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1 Introduction

In the context of EFTs, it is important to put bounds on the theory space [1–3]. In recent times, there
has been an increase in interest in establishing two-sided bounds on ratios of parameters in front of
higher-dimensional operators in the EFT lagrangians. Recent work in this direction include [4–20].
Starting from the original attempts to constrain scalar EFTs, research has been extended to external
particles carrying spin [7, 21, 22]. It is thus of interest and importance to know which ratios can be
bounded and what the mathematical reasons for the existence of such bounds are.

The standard attempts to put bounds on EFT coefficients begin with a fixed-t dispersion relation.
Then imposing crossing symmetry leads to constraints, dubbed null constraints [5, 23]. These null
constraints lead to two-sided bounds on Wilson coefficients. In [24, 25] a different consideration was
put forth, which makes use of powerful techniques and theorems in an area of mathematics called
Geometric Function Theory (GFT) [26, 27]. The starting point in this approach makes use of a crossing
symmetric dispersion relation (CSDR) [28–30]. In this approach, crossing symmetry is manifest at the
outset. However, the penalty paid is the loss of locality, leading to the “locality constraints” [29, 30].
These locality constraints are essentially a linear combination of the null constraints in the fixed-t
approach [30].

The main advantage of using the CSDR is that instead of the usual Mandelstam variables (s, t, u)
it is more natural to use a different dispersion variable z and a parameter a, which is held fixed. The
amplitude for identical scalars then has unobvious and interesting properties in terms of the function
in the complex z plane. As shown in [25], for a suitable range of the parameter a, for pion scattering,
the amplitude is, in the parlance used in Geometric Function Theory, typically real. In other words,
in this range of a, it satisfies the condition

Imf(z)Imz > 0 , (1.1)

inside the unit disk |z| < 1, which in turn imposes the Bieberbach-Rogosinski (BR) two-sided bounds
on the Taylor expansion coefficients of f(z). In terms of Wilson coefficients, an argument based on
the Markov brothers’ inequality, as shown in [25], leads to two-sided bounds on the ratios of Wilson
coefficients. It is known that there is a connection between typically real functions in geometric
function theory (GFT) and quantum field theory (QFT) dating back to [31–35]. However, it has not
been used extensively in the study of scattering amplitudes.

In this paper, we will extend the CSDR for identical, neutral external particles carrying spin.
Our formalism is general, although for concreteness, we will focus on the 2-2 scattering of photons
and gravitons, as well as neutral Majorana fermions. In the photon and graviton cases, we will be
able to identify combinations of helicity amplitudes whose Taylor expansion coefficients are two-sided
bounded using GFT arguments. We will be able to write down a general expression for the locality
constraints. Our formalism paves the way for a future systematic study of the S-matrix bootstrap
for the 2-2 scattering of identical particles with spin. The crossing symmetric dispersion relation of a
scalar amplitude M0(s1, s2) takes the following form,

M0(s1, s2) = α0 +
1

π

∫ ∞

M2

ds′1
s′1
A(s′1, s

+
2 (s′1, a))H(s′1; s1, s2, s3) (1.2)

where A(s′1, s
+
2 (s′1, a)), called the absorptive part, is the s- channel discontinuity and H(s′1; s1, s2, s3) is

a manifestly crossing symmetric kernel. The parameter a = (s1s2s3)/(s1s2 +s2s3 +s3s1) ≡ y/x is kept
fixed writing this dispersion relation and s+

2 is one of the two roots obtained from this equation on using
s1+s2+s3 = 0. For a massive theory with a gap, as for pion scattering, the dispersive integral starts at
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8m2/3, where m is the mass of the pion. In this case s1 = s− 4m2/3, s2 = t− 4m2/3, s3 = u− 4m2/3
with s, t, u being the usual Mandelstam variables. For EFTs, the lower limit starts at some cut-
off M2 and all external particles are considered massless. The absorptive part can be expanded in
partial waves involving Gegenbauer polynomials. Then Taylor expanding around a = 0 leads to the
conclusion that for each partial wave, there are in principle any arbitrary power of a, and hence of
x = s1s2 +s2s3 +s3s1 which are absent for a local theory. On demanding that such powers responsible
for non-local terms cancel, leads to what we call the “locality” constraints.

The range of the parameter a is crucial in this story. For theories with a gap, as for pion scattering,
axiomatic arguments can be used to finding this range of a [24]. However, when describing EFTs [4–
6, 23], these axiomatic arguments do not work. In this paper, taking a leaf out of [5], we will make use
of the locality constraints and linear programming, and establish the range of a where the absorptive
part of the amplitude is positive. This is crucial since, in our approach, it is vital that this range
of a satisfies −amin < a < amax with both ends non-zero to have two-sided bounds. One surprising
conclusion that will emerge from our analysis is that this range is related to the weak Low Spin
Dominance (wLSD) conjecture made in [36]. Our findings lead to the conclusion that a few low-lying
spins control the sign of the absorptive part. For non-unitary theories, generically, the imaginary part
of the partial wave coefficient (often referred to as the spectral function) is not of a definite sign.
However, if it is known that the spectral functions for some low-lying spins are positive, it is possible
then to have two-sided bounds in a local but non-unitary theory using wLSD.

We will focus on light-by-light scattering and graviton scattering in weakly coupled EFTs [6,
36, 37] and derive two-sided bounds. We consider the linearly independent helicity amplitudes,
T λ3λ4λ1λ2

(s1, s2, s3), for 2-2 scattering (λ1λ2 → λ3λ4) of graviton, photon and massive Majorana fermions
in four spacetime dimensions. Here λi are helicity labels and these take values −j and +j for massless
particle with spin j while there are 2j + 1 independent helicities for a massive particle with spin j.
Generically these helicity amplitudes mix among themselves under crossing,

T λ3λ4λ1λ2
(s1, s2, s3)→

∑

ijkl

CijklT
λkλl
λiλj

(Ps1 , Ps2 , Ps3), (1.3)

where (Ps1 , Ps2 , Ps3) represents some permutation of (s1, s2, s3). Using representation theory of S3 (the
permutation group relevant for Mandelstam invariants), we construct a basis of crossing symmetric
amplitudes, F (s1, s2, s3)1, using the helicity amplitudes T λ3λ4λ1λ2

(s1, s2, s3). These crossing symmetric
helicity amplitudes transform as a singlet under S3,

F (s1, s2, s3) = F (s2, s1, s3) = F (s3, s2, s1). (1.4)

Our construction can be generalised to other spacetime dimensions in a straightforward manner,
although for this paper, we will focus on d = 4. We then write down locality constraints associated
with the crossing symmetric amplitudes F λ3λ4λ1λ2

(s1, s2, s3). Explicit formulae for a subclass of the
amplitudes in closed form can be found. Our method allows us to write the locality constraints for
all the crossing symmetric amplitudes. To be precise, we consider the following crossing symmetric
amplitudes for the photon case2,

F γ1 (s1, s2, s3) = T2(s1, s2, s3), F γ2 (s1, s2, s3) = T1(s1, s2, s3) + T3(s1, s2, s3) + T4(s1, s2, s3) (1.5)

where the helicity amplitudes Ti are defined in (2.9). These amplitudes have the low energy EFT
expansion

F γ,i(s1, s2) =
∑

p,q

W i
p,qx

pyq . (1.6)

1We don’t put any helicity labels for crossing symmetric amplitudes since they are often combinations of amplitudes with
different helicity labels (2.20).

2The relevant amplitudes for graviton are a bit subtle and will be dealt with in section 6, and we will just quote the
results here.
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The locality constraints for the amplitude F γ2 (s1, s2, s3) + x1F
γ
1 (s1, s2, s3) =

∑
p,qW

(x1)
p,q xpyq for

x1 ∈ [−1, 1], are
W(x1)
p,q = 0, ∀ p < 0.

We present the explicit expressions for W(x1)
p,q using CSDR in the main text (eqn (5.11)) and from

those we obtain positivity conditions called PBγ
C (eqn (5.14)). We also show that the dispersive part

of the amplitude can be written as a Typically Real function leading to bounds on the range of the
variable a. In general, for massless theories the lower bound on a = amin is zero [25], which only
leads to one-sided bounds. We observe that the Wigner-d functions, d`m,n(

√
ξ(s1, a)), are positive for

all spins when its argument ξ(s1, a) is greater than 1. Adding a suitable linear combination of the
locality constraints, we can show the positivity of the absorptive part arises even when ξ(s1, a) < 1.
This translates to −amin < a < amax. This is indicative of the dominance of low spin partial waves in
EFTs and is called Low spin dominance (LSD). This behaviour was observed for gravitons in [2, 7]. In
this paper, we will show how this naturally emerges out of our analysis using the locality constraints.
We will show that the lower range of a tells us about which spins dominate in the determination of
the positivity of the absorptive part for −amin < a < amax. We demonstrate the same for the case of
type-II string amplitude in appendix G.

After showing that the amplitude is typically-real for a range of a ∈ [−amin, amax], we can directly

find two sided bounds on the ratio of Wilson coefficients wp,q =
Wp,q

W1,0
from GFT. Below we show

examples of bounds found for scattering of scalars, photons and gravitons in Table 1. The detailed
list of bounds for photon and graviton scattering are summarised in Table 3 and 4.

Theory EFT amplitudes Range of a and LSD w01 bound

Scalar F (s1, s2, s3) =W1,0x +W01y + · · · −0.1933M2 < ascalar < 2M2

3
−3

2M2 < w0,1 <
5.1733
M2

(Spin-2 dominance)

Photon F2(s1, s2, s3) = 2g2x− 3g3y + · · · −0.1355M2 < aγ < 2M2

3
−4.902
M2 <

g3+x1
f3
3

g2+x1f2
< 1

M2

F1(s1, s2, s3) = 2f2x− f3y + · · · (Spin-3 dominance) where x1 ∈ [−1, 1]

Graviton F̃ h
2 = 2xf0,0 + 3yf1,0 + · · · −0.1933M2 < ah < 2M2

3

( Spin-2 dominance) − 1
M2 < f1,0

f0,0
< 3.44

M2

Table 1: Example of two sided bounds we have found for scalars, photons and gravitons using GFT.

Apart from the conceptual clarity that the GFT techniques enable us with, are there any technical
advantages using our approach? We wish to point out a couple of obvious ones. First, unlike the
fixed-t methods where one uses SDPB techniques and hence needs to worry about convergence in the
spin, the dispersive variable as well as the number of null constraints, in our approach, once the range
of a has been determined, one only needs to check for convergence in the number of BR inequalities we
use. Second, we can write simple codes directly in Mathematica to study bounds. However, there are
also some disadvantages. The main one is that while we do obtain two-sided bounds quite easily, these
are not necessarily the sharpest ones possible since we do not make use of all the locality constraints.
It is not clear to us if there is a way to get optimum bounds3 using purely GFT techniques.

The paper is organised as follows. In section 2, we describe the construction of fully crossing
symmetric amplitude. Through multiple subsections of section 3, we describe the key formulas like
CSDR, locality constraints, typical realness of the amplitude and then we introduce BR bounds as
well. We also discuss in section 3 how low spin dominance emerges out of our analysis, taking into
account the locality constraints. Through section 4,5, 6 we describe the bounds obtained for scalars,
photons and gravitons respectively. We end our discussion with concluding remarks in section 7.
Several technical details are relegated to multiple appendices at the end.

3A bound will be considered optimum if there is a consistent S-matrix saturating it.
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2 Crossing symmetric amplitudes

In this section, we present a general construction for crossing symmetric amplitudes following [38].
Let us begin with a short review of scattering amplitudes of identical particles as irreducible represen-
tations (irreps) of S3 [39, 40]. Consider the scattering of four identical particles (massive or massless,
with or without spin) in d = 4. The momenta of the particles satisfy,

p2
i = −m2,

4∑

i=1

pµi = 0, (2.1)

where m is mass of each particle. We use the mostly positive convention and define Mandelstam
variables,

s := −(p1 + p2)2 = −(p3 + p4)2 = 2m2 − 2p1.p2 = 2m2 − 2p3.p4

t := −(p1 + p3)2 = −(p2 + p4)2 = 2m2 − 2p1.p3 = 2m2 − 2p2.p4

u := −(p1 + p4)2 = −(p2 + p3)2 = 2m2 − 2p1.p4 = 2m2 − 2p2.p3.

(2.2)

Due to momentum conservation we have s+ t+u = 4m2. For identical bosonic particles, the S-matrix
is to be thought of as the function of Mandelstam invariants (and polarizations), which is S4 invariant,
the symmetry group of permutations of four particles. In the present context, S4 acts on the momenta
and the helicities of the particles. We usually impose the S4 invariance in two steps. Recall that that
Z2×Z2 is the normal subgroup of S4 and the remnant symmetry is S4

Z2×Z2
= S3. Action of Z2×Z2 on

four objects (1, 2, 3, 4) is the simultaneous exchange of two particles- (12)(34), (13)(24) and (14)(23)
while S3 is the permutation of three objects (1, 2, 3). Since the Mandelstam invariants s, t and u
are invariant under the Z2 × Z2, we first impose Z2 × Z2 invariance, which leaves the Mandelstam
invariants unchanged and we are left with the remnant S3 symmetry which acts on (s, t, u). Note
that helicities (or equivalently tensor structures in higher dimensions) may not be Z2 × Z2 invariant,
and we might need to impose Z2 × Z2 invariance. However, for most of the non-crossing symmetric
helicity amplitudes that we consider in this work, the Z2 × Z2 symmetry has already been taken
care of [41]. The S-matrix, which is invariant under the Z2 × Z2 invariance, is often referred to as
“Quasi-invariant” S-matrix. The “Quasi-invariant” S-matrix can be decomposed into irreps of S3 and
the crossing equations are relations between the orbits of S3.

To simplify the discussion, unless otherwise mentioned, we will work with the following shifted
Mandelstam variables,

s1 = s− 4m2

3
s2 = t− 4m2

3
, s3 = u− 4m2

3
, (2.3)

such that, s1 + s2 + s3 = 0. With the aid of the representation theory of S3, which we review in
appendix A, one can write the most general Quasi-invariant S-matrix, therefore, takes the form [38]

F (s1, s2, s3) = f(s1, s2, s3) + (2s1 − s2 − s3)g1(s1, s2, s3) + (s2 − s3)g2(s1, s2, s3)

+(2s2
1 − s2

2 − s2
3)h1(s1, s2, s3) + (s2

2 − s2
3)h2(s1, s2, s3)

+(s1 − s2)(s2 − s3)(s3 − s1)j(s1, s2, s3) , (2.4)

where f(s1, s2, s3), j(s1, s2, s3), gi(s1, s2, s3) and hi(s1, s2, s3) are crossing symmetric amplitudes. We
can decompose F (s1, s2, s3) into irreps of S3,

F (s1, s2, s3) = fSym(s1, s2, s3) + fAnti−sym(s1, s2, s3) + fMixed+(s1, s2, s3) + fMixed−(s1, s2, s3) . (2.5)

From eqn (A.6) and (2.5), we have the following set of equations

fSym(s1, s2, s3) = f(s1, s2, s3) ,

fAnti−sym(s1, s2, s3) = (s1 − s2)(s2 − s3)(s3 − s1)j(s1, s2, s3) ,

fMixed+(s1, s2, s3) = (2s1 − s2 − s3)g1(s1, s2, s3) + (2s2
1 − s2

2 − s2
3)h1(s1, s2, s3) ,

fMixed−(s1, s2, s3) = (s2 − s3)g2(s1, s2, s3) + (s2
2 − s2

3)h2(s1, s2, s3) . (2.6)
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This can be inverted to give the required crossing symmetric basis [38].

f(s1, s2, s3) = fSym(s1, s2, s3) ,

j(s1, s2, s3) =
fAnti−sym(s1, s2, s3)

(s1 − s2)(s2 − s3)(s3 − s1)
,

g1(s1, s2, s3) =
fMixed+(s1, s2, s3)(s2

1 + s2
2 − 2s2

3)− fMixed+(s3, s1, s2)(s2
2 + s2

3 − 2s2
1)

3(s1 − s2)(s2 − s3)(s3 − s1)
,

h1(s1, s2, s3) =
fMixed+(s3, s1, s2)(s3 + s2 − 2s1)− fMixed+(s1, s2, s3)(s1 + s2 − 2s3)

3(s1 − s2)(s2 − s3)(s3 − s1)
,

g2(s1, s2, s3) =
fMixed−(s3, s1, s2)(s2

2 − s2
3)− fMixed−(s1, s2, s3)(s2

1 − s2
2)

(s1 − s2)(s2 − s3)(s3 − s1)
,

h2(s1, s2, s3) =
fMixed−(s1, s2, s3)(s1 − s2)− fMixed−(s3, s1, s2)(s2 − s3)

(s1 − s2)(s2 − s3)(s3 − s1)
. (2.7)

The following additional comments are in order:

• Given a Quasi-invariant S-matrix the algorithm to construct the crossing symmetric basis, there-
fore, is straightforward. We construct the irreps {fSym, fAnti−sym, fMixed±} following (A.6) and
use (2.7) to construct the crossing symmetric basis4.

• The basis elements do not have any spurious poles at si = sj and are analytic functions of
s1, s2, s3, which can be easily checked by plugging (A.6) into (2.7).

• The basis in eq.(2.7) is not unique since the last two equations of (2.6) are two 2 equations for
4 unknowns {gi(s1, s2, s3), hi(s1, s2, s3)}i=1,2. One can use any permutation of the arguments of
fMixed± to get a system of full rank. We have used the permutations si → si+1mod(3) on fMixed±
as these are best suited for our purposes5.

• If F (s1, s2, s3) is symmetric or anti-symmetric then only f(s1, s2, s3) and j(s1, s2, s3) are non zero
respectively. Furthermore F (s1, s2, s3) is t− u symmetric then only {f(s1, s2, s3), g1(s1, s2, s3),
h1(s1, s2, s3)} are nonzero.

2.1 Photons and Gravitons

In this sub-section, we apply the formalism developed in the previous section to the case of parity
even photon and graviton amplitudes. We will work with helicity amplitudes and show that they
transform in irreps of S3. Subsequently, we construct the crossing symmetric amplitudes from them
using (2.7). As a consequence of the CPT theorem and the fact that we will be considering particles
on which charge conjugation acts trivially, our helicity amplitudes are PT invariant. We will consider
the sub-cases whether parity is preserved or not. We will follow the notations and conventions of [41].

2.1.1 P invariant theories

Massless photon and graviton theories in d = 4 are characterised by their helicities which can take
values (±1) for photons and (±2) for gravitons respectively. This tells us that there are possibly 16
helicity amplitudes. Since the particles are identical, the helicity amplitudes enjoy a Z2×Z2 symmetry.

T λ3,λ4λ1,λ2
(s1, s2, s3) = T λ4,λ3λ2,λ1

(s1, s2, s3), T λ3,λ4λ1,λ2
(s1, s2, s3) = T−λ2,−λ1−λ4,−λ3 (s1, s2, s3),

T λ3,λ4λ1,λ2
(s1, s2, s3) = T−λ3,−λ4−λ1,−λ2 (s1, s2, s3)

(2.8)

4See also [42, 43] for similar considerations for the massive pion case.
5In [38] the permutation s1 → s3 was used. We warn the reader referring to [38] that there is a minor typo in the analog

of (2.4) where the sign of the j(s1, s2, s3) term is wrong.
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Additionally, since we are looking at parity invariant theories, we have the following constraints from
parity, time-reversal respectively,

T λ3,λ4λ1,λ2
(s1, s2, s3) = η∗1η

∗
2η3η4(−1)j1+j2+j3+j4(−1)λ1−λ2−λ3+λ4T λ1,λ2λ3,λ4

(s1, s2, s3)

T λ3,λ4λ1,λ2
(s1, s2, s3) = ε∗1ε

∗
2ε3ε4T

λ1,λ2
λ3,λ4

(s1, s2, s3). (2.9)

where |ηi|2 = |εi|2 = 1. Note that for scattering of four identical photons and gravitons, we have
η∗1η
∗
2η3η4 = (|η|2)2 = 1 trivially. These conditions reduce the number of independent parity preserving

helicity amplitudes which are given by [41],

T1(s1, s2, s3) = T++
++ (s1, s2, s3), T2(s1, s2, s3) = T−−++ (s1, s2, s3), T3(s1, s2, s3) = T+−

+− (s1, s2, s3)

T4(s1, s2, s3) = T−+
+− (s1, s2, s3), T5(s1, s2, s3) = T+−

++ (s1, s2, s3).

(2.10)

6 These linearly independent set of five amplitudes are the basis of Quasi-invariant S-matrices defined
in the previous section. They transform in irreps of S3 which we determine from the following crossing
equation [37, 41].

T λ3,λ4λ1,λ2
(s1, s2, s3) = ε′23T

−λ2,λ4
λ1,−λ3 (s2, s1, s3),

T λ3,λ4λ1,λ2
(s1, s2, s3) = ε′24T

λ3,−λ2
λ1,−λ4 (s3, s2, s1)

(2.11)

where ε′23 and ε′24 are arbitrary phases which were left unfixed from the general considerations of
crossing symmetry using which (2.11) were derived. We will fix them in this section using constraints
from consistency of crossing equations and comparing against explicit helicity amplitudes in literature.
Note that (2.11) differs from the equivalent equation of [41] (eqns 2.81 and 2.82). This is due to the
fact that we assume the following assignment for the Wigner-d angles

α1 = 0, α2 = π, α3 = 0, α4 = π

β1 = 0, β2 = π, β3 = 0, β4 = π

(2.12)

in contrast with eqns 2.78 and 2.79 of [41]. Using (2.11), we can determine the crossing matrices to
be,

Cpst = ε′23




0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1



, Cpsu = ε′24




0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1



. (2.13)

At this stage we have two undetermined phases ε′23 and ε′24. In order to determine the t−u crossing
relation we use the following relation for identical scattering particles [41],

T λ3,λ4λ1,λ2
(s1, s2, s3) = (−1)λ2−λ1+λ4−λ3T λ3,λ4λ2,λ1

(s1, s3, s2)

T λ3,λ4λ1,λ2
(s1, s2, s3) = (−1)−λ2+λ1+λ4−λ3T λ4,λ3λ1,λ2

(s1, s3, s2),
(2.14)

6Note that due to (2.9), the amplitudes T2 and T5 enjoy the additional symmetry

T−−
++ (s1, s2, s3) = T++

−− (s1, s2, s3), T+−
++ (s1, s2, s3) = T++

+− (s1, s2, s3)
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We can independently try to derive the Cptu crossing matrix by using the following composition for
the generators of S3.

Cptu = CpstC
p
suC

p
st, Cptu = ε′223ε

′
24




1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1



. (2.15)

to conclude ε24′ = 1 while the phase ε′23 is undetermined. We can try to fix ε′23 in the following way.
We can compare against a known amplitude to check the phase. To be precise let us compare against
the explicit helicity amplitudes computed in the Euler-Heisenberg EFT, from the last equality in eqn
2.9 of [44] and tree level graviton amplitude from eqn 17 of [36], we see ε′23 = 1 for both photons and
graviton amplitudes7. For convenience we write down the crossing matrices finally

Cpst =




0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1



, Cpsu =




0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1



. (2.16)

One can immediately see from these crossing matrices that T2(s1, s2, s3) and T5(s1, s2, s3) are crossing
symmetric by themselves while it takes a little bit more effort to see that (T1(s1, s2, s3), T3(s1, s2, s3),
T4(s1, s2, s3)) transforms in a 3S = 1S + 2M (a reducible representation of dimension 3). To see that
T2(s1, s2, s3) and T5(s1, s2, s3) are crossing symmetric, note that under (s1, s2) and (s1, s3) they map
to themselves and since the other orbits of S3 are generated by products of this transposition, all the
orbits will map to themselves. However, to systematise the procedure we explain in detail the case of
photons. Using the projector (A.2) we see that

P1S(T2(s1, s2, s3)) = T2(s1, s2, s3) ,

P1S(T5(s1, s2, s3)) = T5(s1, s2, s3) ,

P1S(T1(s1, s2, s3)) = P1S(T3(s1, s2, s3)) = P1S(T4(s1, s2, s3)) ,

=
(T1(s1, s2, s3) + T3(s1, s2, s3) + T4(s1, s2, s3))

3
,

P1A(Ti(s1, s2, s3)) = 0 .

(2.17)

This tells us that the triplet (T1(s1, s2, s3), T3(s1, s2, s3), T4(s1, s2, s3)) has a 1S part while T2(s1, s2, s3)
and T5(s1, s2, s3) are crossing symmetric by themselves. We now want to check whether there is a 2M
also in (T1(s1, s2, s3), T3(s1, s2, s3), T4(s1, s2, s3)). From (A.4), we get,

P
(1)
2M+

(T1(s1, s2, s3)) = −2P
(1)
2M+

(T3(s1, s2, s3)) = −2P
(1)
2M+

(T4(s1, s2, s3)) ,

=
(2T1(s1, s2, s3)− T3(s1, s2, s3)− T4(s1, s2, s3))

3
.

P
(2)
2M+

(T1(s1, s2, s3)) = −2P
(2)
2M+

(T3(s1, s2, s3)) = −2P
(2)
2M+

(T4(s1, s2, s3)) ,

=
(2T3(s1, s2, s3)− T1(s1, s2, s3)− T4(s1, s2, s3))

3
.

(2.18)

7Note the difference in convention in defining helicity amplitudes, Aus,λ3,λ4

λ1,λ2
= Athem,λ3,λ4,−λ1,−λ2
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Therefore, we identify our crossing symmetric matrix by substituting the following sets of solutions
in (2.7),

fα,1Sym(s1, s2, s3) = T2(s1, s2, s3) ,

fα,2Sym(s1, s2, s3) = T5(s1, s2, s3) ,

fα,3Sym(s1, s2, s3) =
T1(s1, s2, s3) + T3(s1, s2, s3) + T4(s1, s2, s3)

3
,

fαMixed+(s1, s2, s3) =
(2T1(s1, s2, s3)− T3(s1, s2, s3)− T4(s1, s2, s3))

3
.

(2.19)

where, α ≡ γ, h for photons and gravitons respectively. Explicitly written out, the crossing symmetric
photon and graviton S-matrices are,

Fα1 (s1, s2, s3) = T2(s1, s2, s3) , (2.20)

Fα2 (s1, s2, s3) = T1(s1, s2, s3) + T3(s1, s2, s3) + T4(s1, s2, s3) , (2.21)

Fα3 (s1, s2, s3) = T5(s1, s2, s3) , (2.22)

Fα4 (s1, s2, s3) =
fαMixed+(s3, s1, s2)(s3 + s2 − 2s1)− fαMixed+(s1, s2, s3)(s1 + s2 − 2s3)

3(s1 − s2)(s2 − s3)(s3 − s1)
, (2.23)

Fα5 (s1, s2, s3) =
fαMixed+(s1, s2, s3)(s2

1 + s2
2 − 2s2

3)− fαMixed+(s3, s1, s2)(s2
2 + s2

3 − 2s2
1)

3(s1 − s2)(s2 − s3)(s3 − s1)
. (2.24)

2.1.2 P violating theories

In this subsubsection we consider Parity violating (and hence Time-reversal violating theories) theories
where we do not impose the condition (2.9). As a result, the independent helicity amplitudes are,

T1(s1, s2, s3) = T++
++ (s1, s2, s3), T2(s1, s2, s3) = T−−++ (s1, s2, s3), T3(s1, s2, s3) = T+−

+− (s1, s2, s3)

T4(s1, s2, s3) = T−+
+− (s1, s2, s3), T5(s1, s2, s3) = T+−

++ (s1, s2, s3), T ′2(s1, s2, s3) = T++
−− (s1, s2, s3)

T ′5(s1, s2, s3) = T++
+− (s1, s2, s3) .

(2.25)

The crossing matrices are modified to

Cpvst =




0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




, Cpvsu =




0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




. (2.26)

The new objects we need to consider are T ′2 and T ′5, which are crossing symmetric by themsleves.

P1S(T ′2(s1, s2, s3)) = T ′2(s1, s2, s3) ,

P1S(T ′5(s1, s2, s3)) = T ′5(s1, s2, s3) .

(2.27)
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Therefore we identify our crossing symmetric matrix by substituting the following sets of solutions in
(2.7),

f̃α,1Sym(s1, s2, s3) = T2(s1, s2, s3) ,

f̃α,2Sym(s1, s2, s3) = T5(s1, s2, s3) ,

f̃α,3Sym(s1, s2, s3) =
T1(s1, s2, s3) + T3(s1, s2, s3) + T4(s1, s2, s3)

3
,

f̃α,4Sym(s1, s2, s3) = T ′2(s1, s2, s3) ,

f̃α,5Sym(s1, s2, s3) = T ′5(s1, s2, s3) ,

f̃αMixed+(s1, s2, s3) =
(2T1(s1, s2, s3)− T3(s1, s2, s3)− T4(s1, s2, s3))

3
.

(2.28)

where, α ≡ γ, g for photons and gravitons respectively. Explicitly written out, the crossing symmetric
photon and graviton s-matrices are,

F̃α1 (s1, s2, s3) = T2(s1, s2, s3) ,
(2.29)

F̃α2 (s1, s2, s3) = T1(s1, s2, s3)+T3(s1, s2, s3)+T4(s1, s2, s3) ,
(2.30)

F̃α3 (s1, s2, s3) = T5(s1, s2, s3) ,
(2.31)

F̃α4 (s1, s2, s3) =
fαMixed+(s3, s1, s2)(s3 + s2 − 2s1)− fαMixed+(s1, s2, s3)(s1 + s2 − 2s3)

3(s1 − s2)(s2 − s3)(s3 − s1)
,

(2.32)

F̃α5 (s1, s2, s3) =
fαMixed+(s1, s2, s3)(s2

1 + s2
2 − 2s2

3)− fαMixed+(s3, s1, s2)(s2
2 + s2

3 − 2s2
1)

3(s1 − s2)(s2 − s3)(s3 − s1)
,

(2.33)
F̃α6 (s1, s2, s3) = T ′2(s1, s2, s3) ,

(2.34)
F̃α7 (s1, s2, s3) = T ′5(s1, s2, s3) .

(2.35)
We note that the crossing equations are consistent with the photon module classification done in

[45]. In [45], it was found that there is one parity even module transforming in a 3, two parity even
1S module and two parity odd 1S module. It is satisfying to see that the degrees of freedom encoded
in crossing in the two different approaches nicely match.

2.2 Massive Majorana fermions

Let us now consider the scattering amplitude of four massive Majorana fermions in parity conserving
theory. The five independent helicity structures are the following

Φ1(s1, s2, s3) = T++
++ (s1, s2, s3), Φ2(s1, s2, s3) = T−−++ (s1, s2, s3), Φ3(s1, s2, s3) = T+−

+− (s1, s2, s3)

Φ4(s1, s2, s3) = T−+
+− (s1, s2, s3), Φ5(s1, s2, s3) = T+−

++ (s1, s2, s3).

(2.36)

Further one can separate out the kinematical singularities and branch cuts to define the improved
amplitudes HI(s1, s2, s3) such that [41],

φI(s1, s2, s3) =
5∑

J=1

M−1
IJ HJ(s1, s2, s3), (2.37)
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where M matrix is defined as follows,

M =




4

s1−
8m2
3

−4

s1−
8m2
3

2(1− s2+4m2/3

s3+4m2/3
)

s1−8m2/3

2(1− s3+4m2/3

s2+4m2/3
)

s1−8m2/3

2(s1+16m2/3)(s2−s3)

m(s1−8m2/3)
√

(s1+4m2/3)(s2+4m2/3)(s3+4m2/3)

0 0 2
s3+4m2/3

−2

s2+4m2/3
− 8m√

(s1+4m2/3)(s2+4m2/3)(s3+4m2/3)

0 0 2
s3+4m2/3

−2

s2+4m2/3
− 2s

m
√

(s1+4m2/3)(s2+4m2/3)(s3+4m2/3)

0 0 2
s3+4m2/3

2
s2+4m2/3

0

− 4
s1+4m2/3

− 4
s1+4m2/3

2
s3+4m2/3

+ 4
s1+4m2/3

2
s2+4m2/3

+ 4
s1+4m2/3

2(s2−s3)

m
√

(s1+4m2/3)(s2+4m2/3)(s3+4m2/3)




(2.38)
Crossing symmetry is imposed by the following two crossing matrices,

C̃fst =




−1
4 −1 3

2 1 −1
4

−1
4

1
2 0 1

2
1
4

1
4 0 1

2 0 1
4

1
4

1
2 0 1

2 −1
4

−1
4 1 3

2 −1 −1
4



, C̃fsu =




−1
4 1 −3

2 1 −1
4

1
4

1
2 0 −1

2 −1
4

−1
4 0 1

2 0 −1
4

1
4 −1

2 0 1
2 −1

4
−1

4 −1 −3
2 −1 −1

4




(2.39)

The analysis for massive fermions is a bit more involved. Using the projectors defined in (A.2),
we find

P1S(H1(s1, s2, s3)) = P1S(H4(s1, s2, s3)) = P1S(H5(s1, s2, s3))

=
(H1(s1, s2, s3) + 4H4(s1, s2, s3)−H5(s1, s2, s3))

6
,

P1S(H2(s1, s2, s3)) = P1S(H3(s1, s2, s3)) = 0 ,

P1A(Hi(s1, s2, s3)) = 0 .

(2.40)

This implies that the we have an irrep that transforms in an 1S and none in 1A. We now use the
projector for the mixed symmetry to evaluate

P
(1)
2M+

(H1(s1, s2, s3)) =
1

6
(5H1(s1, s2, s3)− 4H4(s1, s2, s3) +H5(s1, s2, s3)) ,

P
(2)
2M+

(H1(s1, s2, s3)) =
1

12
(−5H1(s1, s2, s3) + 12H2(s1, s2, s3)− 18H3(s1, s2, s3) + 4H4(s1, s2, s3)

−H5(s1, s2, s3)) ,

P
(1)
2M+

(H4(s1, s2, s3)) =
1

6
(−H1(s1, s2, s3) + 2H4(s1, s2, s3) +H5(s1, s2, s3)) ,

P
(2)
2M+

(H4(s1, s2, s3)) =
1

12
(H1(s1, s2, s3)− 6H2(s1, s2, s3)− 2H4(s1, s2, s3)−H5(s1, s2, s3)) .

(2.41)

Rest of the 2M+/− projections are either zero or a linear combinations of these. Hence the
independent data that can be used in (2.7) are,

fψSym(s1, s2, s3) =
(H1(s1, s2, s3) + 4H4(s1, s2, s3)−H5(s1, s2, s3))

6

fψ,1Mixed+(s1, s2, s3) =
1

6
(5H1(s1, s2, s3)− 4H4(s1, s2, s3) +H5(s1, s2, s3))

fψ,2Mixed+(s1, s2, s3) =
1

6
(−H1(s1, s2, s3) + 2H4(s1, s2, s3) +H5(s1, s2, s3)) .

(2.42)

Explicitly written out, the crossing symmetric fermion S-matrices are,:

Ψ1(s1, s2, s3) = (H1(s1, s2, s3) + 4H4(s1, s2, s3)−H5(s1, s2, s3)) , (2.43)
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Ψ2(s1, s2, s3) =
fψ,1Mixed+(s3, s1, s2)(s3 + s2 − 2s1)− fψ,1Mixed+(s1, s2, s3)(s1 + s2 − 2s3)

3(s1 − s2)(s2 − s3)(s3 − s1)
, (2.44)

Ψ3(s1, s2, s3) =
fψ,1Mixed+(s1, s2, s3)(s2

1 + s2
2 − 2s2

3)− fψ,1Mixed+(s3, s1, s2)(s2
2 + s2

3 − 2s2
1)

3(s1 − s2)(s2 − s3)(s3 − s1)
. (2.45)

Ψ4(s1, s2, s3) =
fψ,2Mixed+(s3, s1, s2)(s3 + s2 − 2s1)− fψ,2Mixed+(s1, s2, s3)(s1 + s2 − 2s3)

3(s1 − s2)(s2 − s3)(s3 − s1)
, (2.46)

Ψ5(s1, s2, s3) =
fψ,2Mixed+(s1, s2, s3)(s2

1 + s2
2 − 2s2

3)− fψ,2Mixed+(s3, s1, s2)(s2
2 + s2

3 − 2s2
1)

3(s1 − s2)(s2 − s3)(s3 − s1)
. (2.47)

3 Crossing symmetric dispersion relation: Overview

In the previous section, we constructed various fully crossing symmetric amplitudes, i.e., amplitudes
invariant under S3, the group of permutations of (s1, s2, s3). Now, we will discuss a manifestly crossing
symmetric dispersive representation for such an amplitude. Such a representation was first derived
in [28]. Recently, this representation was explored in [29] in the context of EFT bootstrap. In this
section, we will review this dispersion relation and its multi-faceted consequences, which were explored
recently in [25, 29, 43]8 for scalar amplitudes. We will present the discussion in such a fashion which
generalizes naturally to helicity amplitudes that we will be considering in the present work for dealing
with spinning particles.

Let us consider a S3-invariant ‘amplitude’ associated9 with scattering of identical particlesM(s, t, u),
with s + t + u = 4m2 = µ, m being the mass of the scattering particles. The amplitude is
known/assumed to satisfy the following two crucial properties.

I. We assume that the amplitude is analytic in some domain10 D ⊂ C2, which includes the physical
domains of all the three channels. For massive theories, such domains (e.g. enlarged Martin
domain [47]) have been established rigorously from axiomatic field theory considerations. For
massless theories, even though such domains are not established within the rigorous framework
of axiomatic field theory, they can be argued physically in general. Thus we will assume the
existence of such domains, to begin with.

II. The amplitude is Regge bounded in all the three channels. While for massive theories this
is established rigorously from axiomatic field theory, for massless theories this is a working
assumption which we will make. Thus, for example, fixed t Regge-boundedness reads

M(s, t) = o(s2) for |s| → ∞, t fixed, (s, t) ∈ D. (3.1)

This is equivalent to the amplitude admitting a twice subtracted fixed-transfer (for example, fixed-t)
dispersive representation.

3.1 Massive amplitudes

In order to write a manifestly crossing symmetric dispersion relation, one first introduces a certain
parametrisation [28, 29] for the Mandelstam variables {s1 = s− µ/3, s2 = t− µ/3, s3 = u− µ/3}:

sk(a, z) = a

[
1− (z − zk)3

z3 − 1

]
, a ∈ R, k = 1, 2, 3. (3.2)

8See also [30, 46] for crossing symmetric/ Anti-Symmetric kernels in context of CFT bootstrap.
9There can be multiple such amplitudes associated with a given scattering when the particles have extra quantum numbers

such as spin, isospin e.t.c
10We are considering both s and t as complex variables.
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Here {zk} are the cube-roots of unity. z̃ := z3, a are crossing symmetric variables. We also introduce

the following crossing symmetric combinations, x := −(s1s2+s2s3+s3s1) = −27a2z3

(z3−1)2
, y := −(s1s2s3) =

−27a3z3

(z3−1)2
such that a = y/x. With these parametrizations, as shown by [28], one can write the following

dispersive representation of the amplitude M with a manifestly crossing-symmetric kernel :

M(s1, s2) = α0 +
1

π

∫ ∞

M2

ds′1
s′1
A
(
s′1; s

(+)
2

(
s′1, a

))
H
(
s′1; s1, s2, s3

)
, (3.3)

where A (s1; s2) is the s-channel discontinuity, s
(+)
2 (s′1, a) = − s′1

2

[
1−

(
s′1+3a
s′1−a

)1/2
]

and the kernel is

given by

H
(
s′1; s1, s2, s3

)
=

[
s1

(s′1 − s1)
+

s2

(s′1 − s2)
+

s3

(s′1 − s3)

]

=
27a2(3a− 2s′1)

(−27a3 + 27a2s′1 + s3
1

(
−27a2

x

)
)
. (3.4)

3.2 Massless theories: EFT amplitudes

For massless theories, we will consider crossing-symmetric dispersion relation for the amplitudes in
the sense of effective field theories (EFT) as detailed below. One can write the following (twice
subtracted) fixed t dispersion relation for a massless amplitude [5]

M(s, t)

s(s+ t)
=

∫ ∞

−∞

ds′

π(s′ − s)Im

[M(s′, t)

s′(s′ + t)

]
, (t < 0, s /∈ R), (3.5)

where the subtraction points are chosen to be s = 0 and s = −t, t < 0. Now, the amplitude can
be divided into two parts, the high energy amplitude Mhigh and the low energy amplitude Mlow.
The high energy amplitude Mhigh admits an ‘effective (fixed-transfer) dispersion relation’ with two
subtractions. For example, the fixed t effective dispersion relation is of the form

Mhigh(s, t)

s(s+ t)
=

∫ ∞

M2

ds′

π

(
1

s′ − s +
1

s′ + s+ t

)
Im

[Mhigh(s′, t)

s′(s′ + t)

]
. (3.6)

Here M2 is some UV cut-off such that the physics beyond this scale is unknown a-priori to us. The
low energy amplitude Mlow is to be understood in the sense of effective field theory amplitude. The
dispersion relation for the full amplitude M, (3.5), relates Mhigh to this EFT amplitude.

Now, the amplitudes are all crossing symmetric. Therefore, we can write a crossing-symmetric
dispersion relation for Mhigh [29] similar to (3.8)

Mhigh(s1, s2) = α0 +
1

π

∫ ∞

M2

ds′1
s′1
Ahigh

(
s′1; s

(+)
2

(
s′1, a

))
H
(
s′1; s1, s2, s3

)
, (3.7)

with the kernel as in (3.4) and Ahigh being the absorptive part of the high energy amplitude Mhigh.
In summary, we can write the crossing-symmetric dispersive representation for the amplitude ( in

the sense of EFT when required ) as

M(s1, s2) = α0 +
1

π

∫ ∞

Λ0

ds′1
s′1
A
(
s′1; s

(+)
2

(
s′1, a

))
H
(
s′1; s1, s2, s3

)
, (3.8)

where Λ0 = 2µ/3 for massive theories and Λ0 = M2 (the UV cut-off) for massless amplitudes and the
partial wave decomposition reads

A
(
s′1; s

(+)
2

(
s′1, a

))
= Φ(s1)

∞∑

J=0

(2J + 2α) aJ(s1)C
( d−3

2
)

J

(√
ξ(s1, a)

)
(3.9)
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where ξ(s1, a) = ξ0 + 4ξ0

(
a

s1−a

)
and ξ0 =

s21
(s1−Λ0)2

for massive theories while ξ0 = 1 for massless

theories and a`(s1) is the spectral density which is defined as the imaginary part of the partial wave
amplitude.

3.3 Wilson coefficients and locality constraints

In this section we outline two central ingredients needed for our bounds. Let us first review the case
of massive scalar EFTs. The crossing symmetric amplitude, pole subtracted if required, admits a
crossing symmetric double power series can be expanded in terms of crossing-symmetric variables
x := −(s1s2 + s2s3 + s3s1), y := −(s1s2s3):

M(s1, s2) =

∞∑

p,q=0

Wp,q x
pyq (3.10)

This is equivalent to a low-energy (EFT) expansion for the amplitude. The coefficients {Wp,q} are
themselves or related to the Wilson coefficients appearing in the effective Lagrangian of a theory.
Thus, these coefficients parametrize the space of EFTs. These coefficients can be obtained from the
amplitude via the inversion formula [29]

Wn−m,m =

∫ ∞

Λ0

ds1

2πs2n+m+1
1

Φ(s1)
∞∑

J=0

(2J + 2α) aJ(s1)B(J)
n,m(s1), (3.11)

with

BJn,m(s1) = 2
m∑

j=0

(−1)1−j+mp
(j)
J (ξ0) (4ξ0)j (3j −m− 2n)Γ(n− j)
j!(m− j)!Γ(n−m+ 1)

ξ0 :=
s2

1

(s1 − 2µ/3)2
(3.12)

Here {aJ} are the spectral functions which appear as coefficients in partial wave expansion of the

absorptive parts A. The functions {p(j)
J (ξ0)} are derivatives of Gegenbauer polynomials C

(α)
J for

scalars

p
(j)
J (ξ0) :=

∂jC
(α)
J (
√
z)

∂zj

∣∣∣∣∣
z=ξ0

. (3.13)

The inversion formula leads to two kinds of constraints that play central role in our subsequent
analysis. Let us briefly review these. For more details, the readers are encouraged to look into [29, 30].

Locality constraints

The first type of constraint that we will consider is related to the locality. In any local theory, a
crossing symmetric amplitude admits a low energy expansion of the form (3.10). In particular, there
should not be any negative power of x. However, this is not manifest at the level of the crossing
symmetric dispersion relation since (3.11) is valid for both n ≤ m and n > m, the latter leading to
the negative power of x. As explained in [29, 30] this is the price one has to pay for making crossing
symmetry manifest. Fixed-transfer dispersion relations are manifestly local, but crossing symmetry
has to be imposed as an additional constraint, whereas in the crossing symmetric dispersion relation,
by making crossing symmetry manifest, the locality is lost and has to be imposed. The equivalence
of these two approaches was argued in [30].

Thus one needs to impose locality by demanding

Wn−m,m = 0, for n < m. (3.14)

This gives rise to an infinite number of constraints on the partial wave coefficients {aJ} known as
locality constraints, which are, in general, linear combinations of the null constraints [5]. In principle,
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solving these infinite number of constraints can drastically restrict the space of allowed theories.
However, even solving a finite number of such constraints give valuable information that we will see
later.

Massless spinning particles

For massless spinning particles, the decomposition of the amplitude into partial waves remains more
or less unchanged with the technical difference because instead of Gegenbauer polynomials, we have
Wigner-d functions in the expansion. From section 2, we know how to construct the crossing symmetric
amplitudes given the linearly independent basis of helicity amplitudes for various massless and massive
spinning particles. The crossing symmetric decomposition (3.8) is therefore modified to be,

Mspin(s1, s2) = α0 +
1

π

∫ ∞

Λ0

ds′1
s′1
Aspin

(
s′1; s

(+)
2

(
s′1, a

))
H
(
s′1; s1, s2, s3

)
. (3.15)

If the crossing symmetric amplitude is given by
∑

i βiTi, where Ti denote linearly independent helicity
amplitudes and βi are some numbers,

Aspin
(
s1; s

(+)
2 (s1, a)

)
=
∑

i

βi Φ(s1)
∞∑

J=0

(2J + 2α) aiJ(s1) fi(d
J
m,n(

√
ξ(s1, a))) (3.16)

where fi(d
J
m,n(

√
ξ(s1, a))) denote the particular linear combinations of Wigner-d functions that appear

for ith helicity amplitude and aiJ(s1) now denotes the imaginary part of the partial waves of the

particular helicity amplitude Ti = T λ3,λ4λ1,λ2

(
s1; s

(+)
2 (s1, a)

)
. In our conventions, a helicity amplitude Ti

admits the following Wigner-d matrix decomposition,

fi

(
dJm,n(

√
ξ(s1, a))

)
= dJλ1−λ2,λ3−λ4(

√
ξ(s1, a)), J ≥ |λ1 − λ2| . (3.17)

The restriction over the spin has been explained in Appendix C. Consequently, the inversion formula
gets modified to,

Wspin
n−m,m =

∫ ∞

Λ0

ds1

2πs2n+m+1
1

Φ(s1)
∑

i

βi

∞∑

J=0

(2J + 2α) aiJ(s1) B̂(J),i
n,m (s1), (3.18)

with

B̂J,in,m(s1) = 2

m∑

j=0

(−1)1−j+mp
(j),i
J (1) (4)j (3j −m− 2n)Γ(n− j)
j!(m− j)!Γ(n−m+ 1)

p
(j),i
J (1) :=

∂jfi
(
dJm,n(

√
z)
)

∂zj

∣∣∣∣∣
z=1

,

(3.19)

The locality constraints are now modified to be,

Wspin
n−m,m = 0, for n < m. (3.20)

3.4 PBC constraints

In order to get bounds, we would like to show that the expression on the RHS of (3.11) (and also
(3.18)) or a linear combination of them must be of definite sign. We identify the main characters of
this analysis.

• Unitarity translates to positivity conditions on the spectral functions {aJ} as reviewed in ap-
pendix C.
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• We have ξ0 ≥ 1 for the entire range of s1 integration in the inversion formula while ξ0 = 1

identically for massless scalars ((3.12)). The functions p
(j)
J (ξ0) are positive due to the fact that

the Gegenbauer polynomials, and its derivatives, are positive for arguments larger than unity.

From these conditions, explicitly it follows11

Wn,0 ≥ 0. (3.21)

More generally, this positivity property does not hold because B(J)
n,m(s1) (see (3.11)) control the

sign of any term in J-expansion of the inversion formula. In that case one can ask whether taking

suitable linear combinations of B(J)
n,m(s1)s can restore the positivity. The answer turns out to be yes

and one obtains [29]

m∑

r=0

χ(r,m)
n (Λ2

0)Wn−r,r ≥ 0

0 ≤ Wn,0 ≤ Wn−1,0

(Λ0)2
, n ≥ 2 . (3.22)

The coefficient functions {χ(r,m)
n (Λ2

0)} satisfy the recursion relation:

χ(m,m)
n (Λ2

0) = 1, χ(r,m)
n (Λ2

0) =
m∑

j=r+1

(−1)j+r+1χ(j,m)
n (Λ2

0)
U

(α)
n,j,r(Λ

2
0)

U
(α)
n,r,r(Λ2

0)
(3.23)

with

U
(α)
n,m,k(s1) =

m∑

k=0

√
16ξ0

k
(α)k(m+ 2n− 3j)Γ(n− j)Γ(2j − k)

sm+2n
1 Γ(k)j!(m− j)!(j − k)!(n−m)!

. (3.24)

The conditions (3.22) are the so-called Positivity conditions. In short we will call them PBC .

Massless spinning particles

For massless spinning particles, the conditions for positivity are modified as follows.

• Recall that based on the construction outlined in 2, our crossing symmetric amplitudes are linear
combination of helicity amplitudes. The spectral functions, therefore, need to appear in the right
combinations amenable to positivity constraints. Unlike the scalar case, spectral functions of all
the helicity amplitudes do not obey positivity conditions but instead are constrained by unitarity
considerations in a way that certain specific linear combinations are positive (See appendix C
for details). In subsequent sections, we will see how it is achieved in our crossing symmetric
amplitudes.

• For helicity amplitudes, we obtain Wigner-d functions in the partial wave decomposition with the
precise form given by (3.16) and (3.17). One can check that for the relevant helicity amplitude
basis we have, and the linear combination in which they appear for our crossing symmetric
amplitudes, relevant linear combinations of Wigner-d function and its derivatives are positive
for ξ0 = 1.

Considering these points, just like the scalar case, we would like to construct a linear combination
of W spin

n−m,m, which is positive. It will turn out that the scalar ansatz suffices for the cases we consider.
The structural reason which allows us to do this will also become clear as we work out the relevant
examples in subsections 5.1 and 6.1.

11These conditions can also be shown to arise from the TRU inequalities discussed next, on Taylor expanding those
conditions around a = 0 [29].
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3.5 Typically-realness and Low Spin Dominance: TRU

The crossing-symmetric dispersive representation (3.8) uncovers an interesting connection between
scattering amplitudes and the mathematical discipline of geometric function theory (GFT) [25]. In
particular, the crossing symmetric dispersive representation (3.8) can be cast into what is known as
Robertson integral which enables one to establish typical realness properties of the amplitude in the
variable z̃ ≡ z3 for a certain range of a. This further enables the application of GFT techniques to
bound the coefficients {Wn,m}.

3.5.1 Typically real functions:

A function f : C → C is defined to be typically real on a domain D ∈ C containing segments of real
axis, if it is real on these segments and satisfies

Im [f(z)] Im[z] ≥ 0, Im[z] 6= 0, z ∈ D. (3.25)

For our analysis, we will be interested in a particular class of typically real functions known as TR. A
function f(z) ∈ TM is analytic and typically real in the unit disc ∆ := {z ∈ C : |z| < 1} and admits
Taylor series of the form

f(z) = z +

∞∑

n=2

cnz
n. (3.26)

The coefficients {cn} are real which follows from the definition. Such functions can be represented by
Stieltjes integrals known as Robertson integrals. A function f(z) regular in ∆ belongs to the class TR
if and only if it can be represented as the Robertson integral

f(z) =

∫ 1

−1
dµ(ξ)

z

1− 2ξz + z2
, (3.27)

where µ(ξ) is a non-decreasing function on ξ ∈ [−1, 1] and satisfying µ(1)− µ(−1) = 1.

3.5.2 Robertson form of dispersion integral

Let us now chalk out how to establish typical realness property of the amplitude [25]. Defining

ξ := 1 +
27a2

2(s′1)3
(a− s′1), dµ(ξ) :=

A(ξ, s2(ξ, a)) dξ∫ 1
−1 dξA(ξ, s2(ξ, a))

, (3.28)

one can formally cast the dispersion integral into

M̃(z̃, a) :=
M(z̃, a)− α0

2
π

∫ 1
−1 dξA(ξ, s2(ξ, a))

=

∫ 1

−1
dµ(ξ)

z̃

1− 2ξz̃ + z̃2
(3.29)

which is of the Robertson form (3.27). But this is not enough. We need to establish analyticity

property of M̃(z̃, a) in z̃ and the desired non-decreasing property of µ(ξ) over ξ ∈ [−1, 1].

1. The non-decreasing property of µ(ξ) over ξ ∈ [−1, 1] follows so long A is non-negative. To see
this, consider

µ(ξ1)− µ(ξ2) =

∫ ξ1

ξ2

dµ(ξ). (3.30)

It readily follows from (3.28) that so long A is non-negative, µ(ξ1) ≥ µ(ξ2) for ξ1 ≥ ξ2. Non-
negativity of the absorptive part A depends on the values of the free parameter a. Usually there
exists a real interval a ∈ Ip where A is non-negative.
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2. One further needs to investigate the analyticity of the amplitude inside the unit disc |z̃| < 1.
The z̃ analyticity properties are controlled by that of the Robertson kernel

z̃

1− 2ξz̃ + z̃2
. (3.31)

It turns out that kernel is analytic inside the unit disc |z̃| < 1 for a particular range of a which
gives another interval Ia.

Finally, collecting everything, we have that the amplitude M̃(z̃, a) admits the Roberston representa-
tion for

a ∈ Ip ∩ Ia, (3.32)

and therefore,
M̃(z̃, a) ∈ TR, ∀ a ∈ Ip ∩ Ia. (3.33)

Let us illustrate the analysis for the case of EFTs of scalar massless particles, in which case one
finds [25] that

Ia =

[
−M

2

3
, 0

)
∪
(

0,
2M2

3

]
. (3.34)

Next, we need to find the interval Ip. We can demand a very strong constraint that each term in the
partial wave decomposition (3.9) be positive. The Gegenbauer polynomial functions are positive for

cos θ =
√

s1+3a
s1−a ≥ 1. This leads to the constraint a ∈ (0,M2] with the upper limit coming from the

fact that a < s1 for real cos θ. Therefore we find that the amplitude is typically real for

0 ≤ ascalar ≤ 2M2

3
. (3.35)

Note that here we have imposed a kinematic condition- all the Gegenbauer polynomials are positive.
We are not considering the fact that depending on the relative ratio of aJ(s), we can have cos θ < 1,
but the overall sum still remain positive. This would need us to consider the dynamical implications
of the locality constraints on aJ(s), which we do in the next section and will lower the bound on a
from 0.

3.5.3 Positivity and Low-Spin Dominance(LSD): Massless scalar EFT

The analysis we have presented so far only requires positivity of the absorptive part as a whole i.e
A(s′1, s

+
2 (s′1, a)) ≥ 0. We imposed the positivity of each term in (3.9), spin by spin, which of course,

guarantees the positivity of the total absorptive part. In particular, in this way of imposing positivity

we demanded the positivity of Gegenbauer polynomials C
(α)
J (

√
ξ(s′1, a)), which led to the constraint√

ξ(s′1, a) > 1 in the previous subsection, and the positivity of the partial wave amplitudes aJ following
from the unitarity. However, this is a rather weak condition on the partial wave amplitudes. The
dynamical consequence of locality captured by the locality constraints (3.14) has not been considered.
It is quite natural to expect that locality constraints result in relative magnitudes of the partial
amplitudes such that the positivity of A can still be satisfied for

√
ξ(s′1, a) < 1.

Let us illustrate this with the case of massless scalar EFT. We begin with the dispersion relation
(3.8) and add

Nc := −
∑

n<m
m≥2

cn,mWn−m,ma
2n+m−3y (3.36)

Here {cn,m} are arbitrary weights. Using (3.11), we obtain
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M(si, a) +Nc

= α0 +

∫ ∞

M2

ds′1
πs′1

∑

J≥0
J even

(2J + 1)aJ(s′1)


C( d−3

2
)

J (
√
ξ(s′1, a))−

∑

n<m
m≥2

cn,mB̂Jn,m
a2n+mH(a; si)

2(s
′
1)2n+mH(s′1, si)


H(s′1, si)

(3.37)

Where
√
ξ = 1 +

2s+2
s′1

=
√

s′1+3a
s′1−a

and we have used the fact that H(a; si) = − y
a3

. We also have the

following crucial difference from the massive scalar EFT expression in (3.12)

B̂Jn,m = 2

m∑

J=0

(−1)1−J+mp
(J)
J (1) (4)J (3J −m− 2n)Γ(n− J)

J !(m− J)!Γ(n−m+ 1)
(3.38)

i.e ξ0 = 1. The locality constraints (3.14) ensure that Nc = 0. Thus adding this to M(si, a) does not
change the amplitude. But now we can analyze the consequence of the locality constraints inside the
dispersive representation. In fact, we now have the equivalent dispersive representation

M(si, a) = α0 +
1

π

∫ ∞

M2

ds′1
s′1
AL(s′1, a)H(s′1, si), (3.39)

with

AL(s′1, a) :=
∑

J≥0
J even

(2J + 1)aJ(s′1)


C( d−3

2
)

J (
√
ξ(s′1, a))−

∑

n<m
m≥2

cn,mB̂Jn,m
a2n+mH(a; si)

2(s
′
1)2n+mH(s′1, si)


 . (3.40)

Let us call AL local absorptive part. For the purpose of our analysis, we now impose the local positivity
condition as

AL(s′1, a) ≥ 0, ∀ s′1 ≥M2. (3.41)

This condition will result into a new range of validity for a. Let us analyze below how this range
can be found out. It is worth emphasizing that this condition is equivalent to the usual positivity
condition A(s′1, a) ≥ 0 when restricted to the to the subspace Nc = 0 in the space of partial wave
amplitudes {aJ}.

Since we will eventually study the Wilson coefficient expansion as a Laurent series about x, y = 0,
we analyze AL(s′1, a) in a low energy expansion about x = 0. In order to do so, we can replace

s′1 → a ξ
2+3
ξ2−1

in AL, (3.40), and write it as an expansion about x = 0. Using

H(a; si)

H(s′1; si)
=

(ξ2 + 3)3

(ξ2 − 9)(ξ2 − 1)2
+O(x) (3.42)

into (3.40), to leading order in x, the local positivity requirement becomes

AL(s′1, a) :=
∑

J≥0
J even

(2J + 1)aJ(s′1)


C( d−3

2
)

J (
√
ξ(s′1, a))−

∑

n<m
m≥2

cn,mB̂Jn,m
(ξ2 − 1)2n+m−2

2(ξ2 − 9)(ξ2 + 3)2n+m−3


 ≥ 0.

(3.43)
Observe that this leading contribution does not depend explicitly on a and is purely a function12

of ξ. We can then sum over n,m to 2n + m ≤ k, and find the smallest solution ξmin such that

12 We note that it seems like the denominator has a pole at ξ = 3, but this value is never attained since, from the analyticity

requirement of M, a < 2M2

3 , we have ξ2 < 3.
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0 < ξmin < ξ < 1 for which we can find a set of cn,m’s such that (3.41) is satisfied. We can in turn
use this value to determine an the new range of a corresponding to the local positivity condition,

√
s′1 + 3a

s′1 − a
> ξmin =⇒ (ξmin)2 − 1

(ξmin)2 + 3
M2 ≤ a. (3.44)

Since, 0 < ξmin < 1 the lower bound is stronger than 0 < a but also weaker than −M2

3 < a. We can
now combine this with (3.34) to have

(ξmin)2 − 1

(ξmin)2 + 3
M2 ≤ a ≤ 2M2

3
. (3.45)

The above exercise leads us to ξmin = 0.593 for the scalar EFT when we consider all locality
constraints up to k = 2113 This gives the following:

Scalar :− 0.1933M2 < ascalar <
2M2

3
, (3.46)

Note that the lower bound of a has been modified from the case where we demanded the positivity
of each partial wave without considering the locality constraints. From a physical perspective, the
dynamical constraints of UV consistency on scalar IR EFT are responsible for lowering the bound on
a from the previous subsection.

Our findings are also indicative of the well-known phenomenon of low spin dominance(LSD), i.e.
the higher spin partial wave amplitudes are suppressed. To be precise, we can calculate the ξmin in
an alternative way.

• Consider (3.37) without the locality constraints, and instead, we truncate the sum over spin to
some J = Jc try to find ξmin demanding this finite sum be positive. This means we assume that
the sign of the absorptive part in (3.37) does not change beyond a certain critical spin J = Jc
because of the smallness of aJ>Jc(s1). Therefore truncating the partial wave sum and doing the
positivity analysis is justified. Formally, the positivity condition for the truncated expression
reads

Jc∑

J=0
J even

(2J + 1)aJ(s′1)C
( d−3

2
)

J (
√
ξ(s′1, a)) > 0, ∀ ξ > ξmin, s

′
1 > M2. (3.47)

We are also assuming that for aJ 6= 0 at least for one J ∈ {0, 2, 4, · · · , Jc}.
• Therefore, we look for the smallest simultaneous root ξJc of the set

{
C

( d−3
2

)

J

(√
ξ(s′1, a)

) ∣∣∣ J ∈ {0, 2, 4, · · · , Jc}
}

such that

C
( d−3

2
)

J

(√
ξ(s′1, a)

)
> 0, ∀ ξ > ξJc , J ∈ {0, 2, 4, · · · , Jc}. (3.48)

For a given Jc, this ξJc is the ξmin that we considered before. In particular, we have that ξJc → 1
as Jc →∞, which is expected. Therefore, for the truncated set we consider, 1 ≥ ξ > ξJc ensures
that the LHS is positive since we have assumed that the sign of the absorptive part doesn’t
change after Jc.

13In order to obtain this numerical coefficient, we have used linear programming in Mathematica with 1700 digits of
precision to find solutions to the system of inequalities (3.43) for k ≤ 21 while varying ξ in steps of 0.048 from ξmin = 0.59329
to ξmax = 2.99 and spin J from J = 0 to Jmax = 56. The value of ξmin is determined by the lowest value of ξ for which the
system of inequalities (3.43) have a solution such that not all cn,m = 0 & cn,m > −∞.
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• Combining this with PBC , this constrains the range of a to

(ξ(Jc))2 − 1

(ξ(Jc))2 + 3
M2 ≤ a ≤ 2M2

3
. (3.49)

The first few values after rationalising to agree with 2 significant digits are:

Jc Scalar

2 −0.2M2 < a < 2M2

3

3 −0.69M2 < a < 2M2

3

4 −0.034M2 < a < 2M2

3

• We can see that the argument with locality constraints combined with the above analysis clearly
indicates Spin-2 dominance for the scalar case. More precisely, we input locality constraints
in estimating the range of a in first part of this subsection (i.e in the analysis leading up to
(3.46)). Locality constraints can also be interpreted as constraints on allowed aJ(s) for scalar
EFTs. Thus the range of a, after including the locality constraints (i.e., considering the allowed
space of scalar theories), approximately coincides with the range that we get from a completely
different analysis without using the null constraints and assuming that higher scalar partial
waves do not change the sign of the absorptive part after spin 2 (see 1st entry of the table
above). This implies that UV consistency of scalar EFTs leads to spin 2 dominance.

3.5.4 Massive scalars

For a massive theory we can repeat the analysis of the previous subsection. We shall consider the
case of the massive scalar with mass m and µ = 4m2. This was already considered in [25] where it

was argued that the range of a was −M
2

3 < a < 2M2

3 and bounds were obtained for various Wilson
coefficients. We revisit this using our new method using the locality constraints. The key changes

are in the relation between ξ and s
′
1, a which is given by ξ = ξ0

√
s
′
1+3a

s
′
1−a

with ξ0 =
s
′
1

s
′
1−µ

> 1 and the

locality constraints (3.12):

BJ,in,m(s1) = 2
m∑

j=0

(−1)1−j+mp
(j,i)
J (ξ0) (4ξ0)j (3j −m− 2n)Γ(n− j)
j!(m− j)!Γ(n−m+ 1)

. (3.50)

It can be easily checked that this gives

a2n+mH(a; si)

(s
′
1)2n+mH(s′1; si)

=
(ξ2 − ξ2

0)

(ξ2 − 9ξ2
0)(ξ2 + 3ξ2

0)
+ o(x) .

Proceeding with the analysis it turns out that there are no solutions for any ξ < 1. However since
ξ = 1 was used to obtain the previous range of a namely −M2

3 < a < 2M2

3 these do not give us a
stronger range of a. Thus, we conclude that

there is no low spin dominance for the massive case.

This justifies the results in [25] and highlights a key difference between the massive and massless cases.
We have carried out explicit checks using the pion S-matrices from the S-matrix bootstrap [48–50]
which verifies this claim.
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3.6 Bieberbach-Rogosinski bounds

We can expand M̃(z̃, a) about z̃ = 0 by expanding the kernel H(s1, z̃)

H(s1, z̃) =
27a2z̃(2s1 − 3a)

27a3z̃ − 27a2z̃s1 − (z̃ − 1)2s3
1

=
∞∑

n=0

βn(a, s1)z̃n , (3.51)

Comparing this with the low energy expansion of the amplitude

M̃0(z̃, a) =

∞∑

p,q=0

Wp,qx
pyq =

∞∑

n=0

a2nαn(a)z̃n

after rewriting in-terms of z̃ using x = −−27a3z̃
(1−z̃)2 and y = −−27a2z̃

(1−z̃)2 gives:

a2nαn(a) =
1

π

∫ ∞

M2

ds′1
s′1
A(s′1; s+

2 (s′1, a))βn(a, s′1) ,

with αp(a) =

p∑

n=0

n∑

m=0

Wn−m,ma
2n+m−2p(−27)n

Γ(n+ p)

Γ(2n)(p− n)!
, p ≥ 1 . (3.52)

In particular we have W0,0 = α0 and a2α1(a) = 1
π

∫∞
M2

ds′1
s′1
A(s′1; s+

2 (s′1, a))β1(a, s′1) . Note that since

β1(a, s1) = 27a2

s31
(3a− 2s1) and a < 2M2

3 < 2s1
3 we have β1 < 0. Thus,

α1(a) < 0 (3.53)

We can apply the Bieberbach-Rogosinski inequalities on the coefficients of any typically-real function
f(z) = z + a2z

2 + a3z
3 · · · inside the unit disk following [25]:

−κn ≤
αn(a)a2n

α1(a)a2
≤ n (3.54)

with

κn = n for even n, κn =
sinn ϑn
sinϑn

for odd n , (3.55)

where ϑn is the smallest solution of tannϑ = n tanϑ located in (πn ,
3π
2n) for n > 3 and κ3 = 1, to

constrain the Wilson coefficients in a low-energy expansion of the amplitude. We call these conditions
(3.54) collectively as TRU .

3.7 Summary of algorithm

In this section, we summarise our algorithm. The central characters of the story are the Wilson
Coefficients, the partial wave decomposition of the amplitude and the crossing symmetric kernel.
Firstly, unitarity of the partial wave amplitude decomposition and positivity of the spherical harmonics
and their derivatives for unphysical region of scattering, translate to positivity relations of the Wilson
coefficients ( also known as the PBC conditions [25]). To be more precise, unitarity demands that
the imaginary part of the partial wave coefficients is positive. The Gegenbauer polynomials (or the
relevant linear combination of the Wigner-d functions for the spinning case) or its derivatives which
appear in the partial wave expansion of the amplitude are positive in the unphysical region of scattering
(cos θ > 1). The Wilson coefficients themselves however might contain positive or negative sum of both
the manifestly positive quantities. The PBC conditions are then linear combination of the Wilson
coefficient expressions such that it is manifestly positive. Secondly, the fact that the amplitude is
typically real for a range of the parameter a then allows us to systematically obtain two-sided bounds
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on the Wilson coefficients (also known as the TRU conditions [25]). This is because the typically real
amplitude, as an expansion in z̃, has Bieberbach-Rogosinski bounds on the expansion coefficients [25].
Thirdly, we use locality, which modifies the lower range of a as obtained from cos θ > 1 and TRU .
In the following sections, we systematically implement this algorithm to first review bounds on the
scalar and then obtain the same for graviton and photon EFTs. These steps are summarised in the
flow chart below:

UV IR 

Unitarity Locality
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Figure 1: The above flowchart shows the steps involved in the GFT approach.

4 Scalar bounds

We now present the applications of formalism developed in the previous sections for various EFTs
starting with the massless scalar case. The massive scalar was already addressed in [25]. Recall
that the low energy EFT expansion of the amplitude takes the following form in terms of crossing-
symmetric variables x, y

F (s1, s2, s3) =
∑

p,q=0

Wp,qx
pyq ,

Starting with the dispersion relation given by (3.8) and (3.9) we can systematically derive the positivity
bounds. We linearise the steps in the following manner, which will serve as a guideline for us when
evaluating EFTs with spinning particles.

• Unitarity implies that in the dispersion relation, the spectral functions aJ are positive.
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• From the positivity of the Gegenbauer polynomials in the dispersion relation and the typical
realness of the amplitude, we have the following range for a (3.46),

−0.1933M2 < ascalar <
2M2

3
.

From (3.22), (3.23) and (3.24), we get positivity conditions on linear combinations 14 of wp,q =
Wp,q

W1,0
.

These set of conditions have been referred to in literature [25] as PBC conditions. Since the amplitude
is typically real, we also obtain Bieberbach Rogosinski bounds on wp,q from (3.54) (also known in
literature as TRU ). The algorithm will generically follow [25] and we refer the interested reader to
the details there. We begin by first noting that (3.53) implies

α1(a) = −27a2(1 + a w01) ≤ 0 ∀ − 0.1933M2 < a <
2M2

3
,

=⇒ −3

2M2
≤ w01 ≤

5.1733

M2
. (4.1)

We note that this precisely agrees with the result in [5] when we account for the difference in the
definitions of x due to the conventions. We have used x = −s1s2−s2s3−s3s1 while [5] used s2

1 +s2
2 +s2

3

which gives w01 = −g̃3
2 (since s1+s2+s3 = 0) which translates to −10.34 < g̃3 < 3. In the second step,

we solve for the set of inequalities derived from (3.22), (3.23), (3.24) and (3.54) upto a certain value of
n = nmax. Note that the conditions derived from (3.54) are a dependent. In order to efficiently solve
the inequalities, we discretize the variable a over the range specified in (3.46) in steps of δa and then
solve for the resulting larger set of inequalities. We present our results for nmax = 5 and δa = 1

101 in
the table below. We shall follow the convention of [25] namely M2 = 8

3 and re-write the results of [5]
in this convention for ease of comparison.

wp,q = Wp,q

W1,0
(TRU + PBC)min SDPBmin (TRU + PBC)max SDPBmax

w01 −0.5625 −0.5625 1.939 1.939
w11 −0.1318 −0.1318 0.219 0.216
w02 −0.1533 −0.1268 0.063 0.0296
w20 0 0 0.140625 0.140625
w21 −0.02595 −0.02595 0.0513 0.023
w12 −0.061 −0.02789 0.0275 0.0111
w30 0 0 0.01977 0.01977
w03 −0.011 −0.00156 0.017 0.0071
w31 −0.0047 −0.0047 0.0022 0.0022
w40 0 0 0.00278 0.00278
w50 0 0 0.00039 0.00039

Table 2: A comparison of the values obtained using our results GFT up to n = 5 and SDPB in [5].We used
the locality constraints and the techniques of [5] adapted using linear programming to generate the SDPB
values quoted above. These are identical to the ones quoted in [5]. The exact agreement between these values
is a consequence of the fact that the locality and null constraints are equivalent as observed in [30].

We note that we get an excellent agreement with [5]. In [25] a comparison was done with the
massive case and the results of [5], where it was noted that some of the results TRU were stronger.
However, since [5] considered only the massless case, so the above is more appropriate comparison as
the results show. We attribute the discrepancy in the w02, w21, w12, w03 values to the following:
We have not completely solved the Locality constraints Nc but we have implicitly assumed that they

14This is well defined as W1,0 > 0 as argued in (5.13).
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are zero when we consider a low energy expansion (4.1). However, each Wilson coefficient actually
involves an infinite sum of locality constraints for instance

α1(a) = −27a2W1,0

(
(1 + aw01) +

∞∑

n=1

w−n,n+1 a
n−1

)
. (4.2)

So strictly speaking, what we have are bounds on these combinations and not the wp,q’s themselves.
In practice, however one would have expected that since we obtained the range of a by using some of
the locality constraints, this should have resolved the issue. However, we remind the reader that to
get the bounds listed in the table we used PBc conditions in addition to the TRU ’s. The PBc’s are
linear conditions in the wp,q’s which are independent of a.

5 Photon bounds

In this section, we will constrain parity preserving photon EFTs. To be precise, let us consider
the following crossing symmetric helicity amplitudes from (2.20) and (2.21). This set up applies
almost identically to the graviton case also so we present here the general amplitude that we will be
considering for later use.

Mα(s1, s2, s3) = Fα2 (s1, s2, s3) + xFα1 (s1, s2, s3)

= (Tα1 (s1, s2, s3) + Tα3 (s1, s2, s3) + Tα4 (s1, s2, s3)) + x1T
α
2 (s1, s2, s3) (5.1)

where x1 ∈ [−1, 1] and α = γ, h for photons and gravitons respectively. The partial wave expansion
of this amplitude is given by,

(Fα2 (s1, s2) + xFα1 (s1, s2)) =
∑

J=0,2,4,···
16π(2J + 1)(ρ1,α

J + xρ2,α
J )dJ0,0(θ) +

∑

J=2,4,···
16π(2J + 1)ρ3,α

J (dJ2,2(θ) + dJ2,−2(θ)) +
∑

J=3,5,···
16π(2J + 1)ρ3,α

J (dJ2,2(θ)− dJ2,−2(θ))

(5.2)

dJm,m′ is the Wigner d-matrix defined in appendix (D). From the positivity of the spectral functions

in these cases( see appendix (C.1)), the reader can understand that this combination is positive15-
since ρ1,α

J ± ρ
2,α
J ≥ 0 we have

ρ1,α
J + x1ρ

2,α
J =

(1 + x1)

2
(ρ1,α
J + ρ2,α

J )
︸ ︷︷ ︸

≥0

+
(1− x1)

2
(ρ1,α
J − ρ

2,α
J )

︸ ︷︷ ︸
≥0

≥ 0 (5.3)

while ρ3,α
J ≥ 0 from the analysis in appendix (C.1). The crossing symmetric dispersion relation for

the photon amplitude is given by,

(F γ2 (s1, s2) + xF γ1 (s1, s2)) = αγ0 +
1

π

∫ ∞

M2

ds1

s′1
Aγ
(
s′1; s

(+)
2

(
s′1, a

))
H
(
s′1; s1, s2, s3

)
,

(5.4)

15We leave the analysis of F4, F5 which have denominators involving si for later analysis. For F3 since unitarity does not
fix the sign of ρα,5J our methods are not applicable.
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where H (s′1; s1, s2, s3) is defined in (3.4) and the partial wave decomposition reads

Aγ
(
s′1; s

(+)
2

(
s′1, a

))
=

∑

J=0,2,4,···
16π(2J + 1)(ρ1,γ

J + x1ρ
2,γ
J )dJ0,0(θ) +

∑

J=2,4,···
16π(2J + 1)ρ3,γ

J (dJ2,2(θ) + dJ2,−2(θ)) +

+
∑

J=3,5,···
16π(2J + 1)ρ3,γ

J (dJ2,2(θ)− dJ2,−2(θ)) , (5.5)

where cos2 θ = ξ(s′1, a) = 1 + 4
(

a
s′1−a

)
. Note that due to the fact that we have written down crossing

symmetric combination of helicity amplitudes, the crossing symmetric dispersion relation is essentially
of the same structure as the scalar one. In writing the dispersion relations (3.8) and (5.2), we have
used (3.16) and (3.17). The low energy EFT expansion of the amplitude reads,

F γ1 (s1, s2) =
∑

p,q

W1
p,qx

pyq, F γ2 (s1, s2) =
∑

p,q

W2
p,qx

pyq . (5.6)

For our analysis, we will be considering the most general Euler-Heisenberg type EFT for the photon

L = −1

4
FµνF

µν + a1 (FµνF
µν)2 + a2(FµνF̃

µν)2 + · · · (5.7)

obtained starting with a UV complete theory such as QED and integrating out the other massive
particles in the theory such as say the electron. To compare against the corresponding low energy
EFT expansion coefficients of [22] we can rewrite our EFT expansion in the form (see (F.1)),

F2(s1, s2, s3) = 2g2x− 3g3y + 2(g4,1 + 2g4,2)x2 + · · · (5.8)

F1(s1, s2, s3) = 2f2x− f3y + 4f4x
2 + · · · (5.9)

where the Wilson coefficients can be related to the EFT couplings such as a1 = f2+g2
16 , a2 = f2−g2

16 etc.

5.1 Wilson coefficients and Locality constraints: PBγ
C

The local low energy expansion of the amplitude (5.1) can be written as

F γ2 (s1, s2) + x1F
γ
1 (s1, s2) =

∞∑

p,q=0

W(x)
p,q x

pyq =

∞∑

p,q=0

W(x)
p,q x

p+qaq (5.10)

where we have used a = y/x and W(x)
p,q = W2

p,q + x1W1
p,q. Just like in the scalar case, we would

like to expand both the sides of the dispersion relation (5.4) to derive an expression for the locality
constraints- recall that by incorporating crossing symmetry we have compromised on locality which
serves as constraints in our formalism. In order to do so, we expand the kernel (3.4) and the partial
wave Wigner-d functions in (5.4) about a = 0 and compare powers on both sides. Note that for
a = 0, the Wigner-d functions are Taylor expanded about ξ0 = 1 (since the argument of the Wigner-d

functions are ξ(s1, a) = 1 + 4
(

a
s1−a

)
). We obtain,

W(x1)
n−m,m =

∫ ∞

M2

ds1

2πs2n+m+1
1

∑

J=0,2,4,···
(2J + 1)a

(1)
J (s1)GJ,1n,m ,

+

∫ ∞

M2

ds1

2πs2n+m+1
1

∑

J=2,4,···
(2J + 1)a

(2)
J (s1)ĜJ,2n,m ,

+

∫ ∞

M2

ds1

2πs2n+m+1
1

∑

J=3,5,7,···
(2J + 1)a

(3)
J (s1)ĜJ,3n,m ,

ĜJ,in,m = 2

m∑

j=0

(−1)1−j+mq
(j,i)
J (1) (4)j (3j −m− 2n)Γ(n− j)
j!(m− j)!Γ(n−m+ 1)

. (5.11)
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where a
(1)
J = ρ1,γ

J + xρ2,γ
J , a

(2)
J = a

(3)
J = ρ3,γ

J and q
(j,i)
J (1) = ∂jf (i)(

√
ξ)

∂ξj

∣∣∣∣
ξ=ξ0=1

with f (1) = dJ0,0, f
(2) =

dJ2,2 + dJ2,−2, f
(3) = dJ2,2− dJ2,−2. For convenience, in order to compute the partial derivatives q

(j,i)
J (1),

we use the representation of the Wigner-d functions in terms of Hypergeometric functions, given in
(D.1). The locality constraints for this case are therefore given by

W(x1)
n−m,m = 0 ∀n < m . (5.12)

We would also like to construct the spinning equivalent of PBC as done for scalars. To this end,

we note that spectral functions a
(i)
J ≥ 0 by unitarity and {dJ0,0(θ), dJm,m(θ) ± dJm,−m(θ)} are positive

for all J whenever cosine of the argument is bigger than or equal to 1 (see D) i.e., q
(j,i)
J (1) > 0 for all

J, j = 0, 1, 2, · · · and i = 1, 2, 3. In particular we have

W(x1)
n,0 =

∫ ∞

M2

ds1

2πs2n+m+1
1

∑

J=0,2,4,···
(2J + 1)a

(1)
J (s1)q

(0,1)
J (1) ,

+

∫ ∞

M2

ds1

2πs2n+m+1
1

∑

J=2,4,···
(2J + 1)a

(2)
J (s1)q

(0,2)
J (1) ,

+

∫ ∞

M2

ds1

2πs2n+m+1
1

∑

J=3,5,7,···
(2J + 1)a

(3)
J (s1)q

(0,3)
J (1) ≥ 0 . (5.13)

More generally in (5.11) the sign of any term in J expansion is controlled by GJ,in,m(s1) alone. We can

thus take linear combinations of variousW(x)
p,q ’s which is a positive sum of {dJ0,0(θ), dJm,m(θ)±dJm,−m(θ)}

and their derivatives and hence is manifestly positive. This gives us the Positivity conditions:

m∑

r=0

χ(r,m)
n (M2)W(x)

n−r,r ≥ 0, 0 ≤ W(x)
n,0 ≤

1

(M2)2Wx
n−1,0 , n ≥ 2 . (5.14)

The χ
(r,m)
n (M2) satisfy the recursion relation:

χ(m,m)
n (M2) = 1

χ(r,m)
n (M2) =

m∑

j=r+1

(−1)j+r+1χ(j,m)
n

Un,j,r(M
2)

Un,r,r(M2)
(5.15)

with Un,m,k = −4kΓ( 1
2

(2k+1))(3k−m−2n)Γ(n−k)s1−m−2n
4F3( k2 + 1

2
, k
2
,k−m,k−m

3
− 2n

3
+1;k+1,k−n+1,k−m

3
− 2n

3
;4)√

πΓ(k+1)Γ(−k+m+1)Γ(−m+n+1)
. We

call the conditions (5.14) collectively as PBγ
C

16. We note here that the positivity conditions PBγ
C in

this case are identical to the ones for massive scalar in [25, 29]. This is simply a consequence of the
fact that (5.11) is the sum of three scalar like terms each of which has an identical structure except

for the functions q
(j,i)
J (1) in GJ,in,m(s1). Since we do not use the explicit form of the function q

(j,i)
J (1)

anywhere in the argument above but just the fact that its positive, the result simply follows. Note
that these positive combinations are certainly not unique and one can definitely find different linear
combinations which may result in a stronger constraint however we will not pursue that here.

5.2 Typical Realness and Low Spin Dominance: TRγ
U

In this section, we try to get a range of a using positivity of the amplitude coupled with locality
constraints and typical realness of the amplitude. The analysis for typical realness is straightforward.

16We have used the closed form expression for Un,m,k in [29]
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From, section 3.5 and the discussion regarding the Robertson form of the integral (see the discussion
around (3.34)), the limit of a is given by,

(
a ∈

[
−M

2

3
, 0

)
∪
(

0,
2M2

3

])
∩

(
a ∀ A(s1, ; s

(+)
2 (s1, a) ≥ 0

)
.

(5.16)

We can assume the positivity of the absorptive part as a whole i.e A(s′1, s
+
2 (s′1, a)) ≥ 0 in (5.4)

which gives us the range of a as a ∈ (0, 2M2

3 ] . This is obtained by considering the positivity of each
term in the spin sum which of course guarantees the positivity of the full absorptive part though it
maybe too strong (similar to the massless scalar case). A more careful analysis requires us to use the
locality constraints Nγ

c = −∑n<m
m≥2

cn,mW
x1
n−m,ma

2n+m−3y to it with arbitrary weights cn,m’s (5.12).

M(si, a) +Nc =

∫ ∞

M2

ds1

2πs1

∑

J=0,2,4,···
(2J + 1)a

(1)
J (s1)


f (1)

J (ξ)−
∑

n<m
m≥2

cn,mĜJ,1n,m
a2n+mH(a; si)

(s
′
1)2n+mH(s′1, si)


H(s′1, si)

+

∫ ∞

M2

ds1

2πs1

∑

J=2,4,···
(2J + 1)a

(2)
J (s1)


f (2)

J (ξ)−
∑

n<m
m≥2

cn,mĜJ,2n,m
a2n+mH(a; si)

(s
′
1)2n+mH(s′1, si)


H(s′1, si)

+

∫ ∞

M2

ds1

2πs1

∑

J=3,5,7,···
(2J + 1)a

(3)
J (s1)


f (3)

J (ξ)−
∑

n<m
m≥2

cn,mĜJ,3n,m
a2n+mH(a; si)

(s
′
1)2n+mH(s′1, si)


H(s′1, si) ≥ 0,

(5.17)

where ĜJ,in,m has been defined in (5.11). Note that this is similar to the equation we had for the
scalar case (??) and therefore the analysis is also similar. The algorithm is very similar with the only
difference is that the ξmin is determined by the maximum lower bound obtained by considering the

positivity of three different classes of inequalities- the coefficients of a
(i)
J for i = 1, 2, 3. This exercise,

outlined in detail in subsubsection 3.5.3, leads us to ξγmin = 0.723 for the photon EFT when we consider

all locality constraints up to 2n + m ≤ 12 and Jmax ≤ 20. Using the relation
ξ2min−1

ξ2min+3
M2 < a < M2

and (5.16), we obtain,

Photon :− 0.1355M2 < aγ <
2M2

3
.

(5.18)

Similar to the scalar case, for the photon also we discover the phenomenon of Low Spin Dominance
(LSD). Consider the set of equations (5.17) without the locality constraints but with a maximal
spin cut-off J = Jc. If we assume that the absorptive part is unaffected by the contributions from
partial waves after J > Jc, the positivity of this finite sum of partial waves leads us to an independent
derivation of ξγmin. It suffices to choose the largest root ξγ(J) ≤ 1 of the set of polynomials {dJ0,0, dJ2,2±
dJ2,−2} for a fixed J ≤ Jc to ensure the positivity of the corresponding term in (5.2). We observe the
following table.

Jc Photon

2 −0.2M2 < aγ < 2M2

3

3 −0.143M2 < aγ < 2M2

3

4 −0.069M2 < aγ < 2M2

3
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We can see that the argument with Locality constraints combined with the above clearly indicates
spin-3 dominance for the photon case. Therefore for this range of a, we can impose the Bieberbach

Rogosinski bounds of subsection 3.6 on the Wilson coefficients W(x1)
n−m,m -these constraints are called

TRγU . In the next section we present the bounds obtained from PBγ
C , TRγU and the corresponding

range of a (5.18).

5.3 Bounds

We now apply our formalism to bound Wilson coefficients in the Euler-Heisenberg type EFT for the
photon. Recall that the low energy EFT expansion has the form,

L =
−1

4
FµνF

µν + a1 (FµνF
µν)2 + a2(FµνF̃

µν)2 + · · · (5.19)

For such an EFT, we have the following crossing symmetric S-matrices (see appendix F) ,

F1(s1, s2, s3) = 2f2x− f3y + 4f4x
2 − 2f5xy + f6,1y

2 + 8f6,2x
3 + · · ·

F2(s1, s2, s3) = 2g2x− 3g3y + 2(g41 + 2g42)x2 + (−5g5,1 − 3g5,2)xy + 3 (g6,1 − g6,2 + g6,3) y2 + 2g6,1x
3 + · · · ,

(5.20)

where the Wilson coefficients can be related to the EFT couplings such as a1 = f2+g2
16 , a2 = f2−g2

16
etc. We begin by listing out the PBγ

c and TRγU conditions for n = 3 (see (3.54), (5.14) and (5.18)).
The PBγ

c conditions are,

9w
(x1)
20

4M4
+

3w
(x1)
11

2M2
+ w

(x1)
02 ≥ 0,

5w
(x1)
20

2M2
+ w

(x1)
11 ≥ 0, 0 ≤ w(x1)

20 ≤ 1

M4
,

8w
(x1)
03 + 3(4w

(x1)
12 + 6w

(x1)
21 + 9w

(x1)
30 ) ≥ 0, 4w

(x1)
12 + 14w

(x1)
21 + 33w

(x1)
30 ≥ 0,

2w
(x1)
21 + 7w

(x1)
30 ≥ 0, 0 ≤ w(x1)

30 ≤ w(x1)
20 (5.21)

while the TRγU conditions are,

−2 ≤ a(2w
(x1)
01 − 27a(a(aw

(x1)
02 + w

(x1)
11 ) + w

(x1)
20 )) + 2w

(x1)
10

aw
(x1)
01 + 1

≤ 2,

−1 ≤ 3(a(9a(a(a(27a(a(w
(x1)
03 a+ w

(x1)
12 ) + w

(x1)
21 )− 4w

(x1)
02 + 27w

(x1)
30 − 4w

(x1)
11 )− 4w

(x1)
20 ) + w

(x1)
01 ) + 1)

aw
(x1)
01 + 1

≤ 3,

(5.22)

where as before we have used the notation
W(x1)
p,q

W(x1)
1,0

= w
(x1)
pq and the range of a has been specified in

(5.18). The coefficients w
(x1)
ij are related to the EFT expansion as follows ,

w
(x1)
01 =

−3g3 − x1f3

2g2 + 2x1f2
, w

(x1)
02 =

3(g6,1 − g6,2 + g6,3) + x1f6,1

2g2 + 2x1f2

w
(x1)
20 =

2(g4,1 + 2g4,2) + x14f4

2g2 + 2x1f2
, w

(x1)
11 =

(−5g5,1 − 3g5,2)− x12f5

2g2 + 2x1f2
, (5.23)

where, W(x1)
1,0 = 2g2 + 2x1f2. Before solving these constraints and getting bounds, we want to point

some salient features of our inequalities. The positivity of W1,0 (5.13) gives us:

g2 + x1f2 ≥ 0 , (5.24)
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In particular this translates to g2 ± f2 ≥ 0 in other words a1, a2 ≥ 0. After expanding F2 + x1F1 in
z̃, a we can use relation (3.53) which translates to the following:

−27a2(−2g2 − 2x1f2 + 3ag3 + ax1f3) < 0 .

Firstly we note that if f2 = ±g2 then, since the above relation has to hold for all x1 ∈ [−1, 1] and all

−5M2

37 < a < 2M2

3 , we get f3 = ±3g3, the reasoning is as follows. Suppose f2 = ±g2 then by looking
at x1 = ∓1 we get

a(3g3 ∓ f3) > 0, ∀ − 5M2

37
< a <

2M2

3
.

which gives us the result. In particular for the f2 = g2 case we note that if we truncate to 6-derivatives
there is no difference between the massless scalar case and this one since F1 = F2. This gives us

−3.44

M2
<
f3

f2
<

1

M2
(5.25)

Secondly if g2 + x1f2 6= 0 then from (5.25) we have

−4.902

M2
<
g3 + x1

f3
3

g2 + x1f2
<

1

M2
(5.26)

These can be compared with the results in table 1 in [22] and we can see that there is decent
agreement. We can in fact use the above relations to get region plots as shown in the figure below.
We have benchmarked where different theories lie in this allowed space of EFT’s. These regions can
also be compared with the ones in figure 1 in [22] and we note that our method gives a rectangular
region for the left figure whereas the right figure is identical.

Figure 2: The allowed regions in the
(
g3
g2
, f3f2

)
vs f2

g2
space with scalar,axion,graviton,QED,scalar QED, W±

sector benchmarked.

Furthermore, whenever we have f2 = kg2 with k ∈ [0, 1] we can see the space of allowed theories as
in this case by choosing a suitable x1 one can make g2 + x1f2 = 0. The plot is shown below.
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Figure 3: The space of allowed regions in the
(
f3
f2
, g3f2

)
for f2 = kg2 with k = 0, 0.25.0.5, 1 corresponding to

blue, purple,yellow,green and red respectively.

By working out the n = 3 PBγ
C and TRγU conditions explicitly we obtain the following values for

w
(x1)
pq listed in table 3. A comparative plot for the the first few higher derivative coefficients is given

in figure 4. As before in the Wilson coefficients wx1pq , the region f2 = ±g2 is special and must be
treated with caution. From (5.21), it immediately follows that consistency of the equations for all
x1 ∈ [−1, 1], enforces the relations of the form fi = k

∑
j gi,j for i, J > 2 whenever f2 = ±kg2.

w
(x1)
p,q =

W(x1)
p,q

W(x1)
1,0

(TRU + PBC)min (TRU + PBC)max

w
(x1)
01 −1.5 7.353

w
(x1)
20 0 1

w
(x1)
02 −11.029 4.368

w
(x1)
11 −2.5 6.353

w
(x1)
03 −18.479 64.601

w
(x1)
12 −84.255 15.980

w
(x1)
21 −3.5 28.1121

w
(x1)
30 0 1

Table 3: A list of bounds obtained using our results TRU up to n = 3 in the normalisation M2 = 1.

In the above table w
(x1)
20 corresponds to

g4,1+2g4,2
g2

and its range is exactly the one obtained in [22], we
also have bounds on 10 derivative terms which were not given in [22].
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Figure 4: Plots for (w11 and w02) vs w01 for TRγU upto n = 3 .

6 Graviton bounds

In this section we will be considering parity preserving graviton amplitudes. We would like to consider
the same combination of amplitudes as in the photon case since unitarity guarantees the positivity
of these combinations. However, the low energy expansion of F h2 (s1, s2, s3) =

∑
i=1,3,4 Ti(s1, s2, s3)

starts only at 8-derivatives (the first regular term is the one from R4) which translates to the low
energy expansion in z̃ starting from z̃2 order. Such a function cannot be typically real as can be
seen using the following simple argument. Suppose we have a typically-real function f(z) which has
a Taylor expansion f(z) = z2 + a3z

3 + · · · around the origin. In a small neighbourhood of z = 0 the
leading term is the dominant one and we have =f(z)=z > 0 =⇒ r2 sin 2θ sin θ > 0 for all z = reIθ

and θ ∈ (0, π) ∪ (π, 2π), this however is not possible as sin 2θ changes sign in the upper/lower half
plane but sin θ does not. Thus our hypothesis that f(z) is typically real is incorrect.

Thus our methods will not directly apply to these combinations. For our purposes we will consid-
ering the modified combination:

Mh(s1, s2, s3) = F̃ h2 (s1, s2, s3)

=

(
T h1 (s1, s2, s3)

s2
1

+
T h3 (s1, s2, s3)

s2
3

+
T h4 (s1, s2, s3)

s2
2

)
(6.1)

As can be readily checked the above combination F̃ h2 (s1, s2, s3) does not have any additional low
energy spurious poles, is fully crossing symmetric and obeys the same o(s2) Regge growth we demand
for F hi (s1, s2, s3). Thus F̃ h2 (s1, s2, s3) also satisfies the crossing symmetric dispersion (3.8) 17.
Furthermore it has the low energy expansion given by

F̃ h2 (s1, s2, s3) =W(f)
1,0 x+W(f)

0,1 y +W(f)
1,1 xy +W(f)

2,0 x
2 + · · · . (6.2)

We can also consider F h1 (s1, s2, s3) which18 has an expansion

F h1 (s1, s2, s3) =W(g)
0,1y +W(g)

1,1xy +W(g)
2,0x

2 + · · · . (6.3)

17We have verified that this is indeed true for all the 4-graviton string amplitudes for details see B.
18As for the photon case we could have considered F̃h2 (s1, s2, s3) + x1F

h
1 (s1, s2, s3) for x1 ∈ [−1, 1]however this leads to a

spectral coefficient ρ1
s1′2 + ρ2 which doesn’t seem to have a fixed sign from unitarity alone ρ1 ≥ 0, ρ1 ± ρ2 ≥ 0. We shall use

a different method to bound Fh1 (s1, s2, s3).
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We shall not explore this case in the current work. When we write the above expansions we have a
low-energy gravitational EFT in mind

L =
−2

κ2

√−gR+ 8
βR3

κ3
R3 + 2

βR4

κ4
C2 +

2β̃R4

κ4
C̃2 + · · · , (6.4)

where R is the Ricci scalar, κ2 = 32πG and C = RµνκλRµνκλ, C̃ = 1
2R

µναβεγδαβRγδµν and the metric
gµν = ηµν+hµν is given in-terms of the gravitational field hµν . We subtract out the poles corresponding
to the R and R3 terms and look at the low energy expansion of the rest of the amplitude. The
Wilson coefficients of the low-energy expansion of the amplitudes are related to the parameters in the
gravitational EFT Lagrangian such as

W(f)
1,0 =

βR4 + β̃R4

κ4
. (6.5)

6.1 Wilson coefficients and Locality constraints: PBh
C

The local low energy expansion of the amplitude (6.1) can be written as

F̃ h2 (s1, s2) =
∞∑

p,q=0

W(f)
p,q x

pyq =
∞∑

p,q=0

W(f)
p,q x

p+qaq (6.6)

where we have used a = y/x and W(h)
0,0 = 0. We can solve for the W(h)

p,q by expanding around a = 0
and comparing powers of x, a. We obtain,

W(f)
n−m,m =

∫ ∞

M2

ds1

2πs2n+m+1
1

∑

J=0,2,4,···
(2J + 1)ã

(1)
J (s1)KJ,1n,m ,

+

∫ ∞

M2

ds1

2πs2n+m+1
1

∑

J=4,6,···
(2J + 1)ã

(2)
J (s1)K̂J,2n,m ,

+

∫ ∞

M2

ds1

2πs2n+m+1
1

∑

J=5,7,···
(2J + 1)ã

(3)
J (s1)K̂J,3n,m ,

K̂J,in,m = 2

m∑

j=0

(−1)1−j+mq
(j,i)
J (1) (4)j (3j −m− 2n)Γ(n− j)
j!(m− j)!Γ(n−m+ 1)

. (6.7)

where ã
(1)
J =

ρ1,hJ
s21

, ã
(2)
J = ã

(3)
J =

ρ3,hJ
s21

and q
(j,i)
J (1) = ∂jf (i)(

√
ξ)

∂ξj

∣∣∣∣
ξ=ξ0=1

with f (1) = dJ0,0, f
(2) =

dJ4,4(cos−1(
√
ξ))

(1+
√
ξ)2

+
dJ4,−4(cos−1(

√
ξ))

(1−
√
ξ)2

, f (3) =
dJ4,4(cos−1(

√
ξ))

(1+
√
ξ)2

− dJ4,−4(cos−1(
√
ξ))

(1−
√
ξ)2

.

A key difference between the scalar/photon case and the graviton case we are considering now is that
the combinations f (i) are no longer positive even for ξ > 1.

However for ξ = 1 we can check that f (i) = 1 and since the spectral functions ã
(i)
J ≥ 0 by unitarity

namely a
(i)
J ≥ 0 so this in particular implies

W(h)
n,0 =

∫ ∞

M2

ds1

2πs2n+m+1
1

∑

J=0,2,4,···
(2J + 1)ã

(1)
J (s1) ,

+

∫ ∞

M2

ds1

2πs2n+m+1
1

∑

J=4,6,···
(2J + 1)ã

(2)
J (s1) ,

+

∫ ∞

M2

ds1

2πs2n+m+1
1

∑

J=5,7,···
(2J + 1)ã

(3)
J (s1) ≥ 0 . (6.8)
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We can see straightforwardly that the above implies

0 ≤ W(f)
n,0 ≤

1

M4
W(f)
n−1,0 .

As alluded to before, the non-positivity of f (i) in (6.7) implies the sign of any term in J expansion is
no longer controlled by KJ,in,m(s1) alone. So this makes obtaining a closed form for PBh

C much harder
in this case. We can however do this case by case. For n = 2 these read:

9w
(f)
20

4M4
+

3w
(f)
11

2M2
+ w

(f)
02 ≥ 0,

5w
(f)
20

2M2
+ w

(f)
11 ≥ 0, 0 ≤ w(f)

20 ≤
1

M4
,

(6.9)

where w
(f)
p,q =

W(f)
p,q

W(f)
1,0

. As before the locality constraints for this case are therefore given by

W(f)
n−m,m = 0 ∀n < m . (6.10)

6.2 Typically-Realness and Low spin dominance: TRh
U

In this section we try to get a range of a using positivity of the amplitude coupled with locality
constraints and typically-realness of the amplitude. The analysis in this case has key differences due
to the non-positivity of the f (i)

(√
ξ
)

even for ξ > 1. We know the typically-realness of the amplitude
followed from two crucial ingredients namely the regularity of the kernel inside the unit disk and the
positivity of the absorptive part. The former remains unchanged the latter however crucially needs
the locality constraints to justify now, since ξ > 1 is no longer sufficient to guarantee positivity.

(
a ∈

[
−M

2

3
, 0

)
∪
(

0,
2M2

3

])
∩

(
a ∀ A(s1, ; s

(+)
2 (s1, a) ≥ 0

)
LSD

.

(6.11)

We can proceed with the LSD analysis as before by including the locality constraints Nh
c =

−∑n<m
m≥2

cn,mW(f)
n−m,ma

2n+m−3y to it with arbitrary weights cn,m’s (6.10).

M(si, a) +Nc =

∫ ∞

M2

ds1

2πs1

∑

J=0,2,4,···
(2J + 1)ã

(1)
J (s1)


f (1)

J (ξ)−
∑

n<m
m≥2

cn,mK̂J,1n,m
a2n+mH(a; si)

(s
′
1)2n+mH(s′1, si)


H(s′1, si)

+

∫ ∞

M2

ds1

2πs1

∑

J=4,6,···
(2J + 1)ã

(2)
J (s1)


f (2)

J (ξ)−
∑

n<m
m≥2

cn,mK̂J,2n,m
a2n+mH(a; si)

(s
′
1)2n+mH(s′1, si)


H(s′1, si)

+

∫ ∞

M2

ds1

2πs1

∑

J=5,7,···
(2J + 1)ã

(3)
J (s1)


f (3)

J (ξ)−
∑

n<m
m≥2

cn,mK̂J,3n,m
a2n+mH(a; si)

(s
′
1)2n+mH(s′1, si)


H(s′1, si) ≥ 0,

(6.12)

where K̂J,in,m has been defined in (6.7). As before ξmin is determined by the maximum lower bound
obtained by considering the positivity of three different classes of inequalities namely corresponding

to the coefficients of ã
(i)
J for i = 1, 2, 3. We can also determine ξmax now which is determined by the

minimum upper bound obtained by considering the positivity of the same three classes of inequalities.
This exercise leads us to ξhmin = 0.593 and ξhmax = 3 for the graviton EFT when we consider all locality
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constraints up to 2n + m ≤ 12 and Jmax ≤ 20. Using the relation
ξ2min−1

ξ2min+3
M2 < a < ξ2max−1

ξ2max+3
M2 and

(6.11), we obtain,

Graviton :− 0.1933M2 < ah <
2M2

3
,

(6.13)

We would now like to show that this is indicative of Spin-2 dominance for the graviton case. Since in

the set of polynomials {dJ0,0,
dJ4,4(cos−1x)

(1+x)2
± dJ4,−4(cos−1x)

(1−x)2
} the latter two elements do not have straightfor-

ward positivity properties for general J . The identification of the critical spin Jc is more complicated
and needs more detailed consideration in this case. A key difference between the scalar/photon cases
and the graviton case we are looking at now is that both the upper and lower bound of a can change.
Let us recall how that happens- the condition TRU tells us that the allowed range of ξ ∈ [0, 3]. The
overlap of this region with the positive part of the absorptive part gave us the required range of ξ
to be used in our analysis. In the analogous exercise for the photons and scalars, we had truncated
the partial wave sum to a finite cut-off in spin and so then the range of ξ was determined by what
range for which these polynomials were positive. We had determined the lower range of ξ to be given
by the largest root of the Wigner-d combinations that appear with respective spectral coefficients-
this was usually such that ξmin < 1. The upper range of ξ was automatically determined by the
TRU conditions since the relevant Wigner-d matrices were manifestly positive for ξ > 1— in other
words there were no restrictions on the upper limit of ξ from the Wigner-d polynomials. The story
for gravitons remains the same for the lower bound for ξ, but we note the following changes for the
upper bound.

To illustrate this point, notice that the Wigner-d combination f (3) =
dJ4,4(cos−1(

√
ξ))

(1+
√
ξ)2

−dJ4,−4(cos−1(
√
ξ))

(1−
√
ξ)2

is not always positive for ξ > 1 for J ≥ 9. Therefore if we assume Jc = 9, the upper limit for ξ (and
hence a) also changes along with the lower limit. As an example we present shortening of the positive
regions for f (3) for J = 9, 11 in figure 5. We present the allowed range of a as a function of Jc in the
form of a table below.

Jc Graviton

2 −0.2M2 < ah < 2M2

3

4 −0.069M2 < ah < 2M2

3

6 −0.034M2 < ah < 2M2

3

9 −0.014M2 < ah < 19641M2

140000

We can see the spin-2 dominance clearly for the graviton case from the above table. We have also
illustrated this for the case of the type-II string amplitude in appendix(G).Note that the locality
constraints play an important role in maintaining the positivity of the amplitude despite the Wigner-
d combination f (3) not having nice positivity properties. This is not a surprise since the locality
constraints encode the details of the theory and put constraints on allowed spectral densities that
appear in each sector. It would be interesting to explore the detailed implications of locality constraints
in future.

36



0.2 0.4 0.6 0.8 1.0 1.2 1.4

-20

-15

-10

-5

5

(a) Positive ξ regions for f (3) for J = 9 marked
in red.
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(b) Positive ξ regions for f (3) for J = 11
marked in red.

Figure 5: A comparative plot of changing regions of positivity in ξ with spin for f (3).

Therefore for this range of a in (6.13), we can impose the Bieberbach-Rogosinski bounds of sub-

section 3.6 on the Wilson coefficients W(f)
n−m,m —these constraints are called TRfU .

6.3 Bounds

In this section we put the bounds on the low energy EFT expansion which is parametrized by,

F̃ h2 = 2xf0,0 + 3yf1,0 + 2x2f2,0 + xy (2f3,1 − f3,0) + y2 (−3f4,0 − 3f4,1 + 9f4,2) + 2x3f4,0 + · · · (6.14)

where in terms of parametrization of [7],

T h3 (s1, s2, s3) = s4
3



∞∑

i=0

f2i,is
i
2s
i
1 +

∞∑

i=1

b i
2
c∑

j=0

fi,j(s
i−j
2 sj1 + si−j1 sj2)


 . (6.15)

We have explicitly,

w
(f)
1,0 = 2f0,0, w

(f)
0,1 = 3f1,0, w

(f)
2,0 = 2f2,0, w

(f)
1,1 = (2f3,1 − f3,0)

w
(f)
0,2 = (−3f4,0 − 3f4,1 + 9f4,2) , w

(f)
3,0 = 2f4,0 .

(6.16)

We demonstrated in the previous subsection that due to positivity and typical realness of the
amplitudes, we can put two sided bounds on Wilson coefficients. Using (3.53) we have,

− 1.5 ≤ wf01 ≤ 5.17331 (6.17)

where wf01 =
w

(f)
0,1

w
(f)
1,0

, which implies −1 ≤ f1,0
f0,0
≤ 3.44.
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Figure 6: A line plot to show the allowed range of f1,0 vs f0,0 with scalar, fermion, photon, gravitino,
graviton, super string, Heterotic string and bosonic string sector benchmarked.

The above figure is the crossing symmetric analogue of figure 8 in [7]. For n = 2 TRhU and PBh
C ,

we obtain table 4 (in units of M2 = 1),

wf
pq =

w
(f)
p,q

w
(f)
1,0

(TRU + PBC)min (TRU + PBC)max

wf
01 −1.5 5.1733

wf
02 −7.7600 3.8273

wf
20 0 1

wf
11 −2.5 4.1734

Table 4: A list of graviton bounds obtained using our results TRU up to n = 2 in the normalisation M2 = 1.

We note that terms such as f2,1 or f1,1 vanish when we consider fully crossing symmetric combi-
nations as these are proportional to s1 + s2 + s3 = 0 thus we will not be able to bound these using
the current combinations19we are looking at. However, using our method, we can bound coefficients
like

f1,0
f0,0

for which no non-trivial bounds were found using the fixed-t dispersion relation, to the best

of our knowledge. The region carved out by the Wilson coefficients with their respective data points
for various theories is given. The data has been obtained from [7].

19However by looking at F4(s1, s2, s3) and F5(s1, s2, s3) these terms do appear so we can bound them in principle. We do
not attempt to do this in our current work.
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Figure 7: The allowed regions in the (w11, w02) vs w01 space with scalar, fermion, photon, gravitino, graviton,
superstring, Heterotic string and bosonic string sector benchmarked.

7 Discussion

In this paper, we set up a crossing symmetric dispersion relation for external particles carrying spin.
Given a basis of amplitudes, which transform under crossing, we give a general prescription to con-
struct crossing symmetric amplitudes relevant for CSDR from them. We demonstrated this construc-
tion explicitly for massless photons, gravitons and massive Majorana fermion helicity amplitudes in
d = 4. We then use the CSDR for certain photons and graviton crossing symmetric amplitudes and
put bounds on low energy Wilson coefficients. Our analysis suggested that the positivity of the ab-
sorptive part is dominated by partial waves of low-lying spins—we found indications of spin-3 LSD for
photons and spin-2 for gravitons (see [2, 7]). Using the typically-realness property of the amplitude,
the Wilson coefficients satisfied the Bieberbach-Rogosinski (BR) bounds. We supplemented the BR
bounds using certain additional positivity conditions to get tighter bounds in some cases. The photon
bounds are in good agreement with existing results in literature. We dealt with the graviton ampli-
tude separately since the low energy EFT expansion starts from the eighth order in derivatives for the
crossing symmetric amplitude we consider. In order for the low energy expansion to be typically real,
we considered a modified amplitude which then had the requisite properties. Similar to the photon
case, we wrote down the locality constraints in closed form and analysed certain bounds. One would
like to tackle several problems, some of which we outline below.

• Compared to the fixed-t dispersion relation, the non-linear unitarity constraints arising from
the crossing symmetric dispersion relation is mathematically different. In the analysis of the
recently resurrected (numerical) S-matrix bootstrap, e.g., [48, 51], the starting point is a crossing
symmetric basis that captures some of the known analytic properties of the amplitude. The
crossing symmetric dispersion relation gives a systematic crossing symmetric starting point where
the parametrisation of the amplitude now is in terms of the absorptive partial wave amplitudes.
We envisage some simplification arising from this, since instead of a two variable parametrisation,
one now can focus on a one variable one. It will be very important to examine this systematically
in the near future.

• Since our approach enables us to write down the locality/null constraints in a closed form, it
will be interesting to attempt a systematic derivation of the stronger version of the low spin
dominance conjectured in [7].
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• We have not attempted to use the non-linear constraints arising from Toeplitz determinants [25].
This should further constrain the space of EFTs.

• We hope for a consolidated treatment of graviton positivity conditions PBh
C in the future. The

main reason for the failure of scalar PBC ansatz stems from the fact that the pj,is are not
explicitly positive for all spins.

• In this work we considered the most natural combinations of helicity amplitudes which are sim-
ple and suffice to illustrate our method. There are other combinations which we can consider.
We list below a couple of them:

F4&F5 : We can consider Fα3 (s1, s2, s3), Fα4 (s1, s2, s3) and Fα5 (s1, s2, s3). In particular note that
for the photon case we have not been able to put constraints on g4,1 and g4,2 separately. This is an
artifact of the construction of F γ1 and F γ2 , where the coefficients g4,1 and g4,2 appear only in the
combination g4,1 +2g4,2. However in the low energy expansion of Fα4 and Fα5 the coefficients g4,1

and g4,2 do appear separately see appendix (F).Thus considering these combinations will help us
bound these coefficients. For the photon a preliminary analysis assuming spin-3 dominance shows
that both Fα4 (s1, s2, s3) and Fα5 (s1, s2, s3) have suitable ranges of a for which their absorptive
parts are positive namely

F4 :− M2

5
< a <

M2

2
,

F5 :− M2

5
< a < 0 .

Fh
1 : For gravitons we can consider the combination

F h1 (s1, s2, s3) + F h2 (s1, s2, s3) + F̃ h2 (s1, s2, s3)

to bound the Wilson coefficients appearing in F h1 (s1, s2, s3) (see (6.3)).

Parity violating amplitudes: As spelt out in the appendix C.14 (see below (C.23)), the
spectral functions for the parity violating amplitudes do not seem to obey definite positivity
conditions and some non-linear constraints of the kind dealt in [7] might be useful.

We leave a more careful analysis and GFT bounds from these combinations for future forays.

• We considered helicity amplitudes for spinning particles in our analysis. There are other formu-
lations for handling spinning amplitudes as well. One such is transversity amplitudes [52]. In
transversity formalism, the spin is quantised normal to the plane of scattering. In this formalism,
the crossing equations are diagonalised. This, however, comes at the price that the unitarity is
now straightforward. However, one can still work the unitarity exploiting the relation between
the transversity amplitude and the helicity amplitude, the former being a linear combination
of the latter. The unitarity consideration, along with fixed transfer dispersion relations, was
employed to obtain positivity bounds for transversity amplitudes for EFTs in [53]. However,
it is not clear how to translate these positivity bounds to constraints on EFT parameters like
Wilson coefficients. Therefore, it is worth investigating how these positivity bounds can be used
to constrain the EFT parametric space. Further, it will be interesting to consider applying the
crossing-symmetric dispersive techniques to these transversity amplitudes.

• It should be possible to extend our analysis to Mellin amplitudes for CFTs building on [30].
This would be relevant for studying EFT bounds in AdS space.

• An important assumption of our work is that we are only analysing low energy effective field
theories at the tree level. This is justifiable for EFTs having weakly coupled UV completion.
Even in this situation, it will be interesting to know how these bounds get modified, including
massless loops [54]. This is beyond the scope of our present framework since we expand our low
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energy effective amplitude around s, t = 0. In crossing symmetric dispersion relation, it is not
natural to expand in this forward limit. So our set-up might be better suited to address this
issue, and we leave this exciting possibility for future exploration.
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A Representation theory of S3: A crash course

In this appendix, we present a short self contained review of S3 representations following [39]. We
can represent the three irreps of S3 by the following young diagrams.

1S = 1A = 2M = . (A.1)

where 1S is the one dimensional totally symmetric representation, 1A is the one dimensional totally
anti-symmetric representation and 2M is the mixed symmetry two dimensional representation. Given
an representation of S3, we can easily decompose it to the irreducible sub spaces of 1S, 1A and 2M
representations using the respective projectors. Denoting the generators for S3 by P12 and P23 (where
Pij denotes interchange of particles in i and j th position in a set (123) ), the projectors for the totally
symmetric and anti-symmetric subspaces are given by

P1S =
(1 + P12 + P23 + P13 + P23P12 + P12P23)

6

P1A =
(1− P12 − P23 − P13 + P23P12 + P12P23)

6
(A.2)

where P13 = P23P12P23. The formulae (A.2) make it clear that complete symmetrization and
anti symmetrization lead to projection onto the 1S and 1A subspace, respectively, while the part
that transforms in the 2M representation is annihilated by both the symmetric and anti-symmetric
projectors. The group theory for the action of S3 on the Mandelstam invariants is given by the left
action of S3 on itself. The 6left generated by the left action of S3 onto itself can be decomposed as.

6left = 1S + 2.2M + 1A. (A.3)

Note the appearance of two 2M subspaces, which differ from one another because they have differ-
ent Z2 charges. The explicit projectors for these two (two-dimensional) sub-spaces can be constructed
as follows. The projectors for the two-dimensional subspace of positive Z2 charge are

P
(1)
2M+

=
1 + P23

2
− (1 + P12 + P23 + P13 + P23P12 + P12P23)

6

P
(2)
2M+

=
P23P12 + P13

2
− (1 + P12 + P23 + P13 + P23P12 + P12P23)

6
(A.4)

Note that the above two projectors are respectively symmetric under the action of Z2 generator

P23 and P13 and hence having a positive Z2 charge. We note that the projector P
(1)
2M+

projects to a
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subspace which is symmetric under P23 while P
(2)
2M+

projects to a subspace which is symmetric under
P12. The projectors for the two dimensional subspace for the negative Z2 charge (anti-symmetric
under P23 and P13 respectively) are

P
(1)
2M−

=
1− P23

2
− (1− P12 − P23 − P13 + P23P12 + P12P23)

6

P
(2)
2M−

=
P23P12 − P13

2
− (1− P12 − P23 − P13 + P23P12 + P12P23)

6
(A.5)

To explicitly see the formalism in action, consider an arbitrary function of the Mandelstam invariants
F (s, t, u). The various irreducible subspaces are given by20,

fSym(s, t, u) =
1

6
(F (s, t, u) + F (t, s, u) + F (s, u, t) + F (u, t, s) + F (t, u, s) + F (u, s, t))

fAnti−sym(s, t, u) =
1

6
(F (s, t, u)− F (t, s, u)− F (s, u, t)− F (u, t, s) + F (t, u, s) + F (u, s, t))

fMixed+(s, t, u) =
1

6
(2F (s, t, u)− F (t, s, u)− F (u, s, t) + 2F (s, u, t)− F (u, t, s)− F (t, u, s))

fMixed−(s, t, u) =
1

6
(2F (s, t, u)− F (t, s, u)− F (u, s, t)− 2F (s, u, t) + F (u, t, s) + F (t, u, s))

(A.6)

We can easily write down examples of such functions built out of polynomials of mandelstam
invariants [39, 45, 55].

fSym(s, t, u) = (s2 + t2 + u2)m(stu)n

fAnti−sym(s, t, u) = (s2t− t2s− s2u+ su2 − u2t+ t2u)fSym(s, t, u)

fMixed+(s, t, u) = {(2s− t− u)fSym(s, t, u), (2s2 − t2 − u2)fSym(s, t, u)}
fMixed+(s, t, u) = {(s− u)fSym(s, t, u), (s2 − u2)fSym(s, t, u)}

(A.7)

B Massless amplitudes: Examples

We expect that the combinations FI also obey (3.8) since they satisfy all the necessary conditions.
We can do some sanity checks by considering a couple of examples. In particular we look at F4, F5

since FI for I = 1, 2, 3 the dispersion relation (3.8) is identical to the scalar case considered in [29].

We first consider the Photon amplitude in superstring theory with a kinematic pre-factor being
stripped off for appropriate Regge growth namely:

T1(s1, s2, s3) =
Γ
[
−s2
2

]
Γ
[
−s3
2

]
Γ[1+

s1
2 ]

,

T3(s1, s2, s3) =
Γ
[
−s1
2

]
Γ
[
−s2
2

]
Γ[1+

s3
2 ]

,

T4(s1, s2, s3) =
Γ
[
−s1
2

]
Γ
[
−s3
2

]
Γ[1+

s2
2 ]

. (B.1)

We can construct (2.23),(2.24) from the above, we need to subtract out the massless poles and this is
done by multipliying F4 as defined in (2.23) by an s1s2s3 factor. We can then check if (3.8) is satisfied

20We note that fMixed+(s, t, u) + fMixed+(t, u, s) + fMixed+(u, s, t) = fMixed−(s, t, u) + fMixed−(t, u, s) + fMixed−(u, s, t) = 0
denoting that they form two dimensional subspaces.
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by comparing the exact answer with the result obtained from (3.8) by computing the absorbtive part.
Since (B.1) has infinitely many poles at s′1 = k with k = 2, 4, · · · , and each pole p contributes a
−πδ(s′1 − p) factor in the absorbtive part thus (3.8) reduces to an infinite sum over all the poles k,
k ∈ 2Z+ which we call GI . We can then compare the results by truncating this sum to some kmax
(say kmax = 100) and the results are shown in first row of the plots below.

Figure 8: A comparison of the crossing symmetric dispersion for the Photon and Graviton cases which are
shown in the first and second rows respectively. We have indicated the regions where F4, F5 differ from their
dispersive analogues G4, G5 by less than 10% in green.

We can also consider the Graviton amplitude from superstring theory (again with appropriate kine-
matic pre-factors stripped off )

T1(s1, s2, s3) = Γ[−s1] Γ[−s2] Γ[−s3]
Γ[1+s1] Γ[1+s2] Γ[1+s3]

(
1− s2s3

s1+1

)
,

T3(s1, s2, s3) = Γ[−s1] Γ[−s2] Γ[−s3]
Γ[1+s1] Γ[1+s2] Γ[1+s3]

(
1− s1s2

s3+1

)
,

T4(s1, s2, s3) = Γ[−s1] Γ[−s2] Γ[−s3]
Γ[1+s1] Γ[1+s2] Γ[1+s3]

(
1− s1s3

s2+1

)
. (B.2)

To remove the massless poles, we now need to multiply F5 as defined in (2.24) by the factor s1s2s3,
and we can follow the same procedure as the photon case with the only change being that we now
have poles at s′1 = k with k ∈ Z+.
The results are shown in the second row of the figure above. We note that since (3.8) was written
down assuming o(s2

1) behaviour for large |s1| and fixed s2, examining the growth of FI restricts s2

to a region where we should trust the results, e.g., F4 in the photon case has a growth ss21 for large
s1 which implies we can strictly expect an agreement for only s2 < 2, though we have considered a
bigger region in the figure we see that there is an excellent agreement between the dispersion relation
and the exact answer.
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We have also verified that the crossing symmetric combination in eqn.(6.1) namely

F̃ h2 (s1, s2, s3) =

(
T h1 (s1, s2, s3)

s2
1

+
T h3 (s1, s2, s3)

s2
3

+
T h4 (s1, s2, s3)

s2
2

)

for tree-level 4-graviton scattering amplitudes in superstring, Heterotic string and bosonic string
theories all obey that the crossing symmetric dispersion relation after subtracting out the massless
poles.

C Unitarity constraints

In this section we review the unitarity constraints on partial wave amplitudes following [37, 41].
Unitarity constraints can be summarized as positivity of norm of a state 〈ψ|ψ〉 ≥ 0. If we have
multiple states (say of number N), this translates to positive semi-definiteness of a N ×N hermitian
matrix. In order to see the relation of this statement in context of S-matrices, consider the incoming
and outgoing particles as decomposed into irreps of the poincare group. To be more precise (eq (2.21)
of [41]),

|κ1, κ2〉 =

∫
d4p

(2π)4
θ(p0)θ(−p2)

∑

i,j

∑

J,λ

|c, ~p; J, λ;λi, λj〉〈c, ~p; J, λ;λi, λj |κ1, κ2〉. (C.1)

|κ1, κ2〉 is generic 2−particle momentum state

|κ1, κ2〉 := |m1, ~p1; j1, λ1〉 ⊗ |m2, ~p2; j2, λ2〉 , (C.2)

where ~pi,mi are corresponding 3−momentum, mass respectively, pµi piµ = −m2
i . ji, λi are spin and

helicity respectively. For massive particles helicity takes 2ji + 1 values, λi ∈ {−ji,−ji + 1, . . . , j −
1, j}, mi 6= 0, while for massless particles it takes two values, λi = ±ji, mi = 0. The Poincare
2−particle irreps {|c, ~p; J, λ;λi, λj〉} are states of definite total momenta and total angular momenta,
~p being the total 3−momentum and J being the total angular momentum with λ corresponding
3−component taking 2J + 1 values, λ ∈ {−J,−J + 1, . . . , J − 1, J}. In particular,

〈c, ~p; J, λ;λi, λj |κ1, κ2〉 ∝ (2π)4δ4(pµ − pµ1 − pµ2 ). (C.3)

Further, these states are normalized by

〈
c′, ~p′; J ′, λ′;λ′1, λ

′
2

∣∣ c, ~p; J, λ;λ1, λ2

〉
= (2π)4δ4(p′µ − pµ) δl′lδλ′λδλ′1λ1δλ′2λ2 . (C.4)

For our purpose, we will work in CoM frame. Thus the states of interest to us are {|c,~0; J, λ;λ1, λ2〉}.
Under the action of parity operator P, these states transform as (C.5)

P |c,~0; J, λ;λ1, λ2〉 = η1η2(−1)J−j1+j2 |c,~0; J, λ;−λ1,−λ2〉 . (C.5)

Here η1 and η2 are pure phases, also called intrinsic parity associated with the particle, obey the
constraint η2

i = ±1 (with the negative sign only possible for fermions).
For identical particles we need to take care of the exchange symmetry. This prompts us to define

the following states which we will use in our subsequent analysis

|c,~0; J, λ;λ1, λ2〉id =
1

2

[
|c,~0; J, λ;λ1, λ2〉+ (−1)J+λ1−λ2 |c,~0; J, λ;λ1, λ2〉

]
(C.6)

We also note the relation between the 2-particle reducible state |κ1, κ2〉COM in the COM frame and
|c,~0; J, λ;λ1, λ2〉id. This is essential in determining the range of J for the irreducible 2-particle reps.
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Following [41] we can define the 2-particle reducible state in COM frame as product of eigenstates of
the Jz operator.

|κ1, κ2〉COM ≡ |(~p, θ, φ) ;λ1, λ2〉 ≡ |m1, ~p; j1, λ1〉 ⊗ |m2,−~p; j2, λ2〉
(C.7)

where Jz = Lz + j1
z + j2

z (Lz is the orbital angulam momentum, jiz are the intrinsic spins). In the
COM frame, therefore, (C.1) can be expressed as follows (see (C.18) of [41]),

|(~p, θ, φ) ;λ1, λ2〉id =
√

2
∑

J

J∑

λ=−J
CJ(~p)eiφ(λ1+λ2−λ)d

(l)
λλ12

(θ) |c, 0; J, λ;λ1, λ2〉id (C.8)

The sum over J is not unbounded and can be fixed as follows. Let us consider the case where the ~p is
aligned along the z-axis (i.e θ = φ = 0). The LHS is an eigenstate of Jz = λ1 − λ2, since the orbital
angular momentum is zero and the projection of intrinsic spin onto the direction of momenta now
becomes the helicity itself. The RHS sum over λ therefore must be therefore over only those states
for which λ = λ1 − λ2, and hence J ≥ |λ1 − λ2|.

|(~p, 0, 0) ;λ1, λ2〉id =
√

2

∞∑

J=|λ1−λ2|

CJ(~p) |c, 0; J, λ = |λ1 − λ2|;λ1, λ2〉id (C.9)

We can now apply the rotation matrix on both sides to bring it to the form (C.8). Note that the
rotation matrix does not change the Casimir J2 (and hence the J sum).

|(~p, θ, φ) ;λ1, λ2〉id =
√

2
∞∑

J=|λ1−λ2|

J∑

λ=−J
CJ(~p)eiφ(λ1+λ2−λ)d

(l)
λλ12

(θ) |c, 0; J, λ;λ1, λ2〉id

(C.10)

To summarise, the additional symmetry due to the identical nature of 2 particle states decides even
or odd spins (or both) appear in the partial wave expansion. The cut-off for the spin is decided by
the helicities of the constituent states.

Corresponding to the incoming and the outgoing states, therefore, we can write down a basis of
irreducible 2 particle states for each spin l that appears in the decomposition (C.1). Generically they
are denoted as,

|1〉in = |c, ~p; J, λ; j1, j2〉in, |1〉out = |c, ~p; J, λ; j3, j4〉out

|2〉in = |c, ~p; J, λ; j1 − 1, j2〉in, |2〉out = |c, ~p; J, λ; j3 − 1, j4〉out

.

.

|Nin〉in = |c, ~p; J, λ;−j1,−j2〉in, |Nout〉out = |c, ~p; J, λ;−j3,−j4〉out

(C.11)

Imposing the positivity constraints of hermitian matrix, therefore, translates to positivity of the
following matrix (eq 2.118 of [41])

HJ(s)× (2π)4δ4δJ ′Jδλ′λ =

(
in〈a′|b〉in in〈a′|b〉out

out〈a′|b〉in out〈a′|b〉out

)
(C.12)

where s = −p2. Using the normalisation conditions (C.4), and
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out

〈
c′, ~p′; J ′, λ′;λ′1, λ

′
2

∣∣ c, ~p; J, λ;λ1, λ2

〉
in

= (2π)4δ4(p′µ − pµ) δJ ′Jδλ′λ SJ
λ′1,λ

′
2

λ1,λ2
(s)

(C.13)

where S`
λ′1,λ

′
2

λ1,λ2
(s) = (δλ′1λ1δλ′2λ2 + (−1)J−(λ′1−λ′2)δλ′2λ1δλ′1λ2) + iT`

λ′1,λ
′
2

λ1,λ2
(s) is the partial amplitude with

spin J , we get,

(
δa′b S`

∗
a′b

S`a′b δa′b

)
� 0 (C.14)

C.1 Massless bosons: Photons and gravitons

The two particle irreducible states can be labelled by the helicities (λi = ±m with m = 1, 2 for
photons and gravitons respectively ) as

|c, ~p; J, λ;λ1, λ2〉 ≡ |λ1, λ2〉
|1〉 =

1√
2

(|+ +〉+ | − −〉) , J = 0, 2, 4, · · ·

|2〉 =
√

2 (|+−〉) , J = 2m, 2m+ 1, 2m+ 2, 2m+ 3, · · ·
|3〉 =

1√
2

(|+ +〉 − | − −〉) , J = 0, 2, 4, · · ·

(C.15)

We note that the states |1〉 and |3〉 only contain even spin. This is evident from the symmetry of the
states ( see (C.6)) and the discussion around (C.10). In the following subsections, we try to impose
the unitarity conditions assuming parity invariance and non-invariance respectively. For gravitons
λi = ±2, so spins will change as |λ1 − λ2|.

C.1.1 Parity invariant theories

We note that the parity of these states: states |1〉 and |2〉 are parity even states while |3〉 is a parity
odd state. This is due to the following21

P|+ +〉 = | − −〉, P| − −〉 = |+ +〉, P|+−〉 = (−1)J | −+〉 = (−1)J(−1)J−2|+−〉 = |+−〉
(C.16)

We are now in a position to evaluate the matrix (C.14) for the set of states (C.15). Furthermore,
we assume parity invariance which implies that the states of definite parity do not mix. The following
conditions are obtained for the parity even sector.

(
in〈1′|1〉in in〈1′|1〉out

out〈1′|1〉in out〈1′|1〉out

)
� 0, J = 0,

(
in〈2′|2〉in in〈2′|2〉out

out〈2′|2〉in out〈2′|2〉out

)
� 0, J = 2m+ 1, 2m+ 3, . . .




in〈1′|1〉in in〈1′|2〉in in〈1′|1〉out in〈1′|2〉out

in〈2′|1〉in in〈2′|2〉in in〈2′|1〉out in〈2′|2〉out

out〈1′|1〉in out〈1′|2〉in out〈1′|1〉out out〈1′|2〉out

out〈2′|1〉in out〈2′|2〉in out〈2′|1〉out out〈2′|2〉out


 � 0, J = 2m, 2m+ 2, . . .

(C.17)

21We work in the convention ηi = 1 for photons.
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and for the parity odd sector,

(
in〈3′|3〉in in〈3′|3〉out

out〈3′|3〉in out〈3′|3〉out

)
� 0, J = 0, 2, 4, . . .

(C.18)

Let us work out one of the conditions in detail: 1st matrix of (C.17) gives us the following

(
1 1− i

(
T`
∗ −−
++ + T`

∗ ++
++

)

1 + i
(
T`
−−

++ + T`
++

++

)
1

)
� 0, J = 0,

(C.19)

Noting that the trace is positive trivially, the condition of positivity translates to the determinant of
the matrix being positive:

2 Im(T J=0
1 + T J=0

2 ) ≥ |T J=0
1 + T J=0

2 |2 ≥ 0

(C.20)

Similarly, 2nd matrix of (C.17) and (C.18) gives us the following

ImT J3 ≥ |T J3 |2 ≥ 0, J = 2m+ 1, 2m+ 3, . . . .

2Im(T J1 − T J2 ) ≥ |T J1 − T J2 |2 ≥ 0, J = 0, 2, 4, . . . . (C.21)

Now let us consider the conditions coming from the third matrix in (C.17). We find that analysing
the 2× 2 principal minors is sufficient for our purposes and we obtain,

ImT J3 ≥ |T J3 |2 ≥ 0, J = 2m, 2m+ 2, . . . ,

2Im(T J1 + T J2 ) ≥ |T J1 + T J2 |2 ≥ 0, J = 2, 4, . . . ,

1 ≥ 4|T J5 |2 ≥ 0, J = 2m, 2m+ 2, . . .

(C.22)

C.1.2 Parity violating theories

For this case, the assumption that parity even and odd states do not mix no longer holds true. This
leads to the modification of the unitarity equations,




in〈1′|1〉in in〈1′|3〉in in〈1′|1〉out in〈1′|3〉out

in〈3′|1〉in in〈3′|3〉in in〈3′|1〉out in〈3′|3〉out

out〈1′|1〉in out〈1′|3〉in out〈1′|1〉out out〈1′|3〉out

out〈3′|1〉in out〈3′|3〉in out〈3′|1〉out out〈3′|3〉out


 � 0, J = 0

(
in〈2′|2〉in in〈2′|2〉out

out〈2′|2〉in out〈2′|2〉out

)
� 0, J = 2m+ 1, 2m+ 3, . . .




in〈1′|1〉in in〈1′|2〉in in〈1′|3〉in in〈1′|1〉out in〈1′|2〉out in〈1′|3〉out

in〈2′|1〉in in〈2′|2〉in in〈2′|3〉in in〈2′|1〉out in〈2′|2〉out in〈2′|3〉out

in〈3′|1〉in in〈3′|2〉in in〈3′|3〉in in〈3′|1〉out in〈3′|2〉out in〈3′|3〉out

out〈1′|1〉in out〈1′|2〉in out〈1′|3〉in out〈1′|1〉out out〈1′|2〉out out〈1′|3〉out

out〈2′|1〉in out〈2′|2〉in out〈2′|3〉in out〈2′|1〉out out〈2′|2〉out out〈2′|3〉out

out〈3′|1〉in out〈3′|2〉in out〈3′|3〉in out〈3′|1〉out out〈3′|2〉out out〈3′|3〉out



� 0, J = 2, 4, 6 · · ·

(C.23)
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The analysis of these matrices is tedious and we find the following constraints

ImT J3 ≥ |T J3 |2 ≥ 0, J = 2m, 2m+ 1 . . . ,

2Im(T J1 +
1

2
(T J2 + T ′J2 )) ≥ |T J1 +

1

2
(T J2 + T ′J2 )|2 ≥ 0, J = 0, 2, 4, 6, . . . ,

2Im(T J1 −
1

2
(T J2 + T ′J2 )) ≥ |T J1 −

1

2
(T J2 + T ′J2 )|2 ≥ 0, J = 0, 2, 4, 6, . . . ,

|T J2 − T ′J2 |2 ≤ 4, J = 0, 1, 2, . . .

|T J5 − T ′J5 | ≤ 1, J = 2m, 2m+ 1, . . .

|T J5 + T ′J5 | ≤ 1 J = 2m, 2m+ 1, . . .

(C.24)

From the last three conditions listed above, it seems that linear unitarity analysis doesn’t fix the
sign of ρJ2 − ρ′J2 , ρJ5 ± ρ′J5 and perhaps a more thorough investigation is required [7]. Hence, in this
work, we do not attempt to bound the parity violating amplitudes.

C.2 Massive Majorana fermions

The unitarity conditions for massive Majorana fermions were spelt out in [41]. Let us quickly review
them for completeness. Recalling the fermion amplitudes {Φi} defined in (2.36), the corresponding
partial amplitudes are denoted as {ΦJ

i }. Then, following the similar arguements as in the previous
subsection, one arrives at the unitarity conditions as follows:

1. (
1 1− i

[
Φ0∗

1 (s)− Φ0∗
2 (s)

]

1 + i
[
Φ0

1(s)− Φ0
2(s)

]
1

)
� 0, . (C.25)

The positivity of the determinant of the matrix then gives

2 Im.
[
Φ0

1(s)− Φ0
2(s)

]
≥
∣∣Φ0

1(s)− Φ0
2(s)

∣∣2 . (C.26)

2. (
1 1− i

[
ΦJ∗

1 (s) + ΦJ∗
2 (s)

]

1 + i
[
ΦJ

1 (s) + ΦJ
2 (s)

]
1

)
� 0, J ≥ 0 (even), (C.27)

implying

2 Im.
[
ΦJ

1 (s) + ΦJ
2 (s)

]
≥
∣∣ΦJ

1 (s) + ΦJ
2 (s)

∣∣2 , J ≥ 0 (even). (C.28)

3. (
1 1− 2iΦJ∗

3

1 + 2iΦJ
3 1

)
� 0, J ≥ 1 (odd), (C.29)

with straightforward consequence

Im. ΦJ
3 (s) ≥ |ΦJ

3 (s)|2 ≥ 0 J ≥ 1 (odd). (C.30)

4. (
I2×2 SJ†2×2

SJ2×2 I2×2

)
� 0, J = 2, 4, 6, . . . (C.31)

with

I2×2 :=

(
1 0
0 1

)
, SJ2×2(s) :=

(
1 + i

[
ΦJ

1 (s)− ΦJ
2 (s)

]
2iΦJ∗

5

2iΦJ
5 (s) 1 + 2iΦJ

3 (s)

)
(C.32)

We get,

Det[SJ2×2(s)] ≥ 0
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D Representations of Wigner-d functions

In this appendix, we give some convenient representations of the Wigner-d functions that we used in
the main text for computational ease. For the photons we use,

dJ0,0

(
cos−1

√
ξ(s′1, a)

)
= 2F1

(
−J, J + 1; 1;

1

2

(
1−

√
ξ
))

,

dJ2,2

(
cos−1

√
ξ(s′1, a)

)
=

1

24

(
6
(√

ξ + 1
)2

2F1

(
2− J, J + 3; 1;

1

2

(
1−

√
ξ
))

dJ2,−2

(
cos−1

√
ξ(s′1, a)

)
=

(
1−√ξ

)2
Γ(J + 3) 2F1

(
2− J, J + 3; 5; 1

2

(
1−√ξ

))

96Γ(J − 1)

dJ4,4

(
cos−1

√
ξ(s′1, a)

)
=

1

16
(
√
ξ + 1)4

2F1

(
4− J, J + 5; 1;

1−√ξ
2

)

dJ4,−4

(
cos−1

√
ξ(s′1, a)

)
=

(1−√ξ)4Γ(J + 5) 2F1

(
4− J, J + 5; 9; 1−

√
ξ

2

)

645120Γ(J − 3)
(D.1)

E Massive Majorana fermions: Locality constraints

We would like to use our techniques to constrain the EFTs involving Majorana fermions. However,
in this work we will only spell out the locality constraints and leave a careful analysis for future work.
Now we will list the locality constraint for the amplitude listed in (2.43). Let us assume a low energy
EFT expansion of the form

Ψ1(s1, s2, s3) =
∑

n,m

Wψ
p,qx

pyq (E.1)

The partial wave decomposition reads,

(Ψ1(s1, s2)) = αψ0 +
1

π

∫ ∞

M2

ds1

s′1
Aψ
(
s′1; s

(+)
2

(
s′1, a

))
H
(
s′1; s1, s2, s3

)
,

(E.2)

where H (s′1; s1, s2, s3) is defined in (3.4) and the partial wave decomposition reads

Aψ
(
s′1; s

(+)
2

(
s′1, a

))
=

∑

J=0,2,4,···
16π(2J + 1)ρ1,ψ

J dJ0,0(θ) +
∑

J=1,2,3,···
64π(2J + 1)(−1)J+1ρ3,ψ

J dJ1,−1(θ)

−
∑

J=0,2,4,···
16π(2J + 1)ρ5,ψ

J dJ0,1(θ) (E.3)

where (cos θ)2 = ξ(s′1, a) = ξ0 + 4ξ0

(
a

s′1−a

)
and ξ0 =

s21
s1−M2 while ρi,ψJ are the respective spectral

functions which appear as coefficients in partial wave expansion of the absorptive parts Aψ. We have
also used that ρ4,ψ

J = (−1)J+1ρ3,ψ
J [41]. The coefficients Wψ

p,q can be obtained from the amplitude via
the inversion formula [29]

Wψ
n−m,m =

∫ ∞

M2

ds1

2πs2n+m+1
1

16π


 ∑

J=0,2,4···
(2J + 1) ρ1,ψ

J (s1)	(1,J)
n,m (s1) +

∑

J=1,2,3···
(2J + 1) ρ3,ψ

J (s1)	(3,J)
n,m (s1)

∑

J=0,2,4···
(2J + 1) ρ5,ψ

J (s1)	(5,J)
n,m (s1)


 . (E.4)
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with

	(i,J)
n,m (s1) = 2

m∑

j=0

(−1)1−j+mr
(i,j)
J (ξ0) (4ξ0)j (3j −m− 2n)Γ(n− j)
j!(m− j)!Γ(n−m+ 1)

ξ0 :=
s2

1

(s1 − 2µ/3)2
(E.5)

The functions {p(j)
J (ξ0)} are derivatives of respective Wigner-d functions

r
(1,j)
J (ξ0) :=

∂jdJ0,0(
√
z)

∂zj

∣∣∣∣∣
z=ξ0

, r
(3,j)
J (ξ0) := (−1)J+1

∂jdJ1,−1(
√
z)

∂zj

∣∣∣∣∣
z=ξ0

r
(5,j)
J (ξ0) :=

∂jdJ0,1(
√
z)

∂zj

∣∣∣∣∣
z=ξ0

(E.6)

The locality constraints then are simply,

Wψ
n−m,m = 0, ∀ n < m . (E.7)

F EFT expansion of the crossing basis elements

In this section, we give the low energy EFT expansion for the crossing basis elements (2.7) for some
special cases used in the main text. For the photon case, we have the following:

F1(s1, s2, s3) = 2f2x− f3y + 4f4x
2 − 2f5xy + f6,1y

2 + 8f6,2x
3 + · · ·

F2(s1, s2, s3) = 2g2x− 3g3y + 2(g41 + 2g42)x2 + (−5g5,1 − 3g5,2)xy + 3 (g6,1 − g6,2 + g6,3) y2 + 2g6,1x
3 + · · · ,

F3(s1, s2, s3) = 2h2x− h3y + 4h4x
2 − 2h5xy + h6,1y

2 + 8h6,2x
3 + · · ·

F4(s1, s2, s3) =
1

3
(g2 + (g41 + 2g42)x+ (g5,2 − g5,1)y + g6,1x

2 + · · · ) ,

F5(s1, s2, s3) =
1

3
(g3x− g4,1y + g5,1x

2 − (2g6,1 + g6,2)xy) + · · · . (F.1)

As alluded to in the main text in the discussion below eq.(2.7) if an amplitude is t−u symmetric then
the crossing basis has only 3 elements {f(s1, s2, s3), g1(s1, s2, s3), h1(s1, s2, s3)} and F2, F4, F5 above
correspond to these for the t− u symmetric amplitude, T1(s1, s2, s3), while F1 and F3 correspond to
the fully crossing symmetric helicity amplitudes T2(s1, s2, s3) and T5(s1, s2, s3) respectively

T1(s1, s2, s3) = g2s
2
1 + g3s

3
1 + s4

1g4,1 +
(
s2

1

)
(s2

1 + s2
2 + s2

3)g4,2 + s5
1g5,1 + g5,2

(
s2

2s3 + s2s
2
3

)
(s2 + s3)2

+s6
1g6,1 + g6,2

((
s3

2s3 + s2s
3
3

)
(s2 + s3)2

)
+ g6,3

((
s2

2s
2
3

)
(s2 + s3)2

)

T2(s1, s2, s3) = f2(s2
1 + s2

2 + s2
3) + f3(s1s2s3) + f4(s2

1 + s2
2 + s2

3)2 + f5(s2
1 + s2

2 + s2
3)(s1s2s3) + f6,1(s1s2s3)2

f6,2(s2
1 + s2

2 + s2
3)3

T5(s1, s2, s3) = h2(s2
1 + s2

2 + s2
3) + h3(s1s2s3) + h4(s2

1 + s2
2 + s2

3)2 + h5(s2
1 + s2

2 + s2
3)(s1s2s3) + h6,1(s1s2s3)2

h6,2(s2
1 + s2

2 + s2
3)3 (F.2)

For the parity violating case we have two additional elements corresponding to the crossing sym-
metric amplitudes T2′ and T5′ . We note that Fi for i = 1, 2, 3 are the same ones considered in [22], in
this paper additionally we also use F4 and F5.

G Low spin dominance and Graviton scattering in String

theory

In this appendix, we will show that the range of a that we had obtained from our Locality constraint
analysis in subsection 6.2, is satisfied for type II string theory amplitude. For convenience, we write
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the explicit amplitude

T1 =

s3
1

(
Γ(1−αs1

2 )Γ(1−αs2
2 )Γ(1−αs3

2 )
Γ( s1α2 +1)Γ( s2α2 +1)Γ( s3α2 +1)

− 1

)

s2s3

T3 =

s3
3

(
Γ(1−αs1

2 )Γ(1−αs2
2 )Γ(1−αs3

2 )
Γ( s1α2 +1)Γ( s2α2 +1)Γ( s3α2 +1)

− 1

)

s1s2

T4 =

s3
2

(
Γ(1−αs1

2 )Γ(1−αs2
2 )Γ(1−αs3

2 )
Γ( s1α2 +1)Γ( s2α2 +1)Γ( s3α2 +1)

− 1

)

s1s3
(G.1)

Note that we have subtracted out the massless graviton pole. We obtain the aJi (s1) by considering the

string amplitude as an infinite sum over poles at s1 = 2(n+1)
α′ . We want to verify that the constraints

(6.12) are satisfied for our range of a: −0.1933M2 ≤ a ≤ 2
3M

2. To be precise, we want to verify,

M(si, a) =∫ ∞

M2

ds1

2πs1

∑

J=0,2,4,···
(2J + 1)ã

(1)
J (s1)f

(1)
J (ξ)H(s′1, si) +

∫ ∞

M2

ds1

2πs1

∑

J=4,6,···
(2J + 1)ã

(2)
J (s1)f

(2)
J (ξ)H(s′1, si)

+

∫ ∞

M2

ds1

2πs1

∑

J=5,7,···
(2J + 1)ã

(3)
J (s1)f

(3)
J (ξ)H(s′1, si) ≥ 0,

=MJ≤2(si, a) +MJ>2(si, a) ≥ 0 (G.2)

for the range of a which is whereMJ≤2(si, a) ≥ 0. This is what we called weak LSD in the main text.
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Figure 9: M̃J(si, a) vs J for various values of a.

We consider, where ã
(i)
J (s1) =

a
(i)
J (s1)

s21
and f

(i)
J (ξ) relevant for spin 2 have been defined around eq

(6.7).Note that we have dropped the null constraints since a physical amplitude satisfies that by
default. We have found that the positivity condition is satisfied for our range “a”. We present our

analysis in the figure 9 above for different values of a. The plots show M̃J(si, a) = MJ (si,a)
MJ≤2(si,a)

as a

function of J for various values of a. We note that firstly, as advertised, our amplitude is positive
for this region of a since M̃J(si, a) > −1. Secondly, we note that the maximal contribution to the
amplitude occurs between spins 2 and 4 which is consistent with our observation that our analysis in
subsection 6.2, indicated a spin 2 dominance.
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