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Abstract

Variational quantum algorithms (VQAs), which classically optimize a parametrized
quantum circuit to solve a computational task, promise to advance our under-
standing of quantum many-body systems and improve machine learning algo-
rithms using near-term quantum computers. Prominent challenges associated
with this family of quantum-classical hybrid algorithms are the control of quan-
tum entanglement and quantum gradients linked to their classical optimization.
Known as the barren plateau phenomenon, these quantum gradients may rapidly
vanish in the presence of volume-law entanglement growth, which poses a se-
rious obstacle to the practical utility of VQAs. Inspired by recent studies of
measurement-induced entanglement transition in random circuits, we investigate
the entanglement transition in variational quantum circuits endowed with in-
termediate projective measurements. Considering the Hamiltonian Variational
Ansatz (HVA) for the XXZ model and the Hardware Efficient Ansatz (HEA),
we observe a measurement-induced entanglement transition from volume-law to
area-law with increasing measurement rate. Moreover, we provide evidence that
the transition belongs to the same universality class of random unitary circuits.
Importantly, the transition coincides with a “landscape transition” from severe
to mild/no barren plateaus in the classical optimization. Our work may provide
an avenue for improving the trainability of quantum circuits by incorporating
intermediate measurement protocols in currently available quantum hardware.

1 Introduction

Controlling quantum entanglement has been identified as a critical element in the development
of quantum computing. A prominent example where this is of importance is in variational
quantum algorithms (VQAs) [1]. VQAs are hybrid quantum-classical algorithms where a
parametrized quantum circuit is used to evaluate a cost function. A classical optimizer is
then used to find the optimal parameters of the circuit. The performance of such algorithms
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is impacted by how entanglement is used in the circuit, which often relies on the choice of
circuit ansatz and parameter initialization: one must make sure that the proposed circuit is
expressive enough, while retaining trainability.

Recently, significant progress has been made in understanding the the evolution of quan-
tum entanglement in random unitary quantum circuits undergoing intermediate projective
measurements. In these circuits, random nearest neighbor two-qubit gates locally entangle
qubits, which generally leads to volume-law entanglement growth. When such a system is
measured at randomly selected locations throughout the circuit, the measured subsystems
become disentangled from the rest of the state. One might expect that this leads to a simple
decrease in the coefficient of the entanglement growth volume law. However, the competition
between local entanglement creation and non-local disentanglement induces a phase transi-
tion in the entanglement growth from a volume to an area law at a critical measurement rate
pc [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Moreover, it appears that this critical behavior is universal,
independent of the specific implementation of both the unitary or measurement dynamics. A
significant amount of theoretical understanding has been gained about the properties of en-
tanglement phase transitions in random unitary circuits [7, 13] by mapping such systems to
well-defined statistical mechanics models.

In this work, we connect two highly active fields of research in condensed matter theory
and variational quantum computing, by showing that measurement-induced entanglement
phase transitions take place in two prototypical variational quantum circuits used within
the Variational Quantum Eigensolver (VQE) algorithm [14]. This VQA is used throughout
the literature to approximate quantum many-body ground states [15, 16, 17, 18, 19], per-
form quantum chemistry simulations [20, 21, 22, 23, 24] or in quantum machine learning
approaches [25, 26, 27, 28]. Our motivation to investigate the measurement-induced entan-
glement transitions in variational quantum circuits are twofold. First, most of the quantum
ground states of interacting many-body systems follow the area-law entanglement (up to a
logarithmic correction). However, ballistic growth of entanglement in time evolution implies
that circuits used in VQE can rapidly develop much more entanglement than what may be
needed to simulate these ground states of interest [29, 30, 18]. Secondly, it is known that ran-
domly initialized variational quantum circuits tend to approximate unitary 2-designs, which
are known to have exponentially decaying gradients with respect to the gate parameters as
a function of system size. These so-called barren plateaus pose a significant hurdle for varia-
tional quantum algorithms, since the number of measurements required to accurately estimate
the gradients quickly becomes intractable [31, 32, 33]. It has been shown that there is a close
relation between entanglement production in a circuit and barren plateaus, hence it is natural
to consider constraining the amount of entanglement during parts of the variational optimiza-
tion as a useful strategy for increasing the trainability of variational circuits [34, 35, 36]. We
anticipate that the inclusion of interspersed measurements in variational quantum circuits
may offer a way to control their quantum entanglement, which could be used as a strategy
to overcome barren plateaus. Quantum hardware that allows for intermediate measurements
can potentially be used to test these ideas in practice [37, 38, 39].

Below we numerically show that the measurement-induced entanglement phase transition
takes place in the variational quantum circuits, and coincides with a “landscape transition”,
a change from a landscape with severe barren plateaus to a landscape with mild or no barren
plateaus. This suggests that VQE with intermediate projective measurements can potentially
be used to avoid barren plateaus and improve current optimization strategies. In deriving
our results, we also provide a modified parameter shift rule for calculating the quantum
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gradients with intermediate projective measurements that may lead to the development of
such algorithms.

2 The Variational Quantum Eigensolver

(a) VQE Circuit (b) Projective VQE Circuit

Figure 1: (a) Schematic representation of the circuit U(θ). Each layer Um(θm) can consist of
multiple gates with multiple parameters, hence θm is a vector of parameters. (b) For a circuit
undergoing projective measurements, we apply a projector Πm to all qubits. Whether we
apply a measurement (green circle) or not is determined by flipping a coin with probability
p. Once we decide that a measurement will be applied, we sample the projector according to
the quantum probability p̃m,i = Tr{Πm,iρ}.

VQE is a hybrid quantum-classical algorithm where we consider a quantum circuit U(θ)
parametrized by a set of parameters θ [14]. We consider an N -qubit circuit consisting of M
layers,

U(θ) =

←−−
M∏
m=1

Um(θm), (1)

where
←−∏

indicates that the product is ordered from right to left and θ = (θ1, . . . , θM ) are
the parameters in each layer. The layers U(θm) can consist of multiple gates, hence θm is
a vector consisting of all parameters in layer m, see also Fig. 1a. Consider an initial state
ρ0 = |0〉〈0| to which we apply the circuit of Eq. (1). We can calculate the expectation value
of a Hermitian operator H, or Hamiltonian as

〈H〉θ = Tr
{
U(θ)ρ0U

†(θ)H
}
. (2)

By invoking the variational principle,

Eground ≤ E(θ) = 〈H〉θ , (3)

one can use a classical optimization routine to minimize the variational energy E(θ) given
a Hamiltonian H with respect to the parametrized wave function ρ(θ) = U(θ)ρ0U

†(θ) and
approximate the ground state of H.

As with other variational methods, the choice of ansatz U(θ) is crucial since the ground
states must be reachable from the initial state by application of this unitary. There exists a
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variety of proposals, including the so-called Hamiltonian Variational Ansatz (HVA) [15, 16,
18, 17, 19] and the Hardware Efficient Ansatz (HAE) [40, 20, 41]. The former exploits the
structure of the Hamiltonian for the unitary ansatz design, whereas the latter aims to provide
a hardware-friendly parametrization with enough degrees of freedom to capture a variety of
states.

3 Measurement–induced entanglement phase transitions

We are interested in studying random ensembles of typical VQE circuits undergoing projective
measurements and the entanglement properties of the states they produce. Given a state ρ,
a projective measurement in the computational basis results in

ρ′ =
ΠiρΠi

Tr{Πiρ}
, (4)

where Πi = |i〉〈i| are the projectors onto the σz basis. Which projector Πi is applied depends
on the quantum probability Tr{Πiρ}.

Consider the circuit in Eq. (1). After each layer m, with probability p (the measurement
rate), we apply a projective measurement to each qubit. For M layers, we then obtain the
variational state

ρM (θ) =

←−−M∏
m=1

ΠmUm(θm)

 ρ0

−−→M∏
m=1

U †m(θm)Πm

 p−1M (θ), (5)

where pM (θ) is the probability of obtaining the state ρM (θ) given the M sets of measurements
performed, see also Fig. 1b. The projective measurement is represented by the projector
Πm = Πm,0 ⊗ . . . ⊗ Πm,N where Πm,i ∈ {|0〉〈0| , |1〉〈1|} if we perform a measurement and
Πm,i = I otherwise. Here, ρM (θ) is the normalized state obtained after applying the circuit
with intermediate measurements. Each projector Πm has 3N different configurations, hence
there will be a total of 3NM possible states ρM (θ). Note that each state ρM (θ) corresponds
to a pure state. Also, we want to emphasize that we are not performing any optimization; we
consider the variational circuit at initialization.

Given a state produced by quantum circuit interspersed with intermediate measurements,
we can calculate the bipartite von Neumann entanglement entropy S(N, p) between two halves
of the system as a function of the measurement rate p. These measurements disentangle the
system over any length scale due to a local projection onto a single state. As a result, the
unitary dynamics locally entangles nearest neighbor qubits, whereas measurements globally
remove entanglement between different subsystems. This competition induces a dynamical
phase transition between a volume and area law regime of entanglement scaling at a critical
measurement rate pc [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Although the critical point pc can vary
between different types of random unitary dynamics and measurement schemes, the critical
exponent characterizing the correlation length scale divergence ξ ∝ (p−pc)−ν appears to be the
same for different models at ν ≈ 4/3. This critical exponent can be derived by considering toy
models and mapping the projective dynamics to a two-dimensional percolation model, which
is exactly solvable [3, 4, 8, 13, 7].

Central to the investigations on phase transitions induced by measurements is the concept
of steady state entanglement dynamics [3, 4, 5]. Given a circuit with a number of qubits
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N , we are primarily interested in the late time behavior when M → ∞. In this infinite
depth (long time) limit we expect the system to evolve into a steady state, characterized by a
typical value of entanglement entropy that depends on the measurement rate p, but not the
dynamics at finite times. In order to characterize this regime, we can investigate the average
entanglement entropy as a function of depth for different values of p. For the moderate system
sizes considered in this work, we observe steady state entanglement dynamics at M = 16.

For our numerical study, we investigate the projective entanglement dynamics of the XXZ-
chain HVA and the HEA, whose circuits are depicted in Fig. 2. Notice that the dynamics
in the HVA is specified by a Hamiltonian in contrast to random unitaries. The HVA for the
XXZ model is of particular interest since the XXZ Hamiltonian is Bethe-ansatz integrable, i.e.
there exists an analytical solution for the energy spectrum. Additionally, the entanglement
properties of these systems undergoing quenches can be understood analytically [42, 43]. For
such models, it is still an open question if the corresponding unitary dynamics interspersed
with measurements will produce a measurement-induced entanglement phase transitions [7].
Here, we address a closely related model, where the unitary dynamics are generated by random
quenches under the XXZ Hamiltonian. For the HEA, we expect that the behavior is close to
that of random circuits [32].

...

(a) XXZ-HVA

R R

R

R

R

R

R

R

...

(b) HEA

Figure 2: Schematic depiction of the circuits studied. (a) For the XXZ-HVA, we prepare
a Bell state on the even sites and alternatingly apply ZZ, YY and XX two-qubit rotations
on odd and even bonds in the chain, which corresponds to the unitary rotations generated
by the terms in the of the Hamiltonian HXXZ =

∑N
i=1

[
σxi σ

x
i+1 + σyi σ

y
i+1 + ∆σzi σ

z
i+1

]
. For

the odd (even) bonds, the ZZ rotations are parametrized by θ (β) whereas the YY and
XX rotations are parametrized by φ (γ). Hence the gates in the circuit are Uodd

zz (θ) =
exp
{
−iθσzi σzi+1

}
, Uodd

zz (φ) = exp
{
−iφσzi σzi+1

}
, U even

xx+yy(β) = exp
{
−iβ(σxi σ

x
i+1 + σyi σ

y
i+1)

}
and

U even
xx+yy(γ) = exp

{
−iγ(σxi σ

x
i+1 + σyi σ

y
i+1)

}
. (b) The initial state in the HEA consists of the

equal superposition followed by L layers of low-depth entangling unitaries. These unitaries
consists of N Pauli-Y rotations on each qubit, a chain of nearest neighbor CNOTs and N
Pauli-X rotations on each qubit. All 2N rotations are controlled by individual parameters
θi,l, φi,l, where i = 1, . . . , N indicates the qubit and l = 1, . . . ,M indicates the layer. After
each layer, we perform a projective measurement according to Eq. (4) with probability p on
each qubit (indicated by the green circles here), bringing the average number of measurements
in the circuits to NMp.

Since phase transitions only occur in the thermodynamic limit N → ∞, we have to take
care of the finite-size effects in analyzing our numerical data. To account for finite-size effects,
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Figure 3: Data collapse of the average entanglement entropies. (a) For the XXZ-HVA, we find
pc = 0.25 and ν ≈ 1.22± 0.24. (b) For the HEA, we find pc ≈ 0.5 and ν ≈ 1.26± 0.23. The
error bars are calculated as the difference between the critical exponent in the thermodynamic
extrapolation and the finite-size data collapse. The average S(p,N) is obtained by averaging
over 3 × 103 circuit realizations with all circuit parameters sampled uniformly in (0, 2π).
After each layer, we apply a computational basis measurement with probability p. Due to the
difficulty in simulating large systems, we restrict ourselves to N = 6, 8, . . . , 18.

we fit the scaling form [4, 3, 7]

S(N, p, ν)− S(N, pc, ν) = f(N1/ν(p− pc)), (6)

where f is a scaling function, to get a data collapse of the individual circuits of size N . To
determine pc and ν, we minimize a Chi-squared statistic between the scaling form above and
the data, and use a statistical bootstrap to verify the integrity of the fit. In Fig. 3 we find
critical exponents close to the previously mentioned value of ν ≈ 4/3. To extrapolate the
critical exponent to the thermodynamic limit, we do a linear fit of ν as a function of 1/N ′

where Nmax/2 ≤ N ′ ≤ Nmax is the largest value of N in the data set. The intercept then
gives us the value of ν for N ′ →∞ [3]. The details of our statistical estimation procedure are
outlined in App. A. In addition to the finite scaling analysis, we can investigate the quantum
mutual information,

I(A,B) = SA(N, p) + SB(N, p)− SA∪B(N, p), (7)

between qubits A and B separated by a distance r, which we expect to peak at a critical
point due to subsystem correlations becoming non-negligible. From these data, we find similar
critical measurement rates pc ≈ 0.25 and pc ≈ 0.5 for the XXZ-HVA and HEA, respectively.
In App. B. we give further details on this procedure.
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The results in Fig. 3 suggest that an entanglement phase transition takes place in two
prototypical circuits used in VQAs. Although we have studied static circuits here where
no optimization takes place, we can investigate how the projective measurements affect the
gradients with respect to the gate parameters in the circuit.

4 Projective gradients and barren plateaus

The variational energy in Eq. (3) is typically a non-convex function of the gate parameters
θ. In practice one typically uses a gradient-based method to find a minimum of the cost
function. To calculate the necessary gradients with respect to the layer parameters, we can
employ hardware-friendly methods, most of which rely on the usage of the so-called parameter-
shift rule [44, 45, 46, 47, 48, 49, 50, 51]. In its standard form, this allows one to calculate the
gradient with respect to the parameters of a gate generated by a Pauli operator as

∂θl 〈H〉θ =
1

2
Tr

{(
U(θ1, . . . , θl +

π

2
, . . . , θM )ρ0U

†(θ1, . . . , θl +
π

2
, . . . , θM ) (8)

+ U(θ1, . . . , θl −
π

2
, . . . , θM )ρ0U

†(θ1, . . . , θl −
π

2
, . . . , θM )

)
H

}
(9)

=
1

2

(
〈H〉+,lθ − 〈H〉

−,l
θ

)
. (10)

Where we use 〈.〉±,lθ to denote the expectation value under a circuit U(θ) where parameter
l has been shifted by ±π/2. In other words, the gradient can be calculated by shifting the
parameter θl by ±π/2 and calculating the difference of the expectation values of H under the
shifted circuits. Unfortunately, this kind of gradient calculation is plagued by barren plateaus
in the cost landscape: gradients with respect to the gate parameters vanish exponentially with
the number of qubits in the circuit, preventing us from optimizing the circuit. To mitigate
this problem, a variety of recent works are aimed at finding ways to avoid these regions where
optimization is hard [35, 52, 53, 54, 32, 55, 56].

Here, we investigate the barren plateau problem under the influence of projective mea-
surements, more specifically the variance of the gradients in the XXZ-HVA and the HEA with
intermediate projective measurements. There has been prior work on gradient through non-
unitary quantum circuits. For instance, in [57] the quantum natural gradient [58] is extended
to quantum channels. Additionally, in [59] measurement-based VQE is investigated, but only
in the context where an entangled cluster state is prepared and measurements are directly
part of the algorithm [60]. None of these works consider quantum gradients through a circuit
undergoing projective measurements, which is the case we consider here.

The gradient with respect to a single parameter θl of the expectation value of a Hermitian
operator H undergoing a set of measurements is given by

∂θl 〈HM 〉θ = ∂θl Tr{HρM (θ}, (11)

where ρM (θ) is given in Eq. (5)). In App. C, show that the full projective gradient is can be
written as

∂θl 〈HM 〉θ =
1

2

((
〈H〉+θ − 〈H〉θ

) p+,lM

pM
−
(
〈H〉−θ − 〈H〉θ

) p−,lM

pM

)
. (12)
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The probabilities pM and p±,lM are the probabilities of obtaining ρM (θ) and ρM (θ1, . . . , θl ±
π/2, . . . θM ), respectively. Similarly, the expectation values 〈H〉θ and 〈H〉±θ correspond to the
expectation value of H under ρM (θ) and ρM (θ1, . . . , θl± π/2, . . . θM ), respectively. Note that
obtaining these probabilities will be difficult and require a large number of measurements,
since estimating the ratio p−,lM /pM requires full knowledge of the wave function.

To investigate the severity of the barren plateau effect, we consider the same circuits as
in Fig. 3 and examine the projective gradients of Eq. (12) with respect to the expectation
value of H = Z0Z1. We calculate the projective gradients for the first circuit parameter (θ1
in the first parametrized layer in both the HVA and HEA (see Fig. 2). We consider a depth
M = 16 circuit for system sizes N = 8, . . . 18. In Fig. 4a and Fig. 4b, we observe that the
gradient variances in both the XXZ-HVA and HEA transition from exponentially decaying
to a constant as the measurement rate increases. This transition coincides with the critical
measurement rate for the volume-area law transition (See App. E). Therefore, we see that
the measurement-induced entanglement phase transitions induces a landscape transition in
the circuit from mild/severe barren plateaus to no barren plateaus.
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ZZ
0
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p=0.00
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(a) XXZ-HVA
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p=0.40
p=0.45
p=0.50
p=0.55
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(b) HAE

Figure 4: Variance of the projective gradients taken with respect to the first parameter in the
circuit (θ in the first parametrized layer in both the HVA and HEA, see Fig. 2). The variances
are estimated over 103 samples where for each data point, we randomly choose measurements
with probability p and uniformly sample the gate parameters. The gradient is then calculated
exactly from Eq. (12). We emphasize that these gradients are thus calculated with respect
to the individual pure states resulting from measuring the state during the application of
the circuit. For the 1D HVA-XXZ circuits with depth M = 16 (a) and the 1D HAE circuit
with depth M = 16 (b) the gradient variance becomes constant as the measurement rate p
increases.

This landscape transition can serve as the motivation for a projective gradient VQE algo-
rithm where the early optimization of the circuit is done with projective gradients to escape
barren plateaus due to initialization. However, calculating the gradients in Eq. (12) is ex-
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ponentially hard in the number of layers M , since we need accurate estimates of pM and
p±,lM .

On the contrary, the mixture of all pure states ρM (θ) has a simple gradient formula that
can be calculated in practice, as we show in App. D. The resulting ensemble however, corre-
sponds to system at infinite temperature [3, 5, 4]. It is known that such a high temperature
ensemble will suffer again from barren plateaus [33]. Additionally, we require a pure state
as the outcome of our optimization algorithm, which will require annealing the measurement
rate to zero during the optimization. Any useful variational algorithm with intermediate mea-
surements must not remix all projective states but still be efficiently calculable. We leave the
exploration of this class of algorithms as future work.

5 Outlook

In this work, we demonstrated the existence of a measurement-induced entanglement phase
transition in variational quantum circuits which coincides with a “landscape transition” in the
behavior of quantum gradients. As mentioned earlier, the exponentially-vanishing quantum
gradients in presence of volume-law entanglement growth, the so-called barren plateau, is a
serious obstacle in the applications of variational quantum circuits. Our work suggests that
intermediate projective measurements may provide a useful knob to control the barren plateau
issue. Inclusion of the measurement protocol in the quantum-classical hybrid algorithm would
be a timely development given that quantum computing hardware companies like IBM and
Honeywell now allow their users to perform mid-circuit measurements, enabling the real-
time logic required for performing these algorithms in an experimental setting [37, 38, 39].
In particular, the Hamiltonian variational quantum circuits considered in this work could be
implemented in the quantum hardware. For the projective gradient VQE, the exponential sum
in Eq. (12) currently inhibits the number of measurements that can be performed in practice.
A detailed analysis of when and how a projective circuit optimization can be practical and
“advantageous” would be an excellent topic of future study.

For a practical implementation of a projective gradient VQE algorithm, note that the
scheme we provided here is quite general and many extensions and modifications are possi-
ble. For instance, the projective measurements used in this work can be replaced by general
Positive Operator Value Measures (POVM) or parametrized measurements. Additionally, we
have focused on one-dimensional quantum circuits where the measurement-induced entangle-
ment transition belongs to the same universality class as in the random unitary circuits. It
would be interesting to consider moderately sized quantum circuits with a two-dimensional
topology, and see if a similar phase transition appears there and investigate the universality
class.
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[11] A. Biella and M. Schiró, Many-Body Quantum Zeno Effect and Measurement-Induced
Subradiance Transition, Quantum 5, 528 (2021), doi:10.22331/q-2021-08-19-528.

[12] X. Turkeshi, A. Biella, R. Fazio, M. Dalmonte and M. Schiró, Measurement-induced
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Supplemental Materials

A Finite-scaling analysis and data collapse

The correlation length ξ of a system quantifies the length scale over which parts of a system
are correlated. When a system undergoes a continuous phase transition, the correlation length
diverges. Phase transitions only occur in the thermodynamic limit, and hence simulations of
finite-sized systems will contain artifacts that have to be accounted for in order to capture
the correct behavior [61]. In particular, for a finite system the correlation length ξ cannot
become infinite and is cut off at Ld, the maximum volume of a finite d-dimensional system.
To account for this effect, we can perform a finite-scaling analysis.

The entanglement entropy as a function of measurement rate is conjectured to follow a
volume law for p < pc, a constant plus logarithmic correction at p = pc and area law for
p > pc [3, 4, 7]. We can therefore construct a scaling form of the entanglement entropy as

S(N, p, ν) = S(N, pc, ν) + f(N1/ν(p− pc)), (A1)

where S(N, p, ν) denotes the von Neumann entropy at measurement rate p and f is a scaling
function. The critical exponent ν determines the scaling of the entanglement entropy near
pc. If this scaling form is correct, we should be able to account for finite-size effects and all
the data can be appropriately rescaled to match a single curve representing f with a proper
choice of ν.

To determine the critical exponents, we fit a 5th-degree polynomial g to our data using a
Nelder-Mead optimization [62] and minimize the χ2-statistic

χ2 =
∑
i

(S(Ni, pi, ν)− S̃(Ni, pi, ν))2

∆S
. (A2)

Here, S̃(Ni, pi, ν) is estimated from the data and S(Ni, pi, ν) is the proposed scaling form
from Eq. (A1). ∆S is the standard deviation of the von Neumann entropies which arises due
to the fluctuations induced by the randomized measurements and their outcomes. From the
unscaled data, we determine a set of potential critical points pc and fit the above χ2-statistic
to determine ν. We then report the values of pc and ν that provided the best fit.

To verify the stability of the fit, we perform a statistical bootstrapping procedure to
estimate the error bars on the fitted critical exponent ν. We take Kboot = 100, where each
data set consists of K samples obtained by sampling from the entire data set of 3× 103 data
points with replacement. The final obtained error bars on ν are ≈ 0.01.

We can extrapolate our result to the thermodynamic limit by fitting the data for N ′ =
Nmax/2 to N ′ = Nmax and plotting the resulting values for ν against 1/N ′ [3]. By doing a
linear fit on the resulting data, we obtain

ν̃(N ′) = a
1

N ′
+ b, (A3)

and so the intercept b corresponds to the value of ν in the thermodynamic limit, since
limN ′→∞ 1/N ′ = 0. When fitting the data, we weigh the errors by the standard errors
obtained in the statistical bootstrap described above.
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B Mutual information

The quantum mutual information can be used to quantify subsystem correlations, and sub-
sequently detect phase transitions since we expect correlations to divergence at criticality
[3, 4, 6]. As additional confirmation that the critical values pc estimated from the prior
analysis are correct, we calculate the quantum mutual information as,

I(A,B) = SA(N, p) + SB(N, p)− SA∪B(N, p). (B4)

Here, we take the same approach as in [4], and take A and B to be two single qubit subsystems
|A| = 1 and |B| = 1. We then vary the distance r between qubit A and B, to determine the
effect of the distance on the subsystem correlations. In Fig. B1, we observe two broad peaks
around the previously found values pc ≈ 0.25 and pc ≈ 0.5 for the XXZ-HVA and HAA,
respectively.
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Figure B1: Quantum mutual information between two qubits A and B separated by a distance
r on a chain of length 16. The mutual information is averaged over 3 × 103 samples, where
each sample corresponds to a random circuit realization, as described in the main text.
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C Projective gradients

Let |ψ〉 be a quantum state of an n-qubit system with corresponding density operator |ψ〉〈ψ| =
ρ ∈ L(C2n). We consider a circuit of M layers Um, where each layer has a set of parameters
θm ∈ Rdm and dm is the number of parameters in that layer. We can then write a parametrized
state as

|ψ(θ1:k)〉 =

←−−
M∏
m=1

Um(θk) |0〉 , (C5)

where
←−∏

indicates that the product is ordered from right to left. A projective measurement
transforms a state as

ρ 7→ ΠρΠ

Tr{Πρ}
, (C6)

where Π is a projector onto an eigenbasis a Hermitian observable and is therefore Hermitian
itself. Since Π is a projector it satisfies Π2 = Π. The normalization constant p = Tr{Πρ}
gives the overlap of the state ρ with the basis onto which Π projects the state.

We consider the case where after each layer Um(θk) we apply a projective measurement
Πm, where Πm = Πm,0 ⊗ . . . ⊗ Πm,N with Πm,i ∈ {|0〉〈0| , |1〉〈1| , I}. We denote by ρM the
state resulting from applying M projectors Π to the circuit. Similarly, we denote by pM the
probability of obtaining the state ρM .

Consider an initial state ρ0 = |0〉〈0|⊗N , to which we apply the unitary U1(θ1) followed by
a projective measurement Π1,

ρ1(θ1) =
Π1U1(θ1)ρ0U

†
1(θ1)Π1

Tr
{

Π1U1(θ1)ρ0U
†
1(θ1)Π1

} (C7)

=
Π1U1(θ1)ρ0U

†
1(θ1)Π1

p1(θ1)
. (C8)

Next, we add an additional unitary and measurement,

ρ2(θ1, θ2) =
Π2U2(θ2)ρ1(θ1)U

†
2(θ2)Π2

Tr
{

Π2U2(θ2)ρ1(θ1)U
†
2(θ2)Π2

} (C9)

=
Π2U2(θ2)Π1U1(θ1)ρ0U

†
1(θ1)Π1U

†
2(θ2)Π2

Tr
{

Π2U2(θ2)Π1U1(θ1)ρ0U
†
1(θ1)Π1U

†
2(θ2)Π2

} × p1(θ1)

p1(θ1)
(C10)

=
Π2U2(θ2)Π1U1(θ1)ρ0U

†
1(θ1)Π1U

†
2(θ2)Π2

p2(θ1, θ2)
. (C11)

Note how the normalization constant of ρ1(θ1) cancels. Generalizing this to M projectors, we
get the general form

ρM (θ1, . . . , θM ) =

←−−M∏
m=1

ΠmUm(θm)

 ρ0

−−→M∏
m=1

U †m(θm)Πm

 p−1M (θ1, . . . , θM ) (C12)

= ρ̃M (θ1, . . . , θM )p−1M (θ1, . . . , θM ), (C13)
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where

ρ̃M (θ1, . . . , θM ) =

←−−M∏
m=1

ΠmUm(θm)

 ρ0

−−→M∏
m=1

U †m(θm)Πm

 , (C14)

pM (θ1, . . . , θM ) = Tr{ ˜ρM (θ1, . . . , θM )}, (C15)

are the unnormalized state and its normalization constant, respectively. To simplify the
notation, we will write θ ≡ (θ1, . . . , θM ).

We are interested in the derivative of an expectation value

〈HM 〉θ ≡ Tr{ρM (θ)H}, (C16)

where H is a Hermitian operator. We write the state as the product of an unnormalized state
and its normalization constant

Tr{ρM (θ)H} = Tr
{
ρ̃M (θ)p−1M (θ)H

}
. (C17)

Hence the derivative consists of two parts via the product rule

∂θl 〈HM 〉θ =

(i)︷ ︸︸ ︷
Tr
{
∂θl (ρ̃M (θ)) p−1M (θ)H

}
+

(ii)︷ ︸︸ ︷
Tr
{
ρ̃M (θ)∂θl

(
p−1M (θ)

)
H
}
. (C18)

(i) For the derivative of the unnormalized state, we get

Tr{(∂θl ρ̃M (θ))H} = 〈0|

−−→M∏
m=1

U †m(θm)Πm

H

←−−−M∏
m=l+1

ΠmUm(θm)

Πl∂θlUl(θl)

←−−l−1∏
m=1

ΠmUm(θm)

 |0〉
+ 〈0|

−−→l−1∏
m=1

U †m(θm)Πm

 ∂θlU
†
l (θl)Πl

−−−→M∏
m=l+1

U †m(θm)Πm

H

←−−M∏
m=1

ΠmUm(θm)

 |0〉
=
〈
ψ̃0

∣∣∣U †l (θl)H̃∂θlUl(θl)
∣∣∣ψ̃0

〉
+
〈
ψ̃0

∣∣∣ ∂θlU †l (θl)H̃Ul(θl)
∣∣∣ψ̃0

〉
, (C19)

where

∣∣∣ψ̃0

〉
=

←−−l−1∏
m=1

ΠmUm(θm)

 |0〉 , (C20)

is an unnormalized state and

H̃ =

−−−→M∏
m=l+1

U †m(θm)Πm

H

←−−−M∏
m=l+1

ΠmUm(θm)

 . (C21)

If U(θl) is generated by a Pauli operator A, then ∂θlUl(θl) = − i
2AUl(θl) and so we can use

the parameter-shift rule [44, 45]

− i
2

〈
ψ̃0

∣∣∣ [A,U †l (θl)H̃Ul(θl)
] ∣∣∣ψ̃0

〉
=

1

2

(〈
ψ̃0

∣∣∣U †(θl +
π

2
)H̃U(θl +

π

2
)− U †(θl −

π

2
)H̃U(θl −

π

2
)
∣∣∣ψ̃0

〉)
,

(C22)
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where

Π̃ =

−−−→M−1∏
m=l+1

U †m(θm)Πm

ΠM

←−−−M−1∏
m=l+1

ΠmUm(θm)

 , (C23)

is obtained by setting H = I in Eq. (C21).
If the expectiation values in Eq. (C22) were with respect to properly normalized states,

then this would provide a strategy for measuring the projective gradient. Hence, we need to
first normalize the state in order to be able to perform the gradient calculation on the device.
The normalization constants for the plus and minus shifted circuits are given by

p±,lM ≡
〈
ψ̃0

∣∣∣U †(θl ± π

2
)Π̃U(θl ±

π

2
)
∣∣∣ψ̃0

〉
. (C24)

Therefore, if we multiply with the identity

Tr{(∂θl ρ̃M (θ))H} =
1

2

〈
ψ̃0

∣∣∣ (U †(θl +
π

2
)H̃U(θl +

π

2
)×

p+,lM

p+,lM

(C25)

− U †(θl −
π

2
)H̃U(θl −

π

2
)×

p−,lM

p−,lM

) ∣∣∣ψ̃0

〉
(C26)

=
1

2

(
〈H〉+,lθ p+,lM − 〈H〉

−,l
θ p−,lM

)
. (C27)

Here, 〈H〉±,lθ is the expectation value of the observableH after the measurements {Π1, . . . ,ΠM}
have been applied and parameter θl has been shifted by ±π/2.
(ii) For the gradient of the inverse of the normalization constant, we get

Tr
{
ρ̃M (θ)

(
∂θlp

−1
M (θ)

)
H
}

= −〈HM 〉θ p
−1
M (θ)∂θlpM (θ), (C28)

where we used the normalization constant to write Tr
{
ρ̃M (θ)p−1M (θ)H

}
= 〈HM 〉θ, the ex-

pectation value of H with respect to the measured circuit. The final step is to calculate
∂θlpM (θ):

∂θlpM (θ) = Tr{∂θl ˜ρM (θ)} (C29)

= 〈0|

−−→M−1∏
m=1

U †m(θm)Πm

U †M (θM )ΠMUM (θM )

←−−−M−1∏
m=l+1

ΠmUm(θm)

Πl∂θlUl(θl)

(C30)

×

←−−l−1∏
m=1

ΠmUm(θm)

 |0〉+ 〈0|

−−→l−1∏
m=1

U †m(θm)Πm

 ∂θlU
†
l (θl)Πl

−−−→M−1∏
m=l+1

U †m(θm)Πm


(C31)

× U †M (θM )ΠMUM (θM )

←−−M−1∏
m=1

ΠmUm(θm)

 |0〉 (C32)

=
〈
ψ̃0

∣∣∣U †l (θl)Π̃M∂θlUl(θl)
∣∣∣ψ̃0

〉
+
〈
ψ̃0

∣∣∣ ∂θlU †l (θl)Π̃MUl(θl)
∣∣∣ψ̃0

〉
, (C33)

19



SciPost Physics Submission

where

Π̃M =

−−−→M−1∏
m=l+1

U †m(θm)Πm

U †M (θM )ΠMUM (θM )

←−−−M−1∏
m=l+1

ΠmUm(θm)

 , (C34)

and
∣∣∣ψ̃0

〉
is the same as in Eq. (C20). Again, we can apply the parameter-shift rule to obtain

∂θlpM (θ) =
1

2

(〈
ψ̃0

∣∣∣U †(θl +
π

2
)Π̃MU(θl +

π

2
)− U †(θl −

π

2
)Π̃MU(θl −

π

2
)
∣∣∣ψ̃0

〉)
. (C35)

But these expectation values are simply the normalization constants p±,lM of Eq. (C24), hence
the final result becomes

Tr
{
ρ̃M (θ)

(
∂θlp

−1
M (θ)

)
H
}

= −〈H〉θ
1

2

(
p+,lM

pM
−
p−,lM

pM

)
. (C36)

Combining (i) and (ii) we finally obtain the projective gradient:

∂θl 〈HM 〉θ =
1

2

((
〈H〉+θ − 〈H〉θ

) p+,lM

pM
−
(
〈H〉−θ − 〈H〉θ

) p−,lM

pM

)
. (C37)

To calculate these projective gradients and produce Fig. 4 in the main text, we use the
TensorFlow-based quantum simulator Zyglrox [63]. Note that in practice, estimating these

gradients will be exponentially difficult due to the ratio p−,lM /pM .

D A practical optimization algorithm with projective mea-
surements

Any state ρM (θ) is weighted by two probabilities: a classical and quantum probability. The
former is the result of flipping a coin with probability p after each layer for each qubit, which
results in a measurement configuration. The latter is the quantum probability (obtained via
the Born rule) of measuring an outcome of the particular measurement configuration, which
we’ve denoted by pM (θ).

We can denote the classical probability of a measurement configuration in layer m with

s(cm)
m =

N∏
j=1

pI(cm,j=0) (1− p)I(cm,j=1), (D38)

where cm,j = 0 indicates that we perform a measurement and cm,j = 1 indicates that we
do not. The tuple cm = (cm,0, . . . , cm,N ) thus labels the a measurement setting in m. The
total probability over all layers is then given by the product of these individual layer-wise
probabilities:

s(c) =
M∏
m=1

s(cm)
m . (D39)
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The tuple c = (c1, . . . , cM ) then labels a possible measurement setting.
After choosing a measurement setting, we run the circuit and perform the measurements.

This results in a set of outcomes i = (i1, . . . , iM ), where im = (im,1, . . . , im,N ) indicates the
outcomes per layer. The integer im,j ∈ {0, 1, 2} with j = 1, . . . , N indicates the measure-
ment of |0〉〈0|, |1〉〈1| and the identity operator, respectively. We now explicitly denote with
ρM (i, c,θ) the state resulting from a particular measurement setting, and with pM (i|θ; c) the
probability of obtaining a particular outcome i, given a measurement setting c.

Algorithm D1: Algorithm to obtain the gradient of Eq. (D44)

Input: %0, U(θ),H, p, Ns, θl
h+,l ← 0
h−,l ← 0
for n ∈ (1, . . . , Ns) do

Create measurement configuration for m ∈ (1, . . . ,m) do
for j ∈ (1, . . . , N) do

cm,j ∼ Ber(p)

θl ← θl + π/2

Run U(θ) with measurement setting c, obtain outcomes i and state ρ+,lM (i|θ; c).
Measure H and obtain eigenvalue h h+,l ← h+,l + h
θl ← θl − π
Run U(θ) with measurement setting c, obtain outcomes i′ and state ρ−,lM (i′|θ; c).
Measure H and obtain eigenvalue h′

h−,l ← h−,l + h′

Output: 1
2(h+,l − h−,l)

If we remix the resulting pure states ρM (i, c,θ) according to the classical probability s(i)

and quantum probability p
(i)
M from this into a single density matrix, we obtain

% =
∑
i,c

s(c)pM (i|θ; c)(θ)ρM (i, c,θ). (D40)

We can calculate a variational energy with respect to this density matrix as

Eint(θ) =
∑
i,c

s(c)pM (i|θ; c)(θ) Tr{ρM (i, c,θ)H}, (D41)

where H is a Hermitian operator. Clearly Eground ≤ Eint(θ). Calculating the gradient of Eq.
(D41) involves calculating the gradient for all individual states in the mixture. Note that the
mixture in Eq. (D41) can be written as a sum of unnormalized states

Eint(θ) =
∑
i,c

s(c)pM (i|θ; c)(θ) Tr
{
ρ̃M (i, c,θ)p−1M (i|θ; c)H

}
(D42)

=
∑
i,c

s(c) Tr{ρ̃(i, c,θ)H}. (D43)

From Eq. (C27) we then see immediately that the gradient of the mixed state is then given
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by

Tr{(∂θlρ)H} =
∑
i,c

s(c)

2

(
〈H〉+,lθ,c,i p

+,l
M (i|θ; c)− 〈H〉−,lθ,c,i p

−,l
M (i|θ; c)

)
. (D44)

Hence the estimator for the gradient corresponds to the average expectation value over inter-

mediate measurements done on parameter-shifted circuits weighted by p
(i),l
M and the classical

probability s(i). Therefore, the projective gradients can be estimated by obtaining statistics
from the measurements done on the parameter-shifted circuits. Given a number of shots Ns,
the gradient of Eq. (D44) can be obtained with Alg. D1.
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E Data collapse of the projective gradients

To observe the phase transition in the variance of the projective gradients of Fig. E2, we
perform a data collapse of the following quantity:

log

(
Var

[
∂ZZ

∂θ0

] ∣∣∣∣
N,p

)
= log

(
Var

[
∂ZZ

∂θ0

] ∣∣∣∣
N,pc

)
+ g(N1/ν(p− pc)) (E45)

We use the same method as in App. A. The resulting data collapse can be seen in Fig. 4.
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Figure E2: Data collapse for the projective gradients at pc = 0.25 and pc = 0.5 for the
XXZ-HVA and HAE circuits, respectively. Since the data shown in Fig. 4 is noisy, the data
collapse is not as clean, especially for the XXZ-HVA circuit. However, we still find critical
exponents that are close to the ones obtained from the entanglement entropy scaling collapse,
with ν ≈ 1.31 and ν ≈ 1.5, respectively.
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