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5LANEF ’Chaire d’excellence’, Université Grenoble-Alpes & CNRS, F-38000 Grenoble, France

Interacting N -component fermions spatially confined in ring-shaped potentials display specific
coherence properties. The angular momentum of such systems can be quantized to fractional values
specifically depending on the particle-particle interaction. Here we demonstrate how to monitor
the state of the system through homodyne (momentum distribution) and self-heterodyne system’s
expansion. For homodyne protocols, the momentum distribution is affected by the particle statis-
tics in two distinctive ways. The first effect is a purely statistical one: at zero interactions, the
characteristic hole in the momentum distribution around the momentum k = 0 opens up once half
of the SU(N) Fermi sphere is displaced. The second effect originates from the interaction: the
fractionalization in the interacting system manifests itself by an additional ‘delay’ in the flux for
the occurrence of the hole, that now becomes a characteristic minimum at k = 0. We demonstrate
that the angular momentum fractional quantization is reflected in the self-heterodyne interference as
specific dislocations in interferograms. Our analysis demonstrate how the study of the interference
fringes grants us access to both number of particles and number of components of SU(N) fermions.

I. INTRODUCTION

Placed in the vacuum and spatially confined with suit-
able electromagnetic fields, ultracold atoms [1] feature
robust coherence properties without cryogenics. They
can be realized in different physical conditions, like with
a tunable atom-atom interaction or with fundamentally
different quantum statistics of the gas constituents. Due
to the remarkable progress in micro-optics technology,
they can be trapped in a wide variety of potentials,
shapes and intensities [2].

These are some relevant features as to why ultracold
atoms provide an important instance of artificial quan-
tum matter that can be used as ‘hardware’ both for quan-
tum simulations and to advance the fabrication of quan-
tum devices [3–5]. Atomtronics is the quantum technol-
ogy of guided ultracold atoms: while the defining goal of
the field is to fabricate quantum devices and sensors with
enhanced performances, atomtronic circuits can define
current-based quantum simulators probing quantum cor-
relations in many-body systems [6, 7]. A natural venue
for this research activity has been constructing analogs of
electronic devices [8–11]. Atomtronics, though, has the
potential to realize devices and simulators with new capa-
bilities, relying on different physical properties compared
with electronics. In the last decade, an intense activ-
ity has been devoted to bosonic matter-waves guided in
circuits of a wide variety of shapes [6, 12–14]. Angular
momentum quantization in 87Rb atomtronic ring-shaped
circuits has been studied both theoretically and experi-
mentally [15, 16]. Such studies have been instrumental in
defining the atomic counterpart of SQUIDs [15–18], that
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are believed to be of paramount importance for guided
interferometers [12, 19–22]. Recently, it has been pre-
dicted that attracting bosons can lead to an enhanced
performance in rotation sensing [23, 24].

Recent advances in cold atoms experiments have re-
kindled the interest in SU(N) fermionic systems [25–
29]. These strongly interacting N -component systems,
as provided by alkaline earth and Ytterbium atoms, have
an enlarged symmetry compared to SU(2) fermionic sys-
tems resulting in unique and and exotic physics [30, 31].
SU(N) fermions play a vital role in a wide variety of con-
texts ranging from high precision measurement [32, 33]
and quantum simulation [27, 28, 34] of many-body sys-
tems, to studying lattice confinement in high energy
physics [35].

Here, we focus on the simple case of an atomtronic cir-
cuit provided by a ring-shaped quantum gas of SU(N)
fermions. In such circuits, a guided matter-wave, specifi-
cally a persistent current, can be generated by the appli-
cation of an effective magnetic field [36–40]. Persistent
currents in two-component ultracold fermions have been
experimentally studied very recently [41, 42]. For N -
component fermions confined in ring potentials, the the-
ory predicts a fractional quantization of the angular mo-
mentum, with important differences arising on whether
the atoms are subject to repulsive or attractive interac-
tion [43, 44]. Such specific properties of quantization are
expected to provide the core to fabricate quantum de-
vices with enhanced sensitivity[23]. At the same time,
these results re-affirm the notion that persistent currents
can be used to define an instance of the aforementioned
current-based quantum simulators for the diagnostic of
interacting quantum many-particle system [6, 7, 45, 46].

In this paper, we investigate the fractionalization of
the persistent current flowing in an SU(N) fermionic
circuit through interference dynamics. Both homodyne
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and heterodyne protocols have been carried out so far.
In homodyne protocols, the system of interest inter-
feres with itself. Such logic has been widely employed
in ultracold atoms experiments through time-of-flight
(TOF) images of the atoms density for both bosons and
fermions [6, 7, 17, 47–49]. Through this measurement
technique, the angular momentum quantization of the
circulating current state can be monitored [39, 50]. With
heterodyne phase detection protocols, the phase portrait
of the system flowing along the ring is obtained through
its additional interference with a non-rotating quantum
degenerate system placed at the center of the ring. This
type of protocol has been experimentally realized both
for bosons [51–53] and very recently for fermions [42].
The fringe pattern that arises is a spiral interferogram
whose topological features (number of arms and dislo-
cations) reflect the properties of a circulating current
state [22, 42, 53, 54]. We employ both the homodyne and
heterodyne protocols to analyze the interference dynam-
ics of matter-waves of SU(N) fermions. We demonstrate
how the resulting interference patterns reflect important
features of the system, including the specific angular mo-
mentum fractionalization and parity effects characteriz-
ing the system. Particularly, we highlight how our ap-
proach may be utilized to detect the number of particles
Np and components N , both of which are notoriously
hard to extract from an experimental setting [55].

The article is structured as follows. In Sec. II we intro-
duce the physical system and the model. In Sec. III and
Sec. IV, we present the results achieved for the momen-
tum distribution and interferograms respectively. Con-
clusions and outlooks are presented in closing Sec. V.

II. METHODS

Consider Np SU(N)-symmetric fermions, in a ring-
shaped lattice composed of L sites, pierced by an arti-
ficial magnetic flux φ. The relevant physics of the model
is captured by the SU(N) Hubbard model, which reads

HSU(N) = −t
L∑
j

N∑
α

(eı
2πφ
L c†j,αcj+1,α+h.c.)+U

L∑
j

njnj ,

(1)

where c†j,α creates a fermion with colour α on site j,

and nj =
∑
α c
†
j,αcj,α is the local particle number op-

erator. The hopping amplitude and on-site interaction
are denoted by t and U respectively. The presence of
the flux is accounted for through the Peierls substitution

t→ teı
2πφ
L .

The physics of the Hubbard model arises from the com-
petition between the kinetic (hopping) and potential (in-
teracting) terms. As such, the ratio between the hopping
and interaction parameters dictates the physics that we
observe in our system. For strong attractive interactions
(U � t), SU(N) fermions are able to form bound states
of different types and nature, which in turn causes part

of the particles to localize together, while still adhering
to the Pauli exclusion principle [44, 56–58]. On the other
hand, strong repulsive interactions (U � t) causes the
fermions to be restricted in place in different lattice sites.
This is evidently visible for fillings Np/L = 1, where in
the case of SU(N > 2) fermions a phase transition oc-
curs at a critical value of U from a superfluid to a Mott
phase [31, 43].

FIG. 1. Main figure depicts the momentum distribution∑
{n} |Jn(k)|2 against kx. For the ` = 0 configuration, the

momentum distribution has a finite value at the origin. How-
ever for ` > 0, the function collapses to zero at the origin. In-
sets depict the ground-state configuration ` = 0 for spinless,
SU(2) and SU(3) fermions containing 2,4,6 particles respec-
tively at U = 0.

Recently, the physics of the SU(N) Hubbard model
was explored for both attractive [44] and repulsive [43]
interactions by utilizing the persistent current, the re-
sponse of the system to the applied field in model (1),
as a diagnostic tool. The persistent current is a matter-
wave current defined as I = −∂E0/∂φ with E0 being the
ground-state energy. According to Leggett’s theorem,
the ground-state energy and consequently its derivative,
the persistent current, display periodic oscillations in the
flux, with a period fixed by the elementary flux quantum
φ0 = ~/mR2 with m and R denoting the atoms’ mass
and ring radius respectively [59]. Therefore, a change in
the period φ0 gives crucial information about the phys-
ical nature of the system, in the same spirit as current-
voltage characteristics in solid state physics (see [23, 43–
46, 60] for the persistent current as a probe for bosonic
and fermionic systems).

In cold atoms platforms, several features of the per-
sistent current can be readily observed through time-of-
flight imaging of the density distributions of the gas at
large times, after it is released from its trap confinement
and allowed to expand [6, 7, 17, 39, 61]. Such an image
corresponds to the momentum distribution of the system
at the moment in which it is released from the trap. For
the different SU(N) species, the latter quantity reads

nα(k) = |w(k)|2
∑
j,l

eık(xl−xj)〈c†l,αcj,α〉, (2)
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with w(k) being the Fourier transform of the Wan-
nier functions and xj denotes the position of the lat-
tice sites in the ring’s plane (see Sec. A in Appendix
for the derivation). Also important for our analysis is

the variance of the momentum distribution σ
(α)
nk , given

by σ
(α)
nk =

√
〈n2α〉 − 〈nα〉2.

For bosons [22, 51–53] and quite recently for
fermions [42, 54], it has been shown that interference ef-
fects can be observed by considering higher order density-
density correlations. In this setup, one starts with an an-
nular ring under study and a central degenerate system at
rest, both of which are uncoupled initially. Due to this, as
both ring and center are released from their confinement
and start to interfere, eventually there is an uncertainty
when measuring two or more particles, about whether
these particles originated from the center or the ring. As
the uncertainty about the particles’ origin increases, one
gains more certainty about the phase [22, 62].

As such, inline with the previous protocols for bosons
and fermions, we focus on the density-density correlator

G(r, r′, t) =

N∑
α,β

〈nα(r, t)nβ(r′, t)〉, (3)

to observe interference patterns in SU(N) fermions. See-
ing as the interference that arises is provided by the cross-
terms involving contributions from both the center and
the ring [54], we calculate and focus on the center-ring
correlations whose expression reads

GR,C =
∑
α

∑
j,l

Ijl(r, r
′, t)〈c†l,αcj,α〉. (4)

where Ijl(r, r
′, t) = wc(r

′, t)w∗c (r, t)w∗l (r′ − r′l, t)wj(r −
rj , t).

In our approach, we utilize exact diagonalization and
DMRG [63, 64], whenever possible, to evaluate and an-
alyze the correlators. Here, the energy scale is given by
fixing t = 1 and φ0 = 1. In our analysis, we only consider
systems with an equal number of particles per colour.

III. MOMENTUM DISTRIBUTION OF SU(N )
FERMIONS

The momentum distribution of particles on a ring is
one of the few observables of the momenta that can be
experimentally probed [17, 37, 39]. This homodyne pro-
tocol is of particular interest in the field of atomtronics,
since the persistent current is visible in experiments by
studying the particles’ momentum distribution [6, 7, 50].
In the case of coherent neutral matter circulating in a
ring with a given angular momentum quantization, a
characteristic hole is observed in the momentum distri-
bution [50, 65]. On the other hand, no hole is observed at
the same flux when there is a reduced coherence, e.g. for
attractive interactions [23, 44, 54, 60]. Nonetheless, look-
ing at the variance of the momentum distribution, one is

still able to observe the corresponding angular momen-
tum quantization. Here, we make an in-depth analysis of
the momentum distribution of SU(N) fermions for both
attractive and repulsive regimes. As we will see, the dis-
tinct physical features and characteristics of these two
regimes can be aptly captured through homodyne inter-
ference images.

A. Free particles

The momentum distribution of spinless fermions at
zero interactions is a sum of discrete Bessel functions∑
{n} Jn(k) of order n, with k denoting the momentum

and n being the quantum numbers of the levels the parti-
cles occupy [18, 54]. From this expression, it is clear that
the momentum distribution is dependent on the sets of n,
with the ground-state configuration being such that they
are distributed symmetrically around zero (see Sec. A1
in Appendix). Apart from the zeroth order Bessel func-
tion, all other orders are zero-valued at k = 0 –see Fig. 1.
Consequently, when the particles inhabit the n = 0 level,
corresponding to the zeroth order Bessel function, the
momentum distribution is always peaked at the origin.
Such is the case for ` = 0 in Fig. 1. When threaded by
an effective magnetic flux, the ground-state energy dis-
plays periodic oscillations characterized by a given an-
gular momentum `. As the flux increases and we move
from one energy parabola with a given ` to the next, the
quantum numbers n need to be changed to counteract
the increase in flux and minimize the energy (see Sec. A1
in Appendix).

Eventually, the set of {n} is such that no spinless par-
ticles inhabit the n = 0 level at a given value of `. Being
a sum of discrete Bessel functions, the momentum dis-
tribution becomes zero-valued at the origin and a hole
opens up [54]. The value of the angular momentum `
needs to be such that Fermi sphere is displaced by the

ceiling function dNp2 e [50, 54] (see Sec. A1 Appendix for a
schematic figure). Therefore, there is a ‘delay’ in observ-
ing the hole with increasing Np. This needs to be con-
trasted with bosons in a Bose-Einstein condensate, which
due to the different statistics all reside in the n = 0 level
at ` = 0. In turn, there is no ‘delay’ for the characteristic
hole, which opens up at ` = 1 irregardless of Np.

The same logic used for spinless fermions applies when
one considers SU(N) fermions. On increasing N , the re-
striction imposed on the system by the Pauli exclusion
principle relaxes: N particles can occupy a given level
–see Fig. 1. Accordingly, the Fermi sphere needs to be
displaced less with increasing N . We find that for a sys-
tem with Np SU(N)-symmetric fermions, a hole in the
momentum distribution opens up when we displace by

dNp2N e. In other words, the angular momentum required

for a hole to open up is `H = dNp2N e and φH is the flux
at which one transitions to the energy parabola with this
corresponding angular momentum. For Np < N , all par-
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FIG. 2. Cross-section of the momentum distribution n(kx, 0)
for Np = 3 fermions with SU(3) symmetry for various values
of the effective magnetic flux φ at repulsive interactions. Ini-
tially the momentum distribution is peaked at small φ and its
height decreases with increasing flux. It is not until we sur-
pass the threshold imposed by the fractionalization, that the
momentum distribution collapses at kx = 0 and a depression
is observed. Going to larger values of the flux, the depth of
the depression increases. Results were obtained with exact
diagonalization for L = 15 and U = 10, 000.

ticles will reside in the n = 0 level. Indeed, as N → ∞,
SU(N) fermions behave as bosons with regards to the
level occupation.

Systems with an equal and commensurate value of

W =
Np
N display similar features. The persistent cur-

rent’s parity is one such feature whereby it is diamagnetic
[paramagnetic] if Np = (2m + 1)N [Np = (2m)N ] with
m being an integer [43, 59]. Likewise, we have the same
momentum distribution for equal and commensurate W
–Fig. 1. Clearly, this is not the case when W is com-
mensurate but not equal for different SU(N). Owing to
the different particle occupations, the momentum distri-
bution and consequently the shifts in the sets of {n} and
angular momentum `H for a hole to appear is different.

B. Interacting particles

Having established the basis for the momentum distri-
bution for SU(N) fermions at zero interactions, we now
turn our attention to systems with repulsive and attrac-
tive interactions. At small values of the interaction, one
observes the same features as in the free fermion cases
described above (see also [54] for SU(2)). Here, we focus
on the regimes of intermediate and infinite interactions.

1. Repulsive interactions

In the case of fermionic systems with repulsive in-
teractions, the persistent current displays fractionaliza-
tion with a reduced period dependent on the number of
particles Np irrespective of the number of components

N [43, 66]. The fractionalization originates from energy
level crossings between the ground and excited states that
create spin excitations to counterbalance the increase in
the effective magnetic flux. In other words, we go from
the initial parabola observed at U = 0 with a period φ0,
to Np piece-wise parabolas/peaks with a reduced period
of φ0/Np (see Sec. A1 Appendix). This effect results in a
momentum distribution depression at infinite repulsion.
In contrast with the characteristic hole, the depression is
not zero-valued at the origin but is a local minimum, i.e.
a dip in the momentum distribution –Fig. 2. Apart from
cases like the one depicted in Fig. 2, we generally find a
non-monotonous behaviour in the peak of the momentum
distribution (see Sec. A1 in Appendix).
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FIG. 3. Figure depicts the second derivative of the mo-
mentum distribution n(kx, ky) at kx = ky = 0, defined as
∂2n(kx,0))

∂k2
x

∣∣
kx=0

, as a function of the effective magnetic flux

φ and interaction U . A change in the sign of the second
derivative denotes going from a peak (negative) to a depres-
sion (positive) that corresponds to a change in colour from
blue to green respectively. In the above plot, we see that at
U = 0 the hole opens up at φ = 0.5. On increasing the in-
teraction, the value of φ that corresponds to a momentum
distribution depression increases, thereby reflecting the frac-
tionalization in the system. At infinite repulsion, the system
achieves complete fractionalization and the flux at which a de-
pression is displayed corresponds to φD (see the text). Results
were obtained with exact diagonalization for SU(3) fermions
with L = 15 and Np = 3. Note that the y-axis is not linear
in the values of the interaction.

Interestingly enough, when the persistent current is
fractionalized, the depression appears at fluxes φD that
are found to be significantly larger than the flux values
corresponding to the cases in which the angular momen-
tum is quantized to integer values. In other words, the
fractionalization in the system causes a specific ‘delay’
in observing the momentum distribution depression –see
Fig. 2. We remark that this ‘delay’ is an add-on to the
one observed at zero interactions. It is solely dependent
on Np and independent of N due to the nature of the
fractionalization. The depression in the momentum dis-

tribution occurs at φD = φH+
Np−1
2Np

where φH is the flux

at which a hole appears at zero interaction (see Sec. A1
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FIG. 4. Cross-section of the momentum distribution n(kx, 0)
for Np = 6 fermions with SU(3) symmetry for various values
of the effective magnetic flux φ at U = −5. The momentum
distribution is always peaked for any value of φ due to the
reduced coherence in the system. As φ increases, the height
of the peak decreases in a monotonous behaviour. Results
were obtained with exact diagonalization for L = 15.

Appendix).
For intermediate interactions, where the persistent cur-

rent is partially fractionalized, we track the depression by
calculating the second derivative of the momentum dis-
tribution as a function of φ and U –Fig. 3.

2. Attractive interactions

Just like in its repulsive counterpart, the persistent
current also fractionalizes for attractive interactions. For
strong attractive interactions, the formation of bound
states is reflected by a reduced period of the current
φ0/N with N being the number of particles in the bound
state [44]. Even though the state does acquire cur-
rent, the formation of bound states with reduced co-
herence, drastically reduces the visibility of the hole in
the momentum distribution –Fig. 4. Nevertheless, the
variance of the momentum distribution σnk has been
demonstrated to be a figure of merit for fractional cur-
rents [23, 44] –Fig. 5. We find that the variance is not a
good measure when it comes to the repulsive case since
the peak does not display monotonous behaviour (see
Sec. A1 Appendix)

IV. SELF-HETERODYNE INTERFEROGRAMS
OF SU(N ) FERMIONS

Properties of circulating current states can be de-
tected through self-heterodyne phase detection proto-
cols [52, 53, 67]. In these protocols, the ring is made to
interfere with a quantum degenerate system at its center.
During TOF expansion, the combined wavefunction (ring
and center) evolves in time and interferes with itself giv-
ing rise to characteristic spiral interferograms [22, 52, 54].
Topological features of the spiral pattern reveal informa-
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FIG. 5. Variance of the momentum distribution, σnk (φ),
against the effective magnetic flux φ forNp = 4 (blue), Np = 6
(red) and Np = 8 (green) fermions with SU(2), SU(3) and
SU(4) symmetry respectively for attractive interactions. On
going to infinite attraction the persistent current fractional-
ization depends on the number of components, which is re-
flected in the variance of the width of the momentum distri-
bution. For SU(2) fermions, the variance has two steps in one
flux quantum (φ/φ0 = 1). Going to SU(3) (SU(4)) fermions,
we have that the period is reduced by 1/3 (1/4) upon frac-
tionalization, which is reflected by the variance having 3 (4)
steps. Results for SU(2) and SU(3) cases were obtained with
exact diagonalization, with DMRG being employed for the
SU(4) case. The paramaters used were U = −5 and L = 15,
with U = −3 for the SU(4) case.

tion on the current’s orientation and intensity. Further-
more, the angular momentum quantization of the current
(quanta of rotations) is given by the number (or the or-
der) of spirals and their orientation.

Just like in the momentum distribution, the particles’
statistics is reflected in the interference patterns. Due
to the Pauli exclusion principle, fermionic particles oc-
cupy distinct levels having different momenta associated
to them. Hence, when the fermions start to circulate, the
imparted phase gradient of the wavefunction couples to
the various momenta. These different phases recombine
giving rise to the spiral-like interference. The multiple
momenta contributing to the interference pattern as well
as the particle’s statistics results in dislocations (radially
segmenting lines) in the interferogram [54] (see Fig. 6).

Previously, we highlighted how the momentum distri-
bution at zero interaction displays similarities for systems
with equal W = Np/N . Seeing as the features of the
interferogram depend on the particle distribution, then
one would expect that systems with commensurate and
equal W , display interferograms with the same charac-
teristics. In the following, we build up on the recent work
on interferograms of SU(2) fermions at zero and weak in-
teractions [54], by generalizing to SU(N) fermions and
extending the analysis to the intermediate and strongly
interacting regimes.

We remark that DMRG cannot be applied to large in-
teractions. Indeed, it is widely known that it has issues
with convergence in this regime. Furthermore, the prob-
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FIG. 6. The interference GR,C between ring and center for Np = 2, 4, 6 particles with SU(2) symmetry, is shown as a function of
the effective magnetic flux φ at zero interaction and short time t = 0.033. For Np = 2 (top) and Np = 4 (middle), the number
of spirals is an indication of the angular momentum quantization `. Note that at φ = 1.58, the difference in spirals between
the two cases arises due to the different parity of the two systems, that correspond to a degeneracy point of φ = s + 1/2 and
φ = s respectively, with s being an integer. In contrast to the Np = 2 case, we observe dislocations (segmenting lines) in the
interference patterns for Np = 4, 6. Lastly, by comparing Np = 2 and Np = 6 at φ = 1.58 we observe that the latter displays
only one spiral instead of two like its counterpart. The reason being that at U = 0 for Np = 6, the hole opens up at φ = 1.5.
All correlators are evaluated with exact diagonalization for L = 15 by setting r′ = (0, R) and radius R = 1. The color bar is

non-linear by setting sgn(GR,C)
√
|GR,C|.

lem is exacerbated by multi-degenerate ground-states of
SU(N > 2) [43]. Consequently, we opted to carry out
the self-heterodyne analysis by considering SU(2) sys-
tems that can be addressed by exact diagonalization.
Nonetheless, this does not hinder our analysis since as
we shall see, interferograms with equal W display similar
characteristics.

A. Free Particles

At zero interaction and short time expansion one ob-
serves spiral-like patterns, along with dislocations in
these interferograms [54]. These dislocations arise from
the various momenta components that contribute to the
expansion and indicate the suppression of the particle
density at these positions in space. The number of dis-
locations correspond to W − 1 –see Figs. 6 and 7. These
dislocations do not depend on the flux threading the sys-
tem.

For bosons, the number of spirals gives an indication
on the number of rotations, or rather the angular mo-
mentum quantization ` of the current [22, 53]. However,
it is not as straightforward when it comes to fermions.
Owing to their different statistics, the level occupation
of fermions is broader than that of bosons. In order for
spirals to emerge in the interference patterns, the given
system of fermions needs to displace its Fermi sphere by

dNp2N e, which corresponds to the characteristic hole in the
momentum distribution. After this, the number of spirals
grows with increasing angular momentum.

When W = 1, 2, the number of spirals reflect the an-
gular momentum quantization (since these cases only re-
quire one Fermi sphere ‘shift’ like in bosons) –see upper
and middle panels of Fig. 6. For W > 2, the number of
observed spirals is not indicative of the angular momen-
tum quantization –see lower panel in Fig. 6. By keeping
the number of particles fixed and increasing the number
of components, enables more particles to inhabit a given
level. Finally for N > Np, SU(N) fermions behave as
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FIG. 7. The interference GR,C between ring and center for Np = 6 particles with N = 2, 3, 6, as a function of the effective
magnetic flux φ at U = 1 and short time t = 0.025. In the top panel, the number of dislocations in the interferograms is 2,1,0
for N = 2 (left), N = 3 (middle) and N = 6 (right) respectively. The bottom panel depicts the value of φ where a spiral is
observed. On increasing N , the spiral appears at a lower value of φ since the displacement of the Fermi sphere is inversely
proportional to N . All correlators are evaluated with DMRG for L = 15 by setting r′ = (0, R) and radius R = 1. The color

bar is non-linear by setting sgn(GR,C)
√
|GR,C|.

bosons with regards to level occupations –Fig. 7. Ad-
ditionally, we have that for equal and commensurate W ,
interferograms display similar features –see Figs. 6 and 7.

B. Interacting particles

1. Repulsive interactions

For a system with infinite repulsive interactions, one
is able to not only track but also observe the fractional-
ization through the self-heterodyne phase portrait. Re-
markably, the fractional angular momentum, which cor-
responds to different spin excitations [43, 66], is explicitly
captured in the interferogram through the dislocations
that are now dependent on the flux. Indeed, the dis-
locations are able to characterize the Np fractionalized
parabolas due to the different types of spin excitations
through the number and orientations of the dislocations

–Fig. 8. Specifically, there are dNp2 e + 1 different types
of interference patterns (i.e. different number and ori-
entation of the dislocations). The characteristic spirals
are also observed in interferograms at infinite repulsion.
However, we remark that due to the dislocations, it is
very hard to deduce the order of the spirals. We find that
in order for a persisting spiral to emerge, the magnetic

flux φ needs to exceed φS+
= φH +

Np−1
2Np

(see Section B1

in Appendix). This is in line with the appearance of the
depression in the momentum distribution.

In the intermediate case, the interference patterns cap-
ture the partial fractionalization in the system. Indeed,

on going from zero to infinite interactions as in Fig. 9,
we observe the change in the orientation and number of
dislocations as the system undergoes fractionalization.

2. Attractive interactions

In contrast to the homodyne protocol, the self-
heterodyne one provides direct information on the frac-
tionalization of the persistent current. Firstly, the N
parabolas that originate due to the fractionalization are
characterized by different dislocations, both in number
and orientation. Additionally, spirals emerge in the inter-
ferogram. Interestingly enough for N -body bound states,
the observation of the spiral occurs at φS− = φH + N−1

2N ,
which would correspond to when one would expect mo-
mentum distribution depression (see Section B2 in Ap-
pendix). Just like in the repulsive case, there is a ‘delay’
in visualizing the spirals. However, in this case the frac-
tionalization is dependent only on N and as such the
‘delay’ associated to it is uniform, irrespective Np.

We remark that the mentioned results pertain only to
SU(2) fermions. For SU(N > 2), an interferogram is not
adequate to capture any information about the attractive
system. The self-homodyne interference patterns rely on
the use of a two-body correlator, which is an accurate
measure when one has bound pairs as in SU(2) fermionic
systems. However, bound states consisting of a larger
number of particles, such as trions in the SU(3) case,
probably require an N -body correlator to adequately de-
scribe the system.
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FIG. 8. The interference GR,C between ring and center for Np = 6 particles with SU(2) symmetry against the effective magnetic
flux φ at U = 1000 and short time t = 0.025. Middle right panel is the schematic for the fractionalized energy parabolas at
infinite repulsive interactions for the corresponding system (numbers on parabola correspond to the spin quantum numbers in
the Bethe ansatz solution [43]). The interference pattern corresponding to the first parabola (orange), displays two dislocations
as in the zero interaction case. Moving to the next parabola (green), where we have the generation of a spin excitation, there
are three dislocations. Traversing the other parabolas, we observe that apart from the number of dislocations, the orientation
changes as well –see upper left and right panels where we observe an downward and upward V-shape respectively. By comparing
each interference pattern to each energy parabola, we see that there is a symmetry around φ = 0.5 that reflects the fact the the

energy E is symmetric around this point. Indeed, the number of different interference patterns corresponds to dNp
2
e+ 1. Note

that there is no spiral in the bottom right intereferogram since no hole has opened up. All correlators are evaluated with exact
diagonalization for L = 15 by setting r′ = (0, R) and radius R = 1. The color bar is non-linear by setting sgn(GR,C)

√
|GR,C| .

V. DISCUSSIONS AND CONCLUSIONS

In this work, we utilize the persistent current to ana-
lyze and characterize different SU(N) fermionic systems.
To this end, we investigate the interference dynamics via
both homodyne (momentum distribution) and hetero-
dyne (co-expansion of two concentric condensates) proto-
cols by applying a combination of exact diagonalization
and whenever possible DMRG and Bethe ansatz. Both
of them can be experimentally probed within the cold
atoms infrastructure and current know-how.

Free particle regime. For spinless fermions, the char-
acteristic hole in the momentum distribution, reflecting
coherent matter-wave flow, opens up when the effective
magnetic flux displaces half of the Fermi sphere [54]. In

the following, we will refer to such a feature as a ‘de-
lay’ in the value of the flux at which a hole occurs. For
N -component fermions, the Pauli exclusion principle re-
laxes and allows more particles to inhabit a given level
–see Fig. 1. Accordingly, we find that a hole in the mo-
mentum distribution appears if the Fermi sphere is dis-

placed less, precisely by the ceiling function dNp2N e. This
is consistent with the fact that SU(N) fermions (with
Np < N) resemble bosons for N → ∞. We find that
the features of the momentum distribution are consistent
with the heterodyne interference images. In particular,
holes in the momentum distribution correspond to spi-
rals in the interferograms. Note that, in contrast with
the bosonic case [22, 51–53], we find that the order of
the spirals does not reflect the angular momentum quan-
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FIG. 9. The interference GR,C between ring and center for Np = 4 particles with SU(2) symmetry against the effective magnetic
flux φ at short time t = 0.026 as a function of the interaction U . In this figure, one can clearly see how the number and orientation
of the dislocations change as one increases the interaction. All correlators are evaluated with exact diagonalization for L = 15
and repulsive U = {0, 10, 20, 50, 5000} (panels are in descending order) by setting r′ = (0, R) and radius R = 1. The color bar

is non-linear by setting sgn(GR,C)
√
|GR,C|.

tization of the system. Furthermore when the number
of components N divides the number of particles Np,
Np
N − 1 dislocations (radially segmenting lines) appear in

the interferograms giving information about the number
of particles present in the system –see Fig. 6. These ob-
servations still hold true in the case of small attractive
or repulsive interactions [54]. Moreover, we note that at
zero interactions the properties displayed by the homo-
dyne and self-heterodyne phase portraits depend solely

on
Np
N –see Figs. 6 and 7.

Repulsive regime. The persistent current fractionalizes
with the bare flux quantum φ0 reduced by Np (imply-
ing that the energy is periodic with a period of φ0/Np).
Fractionalization originates through level crossings be-
tween the ground and excited states that result in the
creation of spin excitations in the ground-state [43]. In-
terestingly enough, we find that the fractional values of
the angular momentum are not displayed as holes in the
momentum distribution as in the non-interacting case. In
addition, as soon as the correlations depart from the non-
interacting case, the characteristic hole becomes a small
depression (finite valued local minimum) in the momen-
tum distribution at momentum k = 0 –Fig. 2. Moreover,
an additional ‘delay’ characterising the specific fraction-
alization of the angular momentum is found. In other

words, the depression occurs at a larger flux value than
the one where the hole opens up –Fig. 3. Specifically, for
a given system with Np particles, a momentum distribu-

tion depression appears at φD = φH +
Np−1
2Np

, where φH is

the flux at which the hole opens up at zero interactions
and the second term accounting for the fractionalization
‘delay’. Therefore, such a property makes Np accessible
by monitoring the actual value of the flux at which the de-
pression occurs. At intermediate interactions, the system
experiences only partial fractionalization. Nonetheless,
this is captured by the homodyne protocol, by tracking
the momentum distribution depression at zero momenta.

Heterodyne interferograms embody the features of
the fractionalization. Apart from observing the ‘delay’
through the emergence of the spiral as in the zero in-
teraction case, the angular momentum fractionalization
can be tracked by monitoring the number and orientation
of the dislocations: The presence of the spin excitations
modifies the dislocations that are observed at zero in-
teraction –see Figs. 8 and 9. In contrast with the zero
interaction case where the dislocations are not flux de-
pendent, here the dislocations are dependent on the flux,
enabling us to monitor the spin excitations in the system
through interference patterns.

Attractive regime. Like its repulsive counterpart, a sys-
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tem with attractive interactions also experiences fraction-
alization, dependent on the number of components N .
However, the fractionalization is not readily observed in
the momentum distribution, at least not directly. Due
to the reduced coherence that transpires from the forma-
tion of bound states, no depression is observed –Fig. 4.
As such, one cannot monitor the ‘delay’ in the occurrence
of the aforementioned depression. Nonetheless, by mea-
suring the variance of the width of the momentum distri-
bution one can deduce the SU(N) nature of the system
through the number of steps depicted, but no informa-
tion regarding the number of particles can be obtained
–Fig. 5. In the intermediate regime of interaction, we
observe that the characteristic depression gets ‘delayed’
to larger values of the effective magnetic flux as the cur-
rent gets fractionalized. Eventually, as the interaction
strength increases, the depression is smoothed out.

Self-heterodyne interference patterns for SU(N > 2)
systems calculated via density-density correlators are
found to be incapable of providing observables to moni-
tor the persistent current pattern. In fact, a higher order
correlator may be required in order to capture the fea-
tures of N -body bound states. In the case of SU(2) sys-
tems, we find that the fractionalization is characterized
by a change in the number of dislocations in the inter-
ferograms. Remarkably, the flux values where a spiral
emerges corresponds to the ones that would result in a
depression (that is suppressed in this regime) in the mo-
mentum distribution. Just like in its repulsive counter-
part, the spirals experience a two-fold ‘delay’ originating
from the combined effect of displacement of the Fermi
sphere and the fractionalization.

Self-heterodyne interference patterns for SU(2) attrac-
tive fermions were recently observed experimentally in
the context of the BCS-BEC crossover [42]. Specifically,
the interference fringes they observe correspond to BEC
side of the crossover.

Our analysis, instead, pertains to the BCS regime,
where our results predict a characteristic ‘delay’ that pro-

vides information on the structure of the Fermi surface
and the number of components involved in the bound
state. The interference patterns within the BCS regime
still remain to be analysed experimentally, with the main
challenge lying in the fast expansion stemming from the
large momenta occupations of the fermions. One route to
address present limitations involves using dilute density
systems such that the particles do not occupy levels with
high momentum. Another option would be to selectively
address particles close to the Fermi surface and perform
the expansion.

We note that, by monitoring the number of disloca-
tions at weak interactions (repulsive or attractive), we
can gain knowledge on Np/N –Figs. 6 and 7 - this fea-
ture provides the generalization of [54] to N -component
fermions. Going to the strongly interacting regimes, the
number and configuration of the dislocations changes, re-
flecting the persistent current fractionalization –Figs. 8

and 9. To be specific, there are dNp2 e+1 interference pat-
terns with various dislocation numbers and orientation.
This feature implies that, for repulsive interactions, we
can access the number of particles Np; for attractive in-
teraction we can access on the number of components N
(see [55] for characterization of SU(N) systems through
neural networks).

In summary, we have shown how one can characterize
SU(N) correlated matter-wave through homodyne and
self-heterodyne interference patterns. We believe that
our findings are well within the current state-of-the-art
of the field and can be experimentally traced. For the
repulsive case, the experimental analysis could be carried
out through the quantum gas microscopy [68–71].
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I. Bloch, and S. Fölling, Nature Physics 10, 779 (2014).

[28] C. Hofrichter, L. Riegger, F. Scazza, M. Höfer, D. R.
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Appendix A: Homodyne detection method - Analytical derivation of the momentum distribution at zero
interactions

In cold atoms systems, the persistent current is experimentally observed through time-of-flight (TOF) imaging.
This entails looking at the momentum distribution of the gas, which is one of the few observables that can be
experimentally probed [72]. Here, we will give the derivation for the momentum distribution.

Starting from the expression for the one-body correlator n(r, r′, t) defined as

〈n(r, r′)〉 = 〈Ψ†(r)Ψ(r′)〉, (A1)

where r is position, and Ψ†(r) and Ψ(r) are the fermionic creation and annihilation field operators. Expanding the

field operators in the basis set of the single-band Wannier functions wj(r) such that Ψ(r) =
∑L
j wj(r − rj)cj , the

two-point correlator has the following expression

〈n(r, r′)〉 =

L∑
j,l

w∗l (r− rl)wj(r− rj)〈c†l cj〉, (A2)

with wj(r−rj) being the Wannier function localised at site j with position rj and L being the number of lattice sites.
If we consider the free expansion in time t of the particle density n(r, r′, t), it is still defined as in Equation (A2), but
the time dependence is encoded in the expansion of the static Wannier function wj(r, t) that reads

wj(r− rj , t) =
1√
π

ηj
η2j + ıω0t

exp

{
− (r− rj)

2

2(η2j + ıω0t)

}
. (A3)

where ηj is the width of the center at the j-th site and ω0 = ~
m with ~ and m denoting Planck’s constant and the

particles’ mass respectively, both of which are set to 1 in this calculation. Note that we have taken the zeroth order
approximation of the Wannier function and the harmonic approximation. By letting the density distribution is left to
expand for large values of time, one obtains the momentum distribution n(k). The momentum distribution is defined
as the Fourier transform of the one-body correlator n(r, r′),

〈n(k)〉 =

∫
eık(r−r

′)〈Ψ†(r)Ψ(r′)〉drdr′, (A4)

where k is the momentum. One can verify that limt→∞〈n(r, r′, t)〉 ≈ 〈n(k)〉, by taking the limit t → ∞ of
Equation (A3) and performing a Taylor expansion.

Substituting the expression for the field operators into Equation (A4), the expression for n(k) reads

〈n(k)〉 =

∫
eık(r−r

′)
L∑
j,l

[w∗l (r′ − r′l)wj(r− rj)〈c†l cj〉]drdr′. (A5)

Utilising the change of variables R = r− rj and R′ = r′ − r′l, we arrive to

〈n(k)〉 =

∫
eık(R−R

′)
L∑
j,l

eık(rj−r
′
l)[w∗l (R′)wj(R)〈c†l cj〉]dRdR′, (A6)

which by making use of the fact that w(k) =
∫
w(R)eık·RdR, can be further simplified to give

〈n(k)〉 = |w(k)|2
L∑
j,l

eık(rj−rl)〈c†l cj〉, (A7)

with w(k) being the Fourier transform of w(R). Finally, we write our ring configuration explicitly as

〈n(k)〉 = |w(k)|2
L∑
j,l

eı[kxr(cos(
2πl
L )−cos( 2πj

L ))+kyr(sin(
2πl
L )−sin( 2πj

L ))]〈c†l cj〉, (A8)
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where the momentum vector can be written as k = (kx, ky) and polar coordinates were introduced r = (r cos θ, r sin θ),
with θ = 2π

L l.

We introduce the creation operator and its Fourier transform

c†l =
1√
Np

L∑
k

e−ıklc†k (A9)

as well as the Fourier transform of its counterpart the annihilation operator

cj =
1√
Np

L∑
k′

eık
′jck′ (A10)

with Np denoting the number of particles. The one-body correlator 〈c†l cj〉 in Fourier space reads

〈c†l cj〉 =
1

Np

L∑
k,k′

e−ıkl+ık
′j〈c†kck′〉 (A11)

Furthermore, at zero interactions we have that 〈c†kck′〉 = δk,k′ . Consequently, the expression for the momentum
distribution reads

〈n(k)〉 =
1

Np
|w(k)|2

Np∑
j,l

eı[kxr(cos(
2πl
L )−cos( 2πj

L ))+kyr(sin(
2πl
L )−sin( 2πj

L ))]
∑
{q}

e−
2πı
L (l−j)q, (A12)

where we made use of the fact that for free fermions k = 2π
L q with q being the quantum number labeling the Fermi

sphere levels. At this point, by setting kx = |k| sinφ and ky = |k| cosφ we have that

〈n(k)〉 =
1

Np

∑
{q}

∣∣∣∣ L∑
l

eır(B sinφ cos θl+B cosφ sin θl)e−
2ıπl
L q

∣∣∣∣2, (A13)

where B =
√

2|k|2. Using the trigonometric identity sin(A+B) = sinA cosB+cosA sinB, the expression is simplified
even further and reads

〈n(k)〉 =
1

Np

∑
{q}

∣∣∣∣ L∑
l

eırB sin(φ+θl)e−
2ıπl
L q

∣∣∣∣2. (A14)

The expression in Equation (A14) is an q-th order Bessel function of the first kind [54]

Jq(x) =
1

2π

π∫
−π

eı(x sin τ−qτ), (A15)

where x = rB and τ = 2πl
L . As a result, by setting

Jq(B) =

L∑
l

eırB sin(φ+θl)e−
2ıπl
L q, (A16)

we have that the momentum distribution reads as

〈n(k)〉 =
1

Np

∑
{q}

|Jq(k)|2. (A17)

This enables us to study the momentum distribution analytically, by considering it as a summation of different Bessel
functions as was carried out in [54] and generalized to SU(N) in the main text. It is important to note that the

Equation (A17) only holds at zero interactions. In the case of interacting particles 〈c†kck′〉 6= δk,k′ . As such, we
no longer have an analytical expression for the momentum distribution and different behaviours are observed in the
interacting regimes as reported in this paper.
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1. Emergence of a hole in the momentum distribution

FIG. 10. SU(2) particle occupation energy levels for Np = 2, 4, 6, 8 particles and their displacement with angular momentum
quantization ` at zero interaction. It is clear that with increasing Np one needs a higher value of ` such that the particles do
not occupy the n = 0 level. Note that there are two different parity cases corresponding to Np = (2m+ 1)N and Np = (2m)N
with m being an integer number.

For a hole to open, one requires that the momentum distribution collapses to zero at the origin. This can only occur

when the Fermi sphere is displaced by dNp2N e and there are no particles occupying the n = 0 level. The distribution of
the particles needs to be such that it is symmetrical around the n = 0 level.

FIG. 11. Energy as a function of the effective magnetic flux φ, denoted by E and φ respectively, for systems with Np = (2m+1)N
(left) and Np = (2m)N (right). As one crosses from one parabola to the next with increasing φ, the angular momentum
quantization ` increases. The difference between the left and right panels stems from the parity of the system which is
diamagnetic and paramagnetic respectively depending on whether the ground-state energy increases or decreases with flux
φ [43, 59]. The degeneracy point, which is the point where two parabolas cross, is at (half-odd) integer values for (diamagnetic)
paramagnetic systems.
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Non-interacting: Let us take a look at Fig. 10 where we consider the occupation of SU(2) particles at zero interaction.
In the case of Np = 2 and Np = 4, we see that as we increase the effective magnetic flux φ and pass from the first
parabola with angular momentum quantization ` = 0 to the second one with ` = 1 (see Fig. 11), the Fermi sphere is
displaced such that there are no particles occupying the n = 0 level. In this case, ` = 1 corresponds to the angular
momentum `H for a hole to open up with φH = 0.5 (φH = 1.0) for Np = 2 (Np = 4). The value of φH corresponds
to the flux value where we traverse to the energy parabola with angular momentum `H . In the case of Np = 6 and
Np = 8, in contrast with the Np = 2 and Np = 4, one needs to go the third parabola with ` = 3 to clear the n = 0
level. As such, the opening of the hole in the momentum distribution is delayed since a higher value of φ is required.

FIG. 12. Schematic figure of the energy E against effective magnetic flux φ for diamagnetic (left) and paramagnetic (right)
cases. Top panel depicts the diamagnetic and paramagnetic cases at zero interaction for SU(2) fermions (holds for any N). The
middle panel shows the system for 2 and 4 particles with infinite repulsive interaction U . Comparing this panel with the one
at U = 0, we see that the hole for Np = 2 (green) and Np = 4 (yellow) is delayed on going to infinite repulsion. Likewise for
Np = 6 (cyan) and Np = 8 (magenta), we also observe a delay in addition to the one that is observed at U = 0 (see Fig. (11)).

Repulsive: Turning our attention to the infinitely repulsive case, we observe a depression instead of a hole. If we
consider Np = 2 with SU(2) symmetry with infinite repulsion, we see the depression at a higher value of the flux
than the non-interacting case. Indeed, we find the depression with a ‘delay’ of 1

2Np
. Going to the four particle case,

the depression is delayed by 3
2Np

(reduced period of one of the parabolas is 1/Np). Considering more cases, we find

that for a depression to appear for a given Np with infinite repulsion, φD = φH +
Np−1
2Np

.

The depression is tracked through the second derivative of the momentum distribution n(kx, ky) at kx = ky = 0,

defined as ∂2n(kx,0)
∂k2x

∣∣
kx=0

. By noting how the derivative changes from negative to positive, which corresponds to a

peak and depression respectively, we are able to observe at what values of the flux φ a depression appears for a given
interaction U . In turn, the second derivative gives us insight into the fractionalization of the persistent current by
monitoring the ‘delay’ of the depression.

Fig 13 corresponds to systems with repulsive interactions. As previously discussed, the value at which the depression
is observed (transition from blue to green) appears at a larger φ with increasing U . As U → ∞, the system attains
complete fractionalization, which is reflected from the fixed value of the flux, corresponding to φD. A peculiar
phenomenon in Fig. 13 (b) and (c) is the alternation between peak (blue) and depression (red) at flux values preceding
φH . We would like to point out that the red areas are small in value that would correspond to plateaus in an
experimental setting.
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FIG. 13. Second derivative of the momentum distribution ∂2n(kx,0))

∂k2
x

∣∣
kx=0

at kx = ky = 0, defined as a function of the effective

magnetic flux φ and repulsive interaction U . Results were obtained with exact diagonalization for L = 15 for SU(2) fermionic
systems with Np = 2, Np = 4 and Np = 6 in panels (a), (b) and (c) respectively. Note that the y-axis is not linear in the
values of the interaction.

Attraction: For infinitely attractive interactions, the energy also fractionalizes with a reduced period of φ0/N
irrespective of the number of particles. For intermediate interactions, there is a momentum distribution depression
appearing at φD = φH + N−1

2N –Fig. 14. Indeed, just like in its repulsive counterpart, the depression experiences a
two-fold ‘delay’. However, in this case the ‘delay’ depends on both the particle number (through φH) and on the
number of components (second term).

Once the system fractionalizes fully, indicating the formation of the N -body bound state, the depression appears at
φD. The depression is small due to the reduced coherence. If the interaction keeps increasing, one will no longer find
a depression at φD. Indeed, larger φ values are required for a depression to appear. Unlike the repulsive case, there
is no alternation between depression and peak.
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FIG. 14. Second derivative of the momentum distribution ∂2n(kx,0))

∂k2
x

∣∣
kx=0

at kx = ky = 0, defined as a function of the effective

magnetic flux φ and attractive interaction U . Results were obtained with exact diagonalization for L = 15 for SU(2) fermionic
systems with Np = 2, Np = 4 and Np = 6 in panels (a), (b) and (c) respectively. Note that the y-axis is not linear in the
values of the interaction.

The peculiar behaviour observed in Fig. 13 (b) and (c) can be understood through the cross-section of the momentum
distribution depicted in Fig. 15 (c). Indeed, we find that the height of the momentum distribution peak/depression
as φ is varied. This phenomenon is more clear if one looks at the momentum distribution n(0, 0) at kx = ky = 0,
which shows the non-monotonous behaviour in the momentum distribution. On the other hand, the behaviour is
monotonic for attractive interactions –Figs. 15 (a) and (b).

The non-monotonous behaviour observed at infinite repulsion is the reason why the variance of the momentum
distribution does not give good diagnostic tool in this regime. This is in sharp contrast with its attractive counterpart.
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FIG. 15. Left panel: Cross-section of the momentum distribution n(kx, 0) for U = −5 (top) and U = 10, 000 (bottom) as a
function of the effective magnetic flux φ. On the right panels, there is the corresponding momentum distribution n(0, 0) for
kx = ky = 0. Results were obtained with exact diagonalization for Np = 4, N = 2 for L = 15.

2. Expansion of the density distribution

The momentum distribution is obtained by releasing the atoms from the trap and observing the particle density
distribution after a long expansion time. Initially at time t = 0, one observes the Wannier function localized on each
site. Then on going to intermediate times, the ring expands to a characteristic hole with protruding spirals giving
rise to a peculiar shape resembling a ‘shuriken’–Figure 16.

(a) (b) (c) (d)

FIG. 16. Density distribution n(r, t) at an intermediate time t = 3, for various values of the flux φ. On increasing the flux,
we go from a sharply peaked Gaussian (leftmost panel) in the middle, to a characteristic hole with spirals radiating from it.
Eventually, as the size of the hole increases, the intensity from the spirals increases (rightmost panel), resembling a ‘shuriken’.
The results were calculated with exact diagonalization for Np = 4 with N = 2 and L = 15 at U = 0 for φ = 0, 1, 2, 4.

The direction of the spirals, be they clockwise or anti-clockwise gives an indication about the directional flow of the
current –see Fig. 17). Eventually at longer times, one recovers the characteristic momentum distribution.
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(a) (b)

FIG. 17. Density distribution n(r, t) at an intermediate time t = 3 evaluated at φ = −4 and φ = 4. The right panel corresponds
to φ = 4 and the direction of the protruding spirals is clockwise. For the left panel evaluated at φ = −4, the orientation of
the spirals is anti-clockwise. The direction of the rotation by the artificial gauge field is reflected in the quantum shuriken.The
results were calculated with exact diagonalization for Np = 3 with N = 3 and L = 15 at U = 0.

Appendix B: Self-heterodyne interference between a ring and a quantum degenerate gas

Here, we consider the density-density correlator G(r, r′, t) for an expanding ring and an additional site in the center
at a fixed time t. The two-body correlator is defined in the following way

G(r, r′, t) =

N∑
α,β

〈nα(r, t)nβ(r′, t)〉. (B1)

The density operator is defined as n(r, t) = ψ†(r, t)ψ(r, t) where ψ† = (ψ†R + ψ†C) being the field operator of the
whole system of the ring and the center, denoted by R and C respectively. Initially, the ring and the center are
decoupled until they are released from their confinement potential. Thus, at time t = 0 the ground-state can be seen
as a product state |φ〉 = |φ〉R ⊗ |φ〉C .

Assuming free expansion for t ≥ 0, the number of terms in the density-density correlator can be reduced. Firstly, terms
consisting of an odd number of creation or annihilation operators have an expectation value of zero since the number
of particles in the system has to be conserved. Conversely, even numbered terms comprised of unequal numbers of
creation/annihilation operators also vanish. As such, the only surviving terms are the even numbered ones consisting
of an equal number of creation operators. Consequently, the expression for the density-density correlator reads

N∑
α,β

〈nα(r, t)nβ(r′, t)〉 =

N∑
α,β

〈nα(r, t)nβ(r′, t)〉R + 〈n(r, t)n(r′, t)〉C +

N∑
α,β

〈nα(r, t)〉R〈n(r′, t)〉C +

N∑
α,β

〈n(r, t)〉C〈nα(r′, t)〉R

+ 〈φC |ψ†C(r)ψC(r′)|φC〉[δ(r− r′)− 〈φR|ψ†R(r′)ψR(r)|φR〉] + [δ(r− r′)− 〈φC |ψ†C(r)ψC(r′)|φC〉]〈φR|ψ†R(r′)ψR(r)|φR〉.
(B2)

The first four terms in Equation (B2) do not give rise to any interference patterns. Indeed, it is the cross-terms
between the ring and the center (last two terms) that give rise to interference. Therefore, taking these two terms and
decomposing into the Wannier states yields

GR,C =

N∑
α,β

L∑
j,l=1

Ijl(r, r
′, t)
[
N0(δjl − 〈φR|c†l,αcj,α|φR〉) + (1−N0)〈φR|c†l,αcj,α|φR〉

]
, (B3)

which is the interference of the Wannier function where Ijl(r, r
′, t) = wc(r

′, t)w∗c (r, t)w∗l (r′ − r′l, t)wj(r − rj , t) and

N0 = 〈φC |c†0,βc0,β |φC〉 defines the expectation value of the number operator center, which in the current protocol is

always equal to one. Consequently, the second term in Equation (B3) does not contribute to the interference pattern.
Note that one of the summations over the number of components is removed due to the Kronecker delta δαβ that
arises due to the colour conservation nature of the Hamiltonian describing the system. To enhance the visibility of
the spirals, we neglect the Kronecker delta in the first term of Equation (B3).
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1. Repulsive interactions

The characteristic spirals are also observed in interferograms at infinite repulsion. We find that multiple spirals
appear at different values of the flux, that for the sake of simplicity we are going to distinguish as A and B. The
emergence of the multiple spirals can be clearly seen by looking at Fig. 18, which depicts the interfergorams at
infinite repulsion on going from ` = 0 to ` = 1. At φ = 0.92, we observe spiral B that disappears on going to the next
parabola with φ = 1.22. The last panel shows the appearance of spiral A where φ exceeds φSA . This spiral persists
on going to the next parabolas.

FIG. 18. The interference GR,C between ring and center for Np = 4 particles with SU(2) symmetry, is shown as a function of
the effective magnetic flux φ at U = 5000 and short time t = 0.026. All correlators are evaluated with exact diagonalization
for L = 15 by setting r′ = (0, R) and radius R = 1. The color bar is non-linear by setting sgn(GR,C)

√
|GR,C|.

Indeed, their emergence is not as clear cut as the zero interaction case. The appearance of spiral A coincides

with the depression of the momentum distribution, occurring at φSA
= φH +

Np−1
2Np

. Spiral A gains more arms as

the angular momentum is increased, as in the zero interaction case. However, spiral B appears when the angular
momentum of the system corresponds to φH , the angular momentum at which a hole opens up at U = 0. In
particular, it appears at φSB

= φH + 1
2Np

(φSB
= φH − 1

2Np
) for a diamagnetic and paramagnetic system respectively.

This spiral only appears for the period of that parabola, which corresponds to 1
Np

. The additional term 1
2Np

takes into account the change in the profile of the energy brought on by the level crossings – see Fig. 12. In the
special case of Np = 2 SU(2) particles, where the second term of φS reads as 1

2Np
, spiral A and B are one and the same.

It is important to note that due to the large number of dislocations present in the system with infinite repulsive
interactions, it becomes harder to deduce the nature of the spiral.

2. Attractive interactions

As previously mentioned, the fractionalization in attractive fermionic systems depends only on the number of
components. For of SU(2) systems, the fractionalization is such that we go from one parabola at U = 0 to three
piece-wise parabolic segments as U → −∞. In line with what is observed for repulsive systems, the level crossings
that occur during fractionalization can be observed in the self-heterodyne interferograms.

Such behaviour can be clearly seen in Fig. 19 that shows the interferograms for Np = 2, 4, 6 SU(2) fermions with
attractive interactions. In all three cases, we see the appearance of an extra dislocation for φ corresponding to a
fractionalized parabola. In the case of Np = 4, there are left and right panels corresponding to the fractionalized
parabola as opposed to the Np = 2, 6 cases due to a different parity at U = 0.

Lastly, we have that the emergence of the spiral is delayed by N−1
2N . It is important to note that unlike the repuslive

case, here we do not observe the emergence of the second spiral (called spiral B in Sec. B 1).
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FIG. 19. The interference GR,C between ring and center for Np = 2 (top) Np = 4 (middle) and Np = 6 (bottom) particles with
SU(2) symmetry, is shown as a function of the effective magnetic flux φ at U = −3 and short time t = 0.025. All correlators
are evaluated with exact diagonalization for L = 15 by setting r′ = (0, R) and radius R = 1. The color bar is non-linear by

setting sgn(GR,C)
√
|GR,C|.
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