions between regimes and even changes in the dominant type of carriers can be
generated. Please note the different plotting scales and the sign changes of the Seebeck and
Hall coefficient.

5.2.2 Chemical potential scan

The chemical potential scans in Fig. 9 illustrate the in-gap behavior of the (intra-band)
conductivity and the (intra-band) Seebeck coefficient. For small scattering rates and elevated
temperatures (Fig. 9a), we recover the usual ‘S’-shaped curve for the Seebeck coefficient: S
crosses zero at µ = 0, where the system is particle-hole symmetric. Slightly above (below)
a minimum (maximum) develops, corresponding to the dominant type of carriers (µ > 0:
electrons; µ < 0: holes). In the ‘Boltzmann’ regime we find perfect agreement with the
Goldsmid rule 2eSmaxT = ∆0 [80], relating the maximal Seebeck coefficient Smax to the
system’s gap. At lower temperatures, however, deviations from this behavior can be observed
as a plateau around µ = 0 develops that expands as we lower the temperature further. This
effect stems from the Kubo kernels Eqs. (23-28) and signals the transition from the activated
to a saturation regime. For a detailed discussion, see Ref. [2]. Larger scattering rates (Fig. 9b)
already lead to a deviation from the ‘Boltzmann’ behavior at the highest temperatures, where
we additionally find a strong suppression towards the band edges at µ = ±0.5eV.

5.3 Honeycomb lattice (tight-binding calculation)

To showcase the post-processing capabilities of LinReTraCe we revisit the honeycomb struc-
ture of Sec. 4.1: We define the lattice vectors of length 1Å via

a1 =
(

1
0

)
; a2 =

1

2

(
1√
3

)
(82)

resulting in the reciprocal lattice vectors

b1 =
2π√

3

(√
3
−1

)
; b2 =

4π√
3

(
0
1

)
, (83)

37



SciPost Physics Codebases Submission

100 101 102 103

10 5

10 1
 [

m
]

100 101 102 103
0.0

0.5

1.0

S 
[m

V K
]

100 101 102 103

10 6

10 2

R H
 [m

3 C
]

100 101 102 103

T [K]

0

50

100

 [
V

T
K

]

100 101 102 103

T [K]

0.05

0.00

0.05

 [e
V]

FD

(a) Prototypical µψ/FD(T )

100 101 102 103

10 5

10 1

 [
m

]

100 101 102 103

10 3

10 1

|S|
 [m

V K
]

S > 0
S < 0

100 101 102 103

10 6

10 2

|R
H

| [
m

3 C
] RH > 0

RH < 0

100 101 102 103

T [K]

10 3

101

 [
V

T
K

]

100 101 102 103

T [K]

0.05

0.00

0.05
 [e

V]

FD [E A] FD [E D]

(b) µFD(T ) guidance via impurity states

Figure 8: Prototypical temperature dependencies in a semiconductor of the resis-
tivity ρ (top), the coefficients of Seebeck S, Hall RH , and Nernst ν (second to
fourth panel), as well as the chemical potential (bottom; the band gap is delimited
by thick black lines): (a) Effects stemming purely from the occupation distribution
(Fermi-Dirac ”FD” or digamma ”ψ”). (b) Effects achievable by guiding the chemical
potential with impurity states. Red: donor level ED = 0.04eV, ρD = 10−8 1

unit cell ;
Blue: acceptor level EA = −0.02eV, ρA = 10−14 1

unit cell . In all cases ∆0 = 100meV,
Γ = 10−4eV; Z = 1.

fulfilling ai · bj = 2πδi,j . The special points K and K’ (see Fig. 11) are then located at

K =
2

3
b1 +

1

3
b2 (84)

K ′ =
1

3
b1 +

2

3
b2 (85)

hence momentum grids that are divisible by three in each direction are required to include
them. We choose nkx × nky = 300 × 300 with nearest neighbor hopping tAB = tBA = 1eV.
The corresponding tight binding file23 reads:

23This honeycomb structure, among other structures, including kagome, 3D bcc, 3D fcc, etc., is available in
the code repository’s templates subfolder.
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Figure 9: Chemical potential scans for the symmetric insulator t1 = −t2 = 0.25 eV
for (a) small Γ = 10−4eV and (b) large Γ = 10−2eV scattering rates. Blue-to-green
shades represent conductivities; red-to-orange shades Seebeck coefficients. In the
Boltzmann temperature regime (Γ = 10−4eV; T > 250K) we find perfect agreement
with the Goldsmid rule 2eSmaxT = ∆0. Lower temperatures and increased scat-
tering leads to a departure of the Boltzmann regime and the transport responses
qualitatively change shape. The white (grey shaded) background indicates the gap
(valence/conduction band region). The gap is ∆0 = 1eV and we used Z = 1.
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begin hopping

0 0 0 1 2 1.0

0 0 0 2 1 1.0

+1 0 0 2 1 1.0

0 +1 0 2 1 1.0

-1 0 0 1 2 1.0

0 -1 0 1 2 1.0

end hopping

begin atoms

1 0.25 0.25 0

1 0.75 0.75 0

end atoms

begin real_lattice

1 0 0

0.5 0.8660254038 0

0 0 1

end real_lattice

The resulting band-structure and density of states are illustrated in Fig. 10. The particle-
hole symmetry around ε = 0 results in symmetric transport properties σαβ(+µ) = σαβ(−µ).
Here, we consider µ = 0.8eV, as indicated by the horizontal dashed line. Fig. 11 (left)
shows the momentum-resolved optical elements Mαβ ∝ vαvβ in and around the Brillouin
zone. Combined with the kernel function K11 (middle), we can capture how each point in
the Brillouin zone contributes to the conductivity σαβ =

∑
k∈BZ σαβ(k) (right panel). Via an

interplay of symmetry, the sign, and the values of the optical elements we find the expected
result: σxx = σyy and σxy ≡ 0. This type of analysis can be easily extended to other transport
coefficients and models and can provide valuable microscopic insight.
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Figure 10: Band-structure of the honeycomb lattice (left) and the density of states
(right). The analysis of Fig. 11 is done for µ = 0.8eV (dashed line).
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∑
k σ(k) results in σxx = σyy and σxy ≡ 0.
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Figure 12: Hybridization-gap semiconductor FeAs2. Result of a WIEN2k calculation
using the PBE exchange-correlation potential and 20× 20× 40 k-points. The DOS
around the gap (∆ = 0.275eV) is dominated by Fe-character. (top) total and partial
density of states (DOS), (bottom) intra- and inter-band conductivities in the x-
direction and as a function of the chemical potential µ. The Peierls approximation to
the optical elements leads to intra-band results (blue) virtually indistinguishable to
using the full dipole matrix elements (yellow). For the given temperature (T = 300K)
and scattering rate (Γ = 10−5eV) the intra-band contributions largely dominate over
inter-band effects (green).

5.4 FeAs2 (WIEN2k calculation)

As a realistic crystal structure we first consider FeAs2, a hybridization-gap semiconductor.
Band-theory yields a gap of around ∆0 = 0.275eV when using the PBE exchange-correlation
potential [4,81]. The top panel of Fig. 12 shows the ensuing density of states (DOS) for a wide
energy range, with the gap centered at µ = 0. The states near the gap edges are dominantly
of iron character. The bottom panel shows the resulting conductivities σ calculated for T =
300K, using a scattering rate Γ0 = 10−5eV. Comparing the intra-band conductivity using the
WIEN2k dipole matrix elements (yellow) with that employing group velocities constructed from
the BoltzTraP2 band interpolation (blue) illustrates the accuracy of the Peierls approximation
for simple unit cells.24 With the full dipole matrix element, we have access also to inter-band
contributions to the conductivity (green). As expected, inter-band contributions only play
a subsidiary role at these elevated temperatures: They are two orders of magnitude smaller
than the intra-band contributions.

Translating the µ-axis into carrier concentrations n = (N(µ)−N)/V results in the be-

24We cross-checked our result with BoltzTraP2: Differences are small. We note that BoltzTraP2 calculates
transport distribution functions that are based on an artificially broadened density of states, leading to a
numerical smearing of the gap edges. At its core, LinReTraCe is designed to stay numerically exact and avoids
unphysical broadening of any transport quantity. If desired, however, the user can apply a Gaussian broadening
of a chemical potential scan in the post-processing. For explicit comparisons, the BoltzTraP2 conductivities
σ/τ0 [ 1

Ωms
] have to be multiplied with τ0 = ~

2Γ0
, ~ = 6.58211956 · 10−16eVs.
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Figure 13: FeAs2: WIEN2k intra-band conductivity (σ), Seebeck coefficient (S) and
power factor (S2σ) for the same temperature (T = 300K) and scattering rate (Γ =
10−5eV) as in Fig. 12. Here, we show the dependency on the electron doping n =
N(µ)−Nneutral

V , instead of the chemical potential µ. The three Cartesian directions
(x, y, z) refer to the orthorhombic unit-cell with volume V = ax × ay × az =
5.30Å × 5.98Å × 2.88Å. The gray, shaded area indicates doping levels where the
chemical potential has moved inside the conduction band.

havior shown in Fig. 13. For the given temperature, the shaded gray area marks the region,
where the chemical potential has moved inside the conduction band. Upon entering said re-
gion, the conductivity increases rapidly, while the Seebeck coefficient has its peak amplitude
for µ inside the gap, cf. Figure 9. Indeed, the behavior of σ and S is typically [82], but not
always [83], antagonistic. The response is polarization dependent, with the powerfactor S2σ
being most sensitive on the crystal orientation.25,26

Finally, we add an in-gap impurity state and showcase the ensuing temperature behavior of
transport observables in comparison to experiment [62, 89] in Fig. 14. Due to the additional
electrons provided by the donor level, located in the vicinity of the conduction band, the
system experiences a transition from activated behavior with the intrinsic gap ∆0 at high
temperatures to a second regime controlled by a reduced gap ∆1, determined by the position
of the impurity, cf. Fig. 4 and Ref. [2]. At still lower temperatures, and akin to Sec. 5.2,
the prototypical saturation regimes set in: The resistivity and the Hall coefficient saturate,
while the Seebeck and Nernst coefficients tend towards zero in a linear fashion. Due to the

25Please note that these result use the full dipole matrix element, for which WIEN2k has a maximal num-
ber of computable k-points. Results for the metallic regime could therefore not be checked for momentum-
convergence. This limitation does not apply for Peierls velocities.

26LinReTraCe only computes thermoelectric properties from pure electron diffusion. Phonon-drag
enhancements—relevant, e.g., for the related narrow-gap semiconductors FeSb2 [84–86] and CrSb2 [87,88]—are
not included.

43



SciPost Physics Codebases Submission

three distinct crystal directions in FeAs2, the Hall and Nernst coefficients behave differently
depending on the direction of the applied magnetic field.
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Figure 14: FeAs2: Intra-band resistivity ρ, Seebeck coefficient S, Hall coefficient RH
and Nernst coefficient ν (left) compared to experimental data (right) [62]. We show
results for all three Cartesian directions. The chemical potential was determined by
the Fermi Dirac function and altered by a donor level (at ED = 0.015eV below the
conduction band with ρ = 2·10−6 1

unit cell), chosen so that the resistivity approximates
the experimental behavior. The scattering rate includes only polynomial terms:
Γ(T ) = 7 · 10−5 + 5 · 10−9T 2 in eV. Note that we underestimate S and overestimate
ν. All shown data use the intra-band Peierls approximation.

5.5 Tl-doped PbTe (WIEN2k calculation)

As a final test material we consider Tl-doped PbTe, a prime example for the enhancement
of thermoelectric transport by resonance states [90]. We model the doping by explicitly
constructing a 4× 4× 4 supercell of PbTe and substituting a single Pb atom with a Tl one.
Internal positions of the resulting Tl0.004Pb0.996Te are then fully relaxed before extracting the
LinReTraCe input. In order to gain access to both the Seebeck and the Nernst coefficient,
we employ the BoltzTraP2 interpolation scheme to obtain Peierls velocities. As the prepared
super cell does not match the experimental stoichiometry, we are mainly aiming for qualitative
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aspects.
Through the Tl-(hole)doping an increase of the density of states in the vicinity of the

valence-band edge appears, see Figure 15 and the emerging resonance pins the chemical po-
tential. Consequently, the Tl-doping cause a semiconductor-to-metal transition. Supple-
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Figure 15: Tl-doped PbTe: Density of states using the LDA exchange-correlation
potential and 17 × 17 × 17 k-points. Introducing a single Tl⇐⇒Pb substitutional
impurity results in a distorted electronic structure and additional states appear near
the valence-band edge, pinning the chemical potential. The zoomed inset illustrates
the non-trivial nature of the resonance to which all three elements contribute in some
part.

menting the electronic structure with a phenomenological, band-independent Γ(T ) = 20meV
+6 ·10−5meV/K2T 2 results in the resistivity, Seebeck, and Nernst coefficient shown in Fig. 16.
Comparing to experimental results [90], plotted on the same scale, we find good agreement
for the resistivity at elevated temperature. However, we do not capture the resonance’s
signature below 200K. This finding suggests that the resistivity in that temperature range
is not controlled by band-structure effects. Instead, the scattering rate might be markedly
different for the resonance than for other states and display a more complex temperature
dependence. We hence expect that—with scattering rates obtained from more sophisticated
(beyond band-theory) electronic structure methodologies—LinReTraCe could capture the re-
sistivity also below 200K. Alternatively, a reverse engineering approach could be employed
within LinReTraCe to extract a phenomenological but band-dependent scattering rate that
reproduces the experimental resistivity.

The Seebeck and Nernst coefficient, instead, are well reproduced within our setting, with-
out any additional input, suggesting a simple electronic picture of thermoelectric transport
to hold. Indeed, in the case of metals, the Seebeck coefficient is—to a first approximation—
insensitive to the scattering rate. The congruence to experiment for S then supports the
above claim that the temperature profile of the resistivity below 200K is controlled by an
intricate scattering rate.

The metallic nature of the transport poses the previously discussed challenges for the
Brillouin-zone discretization. While the resistivity and the Seebeck coefficient are, for all
practical purposes, convergent with the largest k-mesh used, the Nernst coefficient is notably
more sensitive: The shown data provides a good approximation for the Nernst coefficient
above 200K, while below the result is clearly not yet converged. Indeed, for general reasons,
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the Nernst coefficient must vanish for T → 0 [2]. We stress that these limitations regarding
the number of usable k-points are on the side of the electronic structure methodology, while
LinReTraCe could handle larger meshs at acceptable costs.
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Figure 16: Tl-doped PbTe: Resistivity (top) and coefficients of Seebeck (middle) and
Nernst (bottom) within LinReTraCe (left) compared to experiment [90] (right). Even
though the resonance feature of the resistivity below 200K cannot be reproduced
with our phenomenological scattering rate, the Seebeck and Nernst coefficients are
matched nearly one-to-one. Indeed, while the resistivity is directly controlled by
our ansatz, Γ(T ) = 20meV+6 · 10−5meV/K2T 2, for the scattering, the Seebeck
coefficient in metals is (to first approximation) independent of Γ. There are opposing
conventions for the sign of the Nernst coefficient [61]. Since our Hall signal (not
shown) has the same sign as the experiment [90], but not the Nernst coefficient, we
multiply the experimental ν with (−1). Please also note that ν → 0 for T → 0 is a
must. Indeed, due to the limited number of k-points, the Nernst simulation is not
fully converged below T = 200K.

6 Conclusion

We presented the algorithm, implementation, and usage of LinReTraCe, a package for the
computation of transport properties of solids. The code’s strengths are (1) based on Kubo
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linear-response theory it captures effects of finite lifetimes far beyond semi-classical theo-
ries, making a qualitative difference in semi-conductors; (2) using a semi-analytical evalua-
tion of transport kernels, LinReTraCe is nonetheless as fast as Boltzmann approaches in the
relaxation-time approximation; (3) LinReTraCe is agnostic to the origin of the input data, al-
lowing to simulate tight-binding models as well as materials. Interfaces to WIEN2k, VASP, and
Wannier90 are included in the release, while a template allows connecting LinReTraCe to any
other electronic structure code. The numerical efficiency makes LinReTraCe also attractive
for high-throughput material surveys of, e.g., thermoelectrics.
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A Cheat sheet

Code repository:
https://github.com/linretrace/linretrace.
User guide:
https://github.com/linretrace/linretrace/raw/release/documentation/userguide.pdf.
Create an energy file from WIEN2k, VASP, WANNIER90, a tight binding file or generic data:

$ ldft <wien2k folder> --optic # wien2k with full dipole elements

$ ldft <vasp folder> --interp # vasp with intra-band interpolation

$ lwann <wannier90 folder> # wannier90

$ ltb <tb file> <nkx> <nky> <nkz> <charge> # tight-binding input

$ linterface # your customized interface

The full capability of the Python interfaces can be shown via:

$ ldft/lwann/ltb --help

The created energy files can be inspected with lprint:

$ lprint <lrtc input> info

$ lprint -p <lrtc input> dos

$ lprint -p <lrtc input> path

Optional: Prepare a scattering file by copying lscat_temp into your working directory and
adjust it to your needs.
Next, prepare a basic config file with

$ lconfig

Advanced option can be added with the help of the full configuration specifications found in
documentation/configspec.
Then, perform LinReTraCe calculation via:

$ mpirun -np <cores> bin/linretrace config.lrtc

When finished, the datasets contained in the output can be inspected via:

$ lprint <lrtc output> list # physical datasets

$ lprint <lrtc output> olist # Onsager coefficients

Printing or plotting (-p option) the data:

$ lprint -p latest mu --gap # chemical potential + gap

$ lprint -p latest c-intra uxx dxx # conductivity

$ lprint -p latest r-intra xx # resistivity

$ lprint -p latest p-intra xy # Peltier

$ lprint -p latest s-intra xx yy zz # Seebeck

$ lprint -p latest rh-intra xyz # Hall

$ lprint -p latest n-intra xyz # Nernst

$ lprint -p latest L12B-intra uxyz # L12B Onsager
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B Advanced LinReTraCe configuration

Section 3.5 provides a minimal configuration for temperature and chemical potential runs.
Here, we detail more advanced capabilities of LinReTraCe. A complete documentation of the
config specifications can be found in documentation/configspec.

B.1 General settings

In the [General] section of the config file

[General]

Bandgap = <value>

ElectronOccupation = <value>

FermiOccupation = T/F # default = T

FullOutput = <string>

# <string> = full -> momentum resolved, band resolved

# <string> = ksum -> momentum summed, band resolved

# <string> = bsum -> momentum resolved, band summed

one can manipulate the band gap, change the total occupation, and activate the output to be
fully or partially resolved into momentum and band contributions. The band gap can only
be changed if a gap has been detected in the pre-processing. Hence a properly set occupation
in these setups is necessary. The change in the band gap is achieved via an upwards shift of
all the conduction bands, while the valence bands remain fixed. For spin-polarized systems,
two values need to be provided, one for each spin.

The change in total occupation via the config file triggers a re-search of the ‘DFT’ chemical
potential (having a direct impact on chemical-potential run, that are defined with respect to
the updated µDFT).

The used occupation function can be switched between the digamma function f(ε) =
1
π−=ψ(1

2 + β
2π (Γ+ia)) and the Fermi function f(ε) = [1+eβa]−1 via the FermiOccupation key

word. Please note that this affects the chemical potential as well as all quantities depending
on it, including the carrier concentration, total energy, etc.

The FullOutput option can be configured to either output the fully resolved (full), or
partially resolved (momentum sum: ksum, band sum: bsum) Onsager coefficients. The tree
structure of the full dependence output is (in contrast to the standard output) separated for
each step, otherwise only the dataset shapes and their identifier differ

/step/000001 Group

/step/000001/L11 Group

/step/000001/L11/intra Group

/step/000001/L11/intra/full Dataset # FullOutput = full

/step/000001/L11/intra/ksum Dataset # or FullOutput = ksum

/step/000001/L11/intra/bsum Dataset # or FullOutput = bsum

...

where the datasets without magnetic field have the array shape [nkp,spins,bands,3,3] and
the datasets with magnetic field are of shape [nkp,spins,bands,3,3,3]. Partially momen-
tum (band) summed datasets have nkp = 1 (bands = 1). The steps are always ordered the
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same way as the summed quantities, that is from lowest to highest temperature or from lowest
to highest chemical potential, independent on how the program itself loops over them. These
datasets can only be accessed via external HDF5 libraries, an exemplary load in via h5py

looks like

import h5py

with h5py.File(’lrtc-output.hdf5’,’r’) as h5:

L11full = h5[’step/000001/L11/intra/full’][()]

L11Bfull = h5[’step/000001/L11B/intra/full’][()]

print(L11full.shape) # kpoints, spins, bands, 3, 3

print(L11Bfull.shape) # kpoints, spins, bands, 3, 3, 3

B.2 Temperature mode settings

The temperature sub configuration includes the following options:

[TempMode]

ConstantMu = <value>

OldMuHdf5 = <LRTCoutput file>

OldMuText = <lprint mu output>

NImp = <value>

Doping = <value>

NominalDoping = T/F # default = F

ConstantMu sets the chemical potential to a fixed absolute value (in eV) with respect to
µDFT for the full temperature run. OldMuHdf5 uses the chemical potential values of an old
output file. OldMuText can be used to enter manual values via a text file whose format has
to be consistent with the output of lprint <LRTCoutput file> mu (column 1 temperature,
column 2: chemical potential). Naturally these three option cannot be used in combination.

Impurity levels and/or homogeneous doping, as illustrated in Sec. 4.2.1 and Sec. 4.2.2,
respectively, can be activated via Doping and NImp. The value in Doping is in units of [cm−3]
which can be changed to nominal doping [1/unit cell] by setting NominalDoping = T. This
behavior then also applies to the introduced n impurity states, activated via NImp = n, for
which further configuration is required:

[[Impurities]]

[[[1]]]

# one of

Absolute = <values>

Valence = <values>

Conduction = <values>

Percentage = <values>

Bandtype = <string>

# <string> = box, triangle, halfcircle, sine, sine2, sine3, sine4

Bandwidth = <value>

[[[2]]]

...
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Separate groups [[[1]]] ... have to be introduced to describe each of the n impurities. The
main descriptor is one of the four keywords Absolute, Valence, Conduction or Percentage,
as they describe how the provided energy is to be interpreted. The provided string then con-
tains 4 values, that describe the type of impurity (donor: +1/acceptor −1), its density, energy,
and degeneracy. The energy is translated into an internal position, depending on the keyword:
Absolute uses the energy is as, Valence interprets the energy as positive offset with respect
to the top of the valence band, Conduction as a negative offset with respect to the bottom
of the conduction band. Percentage puts the impurity state at the fractional position inside
the gap (0 < EPercentage < 1). Naturally the latter three options can only be used in gapped
systems. Energies refer to bare values, prior to potential renormalizations with Z and <Σ.
Example inputs for impurity states look as follows

# Identifier = type density energy degeneracy

Absolute = -1 1e15 8.35 2 # acceptor at E = 8.35 eV

Conduction = +1 1e18 0.02 1 # donor 20meV below CB

Valence = -1 1e19 0.01 1 # acceptor 10meV above VB

Percentage = +1 1e15 0.5 2 # donor at center of gap

These states can be transformed into bands by providing the Bandtype identifier (cf. Sec-
tion 4.2.1) and an associated Bandwidth. The introduced bandwidth is centered around the
provided energy and has the form of the provided Bandtype string. All these impurity states
only affect the chemical potential; they do not contribute to the transport.

B.3 Scattering files

Runs with a provided scattering file are configured with

[TempMode] # or [MuMode]

[[Scattering]]

ScatteringFile = <scattering file>

ScatteringOffset = <value>

as the scattering file already contains the defining calculation axis. Here we allow for an
additional offset value that is added on top of the provided scattering dependencies, i.e.
Γ(k, n, µ|T ) + Γoffset, e.g., to mimic additional impurity scattering. This subsection can be
used in the temperature, as well as the chemical potential sub configuration. However we
cross-check the internally set calculation mode of the scattering file with the calculation mode
of the config file.

C Dimensional analysis

C.1 Internal units

LinReTraCe works internally with energies in [eV] and distances (momenta) in [Å] ([Å−1]).
The Onsager coefficients in Eqs. (3-4) are represented as transport kernels K and velocities
as matrix elements M. To transform the optical elements into our internal units, ~−factors
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need to be moved to the pre-factor:

Lαβab =
πe(4−a−b)

~V
∑
n,m
k,σ

Kab(k, n,m)M
αβ

(k, n,m) (86)

LB,αβγab =
4π2e(5−a−b)

3~2V

∑
n,m
k,σ

KBab(k, n,m)M
B,αβγ

(k, n,m) (87)

With this transformation the units of the ‘new’ optical elements are

M
αβ

= ~2Mαβ =
[
eV2Å

2
]

(88)

M
B,αβγ

= ~3MB,αβγ =
[
eV3Å

4
]
. (89)

The kernels with a, b ∈ {1, 2} naturally are

Kab =
[
eV(a+b−4)

]
(90)

KBab =
[
eV(a+b−5)

]
(91)

if one uses scattering rates Γ and energies a in [eV] as well as inverse temperatures β = 1
kBT

in [eV−1]. Assuming a three-dimensional unit cell of volume V
[
Å

3
]
, we combine the previous

units to obtain the Onsager coefficients. Additional scaling related post-factors are required
to generate SI units:

L11 =
πe2[C2]

~[Js] V [Å
3
]︸ ︷︷ ︸

pre

K11[eV−2] M
αβ

[eV2Å
2
] 1010

[
Å

m

]
︸ ︷︷ ︸

post

→
[

C2

JsÅ
3 eV−2eV2Å

2 Å

m

]
=

[
A

Vm

] (92)

L12 =
πe[C]

~[Js] V [Å
3
]︸ ︷︷ ︸

pre

K12[eV−1] M
αβ

[eV2Å
2
] 1010

[
Å

m

]
e

[
J

eV

]
︸ ︷︷ ︸

post

→
[

C

JsÅ
3 eV−1eV2Å

2 Å

m

J

eV

]
=

[
A

m

] (93)

L22 =
π

~[Js] V [Å
3
]︸ ︷︷ ︸

pre

K12[eV0] M
αβ

[eV2Å
2
] 1010

[
Å

m

]
e2

[
J2

eV2

]
︸ ︷︷ ︸

post

→
[

1

JsÅ
3 eV2Å

2 Å

m

J2

eV2

]
=

[
VA

m

] (94)
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LB11 =
4π2e[C]3

3~2[J2s2] V [Å
3
]︸ ︷︷ ︸

pre

KB11[eV−3] M
B,αβγ

[eV3Å
4
] 10−10

[
m

Å

]
︸ ︷︷ ︸

post

→
[

C3

J2s2Å
3 eV−3eV3Å

4 m

Å

]
=

[
Am

V2s

] (95)

LB12 =
4π2e[C]2

3~2[J2s2] V [Å
3
]︸ ︷︷ ︸

pre

KB12[eV−2] M
B,αβγ

[eV3Å
4
] 10−10

[
m

Å

]
e

[
J

eV

]
︸ ︷︷ ︸

post

→
[

C2

J2s2Å
3 eV−2eV3Å

4 m

Å

J

eV

]
=

[
Am

Vs

] (96)

LB22 =
4π2e[C]

3~2[J2s2] V [Å
3
]︸ ︷︷ ︸

pre

KB22[eV−1] M
B,αβγ

[eV3Å
4
] 10−10

[
m

Å

]
e2

[
J2

eV2

]
︸ ︷︷ ︸

post

→
[

C

J2s2Å
3 eV−1eV3Å

4 m

Å

J2

eV2

]
=

[
Am

s

] (97)

The magnetic and non-magnetic Onsager coefficients are hence connected unit-wise via the
magnetic field B[T]

Lab = LBab
[

Vs

m2

]
. (98)

Naturally, the current densities in Eqs. (1-2) result in

jαe = Lαβ11 E
β − 1

T
Lαβ12 ∂βT =

[
A

m2

]
(99)

jαq = −Lαβ21 E
β − 1

T
Lαβ22 ∂βT =

[
VA

m2

]
=

[
W

m2

]
. (100)
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Combined to the physical observables listed in Eqs. (11-20) we obtain

σαβ =

[
A

Vm

]
=

[
1

Ωm

]
(101)

ραβ =

[
Vm

A

]
= [Ωm] (102)

Sαβ =

[
V

K

]
(103)

καβ =

[
VA

Km

]
=

[
W

Km

]
(104)

σBαβγ =

[
Am

V2

]
(105)

RH,αβγ =

[
m3

As

]
=

[
m3

C

]
(106)

ναβγ =

[
m2

sK

]
=

[
V

TK

]
(107)

µH,αβγ =

[
m2

Vs

]
=

[
1

T

]
(108)

µT,αβγ =

[
m2

Vs

]
=

[
1

T

]
(109)

C.2 External units

WIEN2k works internally in energy units of [Ry] and length units of [Bohr]:

VLRTC

[
Å

3
]

= VWIEN2k

[
Bohr3

]
× 0.5291773

[
Å

3

Bohr3

]
(110)

εLRTC [eV] = εWIEN2k [Ry]× 13.605662285

[
eV

Ry

]
(111)

The optical elements are essentially dipole moments 〈n,k|∂i|n′k〉, whose units are
[
Bohr−1

]
.

First, the derivatives are transformed into velocities (∂i → p = ~∂i → v = p
me

), before being
transformed according to Eq. (88).

[
Bohr−1

]
× 1

0.529177

[
Å

Bohr

] × 1010

[
Å

m

]
→
[
m−1

]
(112)

[
m−1

]
× ~ [Js]

me [kg]
→
[m

s

]
(113)[m

s

]
× ~ [Js]

e
[

J
eV

] × 1010

[
Å

m

]
→
[
eVÅ

]
(114)

Since WIEN2k outputs symmetrized squared dipole moments the final transformation looks as
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follows

MLRTC

[
eV2Å

2
]

= MWIEN2k

[
Bohr−2

]
×

 ~2[J2s2] 1020

[
Å

2

m2

]
0.529177

[
Å

Bohr

]
e
[

J
eV

]
me[kg]


2

︸ ︷︷ ︸
≈ 207.35

(115)

VASP already works in units of [eV] and [Å], so no transformations are necessary.
BoltzTraP2 works in energy units of [Ha] and length units of [Bohr]. The transformed
energies and derivatives follow accordingly

εLRTC [eV] = εBTP2 [Ha]× 27.21132457

[
eV

Ha

]
(116)

∂kεLRTC

[
eVÅ

]
= ∂kεBTP2 [Ha Bohr]× 27.21132457

[
eV

Ha

]
× 0.529177

[
Å

Bohr

]
(117)

∂2
kεLRTC

[
eVÅ

2
]

= ∂2
kεBTP2

[
Ha Bohr2

]
× 27.21132457

[
eV

Ha

]
× 0.5291772

[
Å

2

Bohr2

]
(118)

With the latter two, the optical elements in the Peierls approximation follow

M
αβ
LRTC

[
eV2Å

2
]

= ∂kαε
[
eVÅ

]
∂kβε

[
eVÅ

]
(119)

M
B,αβγ
LRTC

[
eV3Å

4
]

= εγij∂kαε
[
eVÅ

]
∂kβ∂kiε

[
eVÅ2

]
∂kjε

[
eVÅ

]
. (120)

C.3 Lower dimensionality

The units derived above rely on a three-dimensional unit cell. If one performs calculations for
lower dimensional models or non-periodic structures the volume definition necessarily changes.

C.3.1 two dimensions

In pure 2D (models) and quasi 2D systems (non-periodic crystal structures, e.g., thin films)
no properly defined lattice constant exists in the non-periodic direction. The ‘volume’ thus

changes from
[
Å

3
]

to
[
Å

2
]
. In these cases the Onsager coefficients have to be manually

adapted a posteriori by multiplying with the employed lattice constant (in [m]) in the non-
periodic direction. Subsequently the units of the Onsager coefficients change, resulting in
changes to the conductivity (resistivity), thermal conductivity, and the Hall coefficient. As
the other physical observables consist of ratios of equal number of coefficients, their values
and units are unaffected.
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σ2D =

[
1

Ω

]
(121)

ρ2D = [Ω] (122)

κ2D =

[
W

K

]
(123)

R2D
H =

[
m2

C

]
(124)

As the two-dimensional resistivity (sheet resistance) could be misinterpreted as a resistance
one tends instead to use the equivalent notation ρ2D = [Ω/�] in this context.

C.3.2 one dimension

In the same way, one-dimensional systems have to be adapted. Contrary to the two dimen-
sional case, however, no magnetic quantities can be defined as there do not exist three distinct
directions required for the Hall and Nernst coefficient.

σ1D ∝
[m

Ω

]
(125)

ρ1D ∝
[

Ω

m

]
(126)

κ1D ∝
[

Wm

K

]
(127)

D Interband - intraband limit

When evaluating the inter-band kernels Eqs. (29-31) one has to do thorough checks of the
involved energies a1/2 and scattering rates Γ1/2. If these parameters are too close to each
other in the complex plane, the numerical evaluation may become unstable. Then, the proper
analytic intra-band limit has to be taken instead. This commonly occurs in calculations with
band-crossings when band- and momentum-independent scattering rates are employed.

In this Section we illustrate that the inter-band derived formulas are indeed consistent
and taking the degenerate limit result in the intra-band expressions. First, we construct the
vectorial difference of the poles in the upper half of the complex plane stemming from the
spectral functions of Eq. 9:

z = (a2 + iΓ2)− (a1 + iΓ1) ≡ ReiΦ (128)

We can now express the ‘2’ variables via the ‘1’ variables

a2 = a1 +R cos(Φ) (129)

Γ2 = Γ1 +R sin(Φ) (130)

ψ1(z2) = ψ1

(
1

2
+

β

2π
(Γ1 + ia1) +

β

2π
R sin(Φ) + i

β

2π
R cos(Φ)

)
. (131)
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and expand Eq. (131) around R = 0:

ψ1

(
1

2
+

β

2π
(Γ2 + ia2)

)
=

ψ1

(
1

2
+

β

2π
(Γ1 + ia1)

)
+ ψ2

(
1

2
+

β

2π
(Γ1 + ia1)

)
βR

2π
(sin(Φ) + i cos(Φ)) +O(R2)

(132)

Setting Z1 = Z2 = Z, a1 = a, Γ1 = Γ, and inserting the above equations in the K11 inter-band
expression results in

K11(k, n,m) =
Z2β

2π3R2 [R2 + 4Γ2 + 4ΓR sin(Φ)]

×

[
<
{ [
R2 + 2ΓR sin(Φ)− 2iΓR cos(Φ)

]
(Γ +R sin(Φ))ψ1 (z)

}
+<
{ [
R2(cos2(Φ)− sin2(Φ))− 2ΓR sin(Φ) + 2iΓR cos(Φ) + 2iR2 sin(Φ) cos(Φ)

]
Γ

×
[
ψ1(z) + ψ2(z)

βR

2π
(sin(Φ) + i cos(Φ)) +O(R2)

]}]
.

(133)

To lowest order, the pre-factor term scales with O(R−2), so in order to recover all non-
vanishing terms we have to check the square bracket for terms up to O(R2):

K11(k, n,m) =

[
Z2β

8π3R2Γ2
+O(R−1)

]
×

[
R×

{
2Γ2 sin(Φ)<ψ1(z) + 2Γ2 cos(Φ)=ψ1(z)− 2Γ2 sin(Φ)<ψ1(z)− 2Γ2 cos(Φ)=ψ1(z)

}
︸ ︷︷ ︸

≡0

+R2 ×
{

Γ<ψ1(z) + 2Γ sin2(Φ)<ψ1(z) + 2Γ cos(Φ) sin(Φ)=ψ1(z)

+ (cos2(Φ)− sin2(Φ))Γ<ψ1(z)− 2 sin(Φ) cos(Φ)Γ=ψ1(z)

+−2Γ2 sin2(Φ)
β

2π
<ψ2(z) + 2Γ2 sin(Φ) cos(Φ)

β

2π
=ψ2(z)

− 2Γ2 cos(Φ) sin(Φ)
β

2π
=ψ2(z)− 2Γ2 cos2(Φ)

β

2π
<ψ2(z)

}
+O(R3)

]
(134)

As expected, the terms scaling with O(R) cancel exactly while the O(R2) terms neatly recover
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the intra-band expression

K11(k, n, n) = lim
R→0+

K11(k, n,m) =
Z2β

8π3Γ2

×

[
<ψ1(z)

[
Γ + 2Γ sin2(Φ) + Γ(cos2(Φ)− sin2(Φ))

]︸ ︷︷ ︸
≡2Γ

+=ψ1(z) [2Γ cos(Φ) sin(Φ)− 2Γ sin(Φ) cos(Φ)]︸ ︷︷ ︸
≡0

+ <ψ2(z)

[
−2Γ2 sin2(Φ)

β

2π
− 2Γ2 cos2(Φ)

β

2π

]
︸ ︷︷ ︸

≡−Γ2β
π

+=ψ2(z)

[
2Γ2 sin(Φ) cos(Φ)

β

2π
− 2Γ2 cos(Φ) sin(Φ)

β

2π

]
︸ ︷︷ ︸

≡0

]
.

(135)

K11(k, n, n) =
Z2β

4π3Γ

[
<ψ1(z)− βΓ

2π
<ψ2(z)

]
(136)

The other two kernels can be derived in a similar fashion:

K12(k, n,m) =

[
Z2β

8π3R2Γ2
+O(R−1)

]
×

[
<
{

(a− iΓ)
[
R2 + 2ΓR sin(Φ)− 2iΓR cos(Φ)

]
(Γ +R sin(Φ))ψ1 (z)

}
+<
{

(a+R cos(Φ)− iΓ− iR sin(Φ))

×
[
R2(cos2(Φ)− sin2(Φ))− 2ΓR sin(Φ) + 2iΓR cos(Φ) + 2iR2 sin(Φ) cos(Φ)

]
Γ

×
[
ψ1(z) + ψ2(z)

βR

2π
(sin(Φ) + i cos(Φ)) +O(R2)

]}]
(137)

K22(k, n,m) =

[
Z2β

8π3R2Γ2
+O(R−1)

]
×

[
<
{

(a− iΓ)2
[
R2 + 2ΓR sin(Φ)− 2iΓR cos(Φ)

]
(Γ +R sin(Φ))ψ1 (z)

}
+<
{

(a+R cos(Φ)− iΓ− iR sin(Φ))2

×
[
R2(cos2(Φ)− sin2(Φ))− 2ΓR sin(Φ) + 2iΓR cos(Φ) + 2iR2 sin(Φ) cos(Φ)

]
Γ

×
[
ψ1(z) + ψ2(z)

βR

2π
(sin(Φ) + i cos(Φ)) +O(R2)

]}]
(138)
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To avoid unnecessarily lengthy expressions from here on, we restrict ourselves to Φ = 0:

K12(k, n,m) =

[
Z2β

8π3R2Γ2
+O(R−1)

]
×

[
<
{

(a− iΓ)
[
R2 − 2iΓR

]
Γψ1 (z)

}
+<
{

(a+R− iΓ)
[
R2 + 2iΓR

]
Γ

[
ψ1(z) + ψ2(z)

iβR

2π
+O(R2)

]}]
(139)

K22(k, n,m) =

[
Z2β

8π3R2Γ2
+O(R−1)

]
×

[
<
{

(a− iΓ)2
[
R2 − 2iΓR

]
Γψ1 (z)

}
+<
{

(a+R− iΓ)2
[
R2 + 2iΓR

]
Γ

[
ψ1(z) + ψ2(z)

iβR

2π
+O(R2)

]}]
(140)

Expanding all terms, we again see that those scaling with R cancel exactly,

K12(k, n,m) =

[
Z2β

8π3R2Γ2
+O(R−1)

]
×

[
R2 ×

{
aΓ<ψ1(z) + Γ2=ψ1(z) + aΓ<ψ1(z)− 2aΓ2 β

2π
<ψ2(z)− 2Γ2=ψ1(z)

+ Γ2=ψ1(z)− 2Γ3 β

2π
=ψ2(z)

}
+O(R3)

] (141)

K22(k, n,m) =

[
Z2β

8π3R2Γ2
+O(R−1)

]
×

[
R2 ×

{
(a2 − Γ2)Γ<ψ1(z) + 2aΓ2=ψ1(z) + (a2 − Γ2)Γ<ψ1(z) + 2aΓ2=ψ1(z)

− (a2 − Γ2)2Γ2 β

2π
<ψ2(z)− 4aΓ3 β

2π
=ψ2(z)− 4aΓ2=ψ1(z) + 4Γ3<ψ1(z)

}
+O(R3)

]
,

(142)

and taking the R→ 0 limit recovers the intra-band expressions

K12(k, n, n) =
Z2β

4π3Γ

[
a<ψ1(z)− aβΓ

2π
<ψ2(z)− βΓ2

2π
=ψ2(z)

]
(143)

K22(k, n, n) =
Z2β

4π3Γ

[ (
a2 + Γ2

)
<ψ1(z) +

βΓ

2π
(Γ2 − a2)<ψ2(z)− aβΓ2

π
=ψ2(z)

]
. (144)

Please note that the last two derivations are for illustrative purposes only, as the generic
limit (arbitrary Φ) is necessary to check the general expression. For the inter-band magnetic
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kernels, the polygamma function has to be expanded to the third order:

ψ1

(
1

2
+

β

2π
(Γ2 + ia2)

)
= ψ1

(
1

2
+

β

2π
(Γ1 + ia1)

)
+ ψ2

(
1

2
+

β

2π
(Γ1 + ia1)

)
βR

2π
(sin(Φ) + i cos(Φ)) +

+ ψ3

(
1

2
+

β

2π
(Γ1 + ia1)

)
β2R2

8π2
(sin(Φ) + i cos(Φ))2 +O(R3)

(145)
Due to the massive increase of terms that have to be considered, we confirmed all the Kubo
and Boltzmann limits via Mathematica.
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[13] S. Poncé, E. Margine, C. Verdi and F. Giustino, Epw: Electron–phonon
coupling, transport and superconducting properties using maximally localized
Wannier functions, Computer Physics Communications 209, 116 (2016),
doi:https://doi.org/10.1016/j.cpc.2016.07.028.

[14] J.-J. Zhou, J. Park, I.-T. Lu, I. Maliyov, X. Tong and M. Bernardi, Per-
turbo: A software package for ab initio electron–phonon interactions, charge trans-
port and ultrafast dynamics, Computer Physics Communications 264, 107970 (2021),
doi:https://doi.org/10.1016/j.cpc.2021.107970.

[15] W. Li, J. Carrete, N. A. Katcho and N. Mingo, Shengbte: A solver of the Boltzmann
transport equation for phonons, Computer Physics Communications 185(6), 1747 (2014),
doi:https://doi.org/10.1016/j.cpc.2014.02.015.

[16] J. Carrete, B. Vermeersch, A. Katre, A. van Roekeghem, T. Wang, G. K. Madsen and
N. Mingo, almaBTE : A solver of the space–time dependent Boltzmann transport equation
for phonons in structured materials, Computer Physics Communications 220, 351 (2017),
doi:https://doi.org/10.1016/j.cpc.2017.06.023.

[17] N. H. Protik, C. Li, M. Pruneda, D. Broido and P. Ordejón, Elphbolt: An ab initio solver
for the coupled electron-phonon Boltzmann transport equations (2021), 2109.08547.

[18] Y. Nomura and R. Arita, Ab initio downfolding for electron-phonon-coupled systems:
Constrained density-functional perturbation theory, Phys. Rev. B 92, 245108 (2015),
doi:10.1103/PhysRevB.92.245108.

[19] S. Poncé, F. Macheda, E. R. Margine, N. Marzari, N. Bonini and F. Giustino, First-
principles predictions of Hall and drift mobilities in semiconductors, Phys. Rev. Research
3, 043022 (2021), doi:10.1103/PhysRevResearch.3.043022.

[20] P. Blaha, K. Schwarz, G.-K.-H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, an aug-
mented plane wave plus local orbitals program for calculating crystal properties, Vienna
University of Technology, Austria (2001), ISBN 3-9501031-1-2.

[21] P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G. K. H. Madsen and L. D. Marks, Wien2k:
An APW+lo program for calculating the properties of solids, The Journal of Chemical
Physics 152(7), 074101 (2020), doi:10.1063/1.5143061, https://doi.org/10.1063/1.

5143061.

[22] G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals
and semiconductors using a plane-wave basis set, Computational Materials Science 6(1),
15 (1996), doi:https://doi.org/10.1016/0927-0256(96)00008-0.

61

https://doi.org/10.1140/epjst/e2017-70053-1
https://doi.org/10.1103/RevModPhys.90.025003
https://doi.org/https://doi.org/10.1016/j.cpc.2016.07.028
https://doi.org/https://doi.org/10.1016/j.cpc.2021.107970
https://doi.org/https://doi.org/10.1016/j.cpc.2014.02.015
https://doi.org/https://doi.org/10.1016/j.cpc.2017.06.023
2109.08547
https://doi.org/10.1103/PhysRevB.92.245108
https://doi.org/10.1103/PhysRevResearch.3.043022
https://doi.org/10.1063/1.5143061
https://doi.org/10.1063/1.5143061
https://doi.org/10.1063/1.5143061
https://doi.org/https://doi.org/10.1016/0927-0256(96)00008-0


SciPost Physics Codebases Submission

[23] G. K. Madsen and D. J. Singh, Boltztrap. a code for calculating band-structure de-
pendent quantities, Computer Physics Communications 175(1), 67 (2006), doi:DOI:
10.1016/j.cpc.2006.03.007.

[24] G. K. Madsen, J. Carrete and M. J. Verstraete, Boltztrap2, a program for interpolating
band structures and calculating semi-classical transport coefficients, Computer Physics
Communications 231, 140 (2018), doi:https://doi.org/10.1016/j.cpc.2018.05.010.

[25] A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt and N. Marzari, wan-
nier90: A tool for obtaining maximally-localised Wannier functions, Computer Physics
Communications 178(9), 685 (2008), doi:https://doi.org/10.1016/j.cpc.2007.11.016.

[26] S. Bhattacharya and G. K. H. Madsen, High-throughput exploration of alloy-
ing as design strategy for thermoelectrics, Phys. Rev. B 92, 085205 (2015),
doi:10.1103/PhysRevB.92.085205.

[27] W. Chen, J.-H. Pohls, G. Hautier, D. Broberg, S. Bajaj, U. Aydemir, Z. M. Gibbs,
H. Zhu, M. Asta, G. J. Snyder, B. Meredig, M. A. White et al., Understanding thermo-
electric properties from high-throughput calculations: trends, insights, and comparisons
with experiment, J. Mater. Chem. C 4, 4414 (2016), doi:10.1039/C5TC04339E.

[28] A. van Roekeghem, J. Carrete, C. Oses, S. Curtarolo and N. Mingo, High-throughput
computation of thermal conductivity of high-temperature solid phases: The case of oxide
and fluoride perovskites, Phys. Rev. X 6, 041061 (2016), doi:10.1103/PhysRevX.6.041061.

[29] F. Ricci, W. Chen, U. Aydemir, G. J. Snyder, G.-M. Rignanese, A. Jain and G. Hautier,
An ab initio electronic transport database for inorganic materials, Sci Data 4, 170085
EP (2017), doi:10.1038/sdata.2017.85, Data Descriptor.

[30] P. Gorai, V. Stevanovic and E. S. Toberer, Computationally guided discovery of thermo-
electric materials, Nat Rev Mater 2, 17053 EP (2017), doi:10.1038/natrevmats.2017.53,
Review Article.

[31] R. Li, X. Li, L. Xi, J. Yang, D. J. Singh and W. Zhang, High-throughput screening for
advanced thermoelectric materials: Diamond-like ABX2 compounds, ACS Applied Mate-
rials & Interfaces 11(28), 24859 (2019), doi:10.1021/acsami.9b01196, PMID: 31025850,
https://doi.org/10.1021/acsami.9b01196.

[32] G. Pizzi, D. Volja, B. Kozinsky, M. Fornari and N. Marzari, Boltzwann: A code for
the evaluation of thermoelectric and electronic transport properties with a maximally-
localized Wannier functions basis, Computer Physics Communications 185(1), 422
(2014), doi:http://dx.doi.org/10.1016/j.cpc.2013.09.015.

[33] M. Imada, A. Fujimori and Y. Tokura, Metal-insulator transitions, Rev. Mod. Phys.
70(4), 1039 (1998), doi:10.1103/RevModPhys.70.1039.

[34] K. Behnia, D. Jaccard and J. Flouquet, On the thermoelectricity of correlated electrons in
the zero-temperature limit, Journal of Physics: Condensed Matter 16(28), 5187 (2004),
doi:10.1088/0953-8984/16/28/037.

62

https://doi.org/DOI: 10.1016/j.cpc.2006.03.007
https://doi.org/DOI: 10.1016/j.cpc.2006.03.007
https://doi.org/https://doi.org/10.1016/j.cpc.2018.05.010
https://doi.org/https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/10.1103/PhysRevB.92.085205
https://doi.org/10.1039/C5TC04339E
https://doi.org/10.1103/PhysRevX.6.041061
https://doi.org/10.1038/sdata.2017.85
https://doi.org/10.1038/natrevmats.2017.53
https://doi.org/10.1021/acsami.9b01196
https://doi.org/10.1021/acsami.9b01196
https://doi.org/http://dx.doi.org/10.1016/j.cpc.2013.09.015
https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1088/0953-8984/16/28/037


SciPost Physics Codebases Submission
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