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Optical isolators are indispensable in optical information processing tasks and are

essential nonreciprocal devices in chiral networks. We propose a proposal to generate

an adjustable bidirectional narrow bandwidth optical isolator based on the optome-

chanically induced transparency in a spinning whispering gallery microresonator.

Analyzing the reason for optical isolation, we find that the nonreciprocity of the sys-

tem comes from the frequency shift induced by the spinning resonator. To maximize

the isolation rate, we devise a way to actively modulate the control field to make the

desired optomechanical interaction always resonant. So the realized optical isolator is

narrow linewidth, which is evaluated via analytical calculation. Moreover, the loca-

tion of the optical isolator is related to the angular velocity of the spinning resonator.

Our proposal provides a promising strategy for designing adjustable nonreciprocal

devices expected to facilitate the study of quantum information processing.
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I. INTRODUCTION

Cavity optomechanical systems are a powerful platform for studying the interaction be-

tween the optical field and the macroscopic mechanical motion [1, 2]. As a bridge connecting

the microscopic and macroscopic worlds, the cavity optomechanical system not only plays a

vital role in the basic research of quantum physics but also stands out in the field of modern

applied science. Many interesting quantum effects have been investigated widely and veri-

fied experimentally in the cavity optomechanical system, such as mechanical cooling [3, 4],

squeezing [5, 6], entanglement [7, 8], optomechanically induced transparency [9–13], photon

blockade [14–16]. Among them, the optomechanically induced transparency is an interest-

ing phenomenon arising from the destructive quantum interference between two different

transmission paths in the optomechanical interaction [17–20], which constructs an initially

opaque medium and can be used to investigate various effects, such as transmission, fast-slow

light, sensor, routing, unresolved sideband cooling, light switch [21, 22].

On the other hand, the optical nonreciprocal effect is an intriguing and important phe-

nomenon in the field of optical research [23], which can be used to develop optical isola-

tors [24], optical circulators [25], directional amplifiers [26], etc. These nonreciprocal optical

devices are essential components in quantum networks and quantum information process-

ing, which have attracted much attention in recent years [27]. Such as, the suppression of

backscattering has been demonstrated via the nonreciprocity in dielectric resonators [28].

Many researchers have focused on achieving nonreciprocal optical transmission without mag-

netic materials. So far, various properties to achieve nonreciprocal effects have been pro-

posed, including cavity magnonic interaction [29], thermal motion of atoms [30, 31], Brillouin

scattering [32–34], Casimir effect [35], parity-time symmetry [36], effective gauge field [37],

spinning microresonator [38, 39]. Usually, these reports can be divided into two differ-

ent mechanisms to break the Lorentz reciprocity, i.e., phase shift originating from moving

medium or reference frame and optical nonlinear effect [23].

Due to superior scalability, the cavity optomechanical system is a good candidate for

on-chip nonreciprocity. Some proposals to achieve nonreciprocity have been proposed in

various cavity optomechanical systems [40–43]. For example, a reconfigurable nonreciprocal

transmission scheme has been reported using purely optomechanical interactions in a super-

conducting electromechanical circuit [41]. Furthermore, a similar result has been observed
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in the silicon optomechanical circuit with optical and mechanical connectivity between two

optomechanical cavities [42]. In the previous studies, the nonreciprocal transmission is re-

alized in the loop cavity optomechanical system, composed of more than one set of optical

and mechanical modes [44, 45]. In the whispering gallery microresonator, the optomechan-

ically induced nonreciprocal transmission has also been reported via pumping the single

direction [46–48]. However, the direction of nonreciprocal transmission strongly depends on

the direction of the pumping field. Recently, the effect of a spinning whispering gallery mi-

croresonator on the optomechanically induced transparency has been discussed [49], where

the researchers found that the optomechanically induced transparency was destroyed and

disappeared due to the nonresonant optomechanical interaction. Therefore, it is meaning-

ful to study how to realize a flexible non-directional optical isolator via optomechanically

induced transparency.

Here we devise a scheme to realize the flexible non-directional optical isolator based on

the optomechanically induced transparency in a spinning whispering gallery microresonator.

The frequency of the control field needs to be modulated actively by an acoustic-optic modu-

lator (AOM), which ensures that the beam splitter type optomechanical interaction is always

resonant. At this time, the ideal optomechanically induced transparency can be obtained

in both directions. The proposal does not require multiple modes to form an optomechan-

ical circuit as in the previous reports [41, 42, 44, 45]. Compared with the schemes that do

not consider optomechanical interaction [50] and the optomechanical interaction is nonreso-

nant [49], the linewidth of the optical isolator is much narrower due to the optomechanically

induced transparency being alive. Moreover, the direction and location of the optical iso-

lator can also be adjusted by changing the direction of the control field and the angular

velocity of the spinning resonator, which is convenient for filtering undesired transmissions

and feedback [46, 47].

The rest of the paper is organized as follows: In Sec. II, we illustrate the spinning optome-

chanical system, derive its Hamiltonian, and analytically calculate the optical transmission

in the two opposite directions. In Sec. III, we give the optimal relation to maximize the

optical isolation and discuss its linewidth and isolation ratio. Finally, a conclusion is given

in Sec. IV.
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FIG. 1: (a) Schematic diagram of a spinning whispering gallery microresonator coupled to a nearby

optical waveguide. The system can be pumped from the two opposite transmission directions by

the strong control field (blue and red arrows) and the weak probe field (black arrow), where the

control field is modulated by the AOM according to the feedback of angular velocity Ω. (b) The

Sagnac-Fizeau frequency shift ∆S in the two circulating modes.

II. MODEL AND HAMILTONIAN

The schematic of our proposal is depicted in Fig. 1(a), where we consider a whispering

gallery microresonator coupled to a nearby optical waveguide via the self-adjustment pro-

cess [50]. The linear optical resonator is mounted on a turbine with the angular velocity Ω,

indicating Ω rotations per second, and the angular velocity Ω = 3 kHz has been reported

in experiment [50]. The spinning resonator can induce the Sagnac-Fizeau frequency shift

in opposite transmission directions. Thus the resonance frequencies of the two circulating

modes are ωl,r = ωa ± ∆S as shown in Fig. 1(b), where ωa is the resonance frequency for

the stationary resonator and ∆S is Sagnac-Fizeau frequency shift induced by the spinning

resonator [50, 51]

∆S =
nRΩωa

c

(
1− 1

n2
− λ

n

dn

dλ

)
, (1)

Here, c is the speed of light, λ is the wavelength, and R and n are the radius and refractive

index of the optical resonance, respectively. The dispersion term is dn/dλ ∼ 0.01 in typical

materials [52].

First, we consider the case where both the control field and the probe field are input

from the left and then discuss the properties of the output field on the right. Consider-

ing the mechanical breathing mode induced by the optomechanical interaction, the system
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Hamiltonian is written as

H = ~ωla†lal + ~ωra†rar +
p2

2m
+

1

2
mω2

mq
2 − ~g

(
a†lal + a†rar

)
q

+i~εc
(
a†l e
−iωct − aleiωct

)
+ i~εp

(
a†l e
−iωpt − aleiωpt

)
, (2)

where p and q are the mechanical momentum and displacement operators, respectively. g

represents the single-photon optomechanical coupling strength, and the last two terms are

the control and probe field interactions, respectively. The control (probe) field amplitude

is εc =
√

2κP/~ωc (εp =
√

2κPp/~ωp), where P (Pp) is the pumping power of the control

(probe) field, κ represents the decay rate of the spinning resonator. The external input fields

can be input from both sides, which could determine the direction of optical isolation in our

proposal.

By performing a rotating frame defined by U = exp[−iωcta†lal−iωcta†rar], i.e., performing

the following transformation al(t) → al(t)e
−iωct and ar(t) → ar(t)e

−iωct, the transformed

Hamiltonian H ′ = U †HU − i~U †U̇ becomes

H ′ = ~∆la
†
lal + ~∆ra

†
rar +

p2

2m
+

1

2
mω2

mq
2 − ~g

(
a†lal + a†rar

)
q + i~εc

(
a†l − al

)
+i~εp

(
a†l e
−iδpt − aleiδpt

)
, (3)

where ∆l,r = ωa ± ∆S − ωc and δ = ωp − ωc are the detuning of cavity-control field and

probe-control field, respectively. Considering the effect of the external thermal environment,

the quantum Heisenberg-Langevin equation of the system operator

q̇ =
p

m
,

ṗ = −mω2
mq + ~g

(
a†lal + a†rar

)
− γmp+

√
2γmξ(t),

ȧl = − (i∆l + κ) al + igalq + εc + εpe
−iδt +

√
2κainl ,

ȧr = − (i∆r + κ) ar + igarq +
√

2κainr , (4)

where γm is the mechanical damping rate. ξ(t) and ainl,r are the external input noise operators

with zero mean value of the mechanical resonator and optical cavity, respectively [53].
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Under the mean field approximation, the mean value equations of system operators can

be calculated by the factorization assumption, and the results are then written as

〈q̇〉 =
〈p〉
m
,

〈ṗ〉 = −mω2
m〈q〉+ ~g

(
〈a†l 〉〈al〉+ 〈a†r〉〈ar〉

)
− γm〈p〉,

〈ȧl〉 = − (i∆l + κ) 〈al〉+ ig〈al〉〈q〉+ εc + εpe
−iδt,

〈ȧr〉 = − (i∆r + κ) 〈ar〉+ ig〈ar〉〈q〉. (5)

Obviously, the above equation is a set of nonlinear differential equations. Their steady-state

solution would contain the Fourier expansion related to the amplitude of the probe field,

i.e., 〈o〉 =
∑+∞

k=−∞ oke
ikδt with o ∈ {q, p, al, ar} and k ∈ Z. Under the condition of a weak

probe field, the steady-state response can be truncated to first-order sidebands [9]. At this

time, the solution of Eq. (5) is supposed as

〈q〉 = qs + q−e
−iδt + q+e

iδt,

〈p〉 = ps + p−e
−iδt + p+e

iδt,

〈al〉 = als + al−e
−iδt + al+e

iδt,

〈ar〉 = ars + ar−e
−iδt + ar+e

iδt, (6)

Here we have simplified the subscript of the coefficients for convenience, i.e., os = o0, o− =

o−1, and o+ = o+1. In the original frame without the rotation transformation, os, o−, o+

correspond to the system responses at frequencies ωc, ωp, 2ωc − ωp, respectively.

Substituting the above assumption into Eq. (5) and ignoring the higher-order terms,

Eq. (5) can be collated into three sets of nonlinear equations, which respectively correspond

to the system responses at different frequencies. Under the condition of weak optomechan-

ical coupling and near-resonant red sideband interaction, we can adopt the rotating wave

approximation to eliminate the off-resonant blue sideband interaction. Then the cavity
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amplitude at the frequency of the probe field is obtained as

al− =
εp (δ2 − ω2

m + iδγm)

(δ2 − ω2
m + iδγm) [κ− i (δ −∆)] + 2iωmβ

, (7)

where ∆ = ∆l − 2β/ωm, als = εc/(i∆ + κ), β = ~g2|a1s|2/(2mωm). In the above calcu-

lation, the non-resonant interaction in the system has been ignored by the usual rotating

wave approximation method. Therefore, the obtained result is different from the previous

works, which would cause to the disappearance of the slightly optomechanically induced

amplification [9, 11, 12]. Next, the output field can be derived easily by utilizing the usual

input-output relationship, i.e., aout = ain −
√
κal−, and then the transmission rate of the

probe field is given by Tl = |aout/ain|2. Because the system works in the near-resonant region

of the red sideband, i.e., ∆ ∼ δ ∼ ωm, the transmission rate of the probe field located at the

near-resonant region can be simplified to

Tl =
4
[
β − (δ − ωm)2

]2
+ γ2m (δ − ωm)2

4 (δ − ωm)4 + (4κ2 − 8β + γ2m) (δ − ωm)2 + (2β + γmκ)2
. (8)

Of course, the optomechanically induced transparency is existence when the system works

in the near-resonant region of the blue sideband, where the destructive quantum interference

can also occur. At this time, the final transmission rate is slightly different from that in the

red sideband case. Moreover, when the probe field is input from the right, the transmission

rate Tr calculation is similar and will not be repeated here.

III. OPTICAL ISOLATOR

A. Nonreciprocity

Based on the above results about the transmission rate on both sides, we first discuss the

nonreciprocity of the system. Before that, we need to study the principle of nonreciprocity

and discuss how to maximize the optical isolation ratio in our proposal.

First, it is essential to emphasize that the frequency of control field ωc is dependent on the

rotation velocity of the resonator in our proposal so that the red sideband of optomechanical

interaction is always resonant, i.e., ωl − ωc ∼ ωm, which ensures that the optomechanically

induced transparency is always ideal even in the case of different angular velocities. The

relationship between the pumping frequency of the control field and the angular velocity is
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FIG. 2: (a) The pumping frequency shift δc of the control field in two opposite directions versus

angular velocity. Here, according to the relevant experiments [50, 52, 54, 55], we set the system

parameters n = 1.48, R = 1.1 mm, m = 10 ng, λ = 1550 nm, Q = 6 × 108, κ = 20 MHz,

ωm = 63 MHz, γm = 10 kHz, T = 130 mK, P = 5 mW. (b) Schematic of the energy-level diagram,

where |n,m〉 denotes the system’s state with n photons and m phonons.

shown in Fig. 2(a). For the input control field pumping from the left, its frequency needs to

increase with the rotation velocity, as the blue solid line shown in Fig. 2(a). However, when

the control field is input from the right, we have to appropriately decrease the frequency

of the control field to make the red sideband resonant, as shown by the red dotted line.

Thus, the control field frequency needs to be changed in the range of a few megahertz

(0 ∼ 8 MHz), which can be achieved by the frequency shift devices. The system parameters

in our proposal are chosen according to the relevant experiments [50, 52, 54, 55], which

can keep the system from unstable and multi-stable regions. On the other hand, different

from the standard calculation about optomechanically induced transparency [9, 56, 57], the

above result has utilized the rotation wave approximation to ignore the effect of off-resonant

blue sideband interaction under the condition of weak coupling. Therefore, the model is

finally reduced to a three-level system, as shown in Fig. 2(b), whose mechanism is similar

to electromagnetic induced transparency. So it also results in the disappearance of the

optomechanically induced amplification phenomenon, which is extremely tiny in the weak

coupling regime.

To intuitively show the phenomenon of nonreciprocal optical transmission, as shown in
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FIG. 3: The transmission rate of two opposite directions versus the probe field detuning with

different angular velocities. Here, the blue (red) lines represent the transmission rate when the

probe field is input from the left (right). And the angular velocity is set respectively as Ω =

{0 kHz, 0.5 kHz, 1 kHz, 1.5 kHz, 2 kHz} from bottom to top, which is feasible for the current

experiment [50]. And the system parameters are chosen the same as those in Fig. 2.

Fig. 3, we plot the transmission rate of the two opposite transmission directions with different

angular velocities. Since the frequency shift caused by the rotation of the spinning resonator

increases with the angular velocity increasing as in Eq. (1), the window of optomechanically

induced transparency gradually separates to both sides. Here, it is worth noting that the

ideal optomechanically induced transparency does not disappear even in either direction

with the appearance of cavity frequency shift. That is mainly because the control field

frequency varies with the angular velocity, which ensures the red sideband of optomechanical

interaction is always resonant. The optomechanically induced transparency is preserved by

actively modulating the control field frequency. Otherwise, the optomechanically induced

transparency would be destroyed and disappear as previous reports [49, 51]. The frequency

shift of the control field can be achieved by the normal AOM in experiments [58, 59]. In

Fig. 3, we can also find an optimal value for the angular velocity of the spinning resonator

in the case of taking into account optical isolation and transmission rate, which would

maximize the difference in transmission rates between the two directions. Based on those

selected system parameters, the optimal value of the angular velocity is Ω ' 800 Hz. When
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the external control field is weak, the relationship between the optimal angular velocity and

the system parameters can be given by

2∆S =
1

2

√√√√2
√
β
[
4β (γm + κ)2 + γ2mκ (γm + 2κ)

]
− γm (4β + γmκ)

κ
, (9)

where the right part is the distance between two adjacent real roots of ∂Tl/∂δ = 0. This

indicates that the optimal angular velocity also needs to be changed accordingly for different

system parameters.

B. Linewidth of optical isolator

In the spinning resonator without optomechanical interaction, the effect of irreversible

refraction is achieved due to the Sagnac-Fizeau frequency shift [50]. The linewidth of optical

isolation is twice the cavity decay rate. Here, we will use the optomechanically induced

transparency to significantly reduce the linewidth of the optical isolator, which is helpful for

transmitting signals of a specific frequency.

In our proposal, since the nonreciprocal transmission comes from the optomechanical

interactions [10], the linewidth of the optical isolator is much narrower than that in the

normal spinning resonator system without mechanical motion [50], as shown in Fig. 4(a).

When the control field is absent (P = 0), the input probe field is resonantly absorbed in

the frequency of clockwise cavity ωp ∼ ωa + ∆S. Meanwhile, the nonreciprocal transmission

still occurs only when the Sagnac-Fizeau frequency shift caused by the spinning resonator is

larger than the cavity decay rate. Moreover, the linewidth of optical isolation is 2κ, which

is only related to the cavity decay rate [50]. However, when the system is driven by the

red detuning control field, the resonant optomechanical interaction will induce a narrow

linewidth transparent window. At this time, the optical transmission is reversed due to

the optomechanically induced transparency, which helps filter undesired transmissions and

feedback. Then, the linewidth (full width at half maximum) of the optical isolator is given

by

Γ = γm +
2β

κ
, (10)

which can be modulated by the pumping power of the control field, as shown in Fig. 4(b).
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FIG. 4: (a) The transmission rate of left input versus the probe field detuning with different

pumping powers. The optical transmission is reversed when the pumping field drives the spinning

resonator. (b) The linewidth of the optical isolator versus the pumping power of the control field.

Here, the inset represents the relationship between the steady-state mechanical displacement and

the pumping power, which indicates that the proposal of the optical isolator is always in the

monostable region. The other parameters are chosen the same as those in Fig. 2.

It is worth noting that the pumping power does not increase arbitrarily, which is always

controlled to be less than the bistable boundary P < 25 mW in our proposal. At this time,

the optical transmission spectrum is approximately symmetrical, and the linewidth is narrow

enough. To demonstrate the stability of our proposal, we plot the mechanical displacement

as a function of driving power in the inset of Fig. 4(b).



12

C. Isolation ratio

Next, to evaluate the efficiency of this proposal, it is convenient to redefine an optical

isolation ratio

η = 10 log

(
Tl
Tr

)
, (11)

where Tl and Tr are the transmission rates input from the left and right sides, respectively.

As shown in Fig. 5, the center planform shows the change of the redefined isolation ratio

η with the probe field detuning (ωp − ωa)/ωm and the angular velocity Ω. Here, the two

different colors correspond to the isolation ratio in the two opposite transmission directions,

which can certify that the non-directional optical isolator is achieved.

Moreover, the location of isolation also changes with the angular velocity. We can see that

the higher gray-scale area corresponds to the higher isolation ratio. However, it is worth

pointing out that the high isolation ratio does not mean a significant difference between

the transmission rates of both sides. The high isolation ratio comes from the minimal

transmission rate on one side, almost equal to 0, as seen from the surrounding insets in Fig. 5.

The ideal optical isolator, possessing both the high isolation rate and the transmission rate

close to 1 on one side, only occurs in the ‘Λ’-type part in the middle of Fig. 5. Meanwhile,

the transmission rates on both sides are shown as the two insets at the bottom. The above

results show that the non-directional optical isolator is achieved, and the location of optical

isolation is adjustable by changing the angular velocity of the spinning resonator, which is

helpful for realizing directed optical information processing and building chiral networks.

Finally, we briefly discuss the experimental feasibility of the spinning microresonator

system. The proposed proposal is demonstrated in a whispering gallery microresonator,

which can be mounted on a turbine. The used angular velocity in our proposal Ω = 3 kHz

has been realized in the recent experiment [50]. The optomechanically induced transparency

has also been observed experimentally [10, 60, 61]. The needed frequency shift of the control

field is small and can be achieved by AOM in experiments [58, 59]. The system parameters

are chosen reasonably according to the relevant experiments, and the system is always in

the monostable region.
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FIG. 5: The optical isolation ratio η versus the probe field detuning and the angular velocity.

The surrounding insets represent the transmission rate of two opposite directions at corresponding

positions. The other parameters are chosen the same as those in Fig. 2.

IV. CONCLUSIONS

In conclusion, we have investigated how to achieve an adjustable non-directional optical

isolator in the spinning optomechanical resonator. In our proposal, the optomechanically

induced transparency is preserved by actively modulating the control field frequency so that

the desired optomechanical interaction is always resonant and is no longer affected by the

optical frequency shift. Based on experimentally feasible devices and parameters, we obtain

the optical isolator with high isolation and narrow linewidth, which helps filter unwanted

transmissions and feedback in various optical transmission tasks. Moreover, the location of

transparent windows can also be adjusted by changing the angular velocity of the spinning

resonator and the pumping power of the control field. Our proposal provides flexible options

for an ideal non-directional optical isolator, which is helpful for different optical transmission

tasks.
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