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A feature of the “modern theory” is that electric polarization is not well-defined in a metallic
ground state. A different approach invokes the general existence of a complete set of exponentially
localized Wannier functions, with respect to which general definitions of microscopic electronic po-
larization and magnetization fields, and free charge and current densities are always admitted. These
definitions assume no particular electronic state of the crystal, and the set of microscopic fields sat-
isfy the usual relations of classical electrodynamics. Interestingly, when applied to a trivial insulator
initially occupying its T = 0 ground state, the expressions for the unperturbed polarization and or-
bital magnetization, and for the orbital magnetoelectric polarizability tensor obtained from these
different approaches can agree. However, the modern theory of magnetization has been extended via
thermodynamic arguments to include metals and Chern insulators. We here compare with that gen-
eralization and find disagreement; the manner in which the expressions differ elucidates the distinct
philosophies of these approaches. Our approach leads to the usual electrical conductivity tensor in
the long-wavelength limit; in the absence of any scattering mechanisms, the dc divergence of that
tensor is due to the free current density and the finite-frequency generalization of the anomalous
Hall contribution arises from a combination of bound and free current densities. As well, in the limit
that the density of free carriers vanishes and a trivial insulator results, our expressions reduce to
those expected for the unperturbed polarization and magnetization, and the electric susceptibility.

I. INTRODUCTION

In elementary classical electrodynamics, the macro-
scopic charge and current densities in material media are
written in terms of polarization P (x, t) and magnetiza-
tion M(x, t) fields, and “free” charge and current densi-
ties %F (x, t) and JF (x, t),

%(x, t) = −∇ · P (x, t) + %F (x, t),

J(x, t) =
∂P (x, t)

∂t
+ c∇×M(x, t) + JF (x, t). (1)

Going back to the time of Lorentz, P (x, t) and M(x, t)
have typically been taken to involve those charges that
remain “bound” within individual atoms and molecules,
while %F (x, t) and JF (x, t) are associated with other
charges that are “free” to move through the medium.

In more modern treatments of metallic crystals and
doped semiconductors, if the motion of the ion cores is
neglected then %F (x, t) and JF (x, t) are associated with
intraband electronic transitions within partly occupied
energy bands. In the “long-wavelength limit,” where the
wavelength of an applied electric field is much larger than
the lattice constant, the response of those carriers is cal-
culated as if that field were uniform. For example, in a
too-simplistic model in which scattering is neglected and
the relevant carriers are all assumed to have the same ef-
fective mass m0, for a uniform electric field oscillating at
frequency ω with amplitude E(ω) the amplitude of the
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uniform current density driven in linear response is

J
(1)
F (ω) =

ie2N

m0ω
E(ω), (2)

where the superscript (1) indicates the linear response of
the quantity, and N is the number of relevant carriers
per unit volume.

Turning then to the other terms in the second of (1), in
the long-wavelength limit the macroscopic magnetization
is uniform, and the “bound” current density ∂P (t)/∂t is
associated with interband electronic transitions within
occupied or partly occupied energy bands. The simplest
procedure, even more elementary than a Kubo approach,
is to calculate the interband absorption rate using Fermi’s
Golden Rule, and associate that absorption with the ab-
sorption that would result from a model in which the
polarization responded to the electric field through a di-
electric tensor δil + εilinter(ω), which would give

P i(1)(ω) =
1

4π
εilinter(ω)El(ω), (3)

where superscript indices indicate Cartesian components
and are summed over if repeated. This association iden-
tifies the imaginary part of εilinter(ω), and the real part
of εilinter(ω) can then be found using the Kramers-Kronig
relation [1]. Using both (2) (or a less simplistic version)
and (3), with εilinter(ω) so determined, a calculation of
the linear response in the long-wavelength limit is com-
plete. Sometimes one even introduces an “effective” di-
electric constant εileff(ω), formally writing the linear re-

sponse J (1)(t) of the full current density from the second

of (1) as just J (1)(t) = ∂P
(1)
eff (t)/∂t, with

P
i(1)
eff (ω) =

εileff(ω)− δil

4π
El(ω). (4)
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Then, in terms of the calculated εilinter(ω) and within the
simple model (2) for the intraband response, we have

εileff(ω) = δil + εilinter(ω)− 4πe2N

m0ω2
δil.

This strategy is somewhat indirect. One might sup-
pose that the polarization would be defined, and then its
response to the electric field calculated. But such a def-
inition is bypassed by calculating εilinter(ω), that is, the
contribution that a purported polarization would make
to the optically induced current density. And there is no
definition of either a purported polarization or magneti-
zation that would exist before the electric field is applied.

Of course, the use of an approach that bypasses such
definitions is not surprising. Any consideration of the re-
sponse of “bound” charges and their currents, and the po-
larization and magnetization to be associated with them,
is at least initially suspect from the perspective of the
quantum theory of solids. In fact, problems in defining a
polarization and magnetization arise even for the ground
state of a crystal [2]. In recent years the “modern theo-
ries of polarization and magnetization” have been devel-
oped to clarify these concepts, primarily focused on in-
sulators [3–5], and have provided many physical insights,
including the “quantum of ambiguity” inherent to the
electric polarization in the unperturbed ground state [6],
the existence of two distinct contributions to the orbital
magnetization [4, 5], and that a static and uniform mag-
netic (electric) field can induce a polarization (magneti-
zation) [7, 8]. However, the “modern theories” are based
on static or adiabatically varying uniform fields, and are
not immediately applicable to treat the optical properties
of materials, especially at wavelengths so small – beyond
the “long-wavelength limit” – that one has to take into
account the variation of the optical fields over a unit cell.

As well, the main focus of the “modern theories” has
been “trivial” insulators, a class of band insulators that
we define below. Indeed, among the contributions of the
modern theory is that there may be a relationship be-
tween a certain “localization” of the electronic ground
state and the polarization of an unperturbed crystal [9–
11], and it has been argued that a “localized” ground
state is necessary for polarization to be well-defined; the
ground state of a metallic crystal is found to violate that
condition. In contrast, the modern theory of magneti-
zation has been extended to include metals and Chern
insulators [5, 12]. These extensions are based on thermo-
dynamic arguments, and thus again are not applicable
to optical fields. Indeed, there seems no straightforward
roadmap for extending the approach of the “modern the-
ories” to frequency dependent polarizations, magnetiza-
tions, and free currents.

A set {P (x, t),M(x, t), %F (x, t), JF (x, t)} that satis-
fies (1) is far from unique. An underlying pillar of the
modern theories is that, in finite-sized insulators, P and
M , when taken as the usual charge and current den-
sity dipole moments, are experimentally accessible; it is
assumed that the bulk quantities should coincide with

those. In this way, strange properties of the bulk ex-
pressions, e.g., that the ground state magnetization in a
Chern insulator involves a chemical potential, or that po-
larization is not a well-defined bulk quantity in a metal
while magnetization is, are justified. However, the re-
lation between these quantities in bulk and finite-sized
systems is not straightforward and considerations at the
boundary are often important, even in insulators; e.g.,
the bulk topological magnetoelectric coefficient does not
generically determine that of a thin film [13, 14].

In recent work [15] we have taken a different approach,
which is related more directly to the classical strategy of
Lorentz, and our focus has been on bulk systems with
static ions. Here, polarization and magnetization fields,
and free charge and current densities, serve as intermedi-
ary quantities that aid calculation and provide physical
insight, but in general only the appropriate combinations
that lead to the charge and current densities have direct
physical significance. To identify the electronic compo-
nent of these quantities, we employ a complete set of
exponentially localized Wannier functions (ELWFs) [16]
(or “modified” versions thereof) with respect to which we
decompose the charge and current density expectation
values as sums of spatially-localized contributions, one
associated with each lattice site [17]. From these we de-
fine microscopic polarization pel

R(x, t) and magnetization
m̄R(x, t) fields associated with each lattice site in a man-
ner similar to that of atomic and molecular physics. Since
charge continuity does not generally hold site-wise [18],
a “corrective” contribution m̃R(x, t) to m̄R(x, t) arises,
and in all mR(x, t) = m̄R(x, t)+m̃R(x, t). Natural def-
initions for site charges and currents that link the lattice
sites emerge as well, which are used to define microscopic
free “site” charge and current densities. Ultimately we
take the lattice sum of these site contributions to be the
microscopic polarization and magnetization fields, and
free charge and current densities.

For an unperturbed trivial insulator occupying its zero-
temperature ground state, the spatial integral of m̄R(x)
(m̃R(x)) coincides with that site’s “atomic-like” (“itin-
erant”) contribution to M of the modern theory. In
this instance M is unique (i.e. not “gauge dependent”
in that it does not depend on the choice of smooth frame
of the occupied electronic Hilbert space over the BZ, or
equivalently on how the ELWFs are chosen, assuming
they are taken “occupied.”); from this perspective, this
is but a special case. In contrast, the spatial integral of
pel
R(x), which coincides with that site’s contribution to P

of the modern theory [6, 15], is gauge dependent and only
unique modulo a “quantum of ambiguity.” And in the
optical response of such an insulator, wherein the linearly
induced charge and current densities arise entirely from
induced electric and magnetic multipole moments [15], it
is only the combinations of such moments corresponding
to those densities that are generally gauge invariant and
of direct physical significance [19]. Moreover, we there
find agreement with the usual approach involving a q-
expansion of the conductivity tensor [20].
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In this paper we implement this approach to treat
the optical response of a metal. In this initial treat-
ment we restrict ourselves to the long-wavelength limit
and consider the independent particle approximation, in
which the interaction between electrons is approximately
treated through an effective potential energy characteriz-
ing the lattice, and by taking the “applied” electric field
in our calculations to be the macroscopic Maxwell electric
field, having frequency components E(ω).

Our identification of the electronic components of “site
quantities” requires the existence of a complete set of
ELWFs, which depends entirely on topological consid-
erations [21]. In Sec. II we briefly discuss such issues,
but the result is that if the Bloch energy eigenfunctions
associated with all of the energy bands are employed, a
complete set of ELWFs can always be constructed. Thus,
the microscopic polarization and magnetization fields we
introduce, and the corresponding macroscopic fields, are
always defined, as are the macroscopic free charge and
current densities. In this paper we will restrict our study
to those crystalline solids for which ELWFs can be con-
structed from the energy eigenfunctions associated with
any set of isolated bands – including the completely oc-
cupied and partly occupied bands in a p-doped semicon-
ductor in its T = 0 ground state, which is the model of
a metal we adopt in this first communication.

In Sec. II we also introduce the basic equations of
our approach, relying heavily on earlier work [15]. In
Sec. III we calculate the polarization and magnetization
in the unperturbed ground state, and discuss their form;
in Sec. IV we calculate the linear response in the long-
wavelength limit. If the crystal is assumed to initially
possess time-reversal symmetry and its energy bands are
isolated, then our results follow the pattern sketched in
the first three paragraphs of this section: The induced
free current can be associated with intraband transitions,
and the polarization current with interband transitions.
Here, of course, we have an explicit expression for the
polarization, and can calculate the polarization current
by directly taking ∂P /∂t; we can thus construct an ex-

pression for εijeff(ω) by direct calculation, which is gauge-
invariant as expected.

The situation is more complicated in the absence of
time-reversal symmetry. There we find that the first or-
der response of each frequency component of the micro-

scopic charge density, 〈ρ̂(x, ω)〉(1)
, contains a term pro-

portional to ω−1 and thus diverges as ω → 0. It is then
not surprising that the contribution associated with each

lattice site, ρ
(1)
R (x, ω), also diverge as ω → 0, and thus

that P (1)(ω) – associated with the electric dipole mo-
ments of those localized charge densities – does as well.
Such a result is inevitable in the approach we adopt,
where polarization and magnetization are associated with
quantities localized about each lattice site. This diver-
gent term originates from an “intraband contribution”
to P (1)(ω), and leads to a finite contribution to the in-
duced macroscopic current density −iωP (1)(ω) as ω → 0.

In addition to a contribution to J
(1)
F (ω) that is divergent

as ω → 0, which arises as an expected generalization of
(2), we also find a contribution that is finite as ω → 0.
When this is combined with the finite contribution to
−iωP (1)(ω) as ω → 0 we find a gauge-invariant contri-
bution to J (1)(ω) that is finite as ω → 0, and can be
identified as giving rise to the anomalous Hall current.
The other contributions to the full J (1)(ω), which are
also gauge-invariant, correspond to the generalization of
(2) and to a pure interband response of P (1)(ω). Here
we can also introduce an εileff(ω), but it is perhaps more
natural to write

J i(1)(ω) = σil(ω)El(ω), (5)

where σil(ω) = −iω(εileff(ω)− δil)/(4π), and at the end of
Sec. IV we give the general expression for σil(ω).

A reader might ask, “why bother?” Expressions for
σil(ω) can always be derived using Kubo’s approach [22],
and there is an intrinsic ambiguity in how polarization
and magnetization fields are defined. And isn’t the idea
of a polarization – and certainly an induced polarization
– in a metal suspect if it goes beyond merely the “formal”
role played by, e.g., the effective polarization in (4)?

One reason is that usual calculations made in minimal
coupling can require the identification of sum rules to
show properly behaved results at low frequencies [23, 24]
– especially if nonlinear optical response is calculated,
which is a future direction for this work – and that is not
a difficulty with the calculations presented here, since the
response is calculated as due to electric and magnetic
fields directly. A second reason is that in an insulator
there is a clear physical significance to the response of
the polarization to applied fields, as has been demon-
strated within the “modern theory,” and we feel it is
interesting to see how that response can be seen to fol-
low from the response of a p-doped semiconductor in the
limit of vanishing doping. After all, since one can move
from metal-like behavior to insulator-like behavior in this
limit, it would seem physically reasonable to expect a po-
larization that would continuously evolve from that of a
metal to that of an insulator. A third reason is that with
this approach we can establish a connection to an earlier
generation of calculations based on strategies introduced
by Blount and co-workers [25]. A fourth reason, we feel,
is the interesting way a calculation based on polarization
and free currents highlights the way broken time-reversal
symmetry leads to a response qualitatively different than
usual. And a fifth reason is that, with its emphasis on
ELWFs and the interest in those functions for electronic
structure and response calculations in general, we can
hope that the approach here will be useful in numerical
calculations.

Our conclusions and perspectives on future work are
presented in Sec. V. Ultimately, when implemented in a
metallic crystal, that our general definitions agree with
past work of Blount and co-workers in a simple limit,
and that the well-known σil(ω) results, provides positive
support for our approach.
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II. SINGLE-PARTICLE DENSITY MATRIX

We will consider a simple instance of a metallic sys-
tem, a p-doped semiconductor, perturbed by a uni-
form electric field. We restrict our study to 2- and 3-
dimensional crystalline solids, and implement the frozen-
ion and independent-particle approximations; the spin
degree of freedom is neglected. In the Heisenberg picture,
the only dynamical degree of freedom of the crystal is

the electron field operator, ψ̂0(x, t). In the absence of an
“applied” electromagnetic field, the equation of motion

is i~ d
dt ψ̂0(x, t) = [ψ̂0(x, t), Ĥ0], for one-body Hamiltonian

operator Ĥ0 =
∫
ψ̂†0(x, t)H0(x, p(x))ψ̂0(x, t)dx, where

H0

(
x,p(x)

)
=

(
p(x)

)2
2m

+ V (x), (6)

with V (x) = V (x+R) for any Bravais lattice vector R
of the crystalline solid, and with

p(x) ≡ ~
i
∇− e

c
Astatic(x) (7)

to allow for the presence of an “internal,” static, cell-
periodic magnetic field described by the vector potential
Astatic(x), whereAstatic(x) = Astatic(x+R), that gener-
ally breaks time-reversal symmetry. We assume that the
set of energy eigenvalues Enk of the cell-periodic Hamil-
tonian (6) admits a band gap, below which we take the
Fermi energy EF to lie, unless otherwise stated. Thus,
a distinction can be made between the set of electronic
eigenvectors that are associated with partly occupied en-
ergy bands and those that are associated with completely
unoccupied energy bands in the zero-temperature ground
state, which we take to be the initial state of the crystal.

In recent times, it has become clear that the spectral
data of the relevant Hamiltonian does not completely
characterize a system and that some topological data
must also be identified. In particular, the existence of a
complete set of ELWFs [27] is equivalent to the existence
of a global smooth frame of the Hilbert bundle over the
Brillouin zone constructed using the cell-periodic parts
of the eigenfunctions associated with all of the energy
bands, which we term the Bloch bundle [28]. Indeed such
a frame always exists [29], and its components, which
at each k ∈ BZ constitute an orthonormal basis of the
Hilbert space spanned by all of the cell-periodic parts
of the Bloch energy eigenvectors indexed by that k, can
generally be written [21, 30, 31]

|αk〉 =
∑
n

Unα(k) |nk〉 , (8)

where unk(x) ≡ 〈x|nk〉 = (2π)d/2e−ik·x 〈x|ψnk〉 are cell-
periodic functions normalized over the unit cell that are
related to the electronic energy eigenvectors |ψnk〉, and
the Unα(k) constitute a unitary matrix U(k) at each k; in
what follows, sums are generally taken over all band in-
dices n or all “type” indices α unless otherwise indicated.

It is then each of the |αk〉, which are smooth over the BZ,
that can be mapped to an ELWF WαR(x) ≡ 〈x|αR〉 via
the (inverse) Bloch-Floquet-Zak transform [32, 33],

〈x|αR〉 =
√

Ωuc

∫
BZ

dk

(2π)d
eik·(x−R) 〈x|αk〉 , (9)

where Ωuc is the volume of the real space unit cell. Then,
each ELWF is identified by a type index α and the Bra-
vais lattice vector R with which it is associated. Ad-
ditionally, the existence of such a global smooth frame
implies the vanishing of any Chern numbers that char-
acterize the Bloch bundle [34]; this is often understood
implicitly in the physics literature [35]. The construction
outlined above corresponds to using all of the electronic
energy eigenvectors to construct a complete set of EL-
WFs; in general, each Unα(k) is nonvanishing. However,
often times, and as we will take to be the case in this
paper, a number of Hilbert subbundles of the Bloch bun-
dle are trivial, in which case a subset of the complete set
of ELWFs can be constructed from a subset of all the
electronic energy eigenvectors.

We here restrict our study to crystals for which the
Hilbert bundle associated with any set of isolated energy
bands is globally trivializable. Taking there to be an
energy gap between bands N and N+1, U(k) can always
be taken of block diagonal form with the “upper left”
block being N ×N dimensional. If the Fermi energy lies
in that gap – for example, if EF coincides with the upper
(red) dashed line of Fig. 1 – then we will classify the
material as a “trivial” insulator, and at each k the U(k)
acts on the occupied and unoccupied states separately.
On the other hand, if the Fermi energy lies below that
gap – for example, if EF coincides with the lower (blue)
dashed line of Fig. 1 – then at each k the U(k) acts on
the states associated with the N partly occupied energy
bands separate from the remaining unoccupied states.

Such considerations generally apply to any crystal
whose electronic spectrum has a band gap. A more gen-
eral approach to generate such smooth frames in metal-
lic systems where it is not necessary to have isolated
sets of energy bands has been formulated [36]; in fu-
ture work we plan to implement this construction. How-
ever, even within the scheme we implement, an important
distinction between metals and trivial insulators arises:
For a trivial insulator with N occupied energy bands
there exists a global smooth frame of the occupied sub-
bundle with components |αk〉 labelled by integers α ∈
{1, 2, . . . , N} that satisfies ∀k ∈ BZ : spanC({|nk〉 |Enk <
EF }) = spanC({|αk〉 |α ∈ {1, 2, . . . , N}}), while for met-
als with N partly occupied bands there exists only such
a frame that satisfies ∀k ∈ BZ : spanC({|nk〉 |Enk <
EF }) ⊆ spanC({|αk〉 |α ∈ {1, 2, . . . , N}}) [30, 36]. This
is because for metallic systems the construction of a
vector bundle over BZ whose fiber at each k ∈ BZ is
the Hilbert space spanned by the occupied |nk〉 fails
[37]. Instead, one can construct a vector bundle whose
fiber at each k contains, as a subspace, the occupied
Hilbert space at that k, which yields the subset rela-
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Since the rnm do not change when the scissors operator ~14!
is included we can determine the relationship between the
velocity matrix elements with the scissors operator, and
those without. We find

ṽ nm5vnm
vnm1~D/\!~dnc2dmc!

vnm
. ~21!

It is now possible to write the linear response coefficient
within the scissors approximation in terms of the velocity
matrix elements, as was done in Eq. ~18!. We use the corre-
spondence of Eq. ~20! to write

x̃ I
ab~2v;v!

5
e2

V\(
nmk

f nm
ṽ nm

a ~k! ṽmn
b~k!

@vmn~k!1~D/\!~dmc2dnc!2v#

3
1

@vmn1~D/\!~dmc2dnc!#
2 . ~22!

Yet, in order to actually calculate this coefficient we need to
have it expressed in terms of the unmodified velocity matrix
elements, the matrix elements we obtain from the LDA cal-
culation. To do this we use Eq. ~21! and write Eq. ~22! as

x̃ I
ab~2v;v!

5
e2

V\(
nmk

f nm
vnm
a ~k!vmn

b ~k!

vmn
2 @vmn~k!1~D/\!~dmc2dnc!2v#

.

~23!

As can be seen from the above equation, the linear response
function within the scissors approximation is no more com-
putationally difficult to calculate than that without the scis-
sors approximation @Eq. ~18!#. Note that Eqs. ~15!, ~22!, and
~23! are all equivalent, and that Eq. ~23! follows directly
from Eq. ~15! by the use of Eq. ~5!. Furthermore, the ap-
proach taken in deriving Eq. ~23! is easily extended to
higher-order response functions; we find that, as for linear
response, the extension of a response coefficient expression
to the scissors approximation consists of two steps: First the
function, written using the matrix elements of the position
operator, is modified as indicated by Eq. ~16!. Second, we
need only use Eq. ~5! to write the response function in terms
of vnm(k), producing the analog of Eq. ~23!, to make it suit-
able for numerical evaluation.
We note that the result in Eq. ~23! is essentially equiva-

lent to that introduced by Del Sole and Girlanda,9 and Levine
and Allan.6,18,44 However, Del Sole and Girlanda restrict
their discussion to linear response, where we have extended
this approach to any higher-order response function. Levine
and Allan do treat second-order susceptibilities within the
scissors approximation but do so in a way specific to their
formalism for nonlinear response. Our approach for the scis-
sors operator, although equivalent, is a general extension of
this previous work applied to our formalism.

III. METHOD OF CALCULATION

A. FLAPW method

In order to determine the optical response functions in a
full band structure approach, one requires the eigenvalues
and velocity matrix elements at many k points in the Bril-
louin zone ~BZ!. The velocity matrix elements, in turn, re-
quire a knowledge of the electronic wave functions. For this
purpose, we employ a first-principles approach in the form of
the FLAPW method. As this method has been previously
discussed,31,32 we highlight only a few of its pertinent fea-
tures.
The spirit of the FLAPW approach is the partitioning of

real space within a crystal into two distinct regions: ‘‘muffin-
tin’’ spheres surrounding the atomic positions, and the re-
maining interstitial space. The electronic wave functions
then have a dual representation over all space, consisting of
an expansion of solutions of the Schrödinger equation and its
energy derivative in the muffin-tin spheres, and plane waves
in the interstitial region. We rely on the LDA for the one-
electron exchange-correlation potential. Prior to determining
the electronic structure and wave functions at k points of
interest in the BZ, we converge the charge density in the
crystal in a series of self-consistent calculations. This con-
vergence process involves all electrons, and so the valence
and core electronic states are recalculated for each iteration.
In the calculation of the electronic band structure of GaAs

and GaP we have used the Wigner interpolation method as a
means of determining the one-electron exchange-correlation
potential. Spin-orbit and scalar relativistic effects are in-
cluded in both calculations. We present in Fig. 1 the band
structures for GaAs and GaP. In both band structures we

FIG. 1. FLAPW electronic band structures for GaAs and GaP.
The fundamental band gap has been adjusted within the scissors
approximation.

10 754 53JAMES L. P. HUGHES AND J. E. SIPE

{
|nk〉

∣∣∣n ∈ {N + 1, N + 2, . . .}
}

→
{
|αk〉

∣∣∣α ∈ {N + 1, N + 2, . . .}
}

{
|nk〉

∣∣∣n ∈ {1, 2, . . . , N}}shiftshift

→
{
|αk〉

∣∣∣α ∈ {1, 2, . . . , N}}shiftshift

FIG. 1: Schematic of the energy bands whose associated eigenvectors would be used in the construction of ELWFs
in a hypothetical d > 1 crystalline solid (the bandstructure of GaAs, which we import from a past publication [26],
is used only for illustrative purposes). Upper (red) and lower (blue) horizontal dashed lines indicate possible Fermi

energies for a trivial insulator and for a p-doped semiconductor, respectively.

tion. Thus, while for trivial insulators the subspace
spanC({|αk〉 |α ∈ {1, 2, . . . , N}}) contains only “ground
state data,” this is not so for metals. This does not pose
an issue since we do not assert that the electronic po-
larization and magnetization fields involve only the ini-
tially occupied energy eigenvectors. Rather, we introduce
pel(x, t) and m(x, t) using any set of functions that are
sufficiently localized spatially – ELWFs are the most nat-
ural and convenient choice – and, by construction, from
those fields the ground state expectation values of the
charge and current density operators can be found [15].

Since topological notions underlie the existence of EL-
WFs, the appearance of related geometric objects in
many identities involving ELWFs is less opaque than it
might otherwise be. One such identity that will be useful
in this work is [30]∫

W ∗βR(x)xaWα0(x)dx =
Ωuc

(2π)d

∫
BZ

dkeik·Rξ̃aβα(k),

(10)

where

ξ̃aβα(k) =
i

Ωuc

∫
Ωuc

u∗βk(x)
∂uαk(x)

∂ka
dx

≡ i(βk|∂aαk) (11)

are components of the non-Abelian Berry connection that
is induced by a global smooth frame with components
|αk〉. Here uαk(x) ≡ 〈x|αk〉 and we adopt the shorthand
∂a ≡ ∂/∂ka. The components (11) are related to the
components of the non-Abelian Berry connection that is
induced by a local smooth frame with components |nk〉,

ξamn(k) ≡ i(mk|∂ank), (12)

via the gauge transformation∑
αβ

Umβ(k)ξ̃aβα(k)U†αn(k) = ξamn(k) +Wa
mn(k). (13)

Under a periodic gauge choice, Umβ(k) = Umβ(k +G),
where G is a reciprocal lattice vector, all the objects
appearing here, including the Hermitian matrix Wa(k)
[2] populated by elements

Wa
mn(k) ≡ i

∑
α

(
∂aUmα(k)

)
U†αn(k), (14)

are periodic over the Brillouin zone. In what follows,
the k-dependence of the preceding objects is usually kept
implicit.

The nonvanishing components ofWa(k) depend on the
structure of U(k), which for the materials we consider
can take the block-diagonal form discussed above. Then
Wa
mn(k) 6= 0 only if m and n lie in the same block, for if

they are associated with different blocks then the values
of α for which Unα(k) 6= 0 differ from the values of α
for which Umα(k) 6= 0. In a trivial insulator the first,
“upper left” block acts only on the occupied states and
the second, “bottom right” block only on the unoccupied
states, so if we introduce Fermi filling factors fnk = 1
(0) if the state |nk〉 is initially occupied (unoccupied),
then for the trivial insulator fnk = fn, depending only
on the band, and Wa

mn(k) 6= 0 only if fm = fn. But
in a p-doped semiconductor the first block also acts on
some unoccupied states, and so in general we can have
Wa
mn(k) 6= 0 even if fmk 6= fnk.
We account for the interaction between the electron

field, which we take to be the only dynamical degree of
freedom of the crystal, and the “applied” electromagnetic
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field via the usual minimal coupling prescription. From
the resulting minimal coupling Hamiltonian, the field-
theoretic electronic charge and current density operators
can be found in the usual way [38]. Associated with each
spatial component of that current density operator is the
differential operator

Jamc

(
x,pmc(x, t)

)
=

e

m
pamc(x, t), (15)

where

pmc(x, t) ≡ p(x)− e

c
A(x, t), (16)

and where the vector and scalar potentials A(x, t) and
φ(x, t) describe the classical applied electromagnetic
field. As a consequence, another useful identity will be∫

ψ∗n′k′(x)pa(x)ψnk(x)dx = pan′n(k)δ(k − k′),

where the matrix elements are found to be [39]

pan′n(k) = δn′n
m

~
∂aEnk +

im

~
(
En′k − Enk

)
ξan′n(k).

(17)

Under the frozen-ion approximation implemented here,
we take the positively charged ion cores that compose the
underlying crystal structure of the material to be fixed,
even in the presence of an applied electromagnetic field,
and introduce the charge density ρion(x) to describe the
distribution of these static charges. We take ρion(x) such
that the crystal as a whole is electrically neutral.

In this work, we implement a previously developed for-
malism [15] restricted to the “long-wavelength limit,”
wherein we take the applied electric field to be uni-
form and the magnetic field to vanish. Neglecting local
field corrections, we take the applied electric field be the
macroscopic Maxwell field E(t) [19]. Consideration of
the phenomena related to spatially-varying electromag-
netic fields is left for future work. A quantity central to

this formalism is the so-called (electronic) single-particle
density matrix ηαR′′;βR′(t), the definition of which in-
volves a generalized Peierls phase, and the fermionic op-
erators that generate ELWFs (9) and “modified” versions

thereof [40]. Naturally, the operators ânk and â†nk gen-
erating electronic eigenvectors |ψnk〉 of the unperturbed

Hamiltonian Ĥ0 are also relevant in perturbative calcula-
tions and when making contact with existing literature;

we take |ψnk〉 ≡ â†nk |vac〉, where Ĥ0 |ψnk〉 = Enk |ψnk〉.
Working in the Heisenberg picture, these operators evolve

as i~ d
dt ânk(t) = [ânk(t), Ĥ(t)], where Ĥ(t) involves the

classical Maxwell electric field via minimal coupling, and
it is the initial state of the unperturbed crystal that en-
ters ηαR′′;βR′(t).

In what follows, we account for the effect of the ap-
plied electric field perturbatively. Thus we assume the
existence of a valid expansion of all electronic quantities
in powers of E(t). In particular, we take ηαR′′;βR′(t) of
the form

ηαR′′;βR′(t) = η
(0)
αR′′;βR′ + η

(1)
αR′′;βR′(t) + . . . ,

where the superscript (0) denotes the contribution to a
quantity that is independent of E(t), the superscript (1)
denotes the contribution that is linear in the electric field,
and “. . .” denotes non-linear contributions, which we here
neglect. In Appendices A and B we find

η
(0)
αR′′;βR′ = Ωuc

∫
BZ

dk

(2π)d
eik·(R

′′−R′)
∑
n

fnkU
†
αnUnβ ,

(18)

and implementing the usual Fourier series analysis,

g(t) ≡
∑
ω

e−iωtg(ω), (19)

we also find that the first-order perturbative modification
to ηαR′′;βR′(t) due to E(ω) is

η
(1)
αR′′;βR′(ω) = eEl(ω)Ωuc

∫
BZ

dk

(2π)d
eik·(R

′′−R′)
∑
mn

fnm,kU
†
αmξ

l
mnUnβ

Emk − Enk − ~(ω + i0+)

− ie El(ω)

~(ω + i0+)
Ωuc

∫
BZ

dk

(2π)d
eik·(R

′′−R′)
∑
n

(∂lfnk)U†αnUnβ , (20)

where fnm,k ≡ fnk − fmk. The first term of (20) is the
straight-forward generalization of the previously found
perturbative modification for trivial insulators, and can
be understood in the context of time-dependent pertur-

bation theory as arising from the interaction term [41]

−eEa(t)

∫
BZ

dk
∑
n 6=m

â†nk(t)ξanm(k)âmk(t). (21)

Due to the form of this interaction term we will later de-
scribe any first-order modifications that involve the first
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term of (20) as being “interband.” The second term of
(20) is a new contribution, here related to the presence
of a Fermi surface. Notably this term diverges in the dc
limit, and indeed it is this term that will lead to the ex-
pected dc divergence of the induced free current density,
as we later show. This term can here be understood as
arising from the interaction term

− eEa(t)

∫
BZ

dk
∑
n

(
â†nk(t)ξann(k)ânk(t)

+
i

2
â†nk(t)

(
∂aânk(t)

)
− i

2

(
∂aâ
†
nk(t)

)
ânk(t)

)
.

(22)

The first term of (22) gives a vanishing contribution to

η
(1)
αR′′;βR′(ω) for both metals and trivial insulators ini-

tially occupying their zero-temperature electronic ground
state. In contrast, although the second and third terms of

(22) as well give vanishing contributions to η
(1)
αR′′;βR′(ω)

for such trivial insulators, they give rise to finite contribu-
tions if the crystal is metallic; these finite contributions
involve only the states with energies “near” the Fermi en-
ergy (see Appendix B). Due to the form of this interaction
term we will later describe the first-order modifications
that involve the second term of (20) as being “intraband.”
Such an identification of interaction terms that give rise
to inter- and intraband contributions at linear response
is implicit in the earlier works of Blount [42] and oth-
ers [43]. The primary difference between our approach
and those is that this investigation is a limiting case of a
more general framework within which spatial and tempo-
ral variation of electric and magnetic fields can be taken
into account; that is not the case in earlier works.

The limit of a trivial insulator can be reached from
(18) by taking fnk → fn and requiring each |αk〉 to be
an element of either the initially occupied or unoccupied
Hilbert subspace; the second condition implies that, in
general, Wi

nm(k) 6= 0 only if fn = fm (see discussion
below (14)). In this limit, one can define an analogous
filling factor fα associated with |αk〉; we set the fα as-
sociated with |αk〉 to equal the fn associated with the
{|nk〉} used in its construction. The sum over n in (18)
then corresponds to the matrix multiplication of U(k)
and its inverse, giving the unit matrix, which in compo-

nents is δαβ . It then follows that, in this limit,

η
(0;insulator)
αR′′;βR′ = fαδαβδR′′R′ ,

as expected [15]. Implementing this limit in (20) we find

η
(1;insulator)
αR′′;βR′ (ω) = eEl(ω)Ωuc

∫
BZ

dk

(2π)d
eik·(R

′′−R′)

×
∑
mn

fnmU
†
αmξ

l
mnUnβ

Emk − Enk − ~(ω + i0+)
,

again, as expected [15].
III. DIPOLE MOMENTS

In general, the presence of an applied electromagnetic
field will break the discrete translational symmetry of
the unperturbed crystalline system. Consequently, in the
minimally-coupled system, contributions to a given elec-
tric or magnetic multipole moment that are associated
with distinct lattice sites of the crystal will generally dif-
fer. However, in the long-wavelength limit, all of the site
contributions to a given multipole moment are equiva-
lent. In particular, the site electric and magnetic dipole
moments satisfy

µR = µR′ , νR = νR′ ,

for any Bravais lattice vectors R and R′ of an un-
perturbed crystalline Hamiltonian. It follows that the
macroscopic polarization and magnetization fields are
uniform [19] and can be written as

P (t) =
µR(t)

Ωuc
, M(t) =

νR(t)

Ωuc
, (23)

for any R. Because we consider the ionic cores within
the crystal to be fixed, these charges do not contribute
to the magnetization; there will however be a static
contribution to the polarization that is found from the
“site” polarization fields that are defined from the con-
stituents of a decomposition of ρion(x) into “site” con-
tributions [15, 19]. Irrespective of the electronic state of
the medium, the electric dipole moment associated with
lattice site R is defined to be

µiR(t) ≡
∑

αβR′R′′

(∫
(xi −Ri)ρβR′;αR′′(x,R; t)dx

)
ηαR′′;βR′(t) +

(
µion

R

)i
, (24)

(see Eq.’s (42,44,55,57) of Mahon et al. [15]) and the magnetic dipole moment associated with R to be

νiR(t) ≡ 1

2c

∑
αβR′R′′

(
εiab

∫
(xa −Ra)

(
jbβR′;αR′′(x,R; t) + j̃bβR′;αR′′(x,R; t)

)
dx

)
ηαR′′;βR′(t) (25)

(see also Eq.’s (64,66,67) of Mahon et al. [15]),
where ρβR′;αR′′(x,R; t), jβR′;αR′′(x,R; t), and

j̃βR′;αR′′(x,R; t) are termed generalized (electronic)
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“site-quantity matrix elements” and were introduced
previously [15]. Again, with the assumption of a valid
perturbative expansion (24,25) can be written

µR(t) = µ
(0)
R + µ

(1)
R (t) + . . . ,

νR(t) = ν
(0)
R + . . . ,

and the same can be done for (23). The first term in each
such expansion is identified as the “unperturbed contri-
bution,” and these are the focus of the rest of this section.

A. Polarization

From (18,24) we find µ
(0)
R to be independent of R, as

expected, and the resulting unperturbed polarization is

P i(0) = e

∫
BZ

dk

(2π)d

∑
n

fnk
(
ξinn +Wi

nn

)
+

(
µion

R

)i
Ωuc

,

(26)

which is formally similar to that of a trivial insulator
[6, 39], for which fnk → fn. As is the case there,
apart from a gauge dependent contribution, P (0) van-
ishes if the unperturbed system is inversion symmetric;
as discussed previously [39], we take the gauge depen-
dence of the electronic quantities to be contained entirely
within the U(k) and consider any terms that involve this
object, including the Wi(k), to be “gauge dependent.”
While it appears that the gauge dependent term appear-
ing in (26) no longer generally evaluates to an element
of a set of discrete values, at least not following from
the same argument that is presented for trivial insula-
tors [6], P (0) maintains the physically sensible charac-
teristic that upon shifting the origin of all ELWFs by a

constant Bravais lattice vector Rs, the polarization is al-
tered by an additive constant that is proportional to that
vector. That is, although there is no longer a “quan-
tum of ambiguity” associated with P (0) for a general
change in Unα(k), as occurs for a trivial insulator [6],
taking |αR〉 → |αR+Rs〉, or equivalently Unα(k) →
e−ik·RsUnα(k) and thus Wa

nm(k) → Wa
nm(k) + δnmR

a
s ,

yields

P (0) → P (0) + eNelRs,

where Nel =
∫

BZ
dk

(2π)d

∑
n fnk is the number of electrons

per unit volume. Thus with respect to simple shifts in
the positions of the Wannier function a discrete ambiguty
does arise. We do note however that an expression for-
mally similar to (26) arises in the case of a Chern insu-
lator [44], and while in that case the gauge dependent
contribution again would not be discretely valued by the
original argument of Resta [6], it indeed has this prop-
erty when treated carefully [45]. It may therefore be the
case that the gauge dependent contribution to (26) al-
ways evaluates to an element of a set of discrete values,
but we postpone such an investigation for a later work.
Finally, (26) is manifestly invariant under a translation
of the energy zero, as one would expect.

B. Magnetization

We first identify the “atomic-like” contribution [4, 15]
to the unperturbed magnetization, which arises from the
term involving jβR′;αR′′(x,R; t) in (25). We find

M̄ i(0) =
e

2mc
Re

∫
BZ

dk

(2π)d

∑
n

fnk
∑
αβR′

eik·(R
′−R)Unβ

(
εiab

∫
W ∗β0(y)yapb(y)WαR′−R(y)dy

)
U†αn

=
e

2~c
Re

∫
BZ

dk

(2π)d

∑
n

fnkε
iab
(

(ξann +Wa
nn)∂bEnk + i

∑
m

(Emk − Enk)ξanmξ
b
mn − i

∑
m

(
Enk − Emk

)
Wa
nmξ

b
mn

)
.

(27)

The “itinerant contribution” [4, 15], which arises from the term involving j̃βR′;αR′′(x,R; t) in (25), is found to be

M̃ i(0) =
e

2~c
Re

∫
BZ

dk

(2π)d

∑
n

fnkε
iab
(

(ξann +Wa
nn)∂bEnk + i

∑
m

(Enk − Emk)Wa
nmWb

mn + i
∑
m

(
Enk − Emk

)
Wa
nmξ

b
mn

)
.

(28)

Both (27) and (28) reproduce the usual expressions in the trivial insulator limit; that is, taking fnk → fn and
Wa
nm(k) 6= 0 only if fn = fm, and implementing the definition of the non-Abelian Berry connection i∂unk(x)/∂ka =∑
m ξ

a
mn(k)umk(x) to find (∂aunk|Hk|∂bunk) =

∑
mEmkξ

a
nm(k)ξbmn(k), the results of the “modern theory of magne-
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tization” [5] are recovered. More generally, combining (27) and (28) we have

M i(0) =
e

2~c
Re

∫
BZ

dk

(2π)d

∑
n

fnkε
iab
(

2(ξann +Wa
nn)∂bEnk + i

∑
m

(Emk − Enk)
(
ξanmξ

b
mn −Wa

nmWb
mn

))
=

e

2~c
Re

∫
BZ

dk

(2π)d

∑
n

εiab
(

2(∂afnk)(ξbnn +Wb
nn)Enk + fnkEnk∂aξ

b
nn + ifnk

∑
m

Emkξ
a
nmξ

b
mn

+ iEnk
∑
m

(fmk − fnk)Wa
nmWb

mn

)
. (29)

Again, in the limit of a trivial insulator the usual expression is recovered [5]; that is,

M i(0;insulator) =
e

2~c
Re

∫
BZ

dk

(2π)d

∑
n

εiab
(
fnkEnk∂aξ

b
nn + ifnk

∑
m

Emkξ
a
nmξ

b
mn

)
.

In particular, in that limit (29) is gauge invariant. Moreover, (29) generally vanishes if the unperturbed system is
time-reversal symmetric, as expected.

If we again consider the effect of shifting the origin of
each ELWF by a Bravais lattice vector Rs, we find

M i(0) →M i(0) +
e

mc
εiabRas

∫
BZ

dk

(2π)d

∑
n

fnkp
b
nn(k),

where we have used pann(k) = m
~ ∂aEnk. The term involv-

ing Rs vanishes as the net current in an unperturbed
metal occupying its zero-temperature ground state is
zero; that is, ∫

BZ

dk

(2π)d

∑
n

fnkp
a
nn(k) = 0.

Thus, (29) is unaffected by shifting ELWFs, as physically
expected. Moreover, it is manifest that (29) is unchanged
by a translation of the energy zero.

IV. FIRST ORDER MODIFICATIONS

We here consider the linearly induced macroscopic
charge and current densities, which can be understood to
arise from the induced macroscopic polarization and the
induced free charge and current densities; in the long-
wavelength limit considered here, the induced macro-
scopic magnetization would be uniform [19] and thus not
contribute to (1). Under the frozen-ion approximation
that we implement, there are only electronic contribu-
tions to such quantities.

A. Polarization

We first consider the contribution to (24) that is first
order in E(ω). Making contact with past work [19, 39],
we mention that the ρβR′;αR′′(x,R;ω) do not involve the

electric field and so the only contribution to µ
(1)
R (ω) is

“dynamical,” arising from the modification of the single-
particle density matrix due to E(ω); this is the same as
the situation for insulators. Implementing (20) we find

P i(1)(ω)

= e2El(ω)

∫
BZ

dk

(2π)d

∑
mn

fnm,kξ
l
mn

(
ξinm +Wi

nm

)
Emk − Enk − ~(ω + i0+)

+ ie2 El(ω)

~(ω + i0+)

∫
BZ

dk

(2π)d

∑
n

fnk∂l
(
ξinn +Wi

nn

)
.

(30)

This expression has two notable features; it is gauge de-
pendent, and it diverges in the dc limit. The gauge de-
pendence is not troubling because induced free charges
and currents are also involved here; ultimately it is only
the net induced charge and current densities that need
be gauge invariant. Also, in the limit of a trivial insu-
lator the second term vanishes and the expected result
is recovered [46]. It is notable however that the dis-
tinct terms of (30) are sensitive to different aspects of
the gauge transformation; the first term, the interband
term, involves only off-diagonal elements ofWi(k), while
the second term, the intraband term, involves only di-
agonal elements. This is to be expected because of the
way in which the Lie algebra components of the Berry
connection appear. Second, it is notable that a diverging
linearly induced polarization in the dc limit is not un-
precedented. For example, if one considers a hydrogen
atom initially occupying its 2s state, dc divergences oc-
cur as a result of non-vanishing matrix elements between
2s and 2p states facilitated by an electric dipole interac-
tion term. Such a divergence could arise from the first
term of (30), but does not occur here as we take the crys-
tal to initially occupy its unique electronic ground state,
in contrast to this example for the hydrogen atom. So
although such a divergence is not entirely novel in prin-
ciple, the mechanism underlying the divergence of (30) is
distinct from that of atomic and molecular physics. We
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return to this issue in Sec. V.

B. Macroscopic bound and free currents

Like the macroscopic polarization and magnetization,
the spatial uniformity of the electric field renders the
macroscopic bound and free current densities uniform
[19]. Thus we do not indicate any spatial dependence of
such quantities. Moreover, both the macroscopic bound
and free current densities can found from any one of the
“site quantities” used in their construction [15].

Implementing (30) we find the linearly induced macro-
scopic bound current density [15, 19],

J
(1)
B (ω) = −iωP (1)(ω). (31)

This is non-diverging in the ω → 0 limit, as would be ex-
pected physically. Furthermore, in Appendix C we show
that (31) vanishes in the ω → 0 limit if the unperturbed
system is time-reversal symmetric.

We now consider the linearly induced macroscopic free
current density. The corresponding microscopic density
is defined as [15]

jF (x, ω) ≡ 1

2

∑
RR′

s(x;R,R′)I(R,R′;ω). (32)

From the definitions presented in that past work, we
find the first-order modification to the link currents
I(R,R′;ω) to be of the form

I(1)(R,R′;ω)

=
e

i~
∑
αλ

(
H

(1)
αR;λR′(ω)η

(0)
λR′;αR − η

(0)
αR;λR′H

(1)
λR′;αR(ω)

)
+

e

i~
∑
αλ

(
H

(0)
αR;λR′η

(1)
λR′;αR(ω)− η(1)

αR;λR′(ω)H
(0)
λR′;αR

)
.

(33)

The first term of the above is referred to as a “composi-
tional” modification, arising due to a dependence of the
generalized site quantity matrix elements on the electro-
magnetic field, and the second a “dynamical” modifica-
tion [39]. An expression for (33) is given in Appendix D,
which can explicitly be shown to satisfy

I(1)(R,R′;ω) = −I(1)(R′,R;ω),

as required, as well as

I(1)(R,R′;ω) = I(1)(R+Rs,R
′ +Rs;ω),

and ∑
R′

I(1)(R,R′;ω) = 0,

as one would physically expect for a translationally in-
variant system subject to a uniform electric field. The
latter can be understood by noting that the electronic
“site charges” evolve according to [15]

dQR(t)

dt
=
∑
R′

I(R,R′; t),

and in this case we expect there to be no build up of
charge at any particular lattice site; we therefore expect
dQR(t)/dt to vanish. In fact, from the definition ofQR(t)
and using (20) it can be show that

Q
(1)
R (ω) =

∑
α

η
(1)
αR;αR(ω) = 0.

Then, in Appendix D we show

J
i(1)
F (ω) =

1

2Ωuc

∑
R′

(Ri −R′i)I(1)(R,R′;ω)

= −e
2

~
El(ω)

∫
BZ

dk

(2π)d

(∑
n

fnk∂i(ξ
l
nn +W l

nn) +
∑
nm

fnm,kIm
[
(ξlnm +W l

nm)Wi
mn

])

+
ie2

~
El(ω)

∫
BZ

dk

(2π)d

∑
nm

fnm,kξ
l
mnWi

nm

(
1 +

~ω
Emk − Enk − ~(ω + i0+)

)
+
ie2

~
El(ω)

~(ω + i0+)

∫
BZ

dk

(2π)d

∑
n

fnk∂l∂iEnk, (34)

where the first term in the second line results from the
compositional modification of (33), while the second and

third terms from the dynamical modification. Notably
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J
(1)
F (ω) diverges in the dc limit, which is as one would

physically expect given that we have not accounted for
any scattering mechanisms. In fact, it is the third term in
the second line of (34) that will lead to the dc divergence
of the electrical conductivity tensor; this term involves

the second term of (20). Moreover, J
(1)
F (ω) is gauge

dependent, akin to J
(1)
B (ω), and it is only through this

gauge dependence that (34) involves “interband” contri-
butions. Notably if all of the energy bands of the un-
perturbed crystal were isolated from one another, then
Wa
nm(k) ∝ δnm and thus the interband contributions

to J
(1)
F (ω) vanish; in this limiting case the induced free

current density involves only “intraband” contributions,

which is as one would expect for simple models.

C. Time-reversal symmetry

The general expression (30) that we derive for P (1)(ω)
has the feature that it contains an intraband contribu-
tion and this contribution diverges in the dc limit. From
the simple picture of polarization presented in Sec. I, the
presence of such a contribution is unexpected. While in
general our description thus asserts that this simple pic-
ture is not complete, in Appendix C we show that such
an intraband contribution vanishes if the unperturbed
system is time-reversal symmetric and P (1)(ω) takes the
more expected form

P i(1)(ω)
T
= e2El(ω)

∫
BZ

dk

(2π)d

∑
mn

fnm,kξ
l
mn

(
ξinm +Wi

nm

)
Emk − Enk − ~(ω + i0+)

.

Here
T
= will denote an equality that holds in the presence of time-reversal symmetry. Adopting the approach of (3),

we find

εilinter(ω)
T
= 4πe2

∫
BZ

dk

(2π)d

∑
mn

fnm,kξ
l
mn

(
ξinm +Wi

nm

)
Emk − Enk − ~(ω + i0+)

,

which, apart from the gauge dependence, is consistent with the insight from analogies with molecular response and
the more simple approaches mentioned in Sec. I. That is, for crystalline solids in which time-reversal symmetry holds,
it is only interband contributions that are involved in P (1)(ω). However, even in this simple case P (1)(ω) and εilinter(ω)
remain gauge dependent, and thus the introduction of ELWFs and the ambiguity in their choice need be involved in
any discussion of such quantities. In this case the induced macroscopic free current density (34) reduces to

J
i(1)
F (ω)

T
= ie2ωEl(ω)

∫
BZ

dk

(2π)d

∑
nm

fnm,kξ
l
mnWi

nm

Emk − Enk − ~(ω + i0+)
+
ie2

~
El(ω)

~(ω + i0+)

∫
BZ

dk

(2π)d

∑
n

fnk∂l∂iEnk,

still having both interband and intraband contributions. Notably the interband contribution is gauge dependent and
cancels with the gauge dependent term appearing in the induced bound current density −iωP (1)(ω) and thus the net
induced current density is gauge independent, as one would expect. In the special case of isolated bands, Unα(k) is

proportional to δnα and the gauge dependent contributions to P (1)(ω) and J
(1)
F (ω) individually vanish. In addition,

if the“parabolic band approximation” is implemented, that is, if one takes each energy eigenvalue of an occupied state

to be Enk = ~2|k|2/2m, J
(1)
F (ω) agrees with (2) after the identification m0 = m and N = Nel. In fact, we find under

the parabolic band approximation that

εileff(ω)
T
= δil + 4πe2

∫
BZ

dk

(2π)d

∑
mn

fnm,kξ
l
mnξ

i
nm

Emk − Enk − ~(ω + i0+)
− 4πe2Nel

mω(ω + i0+)
δil,

or

σil(ω)
T
= −ie2~ω

∫
BZ

dk

(2π)d

∑
mn

fnm,kξ
l
mnξ

i
nm

Emk − Enk − ~(ω + i0+)
+

ie2Nel

m(ω + i0+)
δil

T
= ie2

∫
BZ

dk

(2π)d

∑
mn

fnm,k(Enk − Emk)ξlmnξ
i
nm

Emk − Enk − ~(ω + i0+)
+

ie2Nel

m(ω + i0+)
δil.

In moving from the first to the second line in this expres- sion for σil(ω), relations that hold only in the presence
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of time-reversal symmetry are implemented. However,
we will find that this latter form of σil(ω) holds even in
the absence of time-reversal symmetry. Moreover, in the
absence of that symmetry P (1)(ω) takes the more compli-
cated form (30), which generally involves intraband con-
tributions. This results in P (1)(ω) having a more general

gauge dependence and as well J
(1)
F (ω) having a more gen-

eral gauge dependence. However, as was the case here,
when these more general expressions are combined, for
instance when constructing εileff(ω) or σil(ω), the gauge

dependent terms again cancel.

D. Induced macroscopic current density

Returning to the more general investigation, and thus
allowing the possible breaking of time-reversal symme-
try, we again find that although (31) and (34) are not
individually gauge invariant and thus are not themselves
directly physically observable, their sum is. Indeed, com-
bining (31) and (34) we find

J i(1)(ω) =
ie2

~
El(ω)

∫
BZ

dk

(2π)d

∑
mn

fnm,k(Enk − Emk)ξlmnξ
i
nm

Emk − Enk − ~(ω + i0+)
+
ie2

~
El(ω)

~(ω + i0+)

∫
BZ

dk

(2π)d

∑
n

fnk∂l∂iEnk.

The first term comes from taking −iω = (Enk −Emk) +

(Emk − Enk − iω) in the interband contribution of µ
(1)
R

to J
(1)
B (ω) ((30) to (31)). Then it is only the term that is

gauge invariant and explicitly energy dependent in this

particular contribution to J
(1)
B (ω) that is not cancelled

with terms appearing in J
(1)
F (ω), (34). In particular it

is part of the first term of (34), which is a compositional
modification, that combines with the second term of the
contribution of (30) to (31) when we calculate J (1)(ω),

and ultimately it is the combination of these terms that
cancel with the interband contribution of (30) to (31)
that does not explicitly depend on energy. The second
term arises from the induced free current density alone
and is the only term in (34) that does not cancel with
terms from (31). While the “origin” of each of the terms
can most easily be seen in the above form of the expres-
sion, it can be rewritten in a more familiar form,

J i(1)(ω) = −ie2ωEl(ω)

∫
BZ

dk

(2π)d

∑
mn

fnk
Emk − Enk

(Emk − Enk)2 − (~(ω + i0+))2

(
ξinmξ

l
mn + ξlnmξ

i
mn

)
− ie2

~
El(ω)

∫
BZ

dk

(2π)d

∑
mn

fnk
(Emk − Enk)2

(Emk − Enk)2 − (~(ω + i0+))2

(
ξinmξ

l
mn − ξlnmξimn

)
+
ie2

~
El(ω)

~(ω + i0+)

∫
BZ

dk

(2π)d

∑
n

fnk∂l∂iEnk. (35)

This is in agreement with usual perturbative calculations
that implement the minimal coupling Hamiltonian. In
particular, using (17) to rewrite the integrands of (35) to
involve velocity matrix elements vnn′(k) = pnn′(k)/m,
for example, Eq. (25,26) of Allen [47] are reproduced.

The final term of (35) can be understood as a “Drude”
contribution. This term follows from the final term of
(20), and enters here via the induced free current den-
sity (34). Notably, such a term can lead to an induced
current density that is orthogonal to the applied electric
field. This is not to be confused with the well-understood
anomalous Hall conductivity however, because in this
case since the Cartesian components i and l are symmet-
ric there exists a basis in which this contribution to the

conductivity tensor is diagonal. Physically this means
that, were the applied electric field characterized by a
single non-vanishing component with respect to such a
basis, the induced current density arising from this term
would be parallel to that field. Thus, we understand the
possibility of such an induced orthogonal current density
to be entirely a consequence of crystalline anisotropy.

In contrast, the first and second terms of (35) are re-
lated to both the induced bound and free current densi-
ties. Notably, the second term can be understood as a
finite-frequency generalization of the “anomalous Hall”
current density [48]. This portion of the induced cur-
rent density is unique because, unlike the contribution
from final term of (35), the spatial components i and l
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are asymmetric and consequently there does not exist a
basis in which this contribution is diagonal; there does
not exist a basis in which the induced current associated
with this term is parallel to the applied electric field.

E. Microscopic charge and current densities

The divergence of (30) in the dc limit may raise con-
cerns about our identification of the polarization. We
are thus motivated to consider the first-order modifica-
tions of the expectation values of the electronic charge
and current density operators due to E(ω) – quantities
that could be found from traditional perturbation theory
with the minimal coupling Hamiltonian [49] – with the
hope that further insight might be gained. Implementing
(20) into previously developed expressions [15], we find

〈ρ̂(x, ω)〉(1)
= e2El(ω)

∫
BZ

dk

(2π)d

∑
mn

fnm,kξ
l
mn

Emk − Enk − ~(ω + i0+)
ψ∗nk(x)ψmk(x)

+ ie2 El(ω)

~(ω + i0+)

∫
BZ

dk

(2π)d

∑
n

fnk∂l
(
ψ∗nk(x)ψnk(x)

)
, (36)

and 〈
ĵi(x, ω)

〉(1)

=
e2

m
El(ω)

∫
BZ

dk

(2π)d

∑
mn

fnm,kξ
l
mn

Emk − Enk − ~(ω + i0+)
ψ∗nk(x)pi(x)ψmk(x)

+
ie2

m

El(ω)

~(ω + i0+)

∫
BZ

dk

(2π)d

∑
n

fnk∂l
(
ψ∗nk(x)pi(x)ψnk(x)

)
. (37)

The electronic charge and current density operators that
we implement are those that arise via Noether’s theorem
and thus satisfy the continuity equation

∂

∂t
ρ̂(x, t) +

∂

∂xa
ĵa(x, t) = 0.

Assuming an expansion of these operators in powers of
the electric field exists, continuity must then hold at each
order in E(ω). The same must then be true of the expec-
tation values of such operators. This can be shown explic-
itly to be the case at first order; implementing (36,37),
we find

−iω 〈ρ̂(x, ω)〉(1)
+

∂

∂xa

〈
ĵa(x, ω)

〉(1)

= 0,

given that in principle charge is conserved in the unper-
turbed system in a perturbative scheme.

Notably, (36) has a dc divergence taking a form sim-
ilar to that of (30). Like that second term of (30), the
second term of (36) vanishes if the unperturbed system
is time-reversal symmetric, although this symmetry does
not cause the second term of (37) to vanish. Thus, it ap-
pears that if one insists on defining electric multipole mo-
ments by way of partitioning the electronic charge density
into portions that are used to define “site” polarization
fields from which “site” multipole moments are extracted
and summed to give the full electric multipole moments

of the system, whether that be via the approach we im-
plement here or some other method, it is unavoidable
that one will find a such a dc divergence. In a sense, this
unexpected dc divergence is not arising as a consequence
of our identification of the microscopic polarization field,
but rather it is inherent to the induced charge density at
low frequencies.

V. CONCLUSION

In this work we have considered how polarization and
magnetization fields can be defined for metallic systems.
In contrast to the approach of the “modern theories of
polarization and magnetization,” we employ a previously
developed strategy [15] for defining microscopic polariza-
tion and magnetization fields in general crystalline solids,
the macroscopic analogues of which are defined by spa-
tial averaging. Exponentially localized Wannier func-
tions play a central role in how the electronic compo-
nents of such quantities are defined. In a trivial insulator
the macroscopic charge and current densities can be ob-
tained from the macroscopic polarization and magnetiza-
tion fields alone, both for the ground state and in linear
response, while for a metal one would naturally expect
contributions from the macroscopic free charge and free
current densities, and we have identified them here.

We implemented this approach for a p-doped semicon-
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ductor initially occupying its T = 0 ground state, and we
assume that the Hilbert bundle over the Brillouin zone as-
sociated with any set of isolated energy bands is globally
trivial. With this, and because we assume the existence
of a band gap above the Fermi energy, contact with ex-
pressions for a trivial insulator can readily be reached as
a limiting case of the more general expressions we obtain.
Indeed, in Sec. III we employ the general definitions in
this setting to obtain expressions for P (0) and M (0), and
in the limit of vanishing doping our expressions reduced
to those of the modern theories. While in that limit P (0)

is unique modulo a “quantum of ambiguity” and M (0) is
gauge-invariant, this is not so for a metal. Nonetheless,
P (0) exhibits the expected property that under transla-
tion of the origin of all ELWFs by a Bravais lattice vector
R, P (0) is changed by an additive constant proportional
to R; M (0) is unaffected by such a translation, and both
quantities are unchanged by a shift of the energy zero.

Although the expressions we obtain for P (0) and M (0)

agree with the modern theories in the limit of a trivial
insulator, the two approaches disagree more generally. In
the modern theory it has been argued that P (0) is not
well-defined in metallic systems [9, 11]. In the approach
implemented here, a definition is always admitted and we
obtain a P (0) that is formally similar to that of a trivial
insulator. The modern theory of magnetization admits
a generalization based on thermodynamic arguments to
admit an expression for M (0) valid for metals and Chern
insulators [11, 12], but even so the expression we obtain
does not agree. This disagreement is not surprising; there
is an inherent ambiguity in what one might identify as a
magnetization, and the underlying philosophies of these
approaches differ. We consider polarization and magne-
tization to fundamentally arise as microscopic quantities
from which macroscopic analogues are obtained, while
the “modern theories” view such quantities as being fun-
damentally macroscopic. These differences are elucidated
in the way the expressions for M (0) differ; we find M (0)

to be gauge dependent, owing to the central role played
by a set of ELWFs in its identification, while in the mod-
ern theory it is found to explicitly involve a chemical po-
tential, even in the case of a Chern insulator, emphasizing
the inherent thermodynamic considerations and relation
to finite-sized systems. In bulk crystals both approaches
are valid, each with positive features particularly evident
in the domain of considerations that motivate them. One
advantage of the approach implemented here is that the
polarization and magnetization are on the same footing,
both being well-defined for all media, and that definitions
for free charge and current densities are admitted.

In Sec. IV we investigated the linear response of a
metallic crystal to a perturbing optical field at finite
frequency ω, a more general response than is typically
considered in the “modern theories.” We considered the
“long-wavelength limit,” within the independent particle
and frozen-ion approximations, where the applied electric
field is taken to be the Maxwell field. Here only P (t) and
JF (t) make a contribution to the linearly induced macro-

scopic current density, J (1)(t) = ∂P (1)(t)/∂t + J
(1)
F (t).

While in elementary models of the optical response of
metals ∂P (1)(t)/∂t is associated with interband response

and J
(1)
F (t) with intraband response, here we find a more

general scenario; in general, that simple association is no
longer the case and both contributions are gauge depen-
dent. However, we do find that if all of the energy bands
of the unperturbed crystal were isolated from one another

then J
(1)
F (t) would have only intraband contributions and

would be gauge invariant, in agreement with those more
simple models. Nevertheless, the general σil(ω) we ob-
tain is gauge invariant and reproduces the usual conduc-
tivity tensor of a metal, consisting of a finite-frequency
generalization of the “anomalous Hall” and a “Drude”

contribution; the latter is entirely due to J
(1)
F (ω).

We also found that if an unperturbed metallic crystal
violates time-reversal symmetry, then there is a term in
the linear response of the microscopic charge density pro-
portional to ω−1; in an approach such as ours that relates
the macroscopic polarization to electric dipole moments
associated with “site” contributions to the microscopic
charge density, this leads to a term in P (1)(ω) propor-
tional to ω−1. It is the same mechanism that gives rise to

the dc divergences of both P (1)(ω) and J
(1)
F (ω). Both di-

vergences involve the second term of (20), which we show
in Appendix B is a consequence of an interaction term
that gives rise to the intraband response; in this way of
identifying inter- and intraband contributions to the lin-
ear response we can make contact with earlier work by
Blount and others, although the formalism in which we
work is indeed much more general.

Given that the association of J
(1)
F (t) with intraband

response and ∂P (1)(t)/∂t with interband response does
not hold, that both contributions are gauge dependent,
and that P (1)(ω) involves a term proportional to ω−1,
one could argue that a different definition of polariza-
tion would be more appropriate. However, such a pur-
ported new polarization could not be associated with the
dipole moment of microscopic charge densities localized
about individual lattice sites. In fact, a more general
argument could be made against the philosophy of our
investigations. Our goal, a critic might assert, should
be to seek what could be taken as “unique” definitions
of P , M , %F , and JF , and for a metal we do not even
demonstrate that for P and M in the ground state. We
would reply that such uniqueness is not a reasonable goal.
After all, even in the ground state of a trivial insula-
tor the value of P is subject to a “quantum of ambigu-
ity.” And once one moves to a general temporal and spa-
tial dependence there are clearly a host of fields P (x, t),
M(x, t), %F (x, t), and JF (x, t) that could be used to de-
scribe the physical quantities %(x, t) and J(x, t) via (1).
Our perspective is that the focus should be on exploring
what might be useful ways of introducing such quantities,
for the purpose of both physical insight and calculation.
Within that framework this paper can be taken as one
such contribution.
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VII. APPENDICES

Appendix A: Perturbation theory – A strict approach

Recall Eq. (37) of [15], the general equations of motion for the single-particle density matrix ηαR;βR′ . We here
consider the long-wavelength limit, E(x, t)→ E(t) and B(x, t)→ 0, of those general expressions. This yields

i~
∂

∂t
ηαR;βR′(t) =

∑
λR′′

(
H̄αR;λR′′(t)ηλR′′;βR′(t)− ηαR;λR′′(t)H̄λR′′;βR′(t)

)
− eΩ0

R′(R; t)ηαR;βR′(t), (A1)

where, in this limit, Ω0
y(x, t) = E(t) · (x− y) and

H̄αR;βR′(t) =

∫
W ∗αR(x)H0

(
x,p(x)

)
WβR′(x)dx− e

2

∫
W ∗αR(x)

(
Ω0

R(x; t) + Ω0
R′(x; t)

)
WβR′(x)dx

= H̄
(0)
αR;βR′ −

e

2
El(t)

∫
W ∗αR(x)(xl −Rl)WβR′(x)dx− e

2
El(t)

∫
W ∗αR(x)(xl −R′l)WβR′(x)dx.

Assuming valid power series expansions for all quantities with respect to the applied electric field E(t), we have

i~
∂

∂t

(
η

(0)
αR;βR′(t) + η

(1)
αR;βR′(t) + . . .

)
=
∑
λR′′

H̄
(0)
αR;λR′′

(
η

(0)
λR′′;βR′(t) + η

(1)
λR′′;βR′(t) + . . .

)
−
∑
λR′′

(
η

(0)
αR;λR′′(t) + η

(1)
αR;λR′′(t) + . . .

)
H̄

(0)
λR′′;βR′

− eEl(t)
∑
λR′′

(∫
W ∗αR−R′′(x)xlWλ0(x)dx

)(
η

(0)
λR′′;βR′(t) + η

(1)
λR′′;βR′(t) + . . .

)
+ eEl(t)

∑
λR′′

(
η

(0)
αR;λR′′(t) + η

(1)
αR;λR′′(t) + . . .

)( ∫
W ∗λR′′−R′(x)xlWβ0(x)dx

)
− eEl(t)(Rl −R′l)

(
η

(0)
αR;βR′(t) + η

(1)
αR;βR′(t) + . . .

)
,

where we have used the translation property WαR(x−R1) = WαR+R1
(x) of the ELWFs. Upon “matching powers”

of E(t) on the LHS and RHS, the above is equally expressed as a collection of independent equations,

i~
∂

∂t
η

(0)
αR;βR′(t) =

∑
λR′′

(
H̄

(0)
αR;λR′′η

(0)
λR′′;βR′(t)− η(0)

αR;λR′′(t)H̄
(0)
λR′′;βR′

)
, (A2)

i~
∂

∂t
η

(1)
αR;βR′(t) =

∑
λR′′

(
H̄

(0)
αR;λR′′η

(1)
λR′′;βR′(t)− η(1)

αR;λR′′(t)H̄
(0)
λR′′;βR′

)
− eEl(t)

∑
λR′′

(∫
W ∗αR−R′′(x)xlWλ0(x)dx

)
η

(0)
λR′′;βR′(t)

+ eEl(t)
∑
λR′′

η
(0)
αR;λR′′(t)

(∫
W ∗λR′′−R′(x)xlWβ0(x)dx

)
− eEl(t)(Rl −R′l)η(0)

αR;βR′(t)

≡
∑
λR′′

(
H̄

(0)
αR;λR′′η

(1)
λR′′;βR′(t)− η(1)

αR;λR′′(t)H̄
(0)
λR′′;βR′

)
+Q

(1)
αR;βR′(t), (A3)

etc.
From (A2) we recognize that η

(0)
αR;βR′(t) evolves as the unperturbed single-particle density matrix

〈gs| eiĤ0t/~â†αRâβR′e−iĤ0t/~ |gs〉 under the unperturbed Hamiltonian Ĥ0, as we expect. In particular, starting from the
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equation of motion for the unperturbed electron Green function i 〈gs| ψ̂†0(y, t)ψ̂0(x, t) |gs〉, the related single-particle
density matrix evolves as (A2); the argument is analogous to that which yields (A1) from the “global” Green function
(which is related to the minimal coupling Green function by a generalized Peierls phase). Now, via (8,9) the relation
between the operators generating ELWFs and those generating the |ψnk〉 is found to be

â†αR =

√
Ωuc

(2π)d

∫
BZ

dke−ik·R
∑
n

Unα(k)â†nk, (A4)

which we then implement to find

η
(0)
αR;βR′ = Ωuc

∫
BZ

dk

(2π)d
eik·(R−R

′)
∑
n

fnkU
†
αn(k)Unβ(k), (A5)

which is independent of time.
We now consider (A3) and will closely follow the procedure of Appendix B of [39], however we will not introduce

filling factors associated with the ELWFs. It is useful to define the intermediate quantity

ηmk;nk′(t) ≡
∑

µνR1R2

〈ψmk|µR1〉 ηµR1;νR2
(t) 〈νR2|ψnk′〉 , (A6)

and from (A3) it follows that

i~
∂η

(1)
mk;nk′(t)

∂t
=
(
Emk − Enk′

)
η

(1)
mk;nk′(t) +

∑
µνR1R2

〈ψmk|µR1〉Q(1)
µR1;νR2

(t) 〈νR2|ψnk′〉 .

Then, implementing the usual Fourier analysis via (19), we find

η
(1)
mk;nk′(ω) = −

∑
µνR1R2

〈ψmk|µR1〉Q(1)
µR1;νR2

(ω) 〈νR2|ψnk′〉
Emk − Enk′ − ~(ω + i0+)

,

where 0+ entering in the denominator describes the “turning on” of the electric field at t > −∞. Finally, using the
inverse of (A6), we find

η
(1)
αR′′;βR′(ω) = −

∑
µνR1R2

∑
mn

∫
BZ

dkdk′
〈αR′′|ψmk〉 〈ψmk|µR1〉Q(1)

µR1;νR2
(ω) 〈νR2|ψnk′〉 〈ψnk′ |βR′〉

Emk − Enk′ − ~(ω + i0+)
. (A7)

Now, using the identity (10) and the result (A5), we find∑
µνR1R2

∫
BZ

dkdk′ 〈αR′′|ψmk〉 〈ψmk|µR1〉Q(1)
µR1;νR2

(ω) 〈νR2|ψnk′〉 〈ψnk′ |βR′〉

= − eΩuc
(2π)d

El(ω)

∫
BZ

dkeik·(R
′′−R′)U†αm(k)

[
fnm,k

(
ξlmn(k) +W l

mn(k)
)

+
(
iδnm∂lfnk − fnm,kW l

mn(k)
)]
Unβ(k),

where the first term in brackets results from the two terms in Q
(1)
µR1;νR2

(ω) that involve dipole moments of the ELWFs,

and the second term in brackets results from the term −eEl(ω)(Rl1 −Rl2)η
(0)
µR1;νR2

in Q
(1)
µR1;νR2

(ω). In re-casting this
second term in k-space, an integration by parts is performed and all surface terms are taken to vanish. While the
integrand is periodic over BZ, it may not be smooth. Thus, this result is only valid only if the ground state projector∑
n fnk |ψnk〉 〈ψnk| and therefore

∑
n fnkU

†
αn(k)Unβ(k) for any α, β, which appears in the integrand, is smooth over

BZ. While this is always true for insulators – topologically trivial or not – it is here an assumption. However, in the
case of p-doped semiconductors considered here, we believe this to be valid if there are no degeneracies at the Fermi
energy. With this we arrive at the result (20).

Appendix B: Perturbation theory – An
old-fashioned approach

Although Eq. (20) can be found as the extension of our
earlier work presented in Appendix A, we believe some

insight can be gained by looking at its derivation using a
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more traditional perturbation theory approach.
Consider first a molecule, where nuclei are considered

fixed and the dynamics of the electron field operator

ψ̂(x, t) follows from the usual minimal coupling Hamil-
tonian,

Hmc(x, t) =
1

2m

(
p(x)− e

c
A(x, t)

)2

+ V (x) + eφ(x, t),

where p(x) is given previously (7), the applied electro-
magnetic field is described by the scalar and vector po-
tentials φ(x, t) and A(x, t), and V (x) is the potential
energy that confines the electrons to the nuclei. If the
wavelength of light is much larger than the molecule, then
the electric field E(x, t) can be taken as uniform over the
molecule, E(x, t) = E(t), and the magnetic field can be
neglected. Via usual strategies [15], it can be shown that
the dynamics of the electron field follows from the dipole
Hamiltonian

Hdip(x, t) = H0(x,p(x))− ex ·E(t), (B1)

where H0(x,p(x)) = 1
2m (p(x))

2
+ V (x).

The use of (B1) to describe instead the response of the
electrons in an infinite crystal to long-wavelength radia-
tion, where H0(x) is now taken to be the Bloch Hamil-
tonian, is a strategy followed by Blount and others [42];
it has even been used to describe the nonlinear optical
response of metals [50]. The appearance of a position
operator in the interaction Hamiltonian requires calcula-
tions to be done cautiously, for giving meaning to matrix
elements of the position with respect to the Bloch func-
tions of the infinite crystal in a careful way is obviously
problematic. In fact, the usual position operator is gen-
erally ill-defined to act on the Hilbert space containing
such Bloch functions [9]. Moreover, it does not seem
possible to implement a generalization of this kind of ap-
proach to treat instances where the electromagnetic field
cannot be approximated as uniform. Indeed, that is one
of the reasons the approach applied in this paper was
developed. Nonetheless, this strategy does allow for the
interaction Hamiltonian to be written as the sum of two
terms, which can be identified as “interband” and “intra-
band.” This permits the identification of the interband
and intraband contributions to (20), at least within this
perspective, and allows us to make contact with earlier
work. And so we here present a derivation of (20) using
this approach. Although most derivations [42] work with
Bloch functions from the onset, some issues related to the
position operator can be avoided if one works, at least ini-
tially, in the Hilbert space containing ELWFs, the space
of square-integrable functions, where the usual position
operator is well-defined. This is the approach we follow
here. Moreover, we believe that this approach elucidates

the physics of the two terms. Yet we ask the reader to
forgive the mathematically questionable steps that are
part of the derivation and that are not characteristic of
the rest of this paper. We feel that the cavalier approach
we take in this Appendix is justified by the insight that
the resulting expression gives.

Working in the Heisenberg picture, the one-body op-
erator on the electronic Fock space related to (B1) is

Ĥ(t) = Ĥ0(t) + V̂dip(t), (B2)

where

Ĥ0(t) ≡
∫
ψ̂†(x, t)H0(x,p(x))ψ̂(x, t)dx,

V̂dip(t) ≡ −eEa(t)

∫
ψ̂†(x, t)xaψ̂(x, t)dx.

The primary quantities of interest, the expectation values
of the electronic charge and current density operators for
a crystal initially occupying its zero-temperature ground
state, can be extracted from the single-particle electron
Green function

G(x,y; t) ≡ i 〈gs| ψ̂†(y, t)ψ̂(x, t) |gs〉 . (B3)

We now move from the Heisenberg picture to the inter-
action picture, wherein electronic operators evolve under

Ĥ0 and the effect of the perturbation is accounted for in
the evolution of the electronic state |ψ(t)〉 = Û(t) |gs〉,
where the time-evolution operator Û(t) is given by [51]

Û(t) = 1 +

∞∑
N=1

t∫
−∞

dtN
i~

V̂I(tN ) · · ·
t2∫
−∞

dt1
i~

V̂I(t1), (B4)

and where V̂I(t) ≡ −eEa(t)
∫
ψ̂†0(x, t)xaψ̂0(x, t)dx. The

electron Green function (B3) is then rewritten as

G(x,y; t) = i 〈ψ(t)| ψ̂†0(y, t)ψ̂0(x, t) |ψ(t)〉 . (B5)

Noting that a (complete) set of exponentially localized
Wannier functions spans the single-particle electronic
Hilbert space, the related operators can be used as a
basis with respect to which the electronic field operator
can be expanded [52],

ψ̂0(x, t) ≡
∑
αR

WαR(x)âαR(t), (B6)

where the operators â
(†)
αR(t) here evolves as i~ d

dt â
(†)
αR(t) =

[â
(†)
αR(t), Ĥ0] and thus â

(†)
αR(t) = eiĤ0t/~â

(†)
αRe

−iĤ0t/~.
Then,
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V̂I(t) = −e Ωuc
(2π)d

Ea(t)
∑

αβRR′

(∫
BZ

dkeik·(R−R
′)ξ̃aαβ(k)

)
â†αR(t)âβR′(t)− eEa(t)

∑
αR

Raâ†αR(t)âαR(t). (B7)

Implementing this into (B4) and using the result in (B5), we find

G(x,y; t)

= i 〈gs| ψ̂†0(y, t)ψ̂0(x, t) |gs〉+
1

~

t∫
−∞

dt′ 〈gs| ψ̂†0(y, t)ψ̂0(x, t)V̂I(t
′) |gs〉 − 1

~

t∫
−∞

dt′ 〈gs| V̂†I (t′)ψ̂†0(y, t)ψ̂0(x, t) |gs〉+ . . .

≡ i
∑

µνR1R2

WνR2(x)
(
η

(0)
νR1;µR2

+ η
(1)
νR1;µR2

(t) + . . .
)
W ∗µR1

(y). (B8)

Note that in Eq. (36) of past work [15] we introduced the single-particle density matrix ηαR;βR′ such that it involved
operators generating “adjusted Wannier functions” W̄αR(x, t) (see Eq. (27,30,33) of [15]) as well as a generalized Peierls
phase Φ(x,y; t) (see Eq. (15) of [15]). Thus, in general, it is not the minimal coupling Green function G(x,y; t) to
which ηαR;βR′ is “naturally” related, but rather the “global” Green function. However, in the case of a uniform electric
field considered here, the corresponding vector potential A is necessarily uniform and Φ(x,y; t) = e

~c (x − y) ·A(t)
for a choice of straight-line path in the relators. Then, in this case, Eq. (32) of that work simplifies as

G(x,y; t) = i
∑

αβRR′

W̄αR(x, t)η̆αR;βR′(t)W̄ ∗βR′(y, t) = ieA(t)·(x−y)
∑

αβRR′

WαR(x)ηαR;βR′(t)W ∗βR′(y). (B9)

In this Appendix we employ the gauge choice φ(x, t) = −x · E(t), A(t) = 0, such that the phase Φ(x,y; t) on the
RHS of the above vanishes. Thus, the identification of the single-particle density matrix in (B8) is consistent with
past work.

Now,

G0(x,y; t) ≡ i 〈gs| ψ̂†0(y, t)ψ̂0(x, t) |gs〉 = i
∑
n

∫
BZ

dkfnkψ
∗
nk(y)ψnk(x)

=
∑

µνR1R2

WνR2
(x)

(
i

Ωuc
(2π)d

∑
n

∫
BZ

dkfnke
ik·(R2−R1)U†νn(k)Unµ(k)

)
W ∗µR1

(y),

and we thus identify

η
(0)
νR2;µR1

=
Ωuc

(2π)d

∑
n

∫
BZ

dkfnke
ik·(R2−R1)U†νn(k)Unµ(k), (B10)

yielding (18).

Next consider η
(1)
νR2;µR1

(t), which from (B8) we identify as

η
(1)
νR2;µR1

(t) =
ie

~
Ωuc

(2π)d

t∫
−∞

dt′Ea(t′)
∑

αβRR′

∫
BZ

dk′eik
′·(R−R′)ξ̃aαβ(k′)

(
〈gs| â†µR1

(t)âνR2
(t)â†αR(t′)âβR′(t′) |gs〉

)

+
ie

~

t∫
−∞

dt′Ea(t′)
∑
αR

Ra
(
〈gs| â†µR1

(t)âνR2(t)â†αR(t′)âαR(t′) |gs〉
)

− ie

~
Ωuc

(2π)d

t∫
−∞

dt′Ea(t′)
∑

αβRR′

∫
BZ

dk′eik
′·(R′−R)ξ̃aβα(k′)

(
〈gs| â†βR′(t

′)âαR(t′)â†µR1
(t)âνR2

(t) |gs〉
)

− ie

~

t∫
−∞

dt′Ea(t′)
∑
αR

Ra
(
〈gs| â†αR(t′)âαR(t′)â†µR1

(t)âνR2
(t) |gs〉

)
≡ η(1;a)

νR2;µR1
(t) + η

(1;b)
νR2;µR1

(t). (B11)
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We group the second and final lines of η
(1)
νR2;µR1

(t) into η
(1;a)
νR2;µR1

(t), and the first and third lines into η
(1;b)
νR2;µR1

(t).

That is, η
(1;a)
νR2;µR1

(t) involves the contributions to η
(1)
νR2;µR1

(t) arising from the first term of (B7), while η
(1;b)
νR2;µR1

(t)

involves the contributions to η
(1)
νR2;µR1

(t) arising from the second term of (B7). After some algebra we find

η
(1;a)
νR2;µR1

(t)

≡ ie

~

t∫
−∞

dt′Ea(t′)
∑
αR

Ra
(
〈gs| â†µR1

(t)âνR2
(t)â†αR(t′)âαR(t′) |gs〉 − 〈gs| â†αR(t′)âαR(t′)â†µR1

(t)âνR2
(t) |gs〉

)

= e
∑
ω

e−i(ω+i0+)tEa(ω)
Ωuc

(2π)d

∑
n

∫
BZ

dk

(
fnke

ik·(R2−R1)

~(ω + i0+)

(
(Ra1 −Ra2)U†νn(k)Unµ(k) + i∂a

(
U†νn(k)Unµ(k)

))
−
∑
m

fnm,ke
ik·(R2−R1)

Emk − Enk − ~(ω + i0+)
U†νm(k)Wa

mn(k)Unµ(k)

)
, (B12)

where we have integrated by parts and taken any surface terms to vanish; this again demands smoothness of the
integrand over BZ and requires the same assumption described in Appendix A. We have also taken the electric field

E(t) to be adiabatically applied at t = −∞ resulting in the “i0+” in the denominator. We now consider η
(1;b)
νR2;µR1

(t).
Using the completeness relation of the electronic Fock space

1 = |gs〉 〈gs|+
∑
cv

∫
BZ

dk |cvk〉 〈cvk|+ . . . , (B13)

where |cvk〉 ≡ â†ckâvk |gs〉, |cvk, c1v1k1〉 ≡ â†ckâvkâ
†
c1k1

âv1k1
|gs〉, etc., we find

η
(1;b)
νR2;µR1

(t) ≡ ie

~
Ωuc

(2π)d

t∫
−∞

dt′Ea(t′)
∑

αβRR′

∫
BZ

dk′eik
′·(R−R′)ξ̃aαβ(k′)

(
〈gs| â†µR1

(t)âνR2(t)â†αR(t′)âβR′(t′) |gs〉
)

− ie

~
Ωuc

(2π)d

t∫
−∞

dt′Ea(t′)
∑

αβRR′

∫
BZ

dk′eik
′·(R′−R)ξ̃aβα(k′)

(
〈gs| â†βR′(t

′)âαR(t′)â†µR1
(t)âνR2(t) |gs〉

)

= e
Ωuc

(2π)d

∑
ω

e−i(ω+i0+)tEa(ω)

∫
BZ

dk′
∑
mn

fnm,k′
eik

′·(R2−R1)U†νm(k′)
(
ξamn(k′) +Wa

mn(k′)
)
Unµ(k′)

Emk′ − Enk′ − ~(ω + i0+)
.

(B14)

Notably terms resulting from the first term of the completeness relation (B13), which would involve diagonal matrix
elements, cancel one another. Then combining (B12) with (B14) and implementing (19), we find

η
(1)
νR2;µR1

(ω) = e
Ωuc

(2π)d
Ea(ω)

∫
BZ

dkeik·(R2−R1)
∑
mn

fnm,k
U†νm(k)ξamn(k)Unµ(k)

Emk − Enk − ~(ω + i0+)

+ e
Ωuc

(2π)d
Ea(ω)

~(ω + i0+)

∫
BZ

dk
∑
n

eik·(R2−R1)fnk

(
(Ra1 −Ra2)U†νn(k)Unµ(k) + i∂a

(
U†νn(k)Unµ(k)

))
= e

Ωuc
(2π)d

Ea(ω)

∫
BZ

dkeik·(R2−R1)
∑
mn

fnm,k
U†νm(k)ξamn(k)Unµ(k)

Emk − Enk − ~(ω + i0+)

− ie Ωuc
(2π)d

Ea(ω)

~(ω + i0+)

∫
BZ

dk
∑
n

eik·(R2−R1)(∂afnk)U†νn(k)Unµ(k), (B15)

where we have again used an integration by parts. Notably the term in (B15) that diverges in the dc limit arises

from the interaction term −eEa(t)
∑
αRR

aâ†αR(t)âαR(t), the second term of (B7). At first one might suspect that
it is the sum over Bravais lattice vectors R that leads to the dc divergence, or if not, some other divergence.
But in fact this is not the case because in the linear response calculation the relevant objects are of the form∑

RR
a 〈gs| â†µR1

(t)âνR2
(t)â†αR(t′)âαR(t′) |gs〉 (see the first line of (B12)); thus not all R’s contribute equally and

the result of such a sum appears to be finite.
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To gain further insight into origin of the terms appearing in (B15), it is useful to rewrite V̂I(t) in terms of the
operators that generate the single-particle electronic energy eigenvectors. The second term of (B7) involves∑

αR

Raâ†αR(t)âαR(t) =
i

2

∫
BZ

dk
∑
n

(
â†nk(t)

(
∂aânk(t)

)
−
(
∂aâ
†
nk(t)

)
ânk(t)

)
−
∫

BZ

dk
∑
nm

â†nk(t)Wnm(k)âmk(t).

(B16)

When implemented in the linear response calculation, the first two terms of (B16) give non-zero contributions only
for those k “near” the Fermi surface and indeed gives vanishing contribution if |gs〉 is the ground state of a trivial
insulator. That such an interaction term leads to a diverging induced free current density is in-line with physical
expectation. The first term of (B7) can also be rewritten,

∑
αβRR′

â†αR(t)âβR′(t)

∫
BZ

dkeik·(R−R
′)ξ̃aαβ(k) =

(2π)d

Ωuc

∫
BZ

dk
∑
nm

â†nk(t)
(
ξanm(k) +Wa

nm(k)
)
âmk(t). (B17)

The net result is

V̂I(t) = −e Ωuc
(2π)d

Ea(t)
∑

αβRR′

â†αR(t)âβR′(t)

∫
BZ

dkeik·(R−R
′)ξ̃aαβ(k)− eEa(t)

∑
αR

Raâ†αR(t)âαR(t)

= −eEa(t)

∫
BZ

dk
∑
nm

â†nk(t)ξanm(k)âmk(t) +
ie

2
Ea(t)

∫
BZ

dk
∑
n

((
∂aâ
†
nk(t)

)
ânk(t)− â†nk(t)

(
∂aânk(t)

))
,

which is gauge independent, as expected. As described above, due to the relative negative sign between terms

involving V̂I(t) and V̂†I (t) in the perturbative expansion of the electron Green function, the interaction term involving

Ea(t)
∫

BZ
dk
∑
nm â

†
nk(t)ξanm(k)âmk(t) gives rise only to terms for which n 6= m, which we refer to as being related

to the “interband response.” See e.g., the cancellation of “intraband” terms in (B14). In contrast we refer to the

terms resulting from the interaction term involving iEa(t)
∫

BZ
dk
∑
n

(
â†nk(t)

(
∂aânk(t)

)
−
(
∂aâ
†
nk(t)

)
ânk(t)

)
as being

related to the “intraband response.”

Appendix C: Time-reversal symmetry

Taking T |ψnk〉
T
= e−iλn(k) |ψn−k〉 [2], which is equivalent to ψ∗nk(x) = T ψnk(x)

T
= e−iλn(k)ψn−k(x), or alternatively

u∗nk(x)
T
= e−iλn(k)un−k(x), yields

ξanm(k)
T
= ei(λm(k)−λn(k))ξamn(−k)− δnm

∂λm(k)

∂ka
, (C1)

and as well Enk
T
= En−k, which implies fnk

T
= fn−k. Furthermore, time-reversal symmetry allows the ELWFs to be

chosen such that they are real-valued functions [21, 53], and taking WαR(x)
T
= W ∗αR(x) yields

Unα(k)
T
= U†αn(−k)e−iλn(−k),

which leads to

Wa
nm(k)

T
= ei(λm(−k)−λn(−k))Wa

mn(−k)− δnm
∂λn(−k)

∂(−k)i
. (C2)

With these relations one can show∫
BZ

dk

(2π)d

∑
n

fnk∂l

(
ξinn(k) +Wi

nn(k)
)
T
= −

∫
BZ

dk

(2π)d

∑
n

fnk∂l

(
ξinn(k) +Wi

nn(k)
)
,

and therefore vanishes. It then immediately follows that J
(1)
B (ω = 0)

T
= 0, or equivalently that the term in (30) that

diverges in the dc limit vanishes. Moreover from the relations (C1,C2) it follows that M (0) T= 0.
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Appendix D: Link currents and the related free current density

Recall from past work [15] that in the “long-wavelength limit”

HαR′′;λR′(ω) =

∫
W ∗αR′′(x)H0(x,p(x))WλR′(x)− e

2

∫
W ∗αR′′(x)

((
x−R′′

)
+
(
x−R′

))
·E(t)WλR′(x), (D1)

and since we write HαR′′;λR′(ω) = H
(0)
αR′′;λR′ + H

(1)
αR′′;λR′(ω), with all higher order contributions vanishing in this

case, we identify

H
(0)
αR′′;λR′ =

∫
W ∗αR′′(x)H0(x,p(x))WλR′(x), (D2)

H
(1)
αR′′;λR′(ω) = −e

2

∫
W ∗αR′′(x)

((
x−R′′

)
+
(
x−R′

))
·E(t)WλR′(x). (D3)

With this we implement the definition of I(R,R′;ω) previously given, and with (20) we find

I(1)(R,R′;ω)

=
e

i~
∑
αλ

(
H

(1)
αR;λR′(ω)η

(0)
λR′;αR − η

(0)
αR;λR′H

(1)
λR′;αR(ω)

)
+

e

i~
∑
αλ

(
H

(0)
αR;λR′η

(1)
λR′;αR(ω)− η(1)

αR;λR′(ω)H
(0)
λR′;αR

)
= −2e2

~

(
Ωuc

(2π)d

)2

El(ω)
∑
αλ

∫
BZ

dkdk′Im
[
ei(k−k

′)·(R−R′)
∑
n

fnk′Unα(k′)ξ̃lαλ(k)U†λn(k′)
]

+
e2

i~

(
Ωuc

(2π)d

)2

El(ω)
∑
αλ

∫
BZ

dk
∑
s

∫
BZ

dk′Esk

(
ei(k−k

′)·(R−R′)Usλ(k)
∑
mn

fnm,k′U†λm(k′)ξlmn(k′)Unα(k′)

Emk′ − Enk′ − ~(ω + i0+)
U†αs(k)

− e−i(k−k
′)·(R−R′)Usα(k)

∑
mn

fnm,k′U†αm(k′)ξlmn(k′)Unλ(k′)

Emk′ − Enk′ − ~(ω + i0+)
U†λs(k)

)
+
e2

i~

(
Ωuc

(2π)d

)2

El(ω)
∑
αλ

∫
BZ

dk
∑
s

∫
BZ

dk′
Esk

~(ω + i0+)

×
(
ei(k−k

′)·(R−R′)Usλ(k)
∑
n

fnk′

(
(Rl −R′l)U†λn(k′)Unα(k′) + i∂l

(
U†λn(k′)Unα(k′)

))
U†αs(k)

− e−i(k−k
′)·(R−R′)Usα(k)

∑
n

fnk′

(
(R′l −Rl)U†αn(k′)Unλ(k′) + i∂l

(
U†αn(k′)Unλ(k′)

))
U†λs(k)

)
. (D4)

The first line of (D4) is the result of a “compositional” modification, while the remainder is the result of a “dynamical”
modification; the second term of (33) is the result of the first term of (20) and the final term of (33) is the result of
the second term of (20). Notably the first line of (33) is independent of energy and involves frequency only through
E(ω), while this is generally not the case for the other terms.

In Sec. IV we are interested, among other things, in the macroscopic free current density, JF (x, ω), related to
the microscopic free current density jF (x, ω). In past work [19] we have described this averaging procedure in some
detail, in particular for the microscopic polarization and magnetization fields. In the limit of a uniform applied electric
field, the expressions Eq. (7), (9), (B4)-(B6), and (B8) presented there result in the macroscopic polarization and
magnetization fields being uniform, and the only contributions being the dipole moments, (23). We here focus on the
macroscopic free current density found by implement a spatial averaging function w(x) to relate the microscopic and
macroscopic quantities. That is,

JF (x, ω) ≡
∫

w(x− x′)jF (x′, ω)dx′. (D5)

Implementing the definition (32), the relator expansion [19]

si(w;x,y) ' (xi − yi)δ(w − y)− 1

2
(xi − yi)(xj − yj)∂δ(w − y)

∂wj
+ . . . , (D6)
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and noting that the first-order modification to the link currents here takes the form I(1)(R,R′;ω) = I(1)(R−R′, ω),
we find

J
i(1)
F (x, ω) =

1

2

∑
RR′

I(1)(R−R′, ω)

(
(Ri −R′i)w(x−R) +

1

2
(Ri −R′i)(Rj −R′j)∂w(x−R)

∂xj
+ . . .

)

=
1

2

∑
R1

I(1)(R1, ω)

(
Ri1
∑
R

w(x−R) +
1

2
Ri1R

j
1

∂

∂xj

∑
R

w(x−R) + . . .

)

=
1

2Ωuc

∑
R1

I(1)(R1, ω)Ri1, (D7)

where in going to the final line we have used the special case of a uniform applied electric field in Eq. (B8) of [19].
Thus, we arrive at (34).
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