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Abstract

The effective dynamics of a colloidal particle immersed in a complex medium is
often described in terms of an overdamped linear Langevin equation for its ve-
locity with a memory kernel which determines the effective (time-dependent)
friction and the correlations of fluctuations. Recently, it has been shown in
experiments and numerical simulations that this memory may depend on the
possible optical confinement the particle is subject to, suggesting that this de-
scription does not capture faithfully the actual dynamics of the colloid, even
at equilibrium. Here, we propose a different approach in which we model
the medium as a Gaussian field linearly coupled to the colloid. The result-
ing effective evolution equation of the colloidal particle features a non-linear
memory term which extends previous models and which explains qualitatively
the experimental and numerical evidence in the presence of confinement. This
non-linear term is related to the correlations of the effective noise via a novel
fluctuation-dissipation relation which we derive.
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1 Introduction

In the very early days of statistical physics, the motion of a Brownian particle in a simple
fluid solvent has been successfully described by means of a linear Langevin equation for its
velocity v [1]. In particular, the interaction of the mesoscopic particle with the microscopic
molecular constituents of the solvent generates a deterministic friction force — often as-
sumed to have the linear form −γv — and a stochastic noise, the correlations of which are
related to the friction by a fluctuation-dissipation relation. This relationship encodes the
equilibrium nature of the thermal bath provided by the fluid. When the solvent is more
complex or the phenomenon is studied with a higher temporal resolution, it turns out
that the response of the medium to the velocity of the particle is no longer instantaneous,
for instance due to the hydrodynamic memory [2] or to the possible viscoelasticity of the
fluid [3]. In this case, the solvent is characterised by a retarded response Γ(t) that deter-
mines the effective friction −

∫ t
dt′Γ(t− t′)v(t′). Experimentally, the memory kernel Γ(t)

can be inferred from the spectrum of the equilibrium fluctuations of the probe particle.
Microrheology then uses the relation between the memory kernel Γ(t) and the viscoelastic
shear modulus of the medium to infer the latter from the observation of the motion of the
particle [4]. In recent years, this approach has been widely used for probing soft matter
and its statistical properties [5–7]. Accordingly, it is important to understand how the
properties of the medium actually affect the static and dynamic behaviour of the probe.

Although the description of the dynamics outlined above proved to be viable and useful,
it has been recently shown via molecular dynamics simulations of a methane molecule in
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water confined by a harmonic trap that the resulting memory kernel turns out to depend
on the details of the confinement [8]. A similar effect has been also observed for a colloidal
particle immersed in a micellar solution [9]. This means that the memory kernel Γ(t) does
no longer characterise the very interaction between the particle and the medium, as it
depends significantly on the presence of additional external forces. Here we show, on a
relatively simple but representative case and within a controlled approximation, that this
dependence — theoretically expected but practically often forgotten — is actually due to
the fact that the effective dynamics of the probe particle is ruled by a non-linear evolution
equation.

In order to rationalise their findings, the experimental data for a colloidal particle im-
mersed in a micellar solution were compared in Ref. [9] with the predictions of a stochas-
tic Prandtl-Tomlinson model [10, 11], in which the solvent, acting as the environment, is
modelled by a fictitious particle attached to the actual colloid via a spring. This sim-
ple model thus contains two parameters: the friction coefficient of the fictitious particle
and the stiffness of the attached spring. While this model indeed predicts a confinement-
dependent friction coefficient for the colloid, the fit to the experimental data leads anyhow
to confinement-dependent parameters of the environment. Accordingly, as the original
modelling, it does not actually yield a well-characterised bath-particle interaction, which
should be independent of the action of possible additional external forces.

Although the equilibrium and dynamical properties of actual solvents can be quite
complex, here we consider a simple model in which the environment consists of a back-
ground solvent and a fluctuating Gaussian field φ with a relaxational and locally conserved
dynamics and with a tunable correlation length ξ, also known as model B [12]. The motion
of the colloid is then described by an overdamped Langevin equation, with an instanta-
neous friction coefficient determined by the background solvent and a linear coupling to the
Gaussian field [13,14]. The colloid and the field are both in contact with the background
solvent, acting as a thermal bath. In practice, the possibility to tune the correlation length
ξ (and, correspondingly, the relaxation time of the relevant fluctuations) is offered by fluid
solvents thermodynamically close to critical points, such as binary liquid mixtures, in
which ξ diverges upon approaching the point of their phase diagrams corresponding to
the demixing transition [12]. This model and variations thereof have been used in the
literature in order to investigate theoretically the dynamics of freely diffusing or dragged
particles [13, 15, 16], in the bulk or under spatial confinement [14] as well as the field-
mediated interactions among particles and their phase behavior [17–19]. Here, instead, we
use it in order to rationalise in a simple and natural setting the possible emergence of the
issues mentioned above in interpreting microrheology data in the presence of correlated
media.

The simplified model discussed above allows us to address another relevant and related
question, i.e., how the behaviour of a tracer particle is affected upon approaching a phase
transition of the surrounding medium. Among the aspects which have been investigated
theoretically or experimentally to a certain extent we mention, e.g., the drag and diffusion
coefficient of a colloid in a near-critical binary liquid mixture [20–23] or the dynamics
and spatial distribution of a tracer particle under spatial confinement [14]. However,
the effective dynamical behaviour and fluctuations of a tracer particle in contact with a
medium near its bulk critical point is an issue which has not been thoroughly addressed in
the literature. The model we consider here allows us to explore at least some aspects of this
question, with the limitation that we keep only the conservation of the order parameter φ
as the distinguishing feature of the more complex actual dynamics of a critical fluid [12].

Similarly, in some respect, the model considered here provides an extension of the
stochastic Prandtl-Tomlinson model in which the colloid has a non-linear interaction with
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Figure 1: Schematic representation of the model: The colloidal probe particle (dark red
sphere) is in contact with a fluctuating scalar field φ(x) and is subject to the force exerted
by a harmonic trap.

a large number of otherwise non-interacting fluctuation modes of the field, which play the
role of a collection of fictitious particles.

We show that an effective dynamics can be written for the probe position X, which
features a time- and X-dependent memory, thereby rendering the resulting dynamics non-
linear and non-Markovian. In particular, as sketched in Fig. 1, we consider a particle
which is also confined in space by a harmonic trap generated, for instance, by an optical
tweezer. We then compute, perturbatively in the particle-field coupling, the two-time
correlation function C(t) = 〈X(0)X(t)〉 in the stationary state. From C(t) we derive the
associated effective linear memory kernel Γ(t). This effective memory turns out to depend
on the strength of the confinement qualitatively in the same way as it was reported in
the molecular dynamics simulations and in the experiments mentioned above and this
dependence is enhanced upon approaching the critical point, i.e., upon increasing the
spatio-temporal extent of the correlations within the medium.

In addition, we show that the correlation function C(t) generically features an alge-
braic decay at long times, with specific exponents depending on the Gaussian field being
poised at its critical point or not. In particular, we observe that generically, in d spatial
dimensions, C(t) ∝ t−(1+d/2) at long times t, due to the coupling to the field, while the
decay becomes even slower, with C(t) ∝ t−d/4, when the medium is critical. Correspond-
ingly, the power spectral density S(ω), which is usually studied experimentally, displays a
non-monotonic correction as a function of ω which is amplified upon approaching the crit-
ical point and which results, in spatial dimensions d < 4, in a leading algebraic singularity
of S(ω) ∝ ω−1+d/4 for ω → 0 at criticality.

The results of numerical simulations are presented in order to demonstrate that the
qualitative aspects of our analytical predictions based on a perturbative expansion in the
particle-field interaction actually holds beyond this perturbation theory.

The rest of the presentation is organised as follows: In Sec. 2 we define the model,
discuss its static equilibrium properties and the correlations of the particle position in the
absence of the coupling to the field. In Sec. 3 we discuss the non-linear effective dynamical
equation for the motion of the particle, we introduce the linear memory kernel, we derive
the generalised fluctuation-dissipation relation which relates the non-linear friction to the
correlations of the non-Markovian noise and we work out its consequences. In Sec. 4 we
proceed to a perturbative analysis of the model, expanding the evolution equations at the
lowest non-trivial order in the coupling parameter between the particle and the field. In
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particular, we determine the equilibrium correlation function C(t) of the particle posi-
tion, discuss its long-time behaviour depending on the field being poised at criticality or
not. Then we investigate the consequences on the spectrum of the dynamic fluctuations,
inferring the effective memory kernel and showing that it actually depends on the pa-
rameters of the confining potential. We also investigate the relevant limits of strong and
weak trapping. The predictions derived in Sec. 4, based on a perturbative expansion, are
then confirmed in Sec. 5 via numerical simulations of a random walker interacting with a
one-dimensional chain of Rouse polymer. Our conclusions and outlook are presented in
Sec. 6, while a number of details of our analysis are reported in the Appendices.

2 The Model

2.1 Probe particle coupled to a Gaussian field

We consider a “colloidal” particle in contact with a fluctuating Gaussian field φ(x) in d
spatial dimensions. The particle is additionally trapped in a harmonic potential of strength
κ, centered at the origin of the coordinate systems. The total effective Hamiltonian H
describing the combined system is

H[φ(x), X] =

∫
ddx

{
1

2
[∇φ(x)]2 +

r

2
φ2(x)

}
+
κ

2
X2 − λ

∫
ddx φ(x)V (x−X), (1)

where the vector X = {X1, X2, · · · , Xd} denotes the position of the colloid, V (z) is the
coupling between the medium and the particle, and r > 0 controls the spatial correlation
length ξ = r−1/2 of the fluctuations of the field. For convenience, we introduce also
a dimensionless coupling strength λ which will be useful for ordering the perturbative
expansion discussed in Sec. 4. The field φ(x) undergoes a second-order phase transition
at the critical point r = 0 and its spatial correlation length ξ diverges upon approaching
it. The interaction between the particle and the medium is physically expected to occur
primarily within the space occupied by the particle and therefore V (z) in Eq. (1) will be
concentrated in a neighbourhood of z = 0 of linear extension corresponding to its radius
R. For example, in a concrete case, we will assume that V (z) has a Gaussian dependence
on |z| (Eq. (52)). Most of the expressions derived below apply to a generic choice of a
V (z) which is isotropic in space, i.e., a function of |z|, having in mind spherical particles.
However, the generalisation to anisotropic interactions (i.e., to anisotropic particles) is
generally straightforward. The choice of a coupling between the particle and the medium
which is linear in φ is motivated by two facts: (i) a colloidal particle inserted in a near-
critical medium generically favours one of the two competing phases of the system, i.e.,
values of the order parameter field φ(x, t) with a certain sign, therefore breaking the
symmetry φ(x, t)↔ −φ(x, t) of the unperturbed fluctuations; (ii) A linear coupling allows
a non-perturbative solution of the dynamics of the field in terms of that of the particle
coordinate X(t), which therefore leads to an exact effective dynamics for X(t), as discussed
further below.

The colloidal particle is assumed to move according to an overdamped Langevin dy-
namics and we consider the field to represent a conserved medium so that its dynamics
follows the so-called model B of Ref. [12]. The dynamics of the joint colloid-field system
reads [24],

∂tφ(x, t) = D∇2 δH[φ(x, t), X(t)]

δφ(x, t)
+ η(x, t), (2)

γ0Ẋ(t) = −∇XH[φ(x, t), X(t)] + ζ(t). (3)
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Here ∇ and ∇X indicate the derivatives with respect to the field coordinate x and the
probe position X, respectively. D denotes the mobility of the medium and γ0 is the
drag coefficient of the colloid; these quantities set the relative time scale between the
fluctuations of the field and the motion of the colloid. The noises η(x, t) and ζ(t) are
Gaussian, delta-correlated, and they satisfy the fluctuation-dissipation relation [25], i.e.,

〈ηi(x, t)ηj(x′, t′)〉 = −2DTδij∇2δd(x− x′)δ(t− t′), (4)

〈ζi(t)ζj(t′)〉 = 2γ0Tδijδ(t− t′), (5)

where T is the thermal energy of the bath. Here we assume that the bath acts on both
the particle and the field, such that they have the same temperature.

For the specific choice of the Hamiltonian in Eq. (1), the equations of motion (2) and
(3) take the form

∂tφ = D∇2[(r −∇2)φ− λVX ] + η, (6)

γ0Ẋ = −κX + λf + ζ, (7)

where, for notational brevity, we have suppressed the arguments and denoted VX(x) =
V (x−X). The force f exerted on the colloid by the field through their coupling depends
on both the colloid position X(t) and the field configuration φ(x, t) and it is given by

f(X(t), φ(x, t)) ≡ ∇X
∫

ddx φ(x, t)V (x−X(t)). (8)

We note here, for future convenience, that the equations of motion above are invariant
under the transformation

{φ, λ} → {−φ,−λ}. (9)

In this work we will focus primarily on the dynamics of the position X(t) of the colloidal
particle and in particular on the equilibrium two-time correlation

C(t) = 〈X(t) ·X(0)〉 = d〈Xj(t)Xj(0)〉, (10)

for any j ∈ {1, 2, . . . d}, where in the last equality we have used the rotational invariance
which follows by assuming the same invariance for V (x). Below we discuss first the
equilibrium distribution and then the correlation function C(t) in the absence of the
coupling to the field.

2.2 Equilibrium distribution

The equilibrium measure of the joint system of the colloid and the field is given by the
Gibbs-Boltzmann distribution:

P [X,φ(x)] ∝ exp

(
−H[φ(x), X]

T

)
. (11)

In equilibrium, the position X of the colloid fluctuates around the minimum of the har-
monic trap and the corresponding probability distribution can be obtained as the marginal
of the Gibbs measure in Eq. (11). This marginal distribution P (X) is actually independent
of λ because the coupling between the colloid and the fluctuating medium is translationally
invariant in space (see Appendix A) and therefore

P (X) ∝ exp

(
−κX

2

2T

)
, (12)

i.e., P (X) is solely determined by the external harmonic trapping.
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2.3 Correlations in the absence of the field

In Sec. 4 we will express the correlation function C(t) defined in Eq. (10) in a perturbative
series in λ. The zeroth order term C(0)(t) of this expansion is the correlation of the particle
in the absence of coupling to the field, i.e., for λ = 0. In this case, the position X(t) of
the colloid follows an Ornstein-Uhlenbeck process and its two-time correlation is (see, e.g.,
Ref. [26], Sec. 7.5, and also Sec. 4.1 below)

C(0)(t) =
dT

κ
e−ω0|t|, (13)

where
ω0 = κ/γ0. (14)

is the relaxation rate of the probe particle in the harmonic trap. Equation (13) shows also
that, as expected, one of the relevant length scales of the system is `T ≡

√
T/κ, which

corresponds to the spatial extent of the typical fluctuations of the position of the center
of the colloid in the harmonic trap, due to the coupling to the bath.

The power spectral density (PSD) S(0)(ω) of the fluctuating position of the particle in
equilibrium, i.e., the Fourier transform of C(0)(t) in Eq. (13), takes the standard Lorenzian
form

S(0)(ω) =
dT

κ

2ω0

ω2
0 + ω2

. (15)

Our goal is to determine the corrections to the two-time correlations C(0)(t) and therefore
to S(0)(ω) due to the coupling λ to the field, given that one-time quantities in equilibrium
are actually independent of it, as discussed above.

3 Effective non-linear dynamics of the probe particle

3.1 Effective dynamics

The dynamics of the field φ in Eq. (6) is linear and therefore it can be integrated and sub-
stituted in the evolution equation for X in Eq. (7), leading to an effective non-Markovian
overdamped dynamics of the probe particle [13,15]

γ0Ẋ(t) = −κX(t) +

∫ t

−∞
dt′ F (X(t)−X(t′), t− t′) + Ξ(X(t), t), (16)

where the space- and time-dependent memory kernel F is given by

Fj(x, t) = iλ2D

∫
ddq

(2π)d
qjq

2|Vq|2eiq·x−αqt. (17)

In this expression,
αq = Dq2(q2 + r), (18)

is the relaxation rate of the field fluctuations with wavevector q, Vq is the Fourier transform
of V (z), and the noise Ξ(x, t) is Gaussian with vanishing average and correlation function

〈Ξj(x, t)Ξl(x′, t′)〉 = 2γ0Tδjlδ(t− t′) + TGjl(x− x′, t− t′), (19)

where

Gjl(x, t) = λ2

∫
ddq

(2π)d
qjql

|Vq|2

q2 + r
eiq·x−αq |t|. (20)
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In passing we note that if the interaction potential V (x) is invariant under spatial rotations
(as assumed here), then Gjl ∝ δjl.

The equations (16)–(20) describing the effective dynamics of the probe are exact : the
interaction with the Gaussian field introduces a space- and time-dependent memory term
F (x, t) and a position and time-dependent (non-Markovian) noise with correlation G(x, t)
in addition to the (Markovian) contribution ∝ γ0 in Eq. (19) due to the action of the
thermal bath on the particle. In the next subsections we discuss first the relation between
the non-linear memory F (x, t) in Eq. (16) and the usual linear memory kernel Γ(t) and
then the fluctuation-dissipation relation which connects Fj(x, t) to Gjl(x, t).

3.2 The linear memory kernel

In order to relate the non-linear memory term ∝ F on the r.h.s. of Eq. (16) to the usual
linear memory kernel Γ(t) mentioned in the Introduction, we expand the former to the
first order in the displacement X(t)−X(t′) and integrate by parts, obtaining∫ t

−∞
dt′ Fj(X(t)−X(t′), t− t′) '

∫ t

−∞
dt′
[
Xl(t)−Xl(t

′)
]
∇lFj(0, t− t′) (21)

=

∫ t

−∞
dt′Ẋl(t

′)

∫ ∞
0

dt′′∇lFj(0, t− t′ + t′′) (22)

≡ −
∫ t

−∞
dt′ Γ(t− t′)Ẋj(t

′). (23)

Here we have used the rotational invariance of V (x) to get Fj(0, t) = 0 and∇lFj(0, t) ∝ δlj .
In the last equation we identify the linear memory kernel Γ(t) as given by∫ ∞

0
dt′∇lFj(0, t+ t′) = −Γ(t)δjl. (24)

Conversely, taking a linear function Fj(x, t) = Γ̇(t)xj the expansion above is exact. Simi-
larly, we also expand the noise correlation in Eq. (19) to the zeroth order in the displace-
ment, and obtain

〈Ξj(x, t)Ξl(x′, t′)〉 ' 2γ0Tδjlδ(t− t′) + TGjl(0, t− t′). (25)

Using the explicit expression of F (x, t) in Eq. (17) for calculating Γ(t) from Eq. (24) and
taking into account the definition of G(x, t) in Eq. (20), one immediately gets

Gjl(0, t) = Γ(t)δjl. (26)

Accordingly, as expected, the total time-dependent friction γ0δ+(t− t′) + Γ(t− t′), where
δ+(t) is the normalised delta-distribution on the half line t > 0, is related to the correlation
of the noise in Eq. (25) by the standard fluctuation-dissipation relation involving the
thermal energy T as the constant of proportionality.

3.3 Fluctuation-dissipation relation

As expected, the fluctuation-dissipation relationship discussed above for the linear approx-
imation of the effective memory carries over to the non-linear case, still in a remarkably
simple form which we derive here. In fact, the memory term Fl(x, t) in Eq. (16) and the
correlation Gjl(x, t) of the noise in Eq. (19) are related, for t > 0, as

∇jFl(x, t) = ∂tGjl(x, t), (27)
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which is readily verified by using Eqs. (17) and (20). Beyond this specific case, in Appendix
B we prove that the dynamics prescribed by Eqs. (16,19) is invariant under time reversal
—and therefore the corresponding stationary distribution is an equilibrium state— if the
non-linear dissipation and the correlation of the fluctuations satisfy Eq. (27).

The effective dynamics in Eq. (16), deriving from the coupling to a Gaussian field, is
characterised by the memory kernel F (x, t) which generalises the usual one Γ(t) to the
case of a non-linear dependence on Ẋ(t). In Sec. 4 we calculate the two-time correlation
function in the presence of this non-linear memory kernel for a particle trapped in the
harmonic potential with stiffness κ. Then we show that when the usual effective description
of the dynamics of the particle in terms of a linear memory kernel is extracted from these
correlation functions, this kernel turns out to depend on the stiffness κ, as observed in
Refs. [8, 9].

4 Perturbative calculation of the correlations

4.1 Perturbative expansion

In order to predict the dynamical behaviour of the probe particle, we need to solve the
set of equations (6) and (7), which are made non-linear in {X,φ} by their coupling ∝ λ.
These non-linear equations are not solvable in general and thus we resort to a perturbative
expansion in the coupling strength λ by writing

φ(x, t) =
∞∑
n=0

λnφ(n)(x, t), (28)

X(t) =

∞∑
n=0

λnX(n)(t), (29)

where φ(0)(x, t) and X(0)(t) are the solutions of Eqs. (6) and (7) for λ = 0, i.e., for the case
in which the medium and the probe are completely decoupled. As usual, these expansions
are inserted into Eqs. (6) and (7), which are required to be satisfied order by order in
the expansion. In Refs. [13, 15, 16] this perturbative analysis was carried out within a
path-integral formalism of the generating function of the dynamics of the system; below,
instead, we present a direct calculation based on the perturbative analysis of the dynamical
equations. We restrict ourselves to the quadratic order n = 2 of the expansion above and
show that this is sufficient for capturing the non-trivial signatures of criticality as the
correlation length ξ of the fluctuations within the medium diverges. The validity of the
perturbative approach will be discussed in Sec. 5, where our analytical predictions are
compared with the results of numerical simulations.

As anticipated in Sec. 2.3, the motion of the probe particle in the absence of the
coupling to the field is described by the Ornstein-Uhlenbeck process

γ0Ẋ
(0)(t) = −κX(0)(t) + ζ(t). (30)

Its solution is

X(0)(t) = γ−1
0

∫ t

−∞
ds ζ(s)e−ω0(t−s), (31)

where ω0 is the relaxation rate of the probe particle in the harmonic trap, introduced in
Eq. (14). Hereafter we focus on the equilibrium behaviour of the colloid and therefore
we assume that its (inconsequential) initial position X(t = t0) = X0 is specified at time
t0 → −∞.

9
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The first two perturbative corrections X(1)(t) and X(2)(t) evolve according to the
first-order differential equations

Ẋ(n) = −ω0X
(n) + γ−1

0 f (n−1), with n = 1, 2, (32)

where f (0) = f |λ=0 and f (1) = df/dλ|λ=0 are obtained from the series expansion of f in
Eq. (8), in which the dependence on λ is brought in implicitly by the expansions of X and
φ.

Equations (32) are readily solved by

X(n)(t) = γ−1
0

∫ t

−∞
ds e−ω0(t−s)f (n−1)(s); (33)

the forces f (0) and f (1) depend explicitly on the coefficients φ(n)(x, t) of the expansion of
the field φ(x, t) and thus, in order to calculate X(1)(t) and X(2)(t) above we need to know
the time-evolution of the field. The latter is more conveniently worked out for the spatial
Fourier transform

φq(t) =

∫
ddxφ(x, t)eiq·x (34)

of the field which, transforming Eq. (28), has the expansion

φq(t) =
∞∑
n=0

λnφ(n)
q (t). (35)

In fact, from Eq. (6), one can write the time evolution

φ̇q = −αqφq + λDq2Vqe
iq·X + ηq, (36)

where αq is given in Eq. (18) and, as in Eqs. (17) and (20), Vq is the Fourier transform of
the interaction potential V (x), while ηq is the noise in Fourier space

〈ηq(t)ηq′(t′)〉 = 2DTq2 (2π)dδd(q + q′)δ(t− t′), (37)

which is also delta-correlated in time.
For λ = 0, i.e., when the medium is decoupled from the probe, Eq. (36) is solved by

φ(0)
q (t) =

∫ t

−∞
ds ηq(s)e

−αq(t−s), (38)

where, as we are interested in the equilibrium behaviour, we assume hereafter that the
(inconsequential) initial condition φq(t = t0) = φq,0 is assigned at time t0 → −∞. From

this expression we can compute the two-time correlation function of the field φ
(0)
q (t):〈

φ(0)
q (t)φ

(0)
q′ (t′)

〉
= (2π)dδd(q + q′)Gq(t− t′), (39)

where we introduced

Gq(t) =
DTq2

αq
e−αq |t|. (40)

The dynamics of the linear correction φ
(1)
q can be obtained from Eq. (36), after inserting

Eqs. (29) and (35), by comparing the coefficients of order λ on both sides, finding

φ̇(1)
q = −αqφ(1)

q +Dq2Vq e
iq·X(0)(t), (41)
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which is solved by

φ(1)
q (t) = Dq2Vq

∫ t

−∞
ds e−αq(t−s)eiq·X

(0)(s). (42)

Accordingly, φ
(1)
q (t) depends on X(0)(t) which, in turn, affects X(2)(t). As we will see

below, for calculating the correlation function C(t) of the particle coordinate up to order

λ2 it is sufficient to know the evolution of φ
(0)
q (t) and φ

(1)
q (t).

4.2 Two-time correlation function

We now compute perturbatively the two-time correlation C(t) by expanding it in a series
in λ. First, we note that C is expected to be an even function of λ because of the invariance
of the equations of motion under the transformation (9) and thus the correction of order
λ vanishes, leading to

C(t) = C(0)(t) + λ2C(2)(t) +O
(
λ4
)
, (43)

where C(0) is the auto-correlation of the free colloid reported in Eq. (13).
As detailed in Appendix C, the correction C(2) is given by

C(2)(t) = d
[〈
X

(1)
j (t)X

(1)
j (0)

〉
+
〈
X

(0)
j (t)X

(2)
j (0)

〉
+
〈
X

(2)
j (t)X

(0)
j (0)

〉]
, (44)

for a generic value of j ∈ {1, 2, · · · , d} (we assume rotational symmetry of the problem).
Using Eqs. (31) and (33), one can readily calculate the three contributions above, as
reported in detail in Appendix C. The final result can be expressed as

C(2)(t) =
DT

γ2
0

∫ t

0
du e−ω0(t−u)(t− u)F(u) for t > 0, (45)

where

F(u) =

∫
ddq

(2π)d
q4

αq
|Vq|2 exp

(
−αqu−

q2T

κ

[
1− e−ω0u

])
. (46)

The correlation function C(2)(t) for t < 0 can be obtained from Eq. (45) by using the
fact that, in equilibrium, C(2)(−t) = C(2)(t). Equations (45) and (46) constitute the main
predictions of this analysis. We anticipate here that in Sec. 4.5 we prove that the function
F(t) introduced above is, up to an inconsequential proportionality constant, the correction
to the effective linear memory kernel due to the coupling of the particle to the bath and
therefore it encodes the emergence of a non-Markovian dynamics, as discussed below [see,
in particular, Eq. (49)].

The expressions in Eqs. (45) and (46), after a rescaling of time in order to measure it
in units of ω−1

0 , is characterised by the emergence of a dimensionless combination αq/ω0 =
Dq2(q2 + r)/ω0 in the exponential. In turn, the dependence of this factor on q defines,
as expected, a length scale r−1/2 — actually corresponding to the correlation length ξ
of the fluctuations of the field — and `D = (D/ω0)1/4 = (Dγ0/κ)1/4. This latter scale
corresponds to the typical spatial extent of the fluctuations of the field which relax on the
typical timescale ω−1

0 of the relaxation of the particle in the trap. The resulting dynamical
behavior of the system is therefore characterised by the lengthscales `T (see after Eq. (14)),
`D, ξ, the colloid radius R and by the timescales associated to them. We shall see below,
however, that the complex interplay between these scales simplifies in some limiting cases
in which they become well-separated and universal expressions emerge.
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4.3 Long-time algebraic behaviours of correlations

The dynamics of the particle coupled to the fluctuating field naturally depends also on the
details of their mutual interaction potential V (x). However, as we shall show below, some
aspects of the dynamics acquire a certain degree of universality, as they become largely
independent of the specific form of V (x). In particular, we focus on the experimentally
accessible two-time correlation function C(t) of the probe position and consider its long-
time decay. From Eq. (45) it can be shown (see Appendix C.3 for details) that, at long
times t� ω−1

0 , the leading-order correction C(2) to the correlation function [see Eq. (43)]
in the stationary state, is given by

C(2)(t� ω−1
0 ) ' DT

κ2
F(t), (47)

while C(0)(t), the contribution from the decoupled dynamics, is generically an exponen-
tially decaying function of t, given by Eq. (13) in the stationary state. For large t, the
integral over q in F [see Eq. (46)] turns out to be dominated by the behaviour of the
integrand for q → 0 and, at the leading order, it can be written as

F(t) ' V 2
0

∫
ddq

(2π)d
q4

αq
e−αqt, (48)

where we used the fact that |Vq|2 = V 2
0 +O(q2) and exp [−q2(T/κ)(1− e−ω0t)] = 1+O(q2)

for q → 0. It is then easy to see that Eq. (48) takes the scaling form

F(t) = (V 2
0 /D)(Dt)−d/4G(r

√
Dt), (49)

with the dimensionless scaling function

G(w) =
Ωd

2(2π)d

∫ ∞
0

dz
zd/2

z + w
e−z(z+w), (50)

where Ωd = 2πd/2/Γ(d/2) denotes the solid angle in d-dimensions. Clearly, for w → 0, the
scaling function approaches a constant value G(0) = ΩdΓ(d/4)/[4(2π)d] = Γ(d/4)/[2(4π)d/2Γ(d/2)].
In the opposite limit w � 1, instead, the factor e−zw in the integrand of Eq. (50) al-
lows us to expand the remaining part of the integrand for z → 0 and eventually find
G(w → ∞) = d[Γ(d/2)/Γ(d/4)]G(0)w−(2+d/2)[1 + O(w−2)]. Accordingly, the long-time
decay of the correlation function shows two dynamical regimes:

C(2)(t) ∝

{
t−d/4 for Dt� r−2,

t−(1+d/2) for Dt� r−2.
(51)

At the critical point r = 0 of the fluctuating medium, the second regime above cannot
be accessed and only an algebraic decay ∝ t−d/4 is observed. For any finite value r > 0,
instead, there is a crossover from the critical-like behaviour ∝ t−d/4 to the off-critical
and faster decay ∝ t−(1+d/2) as the time t increases beyond the time-scale ∝ r−2/D. The
emergence of an algebraic decay of correlations away from criticality is due to the presence
of the local conservation law in the dynamics of the field. The time scale at which this
crossover occurs is expected to be given by ∼ ξz where ξ is the correlation length and
z = 4 is the dynamical critical exponent of the Gaussian medium with the conserved
dynamics we are considering here. Remembering that ξ ∼ r−ν , with ν = 1/2 in this case,
a scaling collapse of the different curves corresponding to r > 0 is expected when plotted
as a function of t/ξz ∼ tr2, as in Eq. (49). Given that the λ-independent contribution

12
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C(0) to the stationary autocorrelation function is characterised by an exponential decay
with typical time scale ω−1

0 , Eq. (51) shows that the long-time behaviour of the total
correlation function C(t) is actually completely determined by the slow algebraic decay of
λ2C(2)(t) as soon as t� ω−1

0 and thus the effect of the coupling to the field can be easily
revealed from the behaviour of the correlation function at long times. As we also discuss
further below in Sec. 4.6, Eq. (47) implies that C(2)(t) inherits the algebraic long-time
behaviour from F(t), which is solely determined by the dynamics of the field. In fact,
from Eqs. (49) and (47) we see that the actual dynamical properties of the particle (i.e.,
its drag coefficient γ0), the form of the interaction potential V , the temperature T of the
bath and the parameter κ of the trapping potential determine only the overall amplitude
of C(2)(t� ω−1

0 ).
Figure 2 shows plots of C(2)(t) evaluated using Eqs. (45) and (46) with a Gaussian-like

interaction potential
V (z) = ε e−z

2/(2R2), (52)

(which can be seen as modelling a colloid of “radius” R and typical interaction energy
ε = 1) in spatial dimension d = 1, 2, and 3, from top to bottom, and for various values of
r. Depending on the value of r we observe the crossover described by Eq. (51), which is
highlighted in the insets showing the data collapse according to Eq. (49).

In summary, the equilibrium correlation 〈X(0) ·X(t)〉 of the position X of a particle
with overdamped dynamics, diffusing in a harmonic trap and in contact with a Gaussian
field with conserved dynamics, shows an algebraic decay at long times, which is universal
as it is largely independent of the actual form of the interaction potential and of the
trapping strength but depends only on the spatial dimensionality d. At the leading order
in coupling strength λ, one finds

C(t) = 〈X(0) ·X(t)〉 ∝ λ2

{
t−d/4 at r = 0,

t−(1+d/2) for r > 0.
(53)

The exponents of these algebraic laws, as well as those discussed further below, reflect the
mean-field critical exponents that characterise the static and dynamical behavior of the
Gaussian field considered here.

4.4 Power spectral density

In the experimental investigation of the dynamics of tracers in various media, one is
naturally lead to consider the power spectral density (PSD) S(ω) of the trajectory X(t),
which is defined as the Fourier transform of the correlation C(t):

S(ω) =

∫ +∞

−∞
dt C(t)eiωt = S(0)(ω) + λ2S(2)(ω) +O(λ4). (54)

The zeroth-order term, corresponding to the Ornstein-Uhlenbeck process, was discussed
above and is given by Eq. (15). The second-order correction S(2)(ω) can be obtained by
Fourier transforming Eq. (45) (see Appendix C for details), which yields

S(2)(ω) =
2DT

γ2
0(ω2

0 + ω2)2

∫ +∞

0
du
[(
ω2

0 − ω2
)

cos(ωu)− 2ωω0 sin(ωu)
]
F(u), (55)

in terms of F(u) given in Eq. (46).
Figure 3 shows the behaviour of the PSD for the Gaussian interaction potential in

Eq. (52). In panel (a) the resulting S(ω) at order λ2 is plotted as a function of ω for
various values of r. The large-ω behavior of S(ω) is essentially determined by S(0)(ω) in

13
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Figure 2: Stationary auto-correlation function C(2)(t) of the position of the colloidal par-
ticle, as obtained numerically in spatial dimension (a) d = 1, (b) 2, and (c) 3, for various
values of the parameter r which controls the spatial and temporal extents of the correla-
tions of the fluctuations within the medium. At the critical point r = 0, the correlation
C(2)(t) decays as t−d/4 at long times, while away from the critical point C(2)(t) ∼ t−(1+d/2).
These slow algebraic decays — indicated in the various panels by the straight lines on the
right — determine that of the total auto-correlation function C(t), as the contribution of
order λ0 decays exponentially upon increasing time. At short times, instead, C(2)(t) turns
out to grow linearly upon increasing t, as indicated by the solid lines on the left of each
panel and as discussed, c.f., in Sec. 4.6. The insets show the scaling collapse of td/4C2(t)
when the same data is plotted as a function of t r2. Here we considered an interaction
potential V (z) = e−z

2/(2R2) with R = 2 and D = T = 1 and κ = γ0 = 1.
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Figure 3: (a) Structure factor S(ω) = S(0)(ω) + λ2S(2)(ω) [see Eqs. (15) and (55)] and
(b) leading-order correction S(2)(ω) as functions of ω for a set of values of r and λ = 0.05
in spatial dimension d = 3. At criticality, (i.e., for r = 0) the correction S(2)(ω) (and
therefore S(ω)) displays the algebraic singularity predicted by Eq. (57) for ω → 0, which
is indicated by the solid line in panel (a). Remarkably, S(2)(ω) becomes negative upon
increasing ω above a certain r-dependent value. Here we have used a Gaussian interaction
potential V (z) = e−z

2/(2R2) with R = 2. The other parameters are γ0 = T = D = 1 with
κ = 2.

Eq. (15) and therefore it is dominated by the Brownian thermal noise ζ(t) in Eq. (3) with
S(ω) ' 2dT/(γ0ω

2) [see also Eq. (14)]. Heuristically, at sufficiently high frequencies the
dynamics of the particle effectively decouples from the relatively slow dynamics of the field
φ and therefore its behavior is independent of λ. Correspondingly, one indeed observes
that S(2)(ω) reported in panel (b) vanishes as ω increases, independently of the specific
value of the parameter r, i.e., of the correlation length ξ of the fluctuating medium. In
particular, in Appendix D.2 it is shown that S(2)(ω) ∝ ω−4 for large ω and that S(2)(ω)
approaches zero from below. On the contrary, the coupling to the field becomes relevant
at lower frequencies and it increases as r → 0, i.e., upon approaching the critical point
of the fluctuating field, as shown in panel (b) of Fig. 3, which displays the pronounced
contribution of S(2)(ω) as ω → 0. This contribution is discussed in detail in Appendix D
by studying the asymptotic behavior of Eq. (55) but it can be easily understood from the
stationary autocorrelation at long times in Eq. (51), from which we can infer the behaviour
of S(2)(ω) as ω → 0, which approaches the generically finite value [where we used Eq. (14)]

S(2)(ω = 0) =
2DT

κ2

∫ +∞

0
duF(u). (56)

In particular, by using Eq. (51), we find that S(2)(ω) is actually finite as ω → 0 for r > 0,
i.e., away from criticality or generically for d ≥ 4, while

S(2)(ω → 0) ∝ ω−1+d/4 for r = 0 and d < 4. (57)

(See Eq. (139) in Appendix D.2 for the complete expression, including the coefficients of
proportionality.)

Correspondingly, given that the zeroth order contribution S(0)(ω = 0) to S(ω) is finite
as ω → 0, the power spectral density for a particle in a critical medium develops an
integrable algebraic singularity as ω → 0 which is entirely due to the coupling to the
medium.
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Note that, according to the discussion in Sec. 2.2, the equal-time correlation C(0) of
the position of the probe particle is not influenced by its coupling to the field, i.e., it is
independent of λ. In turn, these equal-time fluctuations are given by the integral of S(ω)
over ω and therefore one concludes that the Fourier transform S(n)(ω) of the contributions
C(n)(t) of order λn in the generalisation of the expansion in Eq. (43), have to satisfy∫ +∞

0
dω S(n)(ω) = 0 for n 6= 0. (58)

Accordingly, the integral on the linear scale of the curves in panel (b) of Fig. 3 has to
vanish, implying that the positive contribution at small ω is compensated by the negative
contribution at larger values, which is clearly visible in the plot and which causes a non-
monotonic dependence of S(2)(ω) on ω.

4.5 Effective memory kernel

As we mentioned in the introduction, the most common modelling of the overdamped
dynamics of a colloidal particle in a medium is done in terms of a linear evolution equation
with an effective memory kernel of the form (see also the discussion in Sec. 3.3)∫ t

−∞
dt′ Γ(t− t′)Ẋj(t

′) = f̃j(t) + ζ̃j(t), (59)

where
〈ζ̃j(t)ζ̃l(t′)〉 = 2T δjlΓ(|t− t′|), (60)

and f̃ represents the forces acting on the colloid in addition to the stochastic noise ζ̃
provided by the effective equilibrium bath at temperature T , for which the fluctuation-
dissipation relation is assumed to hold. An additional, implicit assumption of the mod-
elling introduced above is that Γ describes the effect of the fluctuations introduced by the
thermal bath, which are expected to be independent of the external forces f̃ . We shall
see below that this is not generally the case because of the intrinsic non-linear nature of
the actual evolution equation. In the setting we are interested in, the external force f̃ in
Eq. (59) is the one provided by the harmonic trap, i.e., f̃(t) = −κX(t). In this case, the
process is Gaussian and the Laplace transform Ĉ(p) of the stationary correlation function
C(t) is given by [9, 27]

Ĉ(p) =
dT Γ̂(p)

κ[κ+ pΓ̂(p)]
, (61)

in terms of the Laplace transform Γ̂(p) of Γ(t). As it is usually done in microrheology [4],
we invert this relation in order to infer the memory kernel from the correlations, i.e.,

Γ̂(p) =
κĈ(p)

dT/κ− pĈ(p)
. (62)

The perturbative expansion of C(t) in Eq. (43) readily translates into a similar expansion
for the corresponding Laplace transform, i.e.,

Ĉ(p) = Ĉ(0)(p) + λ2Ĉ(2)(p) +O(λ4), (63)

where the Laplace transform of the correlation for λ = 0 in Eq. (13) and of the correction
in Eq. (45) can be easily calculated:

Ĉ(0)(p) =
dT

κ(p+ ω0)
, (64)

Ĉ(2)(p) =
DT

γ2
0

F̂(p)

(p+ ω0)2
. (65)
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Inserting the perturbative expansion (63) in Eq. (62) with Ĉ(0)(p) and Ĉ(2)(p) given above,
and using Eq. (14), we obtain the corresponding perturbative expansion for the memory
kernel

Γ̂(p) = Γ̂(0)(p) + λ2Γ̂(2)(p) +O(λ4) = γ0 +
λ2D

d
F̂(p) +O(λ4). (66)

From this expression, after transforming back in the time domain, we naturally find

Γ(t) = Γ(0)(t) + λ2Γ(2)(t) +O(λ2), (67)

in which we recover the expected memory kernel

Γ(0)(t) = γ0δ+(t), (68)

in the absence of the interaction with the field — which renders Eq. (30) — and the
correction

Γ(2)(t) =
D

d
F(t), (69)

due to this interaction. This equality provides also a simple physical interpretation of
the function F(t) introduced in Eqs. (45) and (46) as being the contribution to the linear
friction due to the interaction of the particle with the field.

This effective memory Γ(2)(t) ∝ F(t) turns out to depend explicitly on the stiffness
κ of the trap, as prescribed by Eq. (46). Contrary to the very same spirit of writing
an equation such as Eq. (59), the effective memory Γ(t) is not solely a property of the
fluctuations of the medium, but it actually turns out to depend on all the parameters
which affect the dynamics of the probe, including the external force f̃ . This dependence
is illustrated in Fig. 4 which shows Γ(2)(t) as a function of time t for various values of the
relevant parameters. In particular, the curves in panel (a) correspond to a fixed value of
the parameter r and shows the dependence of the correction Γ(2)(t) on the trap stiffness
κ, while panel (b) shows the dependence on the distance r from criticality (equivalently,
on the spatial range ξ = r−1/2 of the correlation of the field) for a fixed value of κ. The
curves in panel (a) show that, depending on the value of κ, a crossover occurs between
the behaviour at short times — during which the particle does not displace enough to
experience the effects of being confined — corresponding to a weak trap with κ→ 0 and
that at long times t� ω−1

0 corresponding to the strong-trap limit κ→∞, which is further
discussed below in Sec. 4.6. In turn, as shown by panel (b), the power of the algebraic
decay of Γ(2)(t) at long times t � ω−1

0 depends on whether the field is critical (r = 0)
or not (r 6= 0). In particular, upon increasing t one observes, after a faster relaxation at
short times controlled, inter alia, by the trap stiffness κ, a crossover between a critical-like
slower algebraic decay and a non-critical faster decay, with the crossover time diverging
as ∼ r−2 for r → 0. Taking into account that, at long times t� ω−1

0 , Eqs. (47) and (69)
imply that Γ(2)(t) is proportional to C(2)(t) according to

Γ(2)(t� ω−1
0 ) =

κ2

dT
C(2)(t), (70)

this crossover is actually the one illustrated in Fig. 2 for C(2)(t) in various spatial dimen-
sions d.

We emphasise that the long-time behaviour of the correlation Γ(t � ω−1
0 ) of the

effective fluctuating force generated by the near-critical medium (according to Eqs. (59)
and (60)) and acting on the probe particle is actually independent of the trapping strength
ω0 and is characterised by an algebraic decay as a function of time, following from Eqs. (70)
and (51). In particular, in spatial dimension d = 3, this decay is∝ t−3/4 at criticality and∝
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Figure 4: Effective memory kernel Γ(2)(t) in spatial dimension d = 3 obtained from
Eqs. (69) and (46) via a numerical integration. Panel (a) shows Γ(2)(t) for various values
of the trap stiffness κ and fixed r = 0.01 while panel (b) for various values of r and fixed
κ = 0.01. The curves corresponding to the limiting cases κ → ∞ and κ = 0 reported in
panel (a) are obtained from Eq. (69) by using the approximate expressions of F in, c.f.,
Eqs. (75) and (78), respectively. The algebraic asymptotic decays indicated in panels (a)
and (b), instead, follow from Eq. (70) and Fig. 2 (see also Eq. (51)). Here we have used
the interaction potential V (z) = e−z

2/(2R2) with R = 2, while the other parameters of the
model are γ0 = D = T = 1.

t−5/2 for the non-critical case, with a positive coefficient of proportionality. This correlated
effective force can be compared with the one emerging on a Brownian particle due to
hydrodynamic memory, generated by the fluid medium backflow, which turns out to have
also algebraic correlations, with decay ∝ t−3/2 and a negative coefficient of proportionality
characteristic of anticorrelations (see, e.g., Ref. [2]). Accordingly, the algebraic decay of
the hydrodynamic memory is faster than that due to the field in the critical case but slower
than the one observed far from criticality. As an important additional qualitative difference
between these two kind of effective correlated forces, while the long-time anticorrelations
due to the hydrodynamic memory may give rise to resonances in S(ω) [2], this is not the
case for the effective force due to the coupling to the field.

The dependence of the effective memory Γ(2) on the trapping strength κ discussed
above carries over to the friction coefficient

γ =

∫ ∞
0

dtΓ(t) = Γ̂(p = 0) = γ0 + λ2γ(2) +O(λ4), (71)

which is usually measured in experimental and numerical studies [8]. In the last equality
we used Eqs. (67) and (68). Using, instead, Eq. (62) for p → 0 and the relationship
Ĉ(p = 0) = S(ω = 0)/2 between the Laplace and the Fourier transform of the two-time
correlation function, one finds the following relationship between γ and S(ω):

γ =
κ2

2dT
S(ω = 0). (72)

Accordingly, the correction γ(2) to γ in Eq. (71), due to the coupling to the field is, up
to a constant, equivalently given by the integral of Γ(2)(t) in Eq. (69) or by S(2)(ω = 0)
in Eq. (56). In Fig. 5 we show the dependence of γ(2) on the trap stiffness κ, for a
representative choice of the various parameters and upon approaching the critical point
(i.e., upon decreasing r) from bottom to top. In particular, by using Eq. (72) and the
results of Appendix D.2 (see, c.f., Eqs. (136) and (137)), one finds that, in the limit of
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weak trapping,

γ(2)(κ→ 0; r → 0) ' γ0|V0|2

T
r−1+d/2 Γ(1− d/2)

d(4π)d/2
for d < 2, (73)

grows with an algebraic and universal singularity as a function of r for r → 0 while, for
strong trapping,

γ(2)(κ→∞; r → 0) ' |V0|2

D
r−2+d/2 Γ(2− d/2)

d(4π)d/2
for d < 4 (74)

grows with a different exponent, with the previous limits being otherwise finite. Accord-
ingly, for d < 4 one observes generically that the values of γ(2) for κ → 0 and κ → ∞
grow upon approaching criticality, with the latter growing more than the former, as clearly
shown in Fig. 5. The corresponding increase of the friction coefficient upon increasing the
stiffness was already noted in Ref. [16] for the same model, and resembles the one found
in molecular dynamics simulations of a methane molecule in water (compare with Fig. 4
of Ref. [8]).

4.6 Limits of strong and weak confinement

Here, we specialise the analysis presented above to the strong- and weak-trap limits,
formally corresponding to κ → ∞ and κ → 0, respectively. Note that, while the system
cannot reach an equilibrium state for κ = 0 due to the diffusion of the particle, the limit
κ → 0 of the various quantities calculated in such a state for κ 6= 0 is well-defined and,
as suggested by Fig. 4, it describes the behaviour of the system at short and intermediate
time scales. The strong-trap limit, instead, captures the behaviour of the particle at times
t � ω−1

0 and it corresponds to a probe that is practically pinned at the origin, with a
small displacement that is proportional to the force exerted on it by the field. In this
limit, the timescale ω−1

0 of the relaxation in the trap [see Eq. (14)] is small compared to
all the other timescales. The function F in Eq. (46) then reduces to

F(t) '
∫

ddq

(2π)d
q4

αq
|Vq|2 exp (−αqt) . (75)
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At long times, this expression behaves as the one Eq. (48), i.e., as in Eqs. (49) and (50).
Equation (75), via Eq. (69), determines also the limiting behaviour of Γ(2)(t) reported in
panel (a) of Fig. 4, which exhibits at long times the crossover predicted by Eq. (49), shown
in panel (b) of the same figure. Similarly, the correction C(2)(t) to the correlation C(t) is
then given by Eq. (47), i.e.,

C(2)(t) ' DT

κ2

∫
ddq

(2π)d
q4

αq
|Vq|2 exp (−αqt) , (76)

which, as expected, vanishes as ∝ κ−2 in the limit κ → ∞, corresponding to X ∝ κ−1.
However, this correction reflects the fluctuations of the force f(X,φ(x)) exerted by the
field on the probe, given by Eq. (8): the particle being practically pinned at X = 0, the
correlations of the force f ' κX/λ are

〈f(0, φ(x, t)) · f(0, φ(x, 0))〉 = κ2C(2)(t). (77)

Following Sec. 4.3, one can show that the correlations (76) still exhibit an algebraic decay
at long times, as the one of Eq. (48). This means that the long-time algebraic behaviour of
the correlations of the position of the particle is actually a property of the field itself and
it does not come from the interplay between the particle and the field dynamics, although
it might depend on the form of the coupling between the particle and the medium.

In the weak-trap limit κ→ 0 (i.e., ω0 → 0) the function F in Eq. (46) becomes

F(t) '
∫

ddq

(2π)d
q4

αq
|Vq|2 exp

(
−(αq + q2T/γ0)t

)
, (78)

which determines, via Eq. (69), the behavior of Γ(2)(t) in the same limit, shown in panel (a)
of Fig. 4. The exponential in this expression shows the natural emergence of the length
scale ` ≡ (Dγ0/T )1/2 influencing the dynamics even at long times, when other length
scales such as R turn out to be irrelevant. This scale can actually be expressed as the
only κ-independent combination of the κ-dependent scales `T,D discussed after Eq. (46),
i.e., ` = `2D/`T . In particular, at long times and sufficiently close to criticality such that
r � `−2, Eq. (78) takes the scaling form

F(t) ' (V 2
0 /D)`d(Dt)−d/2Gwt(rDt/`

2), (79)

with the dimensionless scaling function

Gwt(w) =
Ωd

2(2π)d

∫ ∞
0

dz
zd/2

z + w
e−z, (80)

where Ωd is the solid angle reported after Eq. (50). For w → 0 the scaling function renders
Gwt(0) = ΩdΓ(d/2)/[2(2π)d] = (4π)−d/2. In the opposite limit w � 1, instead, one has
Gwt(w → ∞) = ΩdΓ(d/2 + 1)/[2(2π)d]w−1 = d/[2(4π)d/2]w−1. At sufficiently long times
(but still within the range of validity of the weak-trap approximation), one thus finds that
F(t) ∝ t−(1+d/2) for r 6= 0 and F(t) ∝ t−d/2 for r = 0. In particular, the algebraic decay
observed for r 6= 0 in this weak-trap limit turns out to be the same as the one observed off
criticality in the strong-trap limit, as also shown in panel (a) of Fig. 4 for Γ(2)(t) ∝ F(t),
where the exponents of the decay of the curves for κ→ 0 and κ→∞ are equal.

In the weak-trap limit, the time ω−1
0 of the relaxation in the trap is much longer than

the timescales appearing in the function F , hence the integral in Eq. (45) which gives
C(2)(t) in terms of F is eventually dominated by u ' 0, leading to

C(2)(t) ' DT

γ2
0

te−ω0t

∫ ∞
0

duF(u) =
DT

γ2
0

te−ω0t

∫
ddq

(2π)d
q4|Vq|2

αq (αq + Tq2/γ0)
. (81)
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Figure 6: Schematic representation of the random walker coupled to a Rouse polymer
model on a lattice, used for numerical simulations. The dashed red line indicates the
polymer connecting Lmonomers, represented as circles. The walker (green square) changes
its position X by jumping to one of its nearest neighbouring sites with a rate that depends
on the displacement hi of the monomers in a range X −R ≤ i ≤ X +R.

Accordingly, upon increasing t, we expect C(2)(t) to increase linearly at short times with a
proportionality coefficient that is not universal. This is clearly shown in the various plots
of C(2)(t) reported in Fig. 2.

5 Numerical simulations

In this section we provide numerical evidence to support the predictions formulated in the
previous sections beyond the perturbation theory within which they have been derived.
For the sake of simplicity, we focus on a dynamics occurring in one spatial dimension and
consider a spatially discrete model for the colloid-field system.

The colloidal probe is modelled as a random walker moving on a periodic one-dimensional
lattice of size L and is coupled to a Rouse polymer chain, defined on the same lattice,
which models the field, as sketched in Fig. 6. The modelling of the field as a Rouse
chain is inspired by Ref. [28], where a similar chain is used for describing an Edward-
Wilkinson interface. A continuous degree of freedom hi(t) is associated with each lattice
site i = 1, 2, . . . L and it can be thought of as the displacement of the i-th monomer of
the polymer, which represents the fluctuating field. The colloidal probe, with coordinate
X ∈ 1, 2, · · · , L along the chain interacts with the field via the coupling potential V (i,X).
In the following, we consider the simple case V (i,X) = Θ(R − |i − X|), where Θ(x)
is the unit step function, i.e., the colloid interacts with the field only within the interval
[X−R,X+R]. In addition to the interaction with the polymer, the colloid is also trapped
by a harmonic potential κ

2 (X − L/2)2, centered at X = L/2, also defined on the lattice.
The Hamiltonian H describing this coupled system is then given by

H =

L∑
i=1

[
1

2
(∇hi)2 +

r

2
h2
i

]
+
κ

2

(
X − L

2

)2

− λ
L∑
i=1

hiV (i,X), (82)

where ∇ denotes the first-order discrete derivative on the lattice. The time evolution of
the field follows the spatially discrete version of Eq. (6), i.e.,

dhi
dt

= D(r∆−∆2)hi − λD∆V (i,X)−∇ηi(t), (83)

where ∆ denotes the discrete Laplacian operator, while ηi are a set of L independent
Gaussian white noises. In defining the discrete operators ∇, ∆, and ∆2 we use the central
difference scheme, i.e., for an arbitrary function gi with i = 1, 2, . . .:

∇gi = (gi+1 − gi−1)/2,
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Figure 7: Numerical simulation of the colloid and the Rouse polymer model (see Fig. 6)
in spatial dimension d = 1: Stationary auto-correlation function C(t) of the position of
the colloidal probe as a function of the time-difference t at the bulk critical point r = 0
for various values of the lattice size L. The dashed line indicates the algebraic decay t−1/4

predicted by the analytical perturbative calculation. Here the colloid radius R is set to
R = 4 and the coupling strength λ = 0.5, with all the remaining parameters set to one.

∆gi = gi+1 + gi−1 − 2gi,
∆2gi = gi+2 + gi−2 + 6gi − 4(gi+1 + gi−1). (84)

In the numerical simulations, the coupled first order Langevin equations (83) and (84) are
used to simulate the field dynamics.

As anticipated above, the overdamped diffusive motion of the colloid is modelled as a
random walker moving on the same lattice. From a position X, the walker jumps to one
of its nearest neighbouring site X ′ = X ± 1 with Metropolis rates (T/γ0) min{1, e−∆H/T }
where ∆H = κ(X ′2 −X2)/2 + λ

∑
i hi[V (i,X)− V (i,X ′)] is the change in the energy H

in Eq. (82) due to the proposed jump X 7→ X ′.
The above dynamics ensures that the colloid-Rouse chain coupled system eventually

relaxes to equilibrium with the Gibbs-Boltzmann measure corresponding to the Hamilto-
nian (82). We measure the temporal auto-correlation C(t) = 〈X(0)X(t)〉 of the colloid
position X in this equilibrium state. A plot of C(t) as a function of time t at criticality
r = 0 for various values of lattice size L is shown in Fig. 7. The expected algebraic decay
∝ t−1/4 of the long-time tail — predicted by Eq. (51) — becomes clearer as the system
size L increases and this agreement occurs for a generic choice of the system parameters.
Accordingly, the data obtained from the numerical simulations, which is non-perturbative
in nature, agrees very well with the theoretical prediction, providing a strong support to
the perturbative approach presented in the previous sections.

6 Conclusions

This work presented a perturbative analytical study of the effective dynamics of a trapped
overdamped Brownian particle which is linearly and reversibly coupled to a fluctuating
Gaussian field with conserved dynamics (model B) and tunable spatial correlation length
ξ.

In particular, in Sec. 3 we showed that the effective dynamics of the coordinate of
the particle is determined by a non-Markovian Langevin equation (see Eq. (16)) charac-
terised by a non-linear memory kernel determined by the dynamics of the field and by
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the interaction of the particle with the field. The effective noise in that equation turns
out to be colored and spatially correlated in a way that is related to the memory kernel
by the generalised fluctuation-dissipation relation discussed in Sec. 3.3. A possible linear
approximation of this dynamics necessarily produces a linear memory kernel (see Sec. 3.2),
which depends also on the additional external forces and thus — contrary to the non-linear
memory — is not solely determined by the interaction of the particle with the bath. As
heuristically expected, this dependence becomes more pronounced upon making the dy-
namics of the field slower, i.e., upon approaching its critical point. A similar dependence
was reported in numerical and experimental investigations of simple or viscoelastic flu-
ids [8,9] as well as in theoretical studies of cartoon non-linear models of actual viscoelastic
baths [9].

In Sec. 4 we determine the lowest-order perturbative correction to the equilibrium
correlation function C(t) of the particle position and to the associated power spectral
density S(ω), due to the coupling to the field. We highlight the possible emergence of
algebraic behaviours in the time-dependence at long times t of C(t) (see Eq. (53) and
Fig. 2) and in the frequency-dependence at small frequencies ω of S(ω) (see Eq. (57)
and Fig. 3), that are completely determined by the slow dynamics of the field which
the particle is coupled to and that depend on whether the field is critical or not. The
corresponding exponents turn out to be universal, as they are largely independent of the
actual form of the interaction potential between the particle and the field. The effective
(linear) memory kernel Γ(t) (see Eq. (69) and Fig. 4) which can be inferred from the
correlation function of the particle and the associated friction coefficient γ (see Eq. (72)
and Fig. 5) turn out to depend sensitively on the stiffness κ of the external confining
potential which the particle is subject to, especially when the field is poised at its critical
point. In fact, correspondingly, fluctuations within the system are enhanced and the
associated “fluctuation renormalisations” [29] of the linear coefficients are expected to be
more relevant.

In Sec. 5 we probe the validity of the perturbative and analytical study of the dynamics
of the particle via numerical simulations, confirming the algebraic decay of the correlations
beyond perturbation theory (see Fig. 7).

In the present study we focused on the case of a Gaussian field with conserved dy-
namics, which provides a cartoon of a liquid medium and which is generically slow in the
sense that the field correlation function displays an algebraic behaviour at long times also
away from criticality. In the case of non-conserved dynamics (the so-called model A [12]),
instead, the algebraic behaviour of correlations occurs only at criticality. Correspondingly,
the non-critical algebraic decay of C(t) in Eq. (53) is expected to be replaced by an ex-
ponential decay controlled by the field relaxation time τφ ∝ r−1 while the algebraic decay
at criticality acquires a different exponent which can be determined based on a power-
counting analysis. Some of these aspects have been recently studied in Ref. [30] together
with the non-equilibrium relaxation of a particle which is released from an initial position
away from the centre of the optical trap. Among the possible extensions of the present
work, we mention considering a quadratic coupling of the particle to the field — which
tends to move the probe towards the zeros of the field, — more general couplings [19], or
the case of anisotropic particles having a polarity coupled to gradients of the fluctuating
field. Similarly, it would be interesting to explore additional and experimentally observable
consequences of the emergence of the effective non-linear equation of motion of the particle
beyond the dependence of the linear coefficients on the external forces. In particular, as
opposed to the case in which the evolution equation of the particle coordinate X is linear,
we expect that the statistics of suitably chosen observables should be non-Gaussian, in
spite of the fact that the very stationary distribution of X is Gaussian [31].
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As a first step towards modelling colloidal particles in actual correlated fluids, instead,
it would be important to consider more realistic models of dynamics, possibly including
the case of non-Gaussian fields (which are expected to feature the emergence of critical
exponents beyond mean-field), as well as of the interactions between the particle and
the field, which usually take the form of boundary conditions for the latter. This would
allow, inter alia, the investigation of the role of fluctuations in the dynamics of effective
interactions among the particles immersed in the fluctuating medium [21,32–35], or a finer
account of the effect of viscoelasticity on the transition between two wells [36,37].
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A Equilibrium distribution of the colloid position

In equilibrium, the distribution which characterises the fluctuations of the colloid position
X is given by

P (X) =
e−HX/T

∫
Dφ e−Hφ/T∫

dX
∫
Dφ e−H/T

, (85)

where, for convenience, we have written H = Hφ + HX ; Hφ denotes the field-dependent
part of the Hamiltonian in Eq. (1), including the interaction term between the colloid and
the field, while HX = κX2/2 denotes the contribution which solely depends on the colloid
degree of freedom. Note that Hφ depends on X through the interaction potential V .

In order to evaluate the functional integration, it is useful to recast Hφ in a bilinear

from: using partial integration we can formally express Hφ =
∫

ddx (φÂφ/2−λV φ) where

Â = −∇2 + r2. Because of the quadratic nature of Hφ, the functional integration can be
exactly performed and yields

∫
Dφ e−Hφ/T ∝ exp

[
λ2

2T

∫
ddy ddy′ V (y)Â−1(y − y′)V (y′)

]
. (86)

where Â−1 denotes the inverse of the operator Â. Clearly, the right-hand side of Eq. (86) is
independent of the colloid positionX and therefore the equilibrium probability distribution
P (X) of the coordinate X of the particle is independent of the coupling to the field and
is determined only by the trap.
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B The fluctuation-dissipation relation

In this appendix, we show that a dynamics of the form

γ0Ẋ(t) =

∫ t

−∞
dt′ F (X(t)−X(t′), t− t′) + Ξ(X(t), t), (87)

where Ξ(x, t) is a Gaussian noise with correlation

〈Ξj(x, t)Ξl(x′, t′)〉 = 2γ0Tδjlδ(t− t′) + TGjl(x− x′, t− t′), (88)

is invariant under time reversal if the kernels F (x, t) and G(x, t) are related, for t > 0, as

∇jFl(x, t) = ∂tGjl(x, t). (89)

Equation (87) corresponds to the effective evolution equation for the particle in interaction
with the field, given by Eq. (16), but in the absence of the trap, i.e., for κ = 0. For the
sake of simplicity we consider this case, as the argument presented below readily extends
to κ 6= 0.

First, we note that if Eq. (89) is satisfied, we can introduce the potential

Ψj(x, t) = −
∫ ∞
t

dt′Fj(x, t
′), (90)

such that

Fj(x, t) = ∂tΨj(x, t), (91)

Gjl(x, t) = ∇lΨj(x, |t|). (92)

Note that from Eq. (89), one infers that ∇lFj = ∇jFl and ∇lΨj = ∇jΨl; also, by symme-
try, F (x, t) and Ψ(x, t) should be odd functions of x. In order to simplify the notations,
below we assume that both F (x, t) and Ψ(x, t) vanish for t < 0, while the integrals over
time run over R, unless specified otherwise.

First, we further simplify Eq. (87) by absorbing the delta correlation in Eq. (88)
in the definition of G(x, t) and the instantaneous friction γ0Ẋ(t) in the kernel F via
F (X, t) 7→ F (X, t) + γ0Xδ

′
+(t). The dynamics now reads

−
∫

dt′ F (X(t)−X(t′), t− t′) = Ξ(X(t), t), (93)

〈Ξj(x, t)Ξl(x′, t′)〉 = TGjl(x− x′, t− t′). (94)

We introduce now the path-integral representation for this dynamics, following Ref. [13].
The corresponding Janssen–De Dominicis action is

S[X,P ] =i

∫
dt dt′ Pj(t)Fj(X(t)−X(t′), t− t′)

+
T

2

∫
dtdt′ Pj(t)Pl(t

′)Gjl(X(t)−X(t′), t− t′),
(95)

where P (t) is the so-called response field (see, e.g., Sec. 4.1 in Ref. [38]).
In terms of the path-integral description of the process, we can now use the method

presented in Ref. [39] to show that if the conditions expressed in Eqs. (91) and (92) are
satisifed, the resulting (stationary) process is invariant under time-reversal, i.e., it is an
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equilibrium process. In particular, given a trajectory described by {X(t), P (t)} we consider
the corresponding time-reversed trajectory {X̄(t), P̄ (t)} with

X̄(t) = X(−t), (96)

P̄ (t) = P (−t)− i

T
Ẋ(−t). (97)

In equilibrium, one should have S[X̄, P̄ ] = S[X,P ] and this is what we will check below.
The action of the reversed trajectory is thus

S[X̄, P̄ ] =
T

2

∫
dt dt′ Pj(t)Pl(t

′)Gjl(X(t)−X(t′), t− t′)

+ i

∫
dt dt′ Pj(t)

[
Fj(X(t)−X(t′), t′ − t)− Ẋl(t

′)Gjl(X(t)−X(t′), t− t′)
]

+
1

T

∫
dt dt′ Ẋj(t)

[
Fj(X(t)−X(t′), t′ − t)− 1

2
Ẋl(t

′)Gjl(X(t)−X(t′), t− t′)
]
.

(98)

The first term coincides with the second one in S[X,P ] in Eq. (95). The second and the
last term in S[X,P ] can now be rewritten by assuming that Eqs. (91) and (92) hold. For
the second term we have∫

dtdt′ Pj(t)
[
Fj(X(t)−X(t′), t′ − t)− Ẋl(t

′)Gjl(X(t)−X(t′), t− t′)
]

=

∫
dt dt′ Pj(t)

[
∂tΨj(X(t)−X(t′), t′ − t)− Ẋl(t

′)∇lΨj(X(t)−X(t′), |t− t′|)
]

(99)

=

∫
t′>t

dt dt′ Pj(t)
[
∂tΨj(X(t)−X(t′), t′ − t)− Ẋl(t

′)∇lΨj(X(t)−X(t′), t′ − t)
]

+

∫
t′<t

dt dt′ Pj(t)
[
−Ẋl(t

′)∇lΨj(X(t)−X(t′), t− t′)
]

(100)

= It′>t + It′<t. (101)

The first integral vanishes because

It′>t =

∫
t′>t

dt dt′Pj(t)
d

dt′
[
Ψj(X(t)−X(t′), t′ − t)

]
= 0. (102)

We have used that Ψj(x, t → ∞) = 0 and Ψj(0, 0) = 0, given that Ψj(x, t) is an odd
function of x. We use the same trick to integrate by parts in the second integral in
Eq. (101) (the boundary terms cancel):

It′<t =

∫
t′<t

dt dt′ Pj(t)∂tΨj(X(t)−X(t′), t− t′) (103)

=

∫
dtdt′ Pj(t)Fj(X(t)−X(t′), t− t′). (104)

This term coincides with the first one in the action S[X,P ] of the forward path in Eq. (95)
and thus, in order to prove that S[X̄, P̄ ] = S[X,P ], we have to show that the last term in
Eq. (98) actually vanishes.

This contribution can be calculated as above, except that we start by using the parity
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of G(x, t) to remove the factor 1/2 and to restrict the integral to t′ > t:∫
dtdt′ Ẋj(t)

[
Fj(X(t)−X(t′), t′ − t)− 1

2
Ẋl(t

′)Gjl(X(t)−X(t′), t− t′)
]

=

∫
t′>t

dtdt′ Ẋj(t)
[
Fj(X(t)−X(t′), t′ − t)− Ẋl(t

′)Gjl(X(t)−X(t′), t− t′)
]

(105)

=

∫
t′>t

dt dt′ Ẋj(t)
[
∂tΨj(X(t)−X(t′), t′ − t)− Ẋl(t

′)∇lΨj(X(t)−X(t′), t′ − t)
]

(106)

=

∫
t′>t

dt dt′ Ẋj(t)
d

dt′
[
Ψj(X(t)−X(t′), t′ − t)

]
= 0, (107)

which completes the proof.

C Correlation function of the position of the particle

In this appendix we provide detailed derivation of the O(λ2) correction C(2)(t) to the
stationary state autocorrelation of the colloid, i.e., we derive Eq. (45). In particular, in
Sec. C.1 we first derive some identities concerning relevant two- and three-time correlation
functions of the Ornstein-Uhlenbeck process which are needed in Sec. C.2 in order to
calculate C(2)(t) perturbatively. In Sec. C.3, instead, we derive the expression of the
long-time behaviour of the correction C(2)(t) and relate it to F(t).

C.1 Correlations in the Ornstein-Uhlenbeck process

Let us first consider the two-time correlation which we will need, c.f., in Eq. (120):

〈
e−iq·X

(0)(s)eiq·X
(0)(s′)

〉
=

d∏
j=1

〈
e−iqjX

(0)
j (s1)eiqjX

(0)
j (s2)

〉
, (108)

where the statistical average is over the probe trajectories in the stationary state for λ = 0.
In this case, each component of the probe position undergoes an independent Ornstein-
Uhlenbeck (OU) process following Eq. (30). Consequently, it suffices to calculate〈

e−αx(s1)eαx(s2)
〉

= lim
t0→−∞

∫
dx1 dx2 e

−αx1eαx2P (x2, s2|x1, s1)P (x1, s1|x0, t0) (109)

where we assumed s2 > s1 (the opposite case can be obtained with α → −α) and where
P (x, t|y, s) denotes the probability that an OU particle, starting from position y at time s
will reach position x at a later time t. The Gaussian white noise ζ(t) driving the dynamics
in Eq. (30) ensures that P (x, t|y, s) is Gaussian and given by

P (x, t|y, s) =
1√

4πγ(t, s)
exp

{
−
[
x− ye−ω0(t−s)]2

4γ(t, s)

}
with γ(t, s) =

T

2κ
[1− e−2ω0(t−s)].(110)

This expression can now be used in Eq. (109) in order to calculate its l.h.s. via a Gaussian
integration over x1 and x2. As we are interested in the stationary state only, we take
t0 → −∞, which leads to〈

e−αx(s1)eαx(s2)
〉

= exp

{
−α

2T

κ

[
1− e−ω0(s2−s1)

]}
, (111)
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where we assumed s2 > s1. Finally, substituting α = iqj , and taking the product over j
[see Eq. (108)], we have〈

e−iq·X
(0)(s)eiq·X

(0)(s′)
〉

= exp

{
−q

2T

κ

[
1− e−ω0|s−s′|

]}
. (112)

In Eq. (124) below we will need an analytic expression for three-time correlation of the
form 〈

eiq·X
(0)(s1)e−iq·X

(0)(s2)X
(0)
j (s3)

〉
(113)

which are also computed following the same procedure as above. In particular, in the
stationary state, one eventually finds〈

eiq·X
(0)(s1)e−iq·X

(0)(s2)X
(0)
j (s3)

〉
=

iqjT

κ

[
e−ω0|s3−s1| − e−ω0|s3−s2|

]
× exp

{
−q

2T

κ

[
1− e−ω0|s2−s1|

]}
. (114)

C.2 Perturbative correction

We start with the perturbative solutions for X(n)(t) in Eq. (33). Substituting the explicit
expressions for

f
(0)
j (t) ≡ fj(t)|λ=0 = −i

∫
ddq

(2π)d
qjV−qφ

(0)
q (t)e−iq·X

(0)(t), (115)

f
(1)
j (t) ≡ dfj(t)

dλ
|λ=0 = −i

∫
ddq

(2π)d
qjV−q

[
φ(1)
q (t)− iq ·X(1)(t)φ(0)

q (t)
]
e−iq·X

(0)(t),

(116)

we get

X
(1)
j (t) = −iγ−1

0

∫ t

−∞
ds e−ω0(t−s)

∫
ddq

(2π)d
qjV−qφ

(0)
q (s)e−iq·X

(0)(s), (117)

X
(2)
j (t) = −iγ−1

0

∫ t

−∞
ds e−ω0(t−s)

∫
ddq

(2π)d
qjV−qe

−iq·X(0)(s)

∫ s

−∞
ds′

×
[
Dq2Vqe

−αq(s−s′) eiq·X
(0)(s′)

− γ−1
0 e−ω0(s−s′)

∫
ddq′

(2π)d
q · q′V−q′ φ

(0)
q′ (s′)φ(0)

q (s) e−iq
′·X(0)(s′)

]
. (118)

Using the above equations we can compute the three different terms appearing in C(2)(t)
[see Eq. (44)]. Let us first compute

C
(2)
1 (t2 − t1) ≡ 〈X(1)

j (t1)X
(1)
j (t2)〉

= −γ−2
0

∫ t1

−∞
ds e−ω0(t1−s)

∫ t2

−∞
ds′ e−ω0(t2−s′)

∫
ddq

(2π)d
qjV−q

×
∫

ddq′

(2π)d
q′jV−q′

〈
φ(0)
q (s)φ

(0)
q′ (s′)

〉〈
e−iq·X

(0)(s)e−iq
′·X(0)(s′)

〉
, (119)

where 〈·〉 denotes statistical averages over the decoupled Gaussian field and probe trajec-
tories. Using Eq. (39) for the free Gaussian field correlation and performing the q′ integral,
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we get

C
(2)
1 (t2 − t1) =

DT

γ2
0

∫ t1

−∞
ds e−ω0(t1−s)

∫ t2

−∞
ds′ e−ω0(t2−s′)

∫
ddq

(2π)d
q2
j q

2

αq
|Vq|2

×
〈
e−iq·X

(0)(s)eiq·X
(0)(s′)

〉
.

(120)

The auto-correlation of the probe particle in the last expression has been calculated above
in Eq. (112) and, after a change of variables u = t1 − s′ and v = t1 − s, we get

C
(2)
1 (t) =

DT

γ2
0

e−ω0t

∫ ∞
0

dv e−ω0v

∫ ∞
−t

du e−ω0uFj(|u− v|). (121)

where t = t2 − t1 and we have introduced

Fj(z) =

∫
ddq

(2π)d
q2
j q

2

αq
|Vq|2 exp

[
−αqz −

q2T

κ
(1− e−ω0z)

]
. (122)

Performing the v-integral, we arrive at a simpler expression,

C
(2)
1 (t) =

DT

2κγ0
e−ω0t

[∫ ∞
0

du e−ω0uFj(u) +

∫ t

0
du eω0uFj(u) + e2ω0t

∫ ∞
t

du e−ω0uFj(u)

]
.(123)

Next, we calculate

C
(2)
2 (t1, t2) = 〈X(0)

j (t1)X
(2)
j (t2)〉

= −iγ−1
0 D

∫ t2

−∞
ds e−ω0(t2−s)

∫
ddq

(2π)d
qjq

2

αq
|Vq|2

∫ s

−∞
ds′e−αq(s−s

′)

×
[
αq + γ−1

0 Tq2e−ω0(s−s′)
] 〈
eiq·X

(0)(s′)e−iq·X
(0)(s)X

(0)
j (t1)

〉
, (124)

where we used Eq. (39). The three-time correlation for the probe trajectory in the pre-
vious expression was determined in Eq. (114) and, after assuming t2 > t1, the variable
transformations u = s− s′ and v = t1 − s lead to

C
(2)
2 (t) = −DT

κγ0
e−ω0t

∫ ∞
−t

dv e−ω0v

∫ ∞
0

du
dFj
du

(e−ω0|u+v| − e−ω0|v|). (125)

Performing a partial integration over u and the v-integral, we get

C
(2)
2 (t) =

DT

κγ0
e−ω0t

[∫ t

0
du eω0u(2ω0(t− u)− 1)Fj(u)− e2ω0t

∫ ∞
t

du e−ω0uFj(u)

]
.(126)

Lastly, we need to determine C
(2)
3 (t1, t2) = 〈X(2)

j (t1)X
(0)
j (t2)〉 which is obtained from the

expression of C
(2)
2 (t1, t2) in Eq. (124) by exchanging t1 with t2. After assuming t2 > t1

and using the three-time correlation of the probe trajectory determined in Eq. (114) and
the change of variables u = s− s′ and then v = t1 − s, we arrive at

C
(2)
3 (t1, t2) = −DT

κγ0
e−ω0t

∫ ∞
0

dv e−2ω0v

∫ ∞
0

du
dFj
du

(e−ω0u − 1). (127)

Performing a partial integration over u and the v-integral, we have

C
(2)
3 (t) = − DT

2κγ0
e−ω0t

∫ ∞
0

du e−ω0uFj(u). (128)

Finally, adding Eqs. (123), (126), and (128), and summing over j, we have a simple
expression for the second-order correction to the auto-correlation, i.e., Eq. (45) in which
F(u) =

∑d
j=1Fj(u), i.e., taking into account Eq. (122), F is given by Eq. (46).
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C.3 Long-time behaviour

In order to determine the algebraic behaviour of C(2)(t) at long times, we consider t� ω−1
0

(or, formally, ω0 →∞ with fixed t) and note that the factor e−ω0(t−u)(t−u) in the integrand
of Eq. (45) takes its maximal value ∝ ω−1

0 at u ' t−ω−1
0 , quickly vanishing away from it.

Accordingly, upon increasing ω0, this factor provides an approximation of ω−2
0 δ+(t − u).

As a consequence, in the limit t� ω−1
0 , Eq. (45) renders

C(2)(t) =
DT

γ2
0

∫ t

0
du e−ω0(t−u)(t− u)F(u) ' DT

γ2
0ω

2
0

F(t), (129)

i.e., Eq. (47) after taking into account Eq. (14).

D Power spectral density and its asymptotic behavior

In this Appendix we determine the power spectral density S(ω), i.e., the Fourier transform
of C(t) and discuss its asymptotic behaviours.

D.1 General expression

The correction S(2)(ω) of O(λ2) to the power spectral density S(ω) is obtained by taking
the Fourier transform of Eq. (45) w.r.t. time t, i.e.,

S(2)(ω) =

∫ ∞
0

dt (eiωt + e−iωt)C(2)(t) =
DT

γ2
0

[Z(ω) + Z∗(ω)], (130)

where we introduced

Z(ω) =

∫ ∞
0

dt eiωt
∫ t

0
du e−ω0(t−u)(t− u)F(u)

=
1

(ω0 − iω)2

∫ ∞
0

du eiωuF(u),

(131)

where, in the last line, we used the fact that
∫∞

0 dt
∫ t

0 du =
∫∞

0 du
∫∞
u dt. Inserting this

expression in Eq. (130), with some straightforward algebra, one readily derives Eq. (55).

D.2 Asymptotic behaviors

Here we determine the asymptotic behaviours of S(ω) for ω → 0 and then for ω → ∞.
As the behavior of S(0)(ω) can be easily derived from Eq. (15), we focus below on the
contribution S(2)(ω) due to the coupling to the field. In particular, the leading asymptotic
behavior of S(2)(ω) in the limit ω → 0 is obtained from Eq. (55):

S(2)(ω → 0) ' 2DT

κ2

∫ ∞
0

duF(u) cos(ωu), (132)

with F(u) given in Eq. (46) and displays, for large t, the scaling behaviour highlighted in
Eqs. (49) and (50). Assuming that the interaction Vq regularises the possible divergence
of the integral defining F , such that F(0) is finite, we need to consider the integrand in
Eq. (132) at large u, for which we have that F(u) ∝ u−(1+d/2) for r > 0 and F(u) ∝ u−d/4
for r = 0. Accordingly, for r > 0 or d ≥ 4,

∫∞
0 duF(u) is finite with

S(2)(ω = 0) =
2DT

κ2

∫ ∞
0

duF(u). (133)
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For the purpose of understanding the dependence of the effective friction γ (see, c.f.,
Eq. (72)) on the trap strength κ, we investigate here the behaviour of the integral in
Eq. (133) in the two formal limits κ → 0 and κ → ∞, corresponding to weak and strong
trapping, respectively. Taking into account that ω0 ∝ κ (see Eq. (14)), these limits can
be taken in the integrand of Eq. (46) and the remaining integrals yield

S(2)(ω = 0;κ→ 0) =
2T

Dκ2

∫
ddq

(2π)d
|Vq|2

(q2 + r)[q2 + r + T/(Dγ0)]
, (134)

and

S(2)(ω = 0;κ→∞) =
2T

Dκ2

∫
ddq

(2π)d
|Vq|2

(q2 + r)2
. (135)

In particular, upon approaching the critical point with r → 0, these expressions might
display a singular dependence on r, which is essentially determined by the behaviour of
the corresponding integrands for q → 0. In fact, one finds that

S(2)(ω = 0;κ→ 0; r → 0) ∼ 2γ0

κ2
|V0|2r−1+d/2 Γ(1− d/2)

(4π)d/2
for d < 2, (136)

and

S(2)(ω = 0;κ→∞; r → 0) ∼ 2T

Dκ2
|V0|2r−2+d/2 Γ(2− d/2)

(4π)d/2
for d < 4, (137)

while they tend to finite values otherwise. On the other hand, when r = 0 and d < 4,
the integral in Eq. (133) does not converge but we can use for F(u) in Eq. (132) the
approximate expression at long times given by Eq. (48) with αq = Dq4. After some
changes of variables, one finds

S(2)(ω → 0; r = 0) ∼ 2T

κ2

V 2
0

Dd/4
ω−1+d/4 Ωd

(2π)d

∫ ∞
0

dxxd−1

∫ ∞
0

dv e−x
4v cos v. (138)

The remaining integrals can be done analytically and yield the finite constant π/[8 cos(πd/8)]
and therefore

S(2)(ω → 0; r = 0) ∼ πΩd

4(2π)d cos(πd/8)

TV 2
0

κ2Dd/4
ω−1+d/4, (139)

which is consistent with Eq. (57) in the main text, obtained by using the late-time be-
haviour of the probe auto-correlation.

In order to determine the behaviour of S(2)(ω) for ω → ∞ (physically understood as
taking ω larger than any other frequency scale in the problem) we focus on the expression
of S(2)(ω) in Eqs. (130) and (131) and therefore consider the asymptotic behaviour of∫ ∞

0
du eiωuF(u) = i

F(0)

ω
− F

′(0)

ω2
+O(ω−3). (140)

This expansion is obtained by using the Riemann-Lebesgue lemma and successive integra-
tions by parts, using that F(u), F ′(u) and F ′′(u) are integrable. Inserting this expansion
in Eqs. (131) and (130), one readily finds

S(2)(ω →∞) = −2DT

γ2
0

2ω0F(0)−F ′(0)

ω4
+O(ω−5), (141)

where the numerator of the leading behaviour ∝ ω−4 is a positive quantity given by

2ω0F(0)−F ′(0) =

∫
ddq

(2π)d
q4|Vq|2

(
1 +

2κ+ Tq2

γ0αq

)
. (142)
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