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Dear Editor,

many thanks for handling our manuscript “Interference dynamics of matter-waves of SU(N) fermions”.

Referee 1 find our manuscript “well motivated and clearly written”. Similarly, Referee 2 calls the work carried out in
this manuscript to be a “comprehensive study”.

The Referee’s comments/criticisms prompted us improving on our work. In the following, we provide a point-to-point
reply to the Referees’ comments and the list of changes made in the re-submitted manuscript.

Sincerely Yours,
The Authors

REFEREE 1

R: “ The authors study the interference dynamics of SU(N) potentials in ring potentials. The paper is well motivated
and clearly written, with the results well explained. My main remark is anyway that, given the clear motivation of
the problem, the attractive interactions case should have been more expanded:”

1. R: “In the section II it is written: “For strong attractive interactions (U << t) SU(N) fermions are able to
form bound states of di↵erent types and nature, which in turn causes part of the particles to localize together,
while still adhering to the Pauli exclusion principle.” While this is true, I think a more detailed description of
the phase diagram(s) of attractive SU(N) fermions is needed, see the point below. Notice that in the previous
sentence the parenthesis U << t should read |U | >> t if I am not wrong.

A: The Referee is correct and we thank them for pointing out that the phrase in parenthesis should read |U | � t.
Changes to manuscript 1.

In the case of the attractive fermions phase diagram, we agree that it would be interesting to study. However, we
point out that in our canonical ensemble, di↵erent phases emerge on account of the SU(N) symmetry breaking
by choosing asymmetric interactions [1]. Seeing as the inherent SU(N) symmetry in the system is only present
for isotropic interactions, this would go beyond the scope of the current work. Nonetheless, we agree with the
Referee that the manuscript could be enriched by considering di↵erent phases of attractive SU(N) fermions. To
this end we wrote a full new section in the Appendix, where we provide an example for the SU(3) case and how
its di↵erent phases can be read-out through self-heterodyne interference images. Specifically, we consider the
CSF bound state comprised of two colours in a pair, with the remaining colour being unpaired. Changes to
manuscript 2.

2. R: When in section III attractive interactions are considered, plots are discussed, but U is not varied. I think
a discussion of di↵erent values of U would be important in section 3 [probably also in section 4, but that I can
understand it could be defered to a subsequent publication], also in connection with the previous point 1).

A: We agree with the Referee that section III and section IV would benefit by introducing the case of varied U .
Initially, we made such an analysis in the Appendix, but now we have opted to move a color map of attractive
SU(2) particles to the main text, following the proposal of the referee. We want to emphasize however a detail
which have lead us to put them in the appendix. For the interference patterns higher-order correlations would
be needed for SU(3); so currently the direct comparison just makes sense for the SU(2) case, and further N are
left for future investigation. Change in manuscript 3.

3. R: Morever, for the two-component case the transition to the Tonks-Giraredeau gas has been discussed in
literature, as in Fuchs, Recati and Zwerger, PRL (2004) and other papers, that helps to understand the quasi-
1d case. A similar discussion for the SU(N) case with N > 2 should be improved/provided, at least qualitatively.

A: The Referee brings up an interesting point and we agree with them that our manuscript would benefit by
providing a brief qualitative discussion in this regard. When it comes to SU(N > 2) symmetric fermions with
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attractive interactions, the corresponding N -body bound state can be treated as a composite fermion or boson
depending on the parity of N , which results in an anti-symmetric or symmetric wavefunction respectively.
Indeed, in [2] it was found that such systems can be described by spinless fermions with p-wave interactions or
by a super Tonks Girardeau phase. Such an observation is inline with the fact that the parity of the persistent
current, i.e. whether it is diamagnetic or paramagnetic, is washed out for even N as discussed in [1]. Recently,
in [3] it was demonstrated that by employing self-heterodyne interference patterns and exploiting the fact that
parity is washed out, one can monitor the BCS-BEC crossover by utilizing persistent currents. Such a scheme
was implemented experimentally very recently in [4].

Naturally, one would expect that the same can be carried out for SU(N> 2) fermions. However, the issue of self-
heterodyne interference patterns being incapable of monitoring the persistent current for attractive SU(N> 2)
fermionic systems remains an issue. As such, this analysis will be addressed in a follow-up work. In the
Conclusions section of the manuscript, we have added a paragraph to highlight this. Changes to manuscript 4.

REFEREE 2

R: “ In the present work, the authors investigate ultracold fermionic gases in toroidal traps. They investigate both
non-interacting and interacting (both attractive and repulsive) gases. The authors derive predictions for interference
experiments. Namely, for homodyne interference which gives access to the momentum distribution of the gas particles
and heterodyne interference, which may produce spiral interference patterns, linked to the total angular momentum
of the gas.

The main novelty of the consideration is that the authors study the gas in which fermions possess an SU(N) internal
degree of freedom (as opposed to SU(2) studied previously). For homodyne detection, the authors focus on investi-
gating the appearance of the dip in the center of the interferogram. For heterodyne detection, the authors focus on
the appearance of glitches in the spiral. Both as a function of the flux penetrating the center of the system.

This is a comprehensive study, which may be useful for analyzing experiments in ultracold gas systems and verifying
exotic properties of strongly-interacting systems. At the same time, the scope of the results corresponds rather to
SciPost Physics Core (PRB-level) rather than SciPost (PRL-level) results. ”

A: At first we would like to thank the Referee for his positive judgement of our work as a “comprehensive study”.
Accounting for his further comments, we believe that a precise correspondence between Scipost and APS journal may
be misleading. In view of the theoretical activity in the field and recent experiments [4, 5] our results are timely and
hence we believe it warrants publication in Scipost Physics.

R: “ Furthermore , the paper in its present form is hard to understand unless one is very familiar with ultracold atoms
and with strongly-interacting 1D systems. It is very hard to disentangle the results from attempts to explain them
on the go. I strongly recommend the authors to work on making the paper more reader-friendly. I mention below a
few important aspects of how this can be done. ”

1. R: “ In the abstract, the authors mention fractional quantization of the angular momentum. I understand that
this is some sort of slang. The wave function of each particle should be single-valued as a function of the polar
angle phi, leading to integer quantization of the total angular momentum – fractional quantization of the angular
momentum seems unphysical from this point of view. On the other hand, if the authors prefer considering
twisted boundary conditions due to the inserted flux, the angular momentum of such a “twisted” wave function
can be quantized to fractional values even for non-interacting systems. If the statement is crucial to the authors,
it should be explained early on in the paper. On the contrary, if the statement is not essential to the main
message of the paper, it should not appear in the abstract – where it raises doubts about the validity of the work.”

A: We thank the Referee for pointing this out. The quantization we refer to is that of the orbital angular
momentum: particles flow according to fractional values of currents corresponding to fractional values of angular
momentum with respect to the center of the ring. To this end, we have amended the abstract and defined this
notion in the text. Changes to manuscript 5.
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2. R: “ Early in section III.A, the authors refer to n, quantum numbers of the levels occupied by particles. While
this is a free particle system and one can guess that n corresponds to momentum quantization along the chain,
this is not spelled out explicitly. In connection to total angular momentum l appearing in the same paragraph,
this makes the reading somewhat confusing. Further, the authors refer to parabolas of di↵erent angular momen-
tum – it would be most reader-friendly to provide a figure of such parabolas and how changing the flux makes
the system move from one parabola to another. The authors actually provide the figures and the explanations
in Appendix A.1. I find that having them in the main text would make the paper significantly easier to read. ”

A: We agree with the Referee that it would be more reader friendly to include the figure of the parabolas in the
main text and have modified the manuscript accordingly. Changes in manuscript 6.

The momentum of the particles, and in turn the angular momentum `, is given by a set of charge quantum

numbers Ij . These quantum numbers are related to the angular momentum in the following way:
P

j Ij
Np

= `. In

other words, the angular momentum per particle is intrinsically related to the quantum numbers Ij . Naturally,
when the flux shifts the momenta of the particles, which corresponds to a displacement of the particles in the
Fermi sphere (denoted by the quantum number n), the Ij are shifted accordingly to counteract the increase in
flux threading the system.

The quantum number n corresponding to the levels occupied by the particles also corresponds to the order of
the Bessel functions and in the case considered here is always an integer. Seeing as the quantum numbers Ij for
bosons are always integer, there is a one-to-one correspondence between n and Ij . However, this is not the case
for fermions as the set of Ij is parity dependent in that it can be integer or half-odd integer depending on the
number of particles present in the system. To this end, the quantum numbers Ij and related to n in the follow-
ing manner: Ij = n for systems with an odd number of particles, whilst for an even number of particles Ij = n+ 1

2 .

As we pointed out in this reply, the connection between the the quantum numbers n and the angular momentum
` is not straightforward and is quite extensive to discuss in the main text. Indeed, we are of the opinion that
such a discussion would overcrowd the main text and take away the focus from the main results. Nonetheless,
we do agree with the Referee that it would be helpful for the reader to have a bit more insight. To this end, we
have highlighted this connection and provided appropriate references to the reader. Changes to manuscript 7.

3. R: “ In the last paragraph of III.A, the authors write about W, the ratio of the number of particles in the
system to the number of fermionic flavours. In particular, the authors discuss the di↵erence between “equal
and commensurate value” of W and “the case when W is commensurate but not equal for di↵erent SU(N)”. I
can guess that what is meant here is the number of fermions occupying each flavour being an integer multiple of
the chain length, yet possibly not the same for di↵erent flavours. However, providing a slightly more extended
discussion, where the reader would be given a proper definition, would be beneficial. It would also be nice
to briefly discuss why equilibration within each flavour is assumed, but no equilibration between flavours is
considered possible. ”

A: We thank the referee for pointing this out to us. The phrase “when W is commensurate but not equal for
di↵erent SU(N)”, was meant to convey that the number of particles Np is an integer multiple of the number of
components N . There are cases where Np is an integer multiple of N , but is not equivalent across di↵erent N .
A prime example is 12 particles, which although being an integer multiple for SU(2), SU(3), SU(4) and SU(6),
gives di↵erent values for W , thereby leading to di↵erent features in the interference patterns. The current
phrasing of such a statement can be a bit confusing to the readers. As such, we have modified the text to better
convey this message. Changes to manuscript 8.

The system under consideration is modeled by the SU(N) Fermi-Hubbard model. Such a Hamiltonian does not
possess any terms describing equilibration between the di↵erent flavours. The physical explanation behind this
is that due to the typical operating conditions of cold atom systems, the emergent SU(N) symmetry arises on
account of the absence of spin changing collisions in the system. Discussing this point in the manuscript is not
the scope of the paper as the SU(N) Hubbard model has been discussed in great detail in multiple works. For
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the more interested readers, we have added references on the physics of the SU(N) Hubbard model where they
discuss why there is no equilibration between the flavours. Changes to manuscript 9.

4. R: “ In section III.B.1, when discussing repulsive interactions, it would be beneficial to discuss the origin and
the “fractionalized” parabolas in the main text, and not refer the reader to the Appendix.

An alternative approach to presenting the paper results could be highlighting the key novel results without
explaining their origin. And then derive the results/provide their microscopic explanations later in the paper/in
the Appendix. The present way of presenting, when the result explanation is expected to be understandable,
but there is not enough information to actually understand it, makes the text very uncomfortable to read. ”

A: In our manuscript, we have already outlined the mechanism behind fractionalization, albeit in a concise way.
Additionally, the explanation provided in the main text is accompanied by references where the phenomenon of
fractionalization is well explained. Lastly, as the Referee mentioned, fractionalized is discussed in great detail
in the Appendix.

We are of the opinion, that transferring the discussion of fractionalization into the main text distracts from the
main message carried out in this research work. Fractionalization is an important aspect of this work, but is a
phenomenon already discussed in multiple works that are appropriately cited in the manuscript. Therefore, our
focus here is to demonstrate how it can be read-out in an experimental setting, rather than how it originates in
our system. As such, we would prefer to leave the explanation of fractionalization in the Appendix.

5. R: “ In the introduction, the authors write: “ultracold atoms feature robust coherence properties withour cryo-
genics”. According to some definitions (e.g., https://en.wikipedia.org/wiki/Cryogenics), cryogenics is defined
by studying low temperatures – not necessarily by using cooling liquids to achieve those. The authors may want
to reformulate the phrase.”

A: We have modified the sentence to read ”in absence of cryostats” instead. Change to manuscript 10.

6. R: “ In the paragraph after the one containing Eq. (1), the authors write: “for strong attractive interactions
(U ⌧ t)”. I presume U < 0, |U | � t is meant.”

A: We thank the Referee for pointing this out. We have corrected the mistake in the manuscript. Change to
manuscript 11.

7. R: “ In Eqs. (A14-A17), a discrete sum formula is connected to the Bessel functions represented through a
continuous integral (A15, by the way, the di↵erential is missing from the integral). Is the connection valid for
any chain length L or only in the thermodynamic limit L� > 1?”

A: It is just an approximation which becomes valid in the thermodynamic limit. It is an integral replaced by
the sum of step functions or vice versa. We have added a clarifying sentence and thank the referee for finding
this important detail. Changes of the manuscript 11.

CHANGES TO MANUSCRIPT

All changes carried out in the manuscript are highlighted red.

1. On page 4, paragraph 1 line 4, we changed U ⌧ t to |U | � t.

2. In the Appendix (page 29), we have provided an extensive discussion on the self-heterodyne images for the
di↵erent bound states of SU(3) fermions.

3. On page 8, we have added an extra subfigure in Figure 3 to address Referee 1 by expanding on what happens
at intermediate attractive interactions. Additionally, in the Appendix on page 27 we have added new self-
heterodyne interference patterns to provide support to the main text.
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4. In the penultimate paragraph of page 15, we have added “Lastly, we point out that a generalized version of the
BCS-BEC crossover for SU(N>2) fermions can be addressed through persistent currents. Essentially, one can
treat an N -body bound state of attractive multicomponent fermions as composite fermions or bosons, described
by spinless fermions with p-wave interactions or super Tonks Girardeau phase of attracting bosons for odd and
even N respectively [2]. The parity of the persistent current flowing in such systems (retains) loses its parity, i.e.
be it diamagnetic or paramagnetic, if the wavefunction is (anti-)symmetric [1]. In the case of SU(2) fermions
such an analysis was carried out in [3] with self-heterodyne interference patterns. Naturally, for SU(N > 2)
fermions such interferograms prove to not be a good measure as explained above. This issue will be addressed
in an upcoming work.”

5. In the abstract on page 1, we have modified the text to read “orbital angular momentum”. Additionally, on
page 3 paragraph 2 line 6, we changed the sentence to read “a fractional quantization of the orbital angular
momentum (henceforth referred to as angular momentum)”.

6. On page 5 in Section 3.1, we have added a figure in accordance with the comment of Referee 2.

7. On page 5 in Section 3.1 paragraph 1, we have added the sentence “The sum of these quantum numbers is
related to the total angular momentum ` [67,68]”. Additionally in the Appendix on page 19 paragraph 1 line
4, we added “Note that the quantum numbers n are related to the charge quantum numbers Ij in the following
manner: Ij = n and Ij = n+ 1

2 for systems with an odd and even number of particles respectively. The sum of

the charge quantum numbers give to the angular momentum per particle l such that N
P

j Ij
Np

= `.”.

8. On page 6, paragraph 3 line 6 we added the phrase “such as systems of Np = 6 fermions with SU(2) and SU(3)
symmetry for example”.

9. On page 3, paragraph 1 line 3 we have added two references to reviews that extensively cover the physics of the
SU(N) Hubbard model.

10. On page 2, paragraph 1 line 2, we changed “robust coherence properties without cryogenics” to “robust coherence
properties in the absence of cryostats”.

11. On page 18, under Equation (19), we have added “It is important to stress here that the replacing the sum
by an integral is only an approximation, which becomes valid in the thermodynamic limit.”. Additionally, we
modified Equation (20) accordingly.
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Abstract

Interacting N -component fermions spatially confined in ring-shaped poten-
tials display specific coherence properties. The orbital angular momentum of
such systems can be quantized to fractional values specifically depending on the
particle-particle interaction. Here we demonstrate how to monitor the state of
the system through homodyne (momentum distribution) and self-heterodyne
system’s expansion. For homodyne protocols, the momentum distribution is
a↵ected by the particle statistics in two distinctive ways. The first e↵ect is a
purely statistical one: at zero interactions, the characteristic hole in the mo-
mentum distribution around the momentum k= 0 opens up once half of the
SU(N ) Fermi sphere is displaced. The second e↵ect originates from the inter-
action: the fractionalization in the interacting system manifests itself by an
additional ‘delay’ in the flux for the occurrence of the hole, that now becomes
a characteristic minimum at k=0. We demonstrate that the angular momen-
tum fractional quantization is reflected in the self-heterodyne interference as
specific dislocations in interferograms. Our analysis demonstrates how the
study of the interference fringes grants us access to both number of particles
and number of components of SU(N ) fermions.
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1 Introduction

Placed in the vacuum and spatially confined with suitable electromagnetic fields, ul-
tracold atoms [1] feature robust coherence properties in the absence of cryostats. They
can be realized in di↵erent physical conditions, like with a tunable atom-atom interaction
or with fundamentally di↵erent quantum statistics of the gas constituents. Due to the
remarkable progress in micro-optics technology, they can be trapped in a wide variety of
potentials, shapes and intensities [2].

These are some relevant features as to why ultracold atoms provide an important
instance of artificial quantum matter that can be used as ‘hardware’ both for quantum
simulations and to advance the fabrication of quantum devices [3–5]. Atomtronics is the
quantum technology of guided ultracold atoms: while the defining goal of the field is to
fabricate quantum devices and sensors with enhanced performances, atomtronic circuits
can define current-based quantum simulators probing quantum correlations in many-body
systems [6, 7]. A natural venue for this research activity has been constructing analogs
of electronic devices [8–11]. Atomtronics, though, has the potential to realize devices
and simulators with new capabilities, relying on di↵erent physical properties compared
with electronics. In the last decade, an intense activity has been devoted to bosonic
matter-waves guided in circuits of a wide variety of shapes [6,12–14]. Angular momentum
quantization in 87Rb atomtronic ring-shaped circuits has been studied both theoretically
and experimentally [15, 16]. Such studies have been instrumental in defining the atomic
counterpart of SQUIDs [15–18], that are believed to be of paramount importance for
guided interferometers [12, 19–22]. Recently, it has been predicted that attracting bosons
can lead to an enhanced performance in rotation sensing [23,24].

Recent advances in cold atoms experiments have re-kindled the interest in SU(N)
fermionic systems [25–29]. These strongly interacting N -component systems, as provided
by alkaline earth and ytterbium atoms, have an enlarged symmetry compared to SU(2)
fermionic systems resulting in unique and and exotic physics [30,31]. SU(N) fermions play

2
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a vital role in a wide variety of contexts ranging from high precision measurement [32,33]
and quantum simulation [27,28,34] of many-body systems, to studying lattice confinement
in high energy physics [35].

Here, we focus on the simple case of an atomtronic circuit provided by a ring-shaped
quantum gas of SU(N) fermions. In such circuits, a guided matter-wave, specifically
a persistent current, can be generated by the application of an e↵ective magnetic field
[36–40]. Persistent currents in two-component ultracold fermions have been experimentally
studied very recently [41, 42]. For N -component fermions confined in ring potentials, the
theory predicts a fractional quantization of the orbital angular momentum (henceforth
referred to as angular momentum), with important di↵erences arising on whether the
atoms are subject to repulsive or attractive interaction [43,44]. Such specific properties of
quantization are expected to provide the core to fabricate quantum devices with enhanced
sensitivity [23]. At the same time, these results re-a�rm the notion that persistent currents
can be used to define an instance of the aforementioned current-based quantum simulators
for the diagnostic of interacting quantum many-particle system [6,7, 45–47].

In this paper, we investigate the fractionalization of the persistent current flowing
in an SU(N) fermionic circuit through interference dynamics. Both homodyne and het-
erodyne protocols have been carried out so far. In homodyne protocols, the system of
interest interferes with itself. Such logic has been widely employed in ultracold atoms ex-
periments through time-of-flight (TOF) images of the atoms density for both bosons and
fermions [6, 7, 17, 48–50]. Through this measurement technique, the angular momentum
quantization of the circulating current state can be monitored [39, 51]. With heterodyne
phase detection protocols, the phase portrait of the system flowing along the ring is ob-
tained through its additional interference with a non-rotating quantum degenerate system
placed at the center of the ring. This type of protocol has been experimentally realized
both for bosons [52–54] and very recently for fermions [42]. The fringe pattern that arises
is a spiral interferogram whose topological features (number of arms and dislocations)
reflect the properties of a circulating current state [22, 42, 54, 55]. We employ both the
homodyne and heterodyne protocols to analyze the interference dynamics of matter-waves
of SU(N) fermions. We demonstrate how the resulting interference patterns reflect im-
portant features of the system, including the specific angular momentum fractionalization
and parity e↵ects characterizing the system. Particularly, we highlight how our approach
may be utilized to detect the number of particles Np and components N , both of which
are notoriously hard to extract from an experimental setting [56].

The article is structured as follows. In Sec. 2 we introduce the physical system and the
model. In Sec. 3 and Sec. 4, we present the results achieved for the momentum distribution
and interferograms respectively. Conclusions and outlooks are presented in closing Sec. 5.

2 Methods

Consider Np SU(N)-symmetric fermions, in a ring-shaped lattice composed of L sites,
pierced by an artificial magnetic flux �. The relevant physics of the model is captured by
the SU(N) Hubbard model [30,31], which reads

HSU(N) = �t
LX

j

NX

↵

(eı
2⇡�
L c†

j,↵
cj+1,↵ + h.c.) + U

LX

j

njnj , (1)

where c†
j,↵

creates a fermion with colour ↵ on site j, and nj =
P

↵
c†
j,↵

cj,↵ is the local
particle number operator. The hopping amplitude and on-site interaction are denoted

3
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by t and U respectively. The presence of the flux is accounted for through the Peierls

substitution t ! teı
2⇡�
L .

The physics of the Hubbard model arises from the competition between the kinetic
(hopping) and potential (interacting) terms. As such, the ratio between the hopping
and interaction parameters dictates the physics that we observe in our system. For strong
attractive interactions (|U | � t), SU(N) fermions are able to form bound states of di↵erent
types and nature, which in turn causes part of the particles to localize together, while still
adhering to the Pauli exclusion principle [44, 57–59]. On the other hand, strong repulsive
interactions (U � t) causes the fermions to be restricted in place in di↵erent lattice sites.
This is evidently visible for fillings Np/L = 1, where in the case of SU(N >2) fermions a
phase transition occurs at a critical value of U from a superfluid to a Mott phase [31,43].
Recently, the physics of the SU(N) Hubbard model was explored for both attractive [44]
and repulsive [43] interactions by utilizing the persistent current, the response of the system
to the applied field in model (1), as a diagnostic tool. The persistent current is a matter-
wave current defined as I = �@E0/@� with E0 being the ground-state energy. According to
Leggett’s theorem, the ground-state energy and consequently its derivative, the persistent
current, display periodic oscillations in the flux, with a period fixed by the elementary
flux quantum �0 = h̄/mR2 with m and R denoting the atoms’ mass and ring radius
respectively [60]. Therefore, a change in the period �0 gives crucial information about
the physical nature of the system, in the same spirit as current-voltage characteristics in
solid state physics (see [23,43–46,61] for the persistent current as a probe for bosonic and
fermionic systems).

In cold atoms platforms, several features of the persistent current can be readily ob-
served through time-of-flight imaging of the density distributions of the gas at large times,
after it is released from its trap confinement and allowed to expand [6,7,17,39,62]. Such an
image corresponds to the momentum distribution of the system at the moment in which
it is released from the trap. For the di↵erent SU(N) species, the latter quantity reads

n↵(k) = |w(k)|2
X

j,l

eık(rl�rj)hc†
l,↵

cj,↵i, (2)

with w(k) being the Fourier transform of the Wannier functions and rj denotes the po-
sition of the lattice sites in the ring’s plane (see Sec. A.1for the derivation). Also im-

portant for our analysis is the variance of the momentum distribution �(↵)nk , given by

�(↵)nk =
p
hn2

↵i � hn↵i
2.

For bosons [22] and quite recently for fermions [55], it has been shown that interference
e↵ects can be observed by considering higher order density-density correlations. In this
setup, one starts with an annular ring under study and a central degenerate system at
rest, both of which are uncoupled initially. Due to this, as both ring and center are
released from their confinement and start to interfere, eventually there is an uncertainty
when measuring two or more particles, about whether these particles originated from the
center or the ring. As the uncertainty about the particles’ origin increases, one gains more
certainty about the phase [22,63]. Therefore, inline with the previous protocols for bosons
and fermions, we focus on the density-density correlator

G(r, r0, t) =
NX

↵,�

hn↵(r, t)n�(r
0, t)i, (3)

to observe interference patterns in SU(N) fermions. Seeing as the interference that arises is
provided by the cross-terms involving contributions from both the center and the ring [55],
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we calculate and focus on the center-ring correlations whose expression reads

GR,C =
X

↵

X

j,l

Ijl(r, r
0, t)hc†

l,↵
cj,↵i. (4)

where Ijl(r, r0, t) = �wc(r0, t)w⇤
c (r, t)w

⇤
l
(r0 � r0

l
, t)wj(r� rj , t).

Our approach utilizes exact diagonalization and DMRG [64,65], whenever possible, to
evaluate and analyze the correlators. Here, the energy scale is given by fixing t = 1 and
�0 = 1. In our analysis, we only consider systems with an equal number of particles per
colour.

3 Momentum distribution of SU(N ) fermions

The momentum distribution of particles on a ring is one of the few observables of
the momenta that can be experimentally probed [17, 37, 39]. This homodyne protocol is
of particular interest in the field of atomtronics, since the persistent current is visible in
experiments by studying the particles’ momentum distribution [6,7,51]. In the case of co-
herent neutral matter circulating in a ring with a given angular momentum quantization,
a characteristic hole is observed in the momentum distribution [51,66]. On the other hand,
no hole is observed at the same flux when there is a reduced coherence, e.g. for attractive
interactions [23, 44, 55, 61]. Nonetheless, looking at the variance of the momentum dis-
tribution, one is still able to observe the corresponding angular momentum quantization.
Here, we make an in-depth analysis of the momentum distribution of SU(N) fermions for
both attractive and repulsive regimes. As we will see, the distinct physical features and
characteristics of these two regimes can be aptly captured through homodyne interference
images.

3.1 Free particles

The momentum distribution of spinless fermions at zero interactions is a sum of discrete
Bessel functions

P
{n} Jn(k) of order n, with k denoting the momentum and n being the

quantum numbers of the levels the particles occupy [18, 55]. From this expression, it is
clear that the momentum distribution is dependent on the sets of n, with the ground-
state configuration being such that they are distributed symmetrically around zero (see
Sec. A.2). The sum of these quantum numbers is related to the total angular momentum
` [67, 68].

Figure 1: Energy as a function of the e↵ective magnetic flux �, denoted by E
and � respectively. As one crosses from one parabola to the next with increasing
�, the angular momentum quantum number ` increases.

Apart from the zeroth order Bessel function, all other orders are zero-valued at k = 0
–see Fig. 2. Consequently, when the particles inhabit the n = 0 level, corresponding
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to the zeroth order Bessel function, the momentum distribution is always peaked at the
origin. Such is the case for ` = 0 in Fig. 2. When threaded by an e↵ective magnetic flux,
the ground-state energy displays periodic oscillations characterized by a given angular
momentum `. As the flux increases and we move from one energy parabola with a given
` to the next, the quantum numbers n need to be changed to counteract the increase in
flux and minimize the energy (see Sec. A.2). Eventually, the set of {n} is such that no
spinless particles inhabit the n = 0 level at a given value of `. Being a sum of discrete
Bessel functions, the momentum distribution becomes zero-valued at the origin and a hole
opens up [55]. The value of the angular momentum ` needs to be such that Fermi sphere

is displaced by the ceiling function d
Np

2 e [51, 55] (see Sec. A.2 for a schematic figure).
Therefore, there is a ‘delay’ in observing the hole with increasing Np. This needs to be
contrasted with bosons in a Bose-Einstein condensate, which due to the di↵erent statistics
all reside in the n = 0 level at ` = 0. In turn, there is no ‘delay’ for the characteristic hole,
which opens up at ` = 1 irregardless of Np.

Figure 2: Main figure depicts the momentum distribution
P

{n} |Jn(k)|
2 re-scaled

by the number of components N against kx. For the ` = 0 configuration, the
momentum distribution has a finite value at the origin. However for ` > 0, the
function collapses to zero at the origin. Insets depict the ground-state config-
uration ` = 0 for spinless, SU(2) and SU(3) fermions containing 2,4,6 particles
respectively at U = 0.

The same logic used for spinless fermions applies when one considers SU(N) fermions.
On increasing N , the restriction imposed on the system by the Pauli exclusion principle
relaxes: N particles can occupy a given level –see Fig. 2. Accordingly, the Fermi sphere
needs to be displaced less with increasing N . We find that for a system with Np SU(N)-
symmetric fermions, a hole in the momentum distribution opens up when we displace by
d
Np

2N e. In other words, the angular momentum required for a hole to open up is `H = d
Np

2N e

and �H is the flux at which one transitions to the energy parabola with this corresponding
angular momentum. For Np < N , all particles will reside in the n = 0 level. Indeed, as
N ! 1, SU(N) fermions behave as bosons with regards to the level occupation.

Systems with an equal and commensurate value of W = Np

N
display similar features.

The persistent current’s parity is one such feature whereby it is diamagnetic [paramagnetic]
if Np = (2m+1)N [Np = (2m)N ] with m being an integer [43,60]. Likewise, we have that
the momentum distribution scaled by 1/N is the same for equal and commensurate W
–Fig. 2. Clearly, this is not the case when W is commensurate but not equal for di↵erent
SU(N), such as systems of Np = 6 fermions with SU(2) and SU(3) symmetry for example.
Owing to the di↵erent particle occupations, the momentum distribution and consequently
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the shifts in the sets of {n} and angular momentum `H for a hole to appear is di↵erent.

3.2 Interacting particles

Having established the basis for the momentum distribution for SU(N) fermions at
zero interactions, we now turn our attention to systems with repulsive and attractive
interactions. At small values of the interaction, one observes the same features as in the
free fermion cases described above (see also [55] for SU(2)). Here, we focus on the regimes
of intermediate and infinite interactions.

3.2.1 Repulsive interactions

In the case of fermionic systems with repulsive interactions, the persistent current
displays fractionalization with a reduced period dependent on the number of particles Np

irrespective of the number of components N [43,69]. The fractionalization originates from
energy level crossings between the ground and excited states that create spin excitations to
counterbalance the increase in the e↵ective magnetic flux. In other words, we go from the
initial parabola observed at U = 0 with a period �0, to Np piece-wise parabolas/peaks with
a reduced period of �0/Np (see Sec. A.2). This e↵ect results in a momentum distribution
depression at infinite repulsion. In contrast with the characteristic hole, the depression
is not zero-valued at the origin but is a local minimum, i.e. a dip in the momentum
distribution –Fig. 3 (a). Apart from cases like the one depicted in Fig. 3 (a), we generally
find a non-monotonous behaviour in the peak of the momentum distribution (see Sec. A.2).
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70.0

150.0
250.0

1000.0

0.0 1.0 2.00.5 1.5

U

�/�0

0.0

�0.6

�0.4

�0.2

0.2

0.4

0.6
(a) (b)

Figure 3: (a) Cross-section of the momentum distribution n(kx, 0) at strong
repulsive interactions U = 10, 000 for various values of the e↵ective magnetic
flux �. When the threshold imposed by the fractionalization is surpassed, the
momentum distribution collapses at kx = 0 and a depression is observed. For
larger values of �, the depth of the depression increases. (b) Second derivative
of the momentum distribution n(kx, ky) evaluated at kx = ky = 0, defined as
@
2
n(kx,0)
@k2x

��
kx=0

, as a function of � and U . A change in the sign of the second

derivative denotes going from a peak (negative) to a depression (positive) that
corresponds to a change in colour from blue to green respectively. At U = 0 the
hole opens up at � = 0.5. On increasing the interaction, the depression appears
at larger � thereby reflecting the fractionalization in the system. As U ! 1, the
system achieves complete fractionalization and the flux at which a depression is
displayed corresponds to �D. Note that the y-axis is not linear in values of the
interaction. Results were obtained with exact diagonalization for Np = 3 SU(3)
symmetric in L = 15 sites.
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Interestingly enough, when the persistent current is fractionalized, the depression ap-
pears at fluxes �D that are found to be significantly larger than the flux values corre-
sponding to the cases in which the angular momentum is quantized to integer values. In
other words, the fractionalization in the system causes a specific ‘delay’ in observing the
momentum distribution depression –see Fig. 3. We remark that this ‘delay’ is an add-on
to the one observed at zero interactions. It is solely dependent on Np and independent
of N due to the nature of the fractionalization. The depression in the momentum distri-
bution occurs at �D = �H + Np�1

2Np
where �H is the flux at which a hole appears at zero

interaction (see Sec. A.2). For intermediate interactions, where the persistent current is
partially fractionalized, we track the depression by calculating the second derivative of the
momentum distribution as a function of � and U –Fig. 3 (b).

3.2.2 Attractive interactions

Just like in its repulsive counterpart, the persistent current also fractionalizes for at-
tractive interactions. For strong attractive interactions, the formation of bound states is
reflected by a reduced period of the current �0/r with r being the number of particles
in the bound state [44]. Even though the state does acquire current, the formation of
bound states with reduced coherence, drastically reduces the visibility of the hole in the
momentum distribution –Fig. 4 (a).
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Figure 4: (a) Cross-section of the momentum distribution n(kx, 0) for Np = 6
fermions with SU(3) symmetry for various values of the e↵ective magnetic flux �
at U = �5. The momentum distribution is always peaked for any value of � due
to the reduced coherence in the system. As � increases, the height of the peak
decreases in a monotonous behaviour. (b) Second derivative of the momentum

distribution n(kx, ky) evaluated at kx = ky = 0, defined as @
2
n(kx,0)
@k2x

��
kx=0

, as a

function of � and U for Np = 4 SU(2) symmetric fermions. A change in the sign
of the second derivative denotes going from a peak (negative) to a depression
(positive) that corresponds to a change in colour from blue to green respectively.
In addition to the delay observed for strong interactions as in the repulsive case,
one observes that the depression is smoothed out with increasing interactions.
Results were obtained with exact diagonalization for L = 15.

Nevertheless, the variance of the width of the momentum distribution �nk has been
demonstrated to be a figure of merit for fractional currents [23, 44] –Fig. 5. We find that
the variance is not a good measure when it comes to the repulsive case since the peak
does not display monotonous behaviour (see Sec. A.2). The partial fractionalization of
the persistent current at intermediate interactions can also be tracked through the second
derivative of the momentum distribution – Fig. 4 (b). It should be noted that upon
formation of the bound state, the depression is washed out.
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Figure 5: Variance of the momentum distribution, �nk(�), against the e↵ective
magnetic flux � for Np = 4 (blue), Np = 6 (red) and Np = 8 (green) fermions
with SU(2), SU(3) and SU(4) symmetry respectively for attractive interactions.
On going to infinite attraction the persistent current fractionalization depends
on the number of components, which is reflected in the variance of the width of
the momentum distribution. For SU(2) fermions, the variance has two steps in
one flux quantum (�/�0 = 1). Going to SU(3) (SU(4)) fermions, we have that
the period is reduced by 1/3 (1/4) upon fractionalization, which is reflected by
the variance having 3 (4) steps. Results for SU(2) and SU(3) cases were obtained
with exact diagonalization, with DMRG being employed for the SU(4) case. The
parameters used were U = �5 and L = 15, with U = �3 for the SU(4) case.

4 Self-heterodyne interferograms of SU(N ) fermions

Properties of circulating current states can be detected through self-heterodyne phase
detection protocols [53,54,70]. In these protocols, the ring is made to interfere with a quan-
tum degenerate system at its center. During TOF expansion, the combined wavefunction
(ring and center) evolves in time and interferes with itself giving rise to characteristic spiral
interferograms [22,53,55]. Topological features of the spiral pattern reveal information on
the current’s orientation and intensity. Furthermore, the angular momentum quantization
of the current (quanta of rotations) is given by the number (or the order) of spirals and
their orientation.

Just like in the momentum distribution, the particles’ statistics are reflected in the
interference patterns. Due to the Pauli exclusion principle, fermionic particles occupy
distinct levels having di↵erent momenta associated to them. Hence, when the fermions
start to circulate, the imparted phase gradient of the wavefunction couples to the vari-
ous momenta. These di↵erent phases recombine giving rise to the spiral-like interference.
The multiple momenta contributing to the interference pattern as well as the particle’s
statistics results in dislocations (radially segmenting lines) [55] (see Fig. 6). Previously,
we highlighted how the momentum distribution at zero interaction displays similarities for
systems with equal W = Np/N . Seeing as the features of the interferogram depend on the
particle distribution, then one would expect that systems with commensurate and equalW ,
display interferograms with the same characteristics. In the following, we build up on the
recent work on interferograms of SU(2) fermions at zero and weak interactions [55], by gen-
eralizing to SU(N) fermions and extending the analysis to the intermediate and strongly
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interacting regimes. We remark that DMRG cannot be applied to large interactions. In-
deed, it is widely known that it has issues with convergence in this regime. Furthermore,
the problem is exacerbated by multi-degenerate ground-states of SU(N > 2) [43]. Conse-
quently, we opted to carry out the self-heterodyne analysis by considering SU(2) systems
that can be addressed by exact diagonalization. Nonetheless, this does not hinder our
analysis since as we shall see, interferograms with equal W display similar characteristics.

4.1 Free Particles

At zero interaction and short time expansion one observes spiral-like patterns, along
with dislocations in these interferograms [55]. These dislocations arise from the various
momenta components contributing to the expansion and indicate the suppression of the
particle density at these positions in space. The number of dislocations corresponds to
W �1 –see Figs. 6 and 7. These dislocations do not depend on the flux threading the
system.

Figure 6: The interference GR,C between ring and center for Np = 2, 4, 6 SU(2)
symmetric fermions, is shown as a function of the e↵ective magnetic flux � at zero
interaction and short time t = 0.033. For Np = 2 (top) and Np = 4 (middle), the
number of spirals is an indication of the angular momentum quantization `. Note
that at � = 1.58, the di↵erence in spirals between the two cases arises due to the
di↵erent parity of the two systems, that correspond to a degeneracy point of � =
s+1/2 and � = s respectively, with s being an integer. In contrast to the Np = 2
case, we observe dislocations (segmenting lines) in the interference patterns for
Np = 4, 6. Lastly, by comparing Np = 2 and Np = 6 at � = 1.58 we observe that
the latter displays only one spiral instead of two like its counterpart. The reason
being that at U = 0 for Np = 6, the hole opens up at � = 1.5. All correlators are
evaluated with exact diagonalization for L = 15 by setting r0 = (0, R) and radius
R = 1. The color bar is non-linear by setting sgn(GR,C)

p
|GR,C|.
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For bosons, the number of spirals gives an indication on the number of rotations, or
rather the angular momentum quantization ` of the current [22,54]. However, it is not as
straightforward when it comes to fermions. Owing to their di↵erent statistics, the level
occupation of fermions is broader than that of bosons. In order for spirals to emerge in the
interference patterns, the given system of fermions needs to displace its Fermi sphere by
d
Np

2N e, which corresponds to the characteristic hole in the momentum distribution. After
this, the number of spirals grows with increasing angular momentum.

When W = 1, 2, the number of spirals reflect the angular momentum quantization
(since these cases only require one Fermi sphere ‘shift’ like in bosons) –see upper and
middle panels of Fig. 6. For W > 2, the number of observed spirals is not indicative of
the angular momentum quantization –see lower panel in Fig. 6. By keeping the number
of particles fixed and increasing the number of components, enables more particles to
inhabit a given level. Finally for N > Np, SU(N) fermions behave as bosons with regards
to level occupations –Fig. 7. Additionally, we have that for equal and commensurate W ,
interferograms display similar features –see Figs. 6 and 7.

Figure 7: The interference GR,C between ring and center for Np = 6 particles
with N = 2, 3, 6, as a function of the e↵ective magnetic flux � at U = 1 and short
time t = 0.025. In the top panel, the number of dislocations in the interferograms
is 2,1,0 for N = 2 (left), N = 3 (middle) and N = 6 (right) respectively. The
bottom panel depicts the value of � where a spiral is observed. On increasing
N , the spiral appears at a lower value of � since the displacement of the Fermi
sphere is inversely proportional to N . All correlators are evaluated with DMRG
for L = 15 by setting r0 = (0, R) and radius R = 1. The color bar is non-linear
by setting sgn(GR,C)

p
|GR,C|.

4.2 Interacting particles

4.2.1 Repulsive interactions

For a system with infinite repulsive interactions, one is able to not only track but also
observe the fractionalization through the self-heterodyne phase portrait. Remarkably, the
fractional angular momentum, which corresponds to di↵erent spin excitations [43, 69], is
explicitly captured in the interferogram through the dislocations that are now dependent
on the flux. Indeed, the dislocations are able to characterize the Np fractionalized parabo-
las due to the di↵erent types of spin excitations through the number and orientations of
the dislocations –Fig. 8. Specifically, there are dNp

2 e+1 di↵erent types of interference pat-
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terns (i.e. di↵erent number and orientation of the dislocations). The characteristic spirals
are also observed in interferograms at infinite repulsion. However, we remark that due to
the dislocations, it is very hard to deduce the order of the spirals. We find that in order
for a persisting spiral to emerge, the magnetic flux � needs to exceed �S+ = �H + Np�1

2Np

(see Sec. B.1). This is in line with the appearance of the depression in the momentum
distribution.

Figure 8: The interference GR,C between ring and center for Np = 6 particles
with SU(2) symmetry against the e↵ective magnetic flux � at U = 1000 and
short time t = 0.025. Middle right panel is the schematic for the fractionalized
energy parabolas at infinite repulsive interactions for the corresponding system
(numbers on parabola correspond to the spin quantum numbers in the Bethe
ansatz solution [43]). The interference pattern corresponding to the first parabola
(orange), displays two dislocations as in the zero interaction case. Moving to the
next parabola (green), where we have the generation of a spin excitation, there
are three dislocations. Traversing the other parabolas, we observe that apart from
the number of dislocations, the orientation changes as well –see upper left and
right panels where we observe an downward and upward V-shape respectively.
By comparing each interference pattern to each energy parabola, we see that
there is a symmetry around � = 0.5 that reflects the fact the the energy E
is symmetric around this point. Indeed, the number of di↵erent interference
patterns corresponds to d

Np

2 e + 1. Note that there is no spiral in the bottom
right intereferogram since no hole has opened up. All correlators are evaluated
with exact diagonalization for L = 15 by setting r0 = (0, R) and radius R = 1.
The color bar is non-linear by setting sgn(GR,C)

p
|GR,C| .

In the intermediate case, the interference patterns capture the partial fractionaliza-
tion in the system. Indeed, on going from zero to infinite interactions as in Fig. 9, we
observe the change in the orientation and number of dislocations as the system undergoes
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fractionalization.

Figure 9: The interference GR,C between ring and center for Np = 4 particles with
SU(2) symmetry against the e↵ective magnetic flux � at short time t = 0.026 as a
function of the interaction U . In this figure, one can clearly see how the number
and orientation of the dislocations change as one increases the interaction. All
correlators are evaluated with exact diagonalization for L = 15 and repulsive
U = {0, 10, 20, 50, 5000} (panels are in descending order) by setting r0 = (0, R)
and radius R = 1. The color bar is non-linear by setting sgn(GR,C)

p
|GR,C|.

4.2.2 Attractive interactions

In contrast to the homodyne protocol, the self-heterodyne one provides direct infor-
mation on the fractionalization of the persistent current. Firstly, the N parabolas that
originate due to the fractionalization are characterized by di↵erent dislocations, both in
number and orientation. Additionally, spirals emerge in the interferogram. Interestingly
enough for N -body bound states, the observation of the spiral occurs at �S� = �H + N�1

2N ,
which would correspond to when one would expect the momentum distribution depression
(see Sec. B.2). Just like in the repulsive case, there is a ‘delay’ in visualizing the spirals.
However, in this case the fractionalization is dependent only on N and as such the ‘delay’
associated to it is uniform, irrespective Np.

We remark that the mentioned results pertain only to SU(2) fermions. For SU(N>2),
an interferogram is not adequate to capture any information about the attractive system.
The self-homodyne interference patterns rely on the use of a two-body correlator, which is
an accurate measure when one has bound pairs as in SU(2) fermionic systems. However,
bound states consisting of a larger number of particles, such as trions in the SU(3) case,
probably require an N -body correlator to adequately describe the system.
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5 Discussions and Conclusions

In this work, we utilize the persistent current to analyze and characterize di↵erent
SU(N) fermionic systems. To this end, we investigate the interference dynamics via both
homodyne (momentum distribution) and heterodyne (co-expansion of two concentric con-
densates) protocols by applying a combination of exact diagonalization and whenever
possible DMRG and Bethe ansatz. Both of them can be experimentally probed within the
cold atoms infrastructure and current know-how.

Free particle regime – For spinless fermions, the characteristic hole in the momentum
distribution, reflecting coherent matter-wave flow, opens up when the e↵ective magnetic
flux displaces half of the Fermi sphere [55]. In the following, we will refer to such a feature
as a ‘delay’ in the value of the flux at which a hole occurs. For N -component fermions,
the Pauli exclusion principle relaxes and allows more particles to inhabit a given level
–see Fig. 2. Accordingly, we find that a hole in the momentum distribution appears if the
Fermi sphere is displaced less, precisely by the ceiling function d

Np

2N e. This is consistent
with the fact that SU(N) fermions (with Np < N) resemble bosons for N ! 1. We
find that the features of the momentum distribution are consistent with the heterodyne
interference images. In particular, holes in the momentum distribution correspond to
spirals in the interferograms. Note that, in contrast with the bosonic case [22, 52–54],
we find that the order of the spirals does not reflect the angular momentum quantization
of the system. Furthermore when the number of components N divides the number of
particles Np,

Np

N
� 1 dislocations (radially segmenting lines) appear in the interferograms

giving information about the number of particles present in the system –see Fig. 6. These
observations still hold true in the case of small attractive or repulsive interactions [55].
Moreover, we note that at zero interactions the properties displayed by the homodyne and
self-heterodyne phase portraits depend solely on Np

N
–see Figs. 6 and 7.

Repulsive regime – The persistent current fractionalizes with the bare flux quantum
�0 reduced by Np (implying that the energy is periodic with a period of �0/Np). Frac-
tionalization originates through level crossings between the ground and excited states that
result in the creation of spin excitations in the ground-state [43]. Interestingly enough,
we find that the fractional values of the angular momentum are not displayed as holes
in the momentum distribution as in the non-interacting case. In addition, as soon as the
correlations depart from the non-interacting case, the characteristic hole becomes a small
depression (finite valued local minimum) in the momentum distribution at momentum
k = 0 –Fig. 3 (a). Moreover, an additional ‘delay’ characterising the specific fractionaliza-
tion of the angular momentum is found. In other words, the depression occurs at a larger
flux value than the one where the hole opens up –Fig. 3 (b). Specifically, for a given system

with Np particles, a momentum distribution depression appears at �D = �H+Np�1
2Np

, where
�H is the flux at which the hole opens up at zero interactions and the second term ac-
counting for the fractionalization ‘delay’. Therefore, such a property makes Np accessible
by monitoring the actual value of the flux at which the depression occurs. At intermediate
interactions, the system experiences only partial fractionalization. Nonetheless, this is
captured by the homodyne protocol, by tracking the momentum distribution depression
at zero momenta.

Heterodyne interferograms embody the features of the fractionalization. Apart from
observing the ‘delay’ through the emergence of the spiral as in the zero interaction case,
the angular momentum fractionalization can be tracked by monitoring the number and
orientation of the dislocations: The presence of the spin excitations modifies the disloca-
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tions that are observed at zero interaction –see Figs. 8 and 9. In contrast with the zero
interaction case where the dislocations are not flux dependent, here the dislocations are
dependent on the flux, enabling us to monitor the spin excitations in the system through
interference patterns.

Attractive regime – Like its repulsive counterpart, a system with attractive inter-
actions also experiences fractionalization, dependent on the number of components N .
However, the fractionalization is not readily observed in the momentum distribution, at
least not directly. Due to the reduced coherence that transpires from the formation of
bound states, no depression is observed –Fig. 4. As such, one cannot monitor the ‘delay’
in the occurrence of the aforementioned depression. Nonetheless, by measuring the vari-
ance of the width of the momentum distribution one can deduce the SU(N) nature of the
system through the number of steps depicted, but no information regarding the number
of particles can be obtained –Fig. 5. In the intermediate regime of interaction, we observe
that the characteristic depression gets ‘delayed’ to larger values of the e↵ective magnetic
flux as the current gets fractionalized. Eventually, as the interaction strength increases,
the depression is smoothed out.

For SU(N > 2) systems self-heterodyne interference patterns calculated via density-
density correlators are found to be incapable of providing observables to monitor the
persistent current pattern. In fact, a higher order correlator may be required in order
to capture the features of N -body bound states. In the case of SU(2) systems, we find
that the fractionalization is characterized by a change in the number of dislocations in
the interferograms. Remarkably, the flux values where a spiral emerges corresponds to
the ones that would result in a depression (that is suppressed in this regime) in the
momentum distribution. Just like in its repulsive counterpart, the spirals experience a
two-fold ‘delay’ originating from the combined e↵ect of displacement of the Fermi sphere
and the fractionalization.

Self-heterodyne interference patterns for SU(2) attractive fermions were recently ob-
served experimentally in the context of the BCS-BEC crossover [42]. Specifically, the
interference fringes they observe correspond to BEC side of the crossover. Our analysis,
instead, pertains to the BCS regime, where our results predict a characteristic ‘delay’ that
provides information on the structure of the Fermi surface and the number of components
involved in the bound state. The interference patterns within the BCS regime still remain
to be analysed experimentally, with the main challenge lying in the fast expansion stem-
ming from the large momenta occupations of the fermions. One route to address present
limitations involves using dilute density systems such that the particles do not occupy lev-
els with high momentum. Another option would be to selectively address particles close
to the Fermi surface and perform the expansion.

Lastly, we point out that a generalized version of the BCS-BEC crossover for SU(N>2)
fermions can be addressed through persistent currents. Essentially, one can treat an N -
body bound state of attractive multicomponent fermions as composite fermions or bosons,
described by spinless fermions with p-wave interactions or super Tonks Girardeau phase of
attracting bosons for odd and even N respectively [71]. The parity of the persistent current
flowing in such systems (retains) loses its parity, i.e. be it diamagnetic or paramagnetic, if
the wavefunction is (anti-)symmetric [44]. In the case of SU(2) fermions such an analysis
was carried out in [61] with self-heterodyne interference patterns. Naturally, for SU(N>2)
fermions such interferograms prove to not be a good measure as explained above. This
issue will be addressed in an upcoming work.

We note that, by monitoring the number of dislocations at weak interactions (repulsive
or attractive), we can gain knowledge on Np/N –Figs. 6 and 7 - this feature provides the
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generalization of [55] to N -component fermions. Going to the strongly interacting regimes,
the number and configuration of the dislocations changes, reflecting the persistent current
fractionalization –Figs. 8 and 9. To be specific, there are d

Np

2 e + 1 interference patterns
with various dislocation numbers and orientation. This feature implies that, for repulsive
interactions, we can access the number of particles Np; for attractive interaction we can
access on the number of components N (see [56] for characterization of SU(N) systems
through neural networks).

In summary, we have shown how one can characterize SU(N) correlated matter-wave
through homodyne and self-heterodyne interference patterns. We believe that our findings
are well within the current state-of-the-art of the field and can be experimentally traced.
For the repulsive case, the experimental analysis could be carried out through the quantum
gas microscopy [72–75].
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Appendix

A Homodyne detection protocol

A.1 Analytical derivation of the momentum distribution at zero inter-

actions

In cold atoms systems, the persistent current is experimentally observed through time-
of-flight (TOF) imaging. This entails looking at the momentum distribution of the gas,
which is one of the few observables that can be experimentally probed [76]. Here, we will
give the derivation for the momentum distribution.

Starting from the expression for the one-body correlator n(r, r0, t) defined as

hn(r, r0)i = h †(r) (r0)i, (5)

where r is position, and  †(r) and  (r) are the fermionic creation and annihilation field
operators. Expanding the field operators in the basis set of the single-band Wannier func-
tions wj(r) such that  (r) =

P
L

j
wj(r� rj)cj , the two-point correlator has the following

expression

hn(r, r0)i =
LX

j,l

w⇤
l
(r� rl)wj(r

0
� r0j)hc

†
l
cji, (6)

with wj(r�rj) being the Wannier function localised at site j with position rj and L being
the number of lattice sites. If we consider the free expansion in time t of the particle
density n(r, r0, t), it is still defined as in Equation (6), but the time dependence is encoded
in the expansion of the Wannier function wj(r, t) that reads

wj(r� rj , t) =
1
p
⇡

⌘j
⌘2
j
+ ı!0t

exp

⇢
�

(r� rj)2

2(⌘2
j
+ ı!0t)

�
. (7)
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where ⌘j is the width of the center at the j-th site and !0 = h̄

m
with h̄ and m denoting

Planck’s constant and the particles’ mass respectively, both of which are set to 1 in this
calculation. Note that we have taken the zeroth order approximation of the Wannier
function and the harmonic approximation. By letting the density distribution to expand
for large values of time, one obtains the momentum distribution n(k). The momentum
distribution is defined as the Fourier transform of the one-body correlator n(r, r0),

hn(k)i =

Z
eık(r�r0)

h †(r) (r0)idrdr0, (8)

where k is the momentum. One can verify that limt!1hn(r, r0, t)i ⇡ hn(k)i, by taking
the limit t ! 1 of Equation (7) and performing a Taylor expansion.

Substituting the expression for the field operators into Equation (8), the expression for
n(k) reads

hn(k)i =

Z
eık(r�r0)

LX

j,l

[w⇤
l
(r� rl)wj(r

0
� r0j)hc

†
l
cji]drdr

0. (9)

Utilising the change of variables R = r� rj and R0 = r0 � r0
l
, we arrive to

hn(k)i =

Z
eık(R�R0)

LX

j,l

eık(rl�r0j)[w⇤
l
(R)wj(R

0)hc†
l
cji]dRdR0, (10)

which by making use of the fact that w(k) =
R
w(R)eık·RdR, can be further simplified to

give

hn(k)i = |w(k)|2
LX

j,l

eık(rl�r0j)hc†
l
cji, (11)

with w(k) being the Fourier transform of w(R). Finally, we write our ring configuration
explicitly as

hn(k)i = |w(k)|2
LX

j,l

eı[kxr(cos(
2⇡l
L )�cos( 2⇡j

L ))+kyr(sin(
2⇡l
L )�sin( 2⇡j

L ))]
hc†

l
cji, (12)

where the momentum vector can be written as k = (kx, ky) and polar coordinates were
introduced r = (r cos ✓, r sin ✓), with ✓ = 2⇡

L
l.

We introduce the creation operator and its Fourier transform

c†
l
=

1
p
L

LX

k

e�ıklc†
k
, (13)

as well as the Fourier transform of its counterpart the annihilation operator

cj =
1

p
L

LX

k0

eık
0
jck0 . (14)

The one-body correlator hc†
l
cji in Fourier space reads

hc†
l
cji =

1

L

LX

k,k0

e�ıkl+ık
0
j
hc†

k
ck0i (15)
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Furthermore, at zero interactions we have that hc†
k
ck0i = �k,k0 . Consequently, the expres-

sion for the momentum distribution reads

hn(k)i =
1

L
|w(k)|2

LX

j,l

eı[kxr(cos(
2⇡l
L )�cos( 2⇡j

L ))+kyr(sin(
2⇡l
L )�sin( 2⇡j

L ))]
X

{q}

e�
2⇡ı
L (l�j)q, (16)

where we made use of the fact that for free fermions k = 2⇡
L
q with q being the quantum

number labeling the Fermi sphere levels. At this point, by setting kx = |k| sin� and
ky = |k| cos� we have that

hn(k)i /
1

L

X

{q}

����
LX

l

eır(B sin� cos ✓l+B cos� sin ✓l)e�
2ı⇡l
L q

����
2

, (17)

where B =
p

2|k|2. Using the trigonometric identity sin(A+B) = sinA cosB+cosA sinB,
the expression is simplified even further and reads

hn(k)i /
1

L

X

{q}

����
LX

l

eırB sin(�+✓l)e�
2ı⇡l
L q

����
2

. (18)

The expression in Equation (18) is an q-th order Bessel function of the first kind [55]

Jq(x) =
1

2⇡

⇡Z

�⇡

eı(x sin ⌧�q⌧), (19)

where x = rB and ⌧ = 2⇡l
L

. It is important to stress here that the replacing the sum by
an integral is only an approximation, which becomes valid in the thermodynamic limit.
As a result, by setting

Jq(B)⇡
LX

l

eırB sin(�+✓l)e�
2ı⇡l
L q, (20)

we have that the momentum distribution reads as

hn(k)i /
1

L

X

{q}

|Jq(k)|
2. (21)

This enables us to study the momentum distribution analytically, by considering it as
a summation of di↵erent Bessel functions as was carried out in [55] and generalized to
SU(N) in the main text. It is important to note that the Equation (21) only holds at

zero interactions. In the case of interacting particles hc†
k
ck0i 6= �k,k0 . As such, we no longer

have an analytical expression for the momentum distribution and di↵erent behaviours are
observed in the interacting regimes as reported in this paper.
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A.2 Emergence of a hole in the momentum distribution

Figure 10: SU(2) particle occupation energy levels for Np = 2, 4, 6, 8 particles and
their displacement with angular momentum quantization ` at zero interaction.
It is clear that with increasing Np one needs a higher value of ` such that the
particles do not occupy the n = 0 level. Note that there are two di↵erent parity
cases corresponding to Np = (2m + 1)N and Np = (2m)N with m being an
integer number.

For a hole to open, one requires that the momentum distribution collapses to zero at the
origin. This can only occur when the Fermi sphere is displaced by d

Np

2N e and there are no
particles occupying the n = 0 level. The distribution of the particles needs to be such that
it is symmetrical around the n = 0 level. Note that the quantum numbers n are related
to the charge quantum numbers Ij in the following manner: Ij = n and Ij = n + 1

2 for
systems with an odd and even number of particles respectively. The sum of the charge

quantum numbers give to the angular momentum per particle ` such that N
P

j Ij

Np
= `.

Non-interacting: Let us take a look at Fig. 10 where we consider the occupation of SU(2)
particles at zero interaction. In the case of Np = 2 and Np = 4, we see that as we increase
the e↵ective magnetic flux � and pass from the first parabola with angular momentum
quantization ` = 0 to the second one with ` = 1 (see Fig. 11), the Fermi sphere is displaced
such that there are no particles occupying the n = 0 level. In this case, ` = 1 corresponds
to the angular momentum `H for a hole to open up with �H = 0.5 (�H = 1.0) for Np = 2
(Np = 4). The value of �H corresponds to the flux value where we traverse to the energy
parabola with angular momentum `H . In the case of Np = 6 and Np = 8, in contrast with
the Np = 2 and Np = 4, one needs to go the third parabola with ` = 3 to clear the n = 0
level. As such, the opening of the hole in the momentum distribution is delayed since a
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Figure 11: Energy as a function of the e↵ective magnetic flux �, denoted by E
and � respectively, for systems with Np = (2m + 1)N (left) and Np = (2m)N
(right). As one crosses from one parabola to the next with increasing �, the
angular momentum quantum number ` increases. The di↵erence between the
left and right panels stems from the parity of the system which is diamagnetic
and paramagnetic respectively depending on whether the ground-state energy
increases or decreases with flux � [43, 60]. The degeneracy point, which is the
point where two parabolas cross, is at (half-odd) integer values for (diamagnetic)
paramagnetic systems.

higher value of � is required.

Figure 12: Schematic figure of the energy E against e↵ective magnetic flux �
for diamagnetic (left) and paramagnetic (right) cases. Top panel depicts the
diamagnetic and paramagnetic cases at zero interaction for SU(2) fermions (holds
for any N). The middle panel shows the system for 2 and 4 particles with infinite
repulsive interaction U . Comparing this panel with the one at U = 0, we see that
the hole for Np = 2 (green) and Np = 4 (yellow) is delayed on going to infinite
repulsion. Likewise for Np = 6 (cyan) and Np = 8 (magenta), we also observe a
delay in addition to the one that is observed at U = 0 (see Fig. (11)).

Repulsive: Turning our attention to the infinitely repulsive case, we observe a depression
instead of a hole. If we consider Np = 2 with SU(2) symmetry with infinite repulsion,
we see the depression at a higher value of the flux than the non-interacting case. Indeed,
we find the depression with a ‘delay’ of 1

2Np
. Going to the four particle case, the de-

pression is delayed by 3
2Np

(reduced period of one of the parabolas is 1/Np). Considering
more cases, we find that for a depression to appear for a given Np with infinite repulsion,
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�D = �H + Np�1
2Np

.

The depression is tracked through the second derivative of the momentum distribution

n(kx, ky) at kx = ky = 0, defined as @
2
n(kx,0)
@k2x

��
kx=0

. By noting how the derivative changes

from negative to positive, which corresponds to a peak and depression respectively, we are
able to observe at what values of the flux � a depression appears for a given interaction U .
In turn, the second derivative gives us insight into the fractionalization of the persistent
current by monitoring the ‘delay’ of the depression.
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Figure 13: Second derivative of the momentum distribution @
2
n(kx,0))
@k2x

��
kx=0

evalu-

ated at kx = ky = 0, as a function of the e↵ective magnetic flux � and interaction
U . The left and right panels correspond to the repulsive and attractive regimes
respectively for Np = 2 (top), Np = 4 (middle) and Np = 6 (bottom) SU(2)
fermions. In both regimes, we observe that (i) as the number of particles in-
crease the depression is delayed to higher flux values; (ii) there is an extra delay
for stronger interactions. However, a notable di↵erence is that in the attractive
case the depression is smoothed out with increasing interactions. Results were
obtained with exact diagonalization for L = 15 sites. Note that the y-axis is not
linear in the values of the interaction.

Fig. 13 corresponds to systems with repulsive interactions. As previously discussed, the
value at which the depression is observed (transition from blue to green) appears at a larger
� with increasing U . As U ! 1, the system attains complete fractionalization, which is
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reflected from the fixed value of the flux, corresponding to �D. A peculiar phenomenon
in Fig. 13 (b) and (c) is the alternation between peak (blue) and depression (red) at flux
values preceding �H . We would like to point out that the red areas are small in value that
would correspond to plateaus in an experimental setting.
Attraction: For infinitely attractive interactions, the energy also fractionalizes with a
reduced period of �0/N irrespective of the number of particles. For intermediate interac-
tions, there is a momentum distribution depression appearing at �D = �H+ N�1

2N –Fig. ??.
Indeed, just like in its repulsive counterpart, the depression experiences a two-fold ‘delay’.
However, in this case the ‘delay’ depends on both the particle number (through �H) and
on the number of components (second term).

Once the system fractionalizes fully, indicating the formation of the N -body bound state,
the depression appears at �D. The depression is small due to the reduced coherence. If
the interaction keeps increasing, one will no longer find a depression at �D. Indeed, larger
� values are required for a depression to appear. Unlike the repulsive case, there is no
alternation between depression and peak.
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Figure 14: Left panel: Cross-section of the momentum distribution n(kx, 0) for
U = �5 (top) and U = 10, 000 (bottom) as a function of the e↵ective magnetic
flux �. On the right panels, there is the corresponding momentum distribution
n(0, 0) for kx = ky = 0. Results were obtained with exact diagonalization for
Np = 4, N = 2 for L = 15.

The peculiar behaviour observed in Fig. 13 (b) and (c) can be understood through the
cross-section of the momentum distribution depicted in Fig. 14 (c). Indeed, we find that
the height of the momentum distribution peak/depression varies with �. This phenomenon
is more clear if one looks at the momentum distribution n(0, 0) at kx = ky = 0, which
shows the non-monotonous behaviour in the momentum distribution. On the other hand,
the behaviour is monotonic for attractive interactions –Figs. 14 (a) and (b). The non-
monotonous behaviour observed at infinite repulsion is the reason why the variance of the
momentum distribution does not give good diagnostic tool in this regime. This is in sharp
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contrast with its attractive counterpart.

A.3 Expansion of the density distribution

The momentum distribution is obtained by releasing the atoms from the trap and observing
the particle density distribution after a long expansion time. Initially at time t = 0, one
observes the Wannier function localized on each site. Then on going to intermediate times,
the ring expands to a characteristic hole with protruding spirals giving rise to a peculiar
shape resembling a ‘shuriken’–Figure 15.

(a) (b)

(c) (d)

Figure 15: Density distribution n(r, t) at an intermediate time t = 3, for various
values of the flux �. On increasing the flux, we go from a sharply peaked Gaussian
(leftmost panel) in the middle, to a characteristic hole with spirals radiating from
it. Eventually, as the size of the hole increases, the intensity from the spirals
increases (rightmost panel), resembling a ‘shuriken’. The results were calculated
with exact diagonalization for Np = 4 with N = 2 and L = 15 at U = 0 for
� = 0, 1, 2, 4.

The direction of the spirals, be they clockwise or anti-clockwise gives an indication about
the directional flow of the current –see Fig. 16. Eventually at longer times, one recovers
the characteristic momentum distribution.

B Self-heterodyne detection protocol

Here, we consider the density-density correlator G(r, r0, t) for an expanding ring and an
additional site in the center at a fixed time t. The two-body correlator is defined in the
following way

G(r, r0, t) =
NX

↵,�

hn↵(r, t)n�(r
0, t)i. (22)

The density operator is defined as n(r, t) =  †(r, t) (r, t) where  † = ( †
R
+  †

C
) being

the field operator of the whole system of the ring and the center, denoted by R and C
respectively. Initially, the ring and the center are decoupled until they are released from
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(a) (b)

Figure 16: Density distribution n(r, t) at an intermediate time t = 3 evaluated
at � = �4 and � = 4. The right panel corresponds to � = 4 and the direction
of the protruding spirals is clockwise. For the left panel evaluated at � = �4,
the orientation of the spirals is anti-clockwise. The direction of the rotation by
the artificial gauge field is reflected in the quantum shuriken.The results were
calculated with exact diagonalization for Np = 3 with N = 3 and L = 15 at
U = 0.

their confinement potential. Thus, at time t = 0 the ground-state can be seen as a product
state |�i = |�iR ⌦ |�iC .

Assuming free expansion for t � 0, the number of terms in theG(r, r0, t) can be significantly
reduced. Firstly, terms consisting of an odd number of creation or annihilation operators
have a null expectation value due to particle conservation. Likewise, terms where either
both creation or annihilation operators act on one system also vanish. As such, the only
surviving terms are those comprised of an equal number of creation-annihilation pairs,
one acting on the ring and another on the center. Consequently, the expression for the
density-density correlator reads

NX

↵,�

hn↵(r, t)n�(r
0, t)i =

NX

↵,�

hn↵(r, t)n�(r
0, t)iR + hn↵(r, t)n�(r

0, t)iC

+
NX

↵,�

hn↵(r, t)iRhn�(r
0, t)iC + hn�(r, t)iChn↵(r

0, t)iR

+
NX

↵,�

h�C | 
†
C,↵

(r) C,�(r
0)|�Ci[�(r� r0)� h�R| 

†
R,�

(r0) R,↵(r)|�Ri]

+
NX

↵,�

[�(r� r0)� h�C | 
†
C,↵

(r) C,�(r
0)|�Ci]h�R| 

†
R,�

(r0) R,↵(r)|�Ri.

(23)

The first four terms in Equation (23) do not give rise to any interference patterns. Indeed,
it is the cross-terms between the ring and the center (last two terms) that give rise to
interference. Therefore, taking these two terms and decomposing into the Wannier states
yields

GR,C =
NX

↵,�

LX

j,l=1

Ijl(r, r
0, t)

⇥
N0(�jl � h�R|c

†
l,↵

cj,↵|�Ri) + (1�N0)h�R|c
†
l,↵

cj,↵|�Ri
⇤
, (24)

which is the interference of the Wannier function where Ijl(r, r0, t) = wc(r0, t)w⇤
c (r, t)w

⇤
l
(r0�

r0
l
, t)wj(r � rj , t) and N0 = h�C |c

†
0,�c0,� |�Ci defines the expectation value of the number
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operator center, which in the current protocol is always equal to one. Consequently, the
second term in Equation (24) does not contribute to the interference pattern. Note that
one of the summations over the number of components is removed due to the Kronecker
delta �↵� that arises due to the colour conservation nature of the Hamiltonian describing
the system. To enhance the visibility of the spirals, we neglect the Kronecker delta in the
first term of Equation (24).

B.1 Repulsive interactions

The characteristic spirals are also observed in interferograms at infinite repulsion. We find
that multiple spirals appear at di↵erent values of the flux, that for the sake of simplicity
we are going to distinguish as A and B. The emergence of the multiple spirals can be
clearly seen by looking at Fig. 17, which depicts the interfergorams at infinite repulsion on
going from ` = 0 to ` = 1. At � = 0.92, we observe spiral B that disappears on going to
the next parabola with � = 1.22. The last panel shows the appearance of spiral A where
� exceeds �SA . This spiral persists on going to the next parabolas.

Figure 17: The interference GR,C between ring and center for Np = 4 particles
with SU(2) symmetry, is shown as a function of the e↵ective magnetic flux � at
U = 5000 and short time t = 0.026. All correlators are evaluated with exact
diagonalization for L = 15 by setting r0 = (0, R) and radius R = 1. The color
bar is non-linear by setting sgn(GR,C)

p
|GR,C|.

Indeed, their emergence is not as clear cut as the zero interaction case. The appear-
ance of spiral A coincides with the depression of the momentum distribution, occurring at
�SA = �H + Np�1

2Np
. Spiral A gains more arms as the angular momentum is increased, as in

the zero interaction case. However, spiral B appears when the angular momentum of the
system corresponds to `H , the angular momentum at which a hole opens up at U = 0. In
particular, it appears at �SB = �H + 1

2Np
+� (�SB = �H �

1
2Np

) for a diamagnetic and

paramagnetic system respectively, with � = �
1

2Np
for an odd number of particles. and

zero otherwise This spiral only appears for the period of that parabola, which corresponds
to 1

Np
. The additional term 1

2Np
takes into account the change in the profile of the energy

brought on by the level crossings – see Fig. 12. In the special case of Np = 2 SU(2)
particles, where the second term of �S reads as 1

2Np
, spiral A and B are one and the same.
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It is important to note that due to the large number of dislocations present in the system
with infinite repulsive interactions, it becomes harder to deduce the nature of the spiral.

B.2 Attractive interactions

As previously mentioned, the fractionalization in attractive fermionic systems depends
only on the number of components. For of SU(2) systems, the fractionalization is such
that we go from one parabola at U = 0 to three piece-wise parabolic segments as U ! �1.
In line with what is observed for repulsive systems, the level crossings that occur during
fractionalization can be observed in the self-heterodyne interferograms.

Such behaviour can be clearly seen in Fig. 18 that shows the interferograms for Np = 2, 4, 6
SU(2) fermions with attractive interactions. In all three cases, we see the appearance of an
extra dislocation for � corresponding to a fractionalized parabola. In the case of Np = 4,
there are left and right panels corresponding to the fractionalized parabola as opposed to
the Np = 2, 6 cases due to a di↵erent parity at U = 0.

Lastly, we have that the emergence of the spiral is delayed by N�1
2N . It is important to

note that unlike the repuslive case, here we do not observe the emergence of the second
spiral (called spiral B in Sec. B.1).

Figure 18: The interference GR,C between ring and center for Np = 2 (top)
Np = 4 (middle) and Np = 6 (bottom) particles with SU(2) symmetry, is shown
as a function of the e↵ective magnetic flux � at U = �3 and short time t =
0.025. All correlators are evaluated with exact diagonalization for L = 15 by
setting r0 = (0, R) and radius R = 1. The color bar is non-linear by setting
sgn(GR,C)

p
|GR,C|.
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In the intermediate attractive interaction regime, we can track the partial fractionaliza-
tion of the persistent current through self-heterodyne interference patterns just like its
repulsive counterpart –Fig. 19. As the interaction is increased, the number and shape of
dislocations changes with the e↵ective magnetic flux threading the system, reflecting the
the reduced periodicity of the current. Additionally, the emergence of the spiral experi-
ences an additional delay due to the fractionalization of the system. However, as explained
above, the delay is solely dependent on the number of components and does is equivalent
for systems having di↵erent particle numbers.

Figure 19: The interference GR,C between ring and center for Np = 4 particles
with SU(2) symmetry against the e↵ective magnetic flux � at short time t =
0.0225 as a function of the interaction U . In this figure, one can clearly see
how the number and orientation of the dislocations change as one increases the
interaction. All correlators are evaluated with DMRG for L = 15 and attractive
|U | = {0, 1, 2} (panels are in descending order) by setting r0 = (0, R) and radius
R = 1. The color bar is non-linear by setting sgn(GR,C)|GR,C|

1/4.

B.2.1 CSF configuration

In the main text, it was stated that SU(N) fermions are capable of forming bound states
having di↵erent types and natures. For instance, SU(3) symmetric fermions form two
types of bound states: trions where all three colours are bounded; and colour superfluids
(CSFs) having two of the colours in a pair with the other one remaining unpaired [59].
It has been demonstrated in an earlier work [44], that the persistent current is able to
distinguish between these two bound states, which in turn can be read-out through the
momentum distribution in the TOF expansion. Previously, we have explained that the
self-heterodyne interference patterns are found to not be able to provide an observable to
monitor the persistent current pattern, since a higher order correlator is probably required
to capture the features of an N -body bound state. Indeed, three-body bound states of
SU(3) fermions were not able to be analysed via self-heterodyne interferences. However, we
find that CSFs being two-body bound states, can be analysed through observables obtained
with the self-heterodyne protocol. In what follows, we provide a brief explanation on how
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to read-out the persistent currents of CSFs through self-heterodyne interferograms.

Bound pair

Unpaired

CSF

Bound pair

Unpaired

CSF

Unpaired

CSF

Bound pair

Unpaired

CSF

Bound pair

Figure 20: The interference GR,C between ring and center for Np = 3 three-
component fermions in a CSF configuration, is shown as a function of the ef-
fective magnetic flux � at short time t = 0.0225. Main panels corresponds to
the CSF, upper panel to the two-body bound state and bottom panel to the
unpaired particles. All correlators are evaluated with exact DMRG for L = 15
by setting r0 = (0, R) and radius R = 1. The CSF configurations is achieved
by |UAB| = |UBC | = 0.01 and |UAC | = 3. The color bar is non-linear by setting
sgn(GR,C)|GR,C|

1/4.

For CSF bound states to form in a canonical ensemble, which is the case considered
here, one needs to break the SU(3) symmetry. Here, this is carried out by choosing
asymmetric interactions between the colours that we denoted as A, B and C such that
|UAB| 6= |UBC | 6= |UAC |. For a CSF, we require that one interaction between the colours
is significantly larger than the other two such that for example |UAC | � |UAB| = |UBC |.
On account of the symmetry breaking, our analysis can be carried out by analysing the
interference patterns of fermions of a given colour: i.e. analysis of the interferograms of
the bound pair and unpaired is done separately instead of looking at the phase portrait
of the CSF as a whole. Naturally, such an analysis relies on the capability to address
fermions of di↵erent colours separately in experiments [29].

Figs. 20 depicts the interference patterns for Np = 3 particles with asymmetric interactions
such that the system is in a CSF configuration. The top row corresponds to the interference
patterns of the CSF, where we observe the emergence of a spiral after displacing half the
Fermi sphere. At a glance, it looks as if the interferograms of the CSF correspond to that of
non-interacting particles. However, looking at the phase portraits of fermions in di↵erent
colours paints a more interesting picture. For the bound pair, we observe that on going
from one parabola to the other, the number and orientation of the dislocations change to
account for the fractionalization. Additionally, the emergence of the spiral experiences an
extra delay in the value of the flux that arises from the fractionalized parabolas. For the
unpaired particle, as discussed in the main text, the interference patterns are the same
as the free particle case as the interaction it experiences is very small. An interesting
point worthy of mention is the lack of dislocations in the interference patterns of the free
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particle. It appears that on account of the SU(3) symmetry breaking, the Fermi spheres
of the bound and free particles are essentially decoupled. Lastly, we point out that when
considering the full interferogram, the dislocation that appears for the bound pair is not
readily visible due to its reduced coherence, which is significantly smaller than that of the
free particle. Such a statement is in line with the TOF distribution analysis carried out
in [44]. The same observations hold when considering a large number of particles, with
the added di↵erence that there is an increased delay in the flux for the spiral to emerge
and in the number of dislocations as can be readily observed from Fig. 21.

Bound pair

Unpaired

CSF

Bound pair

Unpaired

CSF

Unpaired

CSF

Bound pair

Unpaired

CSF

Bound pair

Figure 21: The interference GR,C between ring and center for Np = 6 three-
component fermions in a CSF configuration, is shown as a function of the e↵ective
magnetic flux � at short time t = 0.0225. Main panels corresponds to the CSF,
upper panel to the two-body bound state and bottom panel to the unpaired
particles. All correlators are evaluated with DMRG for L = 15 by setting r0 =
(0, R) and radius R = 1. The CSF configurations is achieved by |UAB| = |UBC | =
0.01 and |UAC | = 3. The color bar is non-linear by setting sgn(GR,C)|GR,C|

1/4.
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