
Adjustable optical isolator based on the resonant optomechanical

interaction

Dong-Yang Wang∗,1 Lei-Lei Yan,1 Cheng-Hua Bai,2 Qing

He,1, 3 Hong-Fu Wang†,4 Erjun Liang‡,1 and Shi-Lei Su1

1School of Physics and Microelectronics, Zhengzhou University,

Zhengzhou, Henan 450001, People’s Republic of China

2Department of Physics, School of Science, North University of China,

Taiyuan, Shanxi 030051, People’s Republic of China

3College of Science, Zhongyuan University of Technology,

Zhengzhou, Henan 450001, People’s Republic of China

4Department of Physics, College of Science, Yanbian University,

Yanji, Jilin 133002, People’s Republic of China

Optical isolator plays an indispensable role in optical information processing tasks

and is an important nonreciprocal device in chiral networks. Here we propose a

proposal to generate an adjustable bidirectional narrow bandwidth optical isolator

based on the optomechanically induced transparency in a spinning whispering gallery

microresonator. Through analyzing the reason for optical isolation, we find that the

nonreciprocity of system comes from the frequency shift induced by the spinning

resonator. To maximize the isolation rate for the input probe field, we devise a way

to actively modulate the control field to make the desired optomechanical interac-

tion always resonant. So the realized optical isolator is narrow linewidth, which is

evaluated via analytically calculation. Moreover, the location of optical isolator is

related to the angular velocity of the spinning resonator. Our proposal provides a

promising strategy for designing adjustable nonreciprocal devices that are expected

to facilitate the study of optical information processing.
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I. INTRODUCTION

Cavity optomechanical system is a powerful platform for studying the interaction between

the optical field and the macroscopic mechanical motion [1, 2]. As a bridge connecting the

microscopic world and the macroscopic world, cavity optomechanical system not only plays

an important role in the basic research of quantum physics but also stands out in the field

of modern applied science. There are many interesting quantum effects that have been

investigated widely and verified experimentally in cavity optomechanical system, such as

mechanical cooling [3, 4], squeezing [5, 6], entanglement [7, 8], optomechanically induced

transparency [9–12], photon blockade [13–15], etc. Among them, the optomechanically

induced transparency is an interesting phenomenon arising from the destructive quantum

interference between two different transmission paths in the optomechanical interaction [16–

19], which constructs an initially opaque medium and can be used to investigate various

effects, such as transmission, fast-slow light, sensor, routing, unresolved sideband cooling,

light switch [20, 21], etc.

On the other hand, the optical nonreciprocal effect is an intriguing and important phe-

nomenon in the field of optical research [22], which can be used to develop optical isola-

tors [23], optical circulators [24], directional amplifiers [25], etc. These nonreciprocal optical

derives are essential components in quantum networks and quantum information processing,

which have attracted a lot of attention in recent years [26]. In particular, the researchers

focus on how to achieve nonreciprocal optical transmission without magnetic materials. So

far, various properties to achieve nonreciprocal effects have been proposed, including cavity

magnonic interaction [27], thermal motion of atoms [28, 29], Brillouin scattering [30, 31],

Casimir effect [32], parity-time symmetry [33], effective gauge field [34], spinning microres-

onator [35, 36], etc. Usually, these reports can be divided into two different mechanisms to

break the Lorentz reciprocity, i.e., phase shift originating from moving medium or reference

frame and optical nonlinear effect [22].

Due to the superior scalability, cavity optomechanical system is a good candidate for on-

chip nonreciprocity and some proposals to achieve nonreciprocity have been proposed in a

variety of cavity optomechanical systems [37–40]. For example, a reconfigurable nonrecipro-

cal transmission scheme has been reported via using purely optomechanical interactions in a

superconducting electromechanical circuit [38]. And a similar result has also been observed
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in the silicon optomechanical circuit with both optical and mechanical connectivity between

two optomechanical cavities [39]. In the previous studies, the nonreciprocal transmission

is realized in the loop cavity optomechanical system, which is composed of more than one

set of optical and mechanical modes [41, 42]. In the cavity optomechanical system consist-

ing of the whispering gallery microresonator, the optomechanically induced nonreciprocal

transmission has also been reported via pumping the single direction [43–45]. However, the

direction of nonreciprocal transmission strongly depends on the direction of pumping field,

so the obtained optical isolator is directional and unadjustable. Recently, the effect of a

spinning whispering gallery microresonator on the optomechanically induced transparency

has been discussed [46], where the researchers found that the optomechanically induced

transparency was destroyed and disappeared due to the nonresonant optomechanical inter-

action. Therefore, it is meaningful to study how to realize an adjustable non-directional

optical isolator based on the optomechanical induced transparency for optical transmission

and quantum information processing.

Here we devise a scheme to realize the adjustable non-directional optical isolator based

on the optomechanically induced transparency in a spinning whispering gallery microres-

onator. The frequency of control field needs to be modulated actively by an acousto-optic

modulator (AOM), which ensures that the beam splitter type optomechanical interaction is

always resonant. At this point, the optomechanically induced transparency can be obtained

even in both directions. The proposal does not require multiple modes to form an optome-

chanical circuit as in the previous reports [38, 39, 41, 42]. Compared with the schemes that

do not consider optomechanical interaction [47] and the optomechanical interaction is non-

resonant [46], the linewidth of optical isolator is much narrower due to the optomechanically

induced transparency is alive. And the direction and location of optical isolator can also be

adjusted by changing the direction of the control field and the angular velocity of the spin-

ning resonator, which is convenient to filter unwanted transmissions and feedback [43, 44].

The rest of paper is organized as follows: In Sec. II, we illustrate the spinning optome-

chanical system, derive its Hamiltonian, and analytically calculate the optical transmission

in the two opposite directions. In Sec. III, we give the optimal relation to maximize the

optical isolation and discuss its linewidth and isolation ratio. Finally, a conclusion is given

in Sec. IV.
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FIG. 1: (a) Schematic diagram of a spinning whispering gallery microresonator coupled to a nearby

optical waveguide. The system can be pumped from the two opposite transmission directions by

the strong control field (blue and red arrows) and the weak probe field (black arrow), where the

control field is modulated by the acousto-optic modulator (AOM) according to the feedback of

angular velocity Ω. (b) The Sagnac-Fizeau frequency shift ∆S in the two circulating modes.

II. MODEL AND HAMILTONIAN

The schematic of our proposal is depicted in Fig. 1(a), where we consider a whispering

gallery microresonator coupled to a nearby optical waveguide via the self-adjustment pro-

cess [36]. The linear optical resonator is mounted on a turbine with the angular velocity Ω,

indicating Ω rotations per second, and the angular velocity Ω = 3 kHz has been reported in

experiment [47]. The spinning resonator can cause the Sagnac-Fizeau frequency shift in the

two opposite transmission directions. Thus the resonance frequencies of the two circulating

modes are ωl,r = ωa ± ∆S as shown in Fig. 1(b), where ωa is the resonance frequency for

the stationary resonator and ∆S is Sagnac-Fizeau frequency shift induced by the spinning

resonator [47, 48]

∆S =
nRΩωa

c

(
1− 1

n2
− λ

n

dn

dλ

)
, (1)

Here, c is the speed of light, λ is the wavelength, R and n are the radius and refractive

index of the optical resonance, respectively. The dispersion term is dn/dλ ∼ 0.01 in typical

materials [49].

Considering the mechanical breathing mode induced by the optomechanical interaction,

the system Hamiltonian is written as

H = ~ωla†lal + ~ωra†rar +
p2

2m
+

1

2
mω2

mq
2 − ~g

(
a†lal + a†rar

)
q
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+i~εc
(
a†l,re

−iωct − al,reiωct
)

+ i~εp
(
a†l,re

−iωpt − al,reiωpt
)
, (2)

where p and q are the mechanical momentum and displacement operators, respectively. g

represents the single photon optomechanical coupling strength and the last two terms are

the control and probe field interactions, respectively. The control (probe) field amplitude

is εc =
√

2κP/~ωc (εp =
√

2κPp/~ωp), where P (Pp) is the pumping power of the control

(probe) field, κ represents the decay rate of the spinning resonator.The external input fields

can be input from both sides, which could determine the direction of optical isolation in our

proposal.

First, we consider the case where both the control field and the probe field are input

from the left and then talk about the properties of output field on the right. By performing

a rotating frame defined by U = exp[−iωcta†lal − iωcta
†
rar], i.e., performing the following

transformation al(t) → al(t)e
−iωct and ar(t) → ar(t)e

−iωct, the transformed Hamiltonian

H ′ = U †HU − i~U †U̇ becomes

H ′ = ~∆la
†
lal + ~∆ra

†
rar +

p2

2m
+

1

2
mω2

mq
2 − ~g

(
a†lal + a†rar

)
q + i~εc

(
a†l − al

)
+i~εp

(
a†l e
−iδpt − aleiδpt

)
, (3)

where ∆l,r = ωa ± ∆S − ωc and δ = ωp − ωc are the detuning of cavity-control field and

probe-control field, respectively. Considering the effect of the external thermal environment,

the quantum Heisenberg-Langevin equation of the system operator

q̇ =
p

m
,

ṗ = −mω2
mq + ~g

(
a†lal + a†rar

)
− γmp+

√
2γmξ(t),

ȧl = − (i∆l + κ) al + igalq + εc + εpe
−iδt +

√
2κainl ,

ȧr = − (i∆r + κ) ar + igarq +
√

2κainr , (4)

where γm is the mechanical damping rate. ξ(t) and ainl,r are the external input noise operators

with zero mean value of the mechanical resonator and optical cavity, respectively [50].
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Under the mean field approximation, the mean value equations of system operators can

be calculated by the factorization assumption and the results are then written as

〈q̇〉 =
〈p〉
m
,

〈ṗ〉 = −mω2
m〈q〉+ ~g

(
〈a†l 〉〈al〉+ 〈a†r〉〈ar〉

)
− γm〈p〉,

〈ȧl〉 = − (i∆l + κ) 〈al〉+ ig〈al〉〈q〉+ εc + εpe
−iδt,

〈ȧr〉 = − (i∆r + κ) 〈ar〉+ ig〈ar〉〈q〉, (5)

Obviously, the above equation is a set of nonlinear differential equations and their steady-

state solution would contain the Fourier expansion related to the amplitude of probe field,

i.e., 〈o〉 =
∑+∞

k=−∞ oke
ikδt with o ∈ {q, p, al, ar} and k ∈ Z. Under the condition of weak

probe field, the steady-state response can be truncated to first-order sidebands [9]. At this

time, the solution of Eq. (5) is supposed as

〈q〉 = qs + q−e
−iδt + q+e

iδt,

〈p〉 = ps + p−e
−iδt + p+e

iδt,

〈al〉 = als + al−e
−iδt + al+e

iδt,

〈ar〉 = ars + ar−e
−iδt + ar+e

iδt, (6)

Here we have simplified the subscript of the coefficients for convenience, i.e., os = o0, o− =

o−1, and o+ = o+1. In the original frame without the rotation transformation, os, o−, o+

correspond to the system responses at frequencies ωc, ωp, 2ωc − ωp, respectively.

Substituting the above assumption into Eq. (5) and ignoring the higher-order terms,

Eq. (5) can be collated into three sets of nonlinear equations, which respectively correspond

to the system responses at different frequencies. Under the condition of weak optomechan-

ical coupling and near-resonant red sideband interaction, we can adopt the rotating wave

approximation to eliminate the off-resonant blue sideband interaction. Then the cavity
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amplitude at the frequency of probe field is obtained as

al− =
εp (δ2 − ω2

m + iδγm)

(δ2 − ω2
m + iδγm) [κ− i (δ −∆)] + iω2

mgqs
, (7)

where

∆ = ∆l − gqs, qs =
~gε2c

mω2
m (∆2 + κ2)

, (8)

are the effective cavity-control field detuning and the steady-state mechanical displacement,

respectively. Next, the output field can be derived easily by utilizing the usual input-output

relationship, i.e., aout = ain −
√
κal−, and then the transmission rate of the probe field is

given by

Tl =

∣∣∣∣1− κ

εp
al−

∣∣∣∣2 . (9)

In the above calculation, the non-resonant interaction in the system has been ignored by

using the normal rotating wave approximation method. Therefore, the obtained result is

different from the previous works, which would cause to the disappearance of the slightly

optomechanically induced amplification [9, 11, 51]. On the other hand, when the probe field

is input form the right, the calculation of transmission rate Tr is similar and it will not be

repeated here.

III. OPTICAL ISOLATOR

A. Nonreciprocity

Based on those obtained results of the above calculation about the transmission rate on

both sides, we can directly discuss the nonreciprocity of the system. Before that, we need

to study the principle of nonreciprocity and discuss how to maximize the optical isolation

ratio in our proposal.

First, it is important to emphasize that the frequency of control field ωc is dependent on

the rotation velocity of the resonator in our proposal so that the red sideband of optomechan-

ical interaction is always resonant, i.e., ωl−ωc ∼ ωm. This ensures that the optomechanically

induced transparency is always ideal even with different angular velocities. The relationship

between the pumping frequency of control field and the angular velocity is shown in Fig. 2(a).



8

0 1 2

-8

0

8

left

right

(a) (b)

,n m

1,n m+

, 1n m +

c
w

p
w

FIG. 2: (a) The pumping frequency shift δc of control field in two opposite directions vs angular

velocity. Here, according to the relevant experiments [47, 49, 52, 53], we set the system parameters

n = 1.48, R = 1.1 mm, m = 10 ng, λ = 1550 nm, Q = 6 × 108, κ = 20 MHz, ωm = 63 MHz,

γm = 10 kHz, T = 130 mK, P = 5 mW. (b) Schematic of the energy-level diagram, where |n,m〉

denotes the system being in the state with n photons and m phonons.

For the input control field pumping from the left, its frequency needs to be increased with

the rotation velocity increasing, as the blue solid line in Fig. 2(a). However, when the con-

trol field is input from the right, we have to appropriately decrease the frequency of control

field to make the red sideband resonant, as shown by the red dotted line. Thus, the control

field frequency needs to be changed in the range of a few megahertz (0 ∼ 8 MHz), which

can be achieved by the frequency shift devices. In our proposal, the system parameters are

chosen according to the relevant experiments [47, 49, 52, 53], which can keep the system

away from unstable and multi-stable regions. On the other hand, different from the usual

calculation about optomechanically induced transparency [9, 54, 55], the above derived re-

sult has utilized the rotation wave approximation to ignore the effect of off-resonant blue

sideband interaction under the condition of weak coupling. Therefore, the model is finally

reduced to a three-level system, as shown in Fig. 2(b), which is similar to electromagnetic

induced transparency. This also results in the disappearance of optomechanically induced

amplification phenomenon, which is extremely tiny in the weak coupling regime.

To intuitively show the phenomenon of nonreciprocal optical transmission, as shown in

Fig. 3, we plot the transmission rate of the two opposite transmission directions with differ-
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FIG. 3: The transmission rate of two opposite directions vs the probe field detuning with

different angular velocities. Here, the blue (red) lines represent the transmission rate when

the probe field is input from the left (right). And the angular velocity is set respectively as

Ω = {0, 500, 1000, 1500, 2000} from bottom to top, which is feasible for the current experi-

ment [47]. And the system parameters are chosen the same as those in Fig. 2.

ent angular velocities. Since the frequency shift caused by the rotation of spinning resonator

increases with the angular velocity increasing as Eq. (1), the window of optomechanically

induced transparency gradually separates to both sides. Here, it is worth noting that the

ideal optomechanically induced transparency does not disappear even in either direction

with the appearance of cavity frequency shift. This is mainly because the control field fre-

quency varies with the angular velocity, which ensures the red sideband of optomechanical

interaction is always resonant. The optomechanically induced transparency is preserved by

actively modulating the control field frequency. Otherwise, the optomechanically induced

transparency would be destroyed and disappear as the previous reports [46, 48]. The fre-

quency shift of control field can be achieved by the normal AOM in experiments [56, 57].

In Fig. 3, we can also find that there is an optimal value for the angular velocity of the

spinning resonator in the case of taking into account optical isolation and transmission rate,

which would maximize the difference of transmission rates between the two directions. Based

on those system parameters in our simulation, the optimal value of the angular velocity is

Ω ' 800 Hz. When the system parameters are changed, the optimal angular velocity also
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changes accordingly.

B. Linewidth of optical isolator

In the spinning resonator without optomechanical interaction, the effect of irreversible

refraction is achieved due to the Sagnac-Fizeau frequency shift [47]. The linewidth of optical

isolation is twice the cavity decay rate. Here, we will use the optomechanically induced trans-

parency to greatly reduce the linewidth of optical isolator, which is useful for transmitting

signals of a certain frequency.

In our proposal, since the nonreciprocal transmission comes from the optomechanical

interactions [10], the linewidth of optical isolator is much narrower than that in the normal

spinning resonator system without mechanical motion [47], as shown in Fig. 4(a). When the

control field is absent (P = 0), the input probe field is resonantly absorbed at the frequency

of clockwise cavity ωp ∼ ωa + ∆S. Meanwhile, the nonreciprocal transmission still occurs

only when the Sagnac-Fizeau frequency shift caused by spinning resonator is larger than the

cavity decay rate. And the linewidth of optical isolation is 2κ, which is only related to the

cavity decay rate [47]. On the other hand, when the system is driven by the control field, the

resonantly optomechanical interaction induces a narrow linewidth transparent window and

the optical transmission is reversed, which helps filter unwanted transmissions and feedback.

Then, the linewidth of the optical isolator is given by

Γ = γm +
ωmgqs
κ

, (10)

which can be modulated by changing the pumping power of control filed, as shown in

Fig. 4(b).

It is worth noting that the pumping power does not increase arbitrarily, which is controlled

to always be less than the bistable boundary P < 25 mW in our proposal. At this time,

the optical transmission spectrum is approximately symmetrical and the linewidth is narrow

enough. To demonstrate the stability of our proposal, we plot the mechanical displacement

as a function of driving power in the inset of Fig. 4(b).
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FIG. 4: (a) The transmission rate of left input vs the probe field detuning with different pumping

powers. The optical transmission is reversed when the pumping field drives the spinning resonator.

(b) The linewidth of optical isolator vs the pumping power of control field. Here, the inset represents

the relationship between the steady-state mechanical displacement and the pumping power, which

indicates that the proposal of optical isolator is always in the monostable region. The other

parameters are chosen the same as those in Fig. 2.

C. Isolation ratio

Next, to evaluate the efficiency of this proposal, it is convenient to redefine an optical

isolation ratio

η = 10 log

(
Tl
Tr

)
, (11)
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FIG. 5: The optical isolation ratio η vs the probe field detuning and the angular velocity. The

surrounding insets represent the transmission rate of two opposite directions at corresponding

positions. The other parameters are chosen the same as those in Fig. 2.

where Tl and Tr are the transmission rates input from the left and right sides, respectively.

As shown in Fig. 5, the center planform shows the change of the redefined isolation ratio

η with the probe field detuning (ωp − ωa)/ωm and the angular velocity Ω. And the two

different colors respectively correspond to the isolation ratio in the two opposite transmission

directions, which can certify the non-directional optical isolator is achieved.

Moreover, the location of isolation also changes with the angular velocity. We can see that

the higher gray-scale area corresponds to the occurrence of higher isolation ratio. However,

it is worth pointing out that the high isolation ratio does not mean a large difference between

transmission rates of both sides. The high isolation ratio comes from the extremely small

transmission rate on one side, almost equal to 0, which can be seen from the surrounding

insets in Fig. 5. The ideal optical isolator, having both the high isolation rate and the

transmission rate close to 1 on one side, only occurs in the ‘Λ’-type part in the middle of

Fig. 5. Meanwhile, the transmission rates on both sides are shown as the two insets at the

bottom. The above results show that the non-directional optical isolator is achieved and

the location of optical isolation is adjustable by changing the angular velocity of spinning

resonator. This is helpful for realizing directed optical information processing and building

chiral networks.



13

Finally, we briefly discuss the experimental feasibility of the spinning microresonator

system. The proposed proposal is demonstrated in a whispering gallery microresonator,

which can be mounted on a turbine. And the used angular velocity in our proposal Ω = 3 kHz

has been realized in the recent experiment [47]. The optomechanically induced transparency

has also been observed experimentally [10, 58, 59]. The needed frequency shift of control

field is small and can be achieved by AOM in experiments [56, 57]. The system parameters

have been chosen reasonably according to the relevant experiments and the system is always

in the monostable region.

IV. CONCLUSIONS

In summary, we have investigated how to achieve an adjustable non-directional optical

isolator in the spinning optomechanical resonator. In our proposal, the optomechanically

induced transparency is preserved by actively modulating the control field frequency so that

the desired optomechanical interaction is always resonant and is no longer affected by the

optical frequency shift. Based on experimentally feasible devices and parameters, we obtain

the optical isolator with high isolation and narrow linewidth, which helps filter unwanted

transmissions and feedback in various optical transmission tasks. Moreover, the location of

transparent windows can also be adjusted by changing the angular velocity of the spinning

resonator and the pumping power of the control field. Our proposal provides flexible options

for an ideal non-directional optical isolator, which is helpful for different optical transmission

tasks.

Acknowledgements

This work was supported by the National Natural Science Foundation of China under

Grants (No. 12147149, No. 12074346, No. U21A20434), and the Natural Science Foundation

of Henan Province under Grant (No. 212300410085).

[1] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 2014, 86 1391.

[2] H. Xiong, L.-G. Si, X. Yang, Y. Wu, Appl. Phys. Lett. 2015, 107, 9 091116.



14

[3] J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. As-
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