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We thank the reviewer very kindly for the suggestions for im-
provement for our paper, which we have now incorporated into it.
All changes to the actual paper have been highlighted in red-faced
font, and we respond directly to each comment below. We think the
reviewer’s suggested edits have greatly improved the paper, and hope
you will agree that it is now ready for acceptance. Please also note
that we have corrected the author list (we are working on a follow-up
paper and the student second author was included in this paper by
mistake - this is the correct author order for our follow-up paper).
Kindest regards,

Hugo Parischewsky
Alessandro Trani
Nathan W. C. Leigh

e 1. The paper might benefit from an additional figure with trajectories of
the three point objects from one of the runs in the ensemble of simulations
shown in Figure 3. This might illustrate the prevalence of chaos in the
system. This may also be used to illustrate the importance of numerical
chaos as discussed in Section 1.

Response: PTL: Thank you kindly for this excellent suggestion.
‘We have now included this plot in the paper, which is now Figure
1.

e 2. Since the code used in this paper(TSUNAMI) has not been published
yet, it might be useful to include a figure which compares the results of
this code with other popular N-body integrators used in literature. The
authors may highlight how and where TSUNAMI works better than other
codes.

Response: PTL: We have added some text to Section IITA to
elucidate more details about the TSUNAMI code. But the ac-
tual code paper is currently being written, so we defer a more
thorough explanation of the functionality of the code to that
paper. TSUNAMI uses post-Newtonian terms which are crucial
to our experiment. The simulations take less time to integrate



making the required cpu time shorter. We have added more ref-
erences to the papers that have described TSUNAMI in better
detail.

3. Page 7 : It is not clear to me as to why the radial perturbation is
samples uniformly in R? and not r.

Response: PTL: This is because we wanted to sample uniformly
in area, as opposed to sampling uniformly in distance. In any
case, after re-centering the system to the center of mass, the
final is not perfectly uniform in R2, but it has a skewed gaussian
shape.

4. Figure 3: Away from the singularity, there seems to be regions of
regularity embedded in the chaotic regions. It would be useful if the
authors could explain what cause of these regular regions.

Response: PTL: The regions with repeating patterns lie in the
binary-single regime, at the corners of the triangle in the phase-
space plot. In these regions, the initial state of the simulation is
a binary and a single in a free-fall. The repeating pattern occurs
because of the commensurability between the binary period and
the free-fall time. In other words, the binary meets the single
with a similar phase, and consequently the interaction develops
in the same way, leading to the same outcome.

5. Page 14 and Figure 5: It is not clear as to why adding GR effects would
reduce the resolution in Figure 5. It seems that adding GR would convert
some of the red,blue and orange dot to grey ones.

Response: PTL: Indeed, what we called loss of resolution is
in fact loss of information, because large sections of the phase
space in the binary-single regime get reduced since these regions
correspond to very deformed triangles, where one of the sides
is very short and the other two are very long. Due to this,
two particles always merge instantly at the beginning of the
simulation, reducing it to a two-body problem. So we clearly do
not eject any particles when we turn on the PN corrections. We
have rephrased the text to make it clear.

6. Figure 5: It would be useful if the authors used a color other than
grey to plot mergers. It is difficult to identify them against the white
background, especially in the zoom-ins (e.g. zoom in b).

Response: PTL; we have explored different colors and choose a
dark grey as the one who better visualize the unresolved regions.
Here we show both, black and dark grey versions of the plot.
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7. Page 17: Despite the fact that the theoretical predictions are for New-
tonian gravity, it would be useful to compare them with statistical results
of Set C. This way authors could highlight the differences GR would cause.



Response: PTL: Thank you for this suggestion. The statistics
are much poorer for Set C, since the simulations take much
longer to run. So we do not perform this comparison in the
actual paper, but attach for the reviewer a comparison to the
theoretical predictions with and without Set C. As is clear, Set
C is such a small subset of our total suite of simulations that this
leaves our results more or less unchanged. The attached figure
shows this, which is meant to be compared directly with Figure
6 in the paper.
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e 8. Figure 7, Bottom right panel: It is difficult to discern the different
regions of phase space. It would be helpful to use a different color scheme
or normalization.

Response: PTL: As we show in the attached plot, we have played
around with the color scheme a great deal and this was the
one that seemed to reveal or better resolve the features in the
plot. We plot the escape velocity from 103 to 10°° since 99% of
datapoints are within those range, this makes easier to discern
the different regions of the phase space.



Phase space colored by Phase space colored by
binary eccentricity binary semi major axis

1.0 1.8
0.8 0.8
™ 0.6 0.6
Q &
=
w0 0.4 04
0.2 0.2
- L ‘ ! : : : 0.0
0.50 0.75 1.00 125 1.50 1.75 0.50 0.75 1.00 1.25 1.50 1.75
Phase space colored by Phase space colored by
system lifetime escape velocity
" 7 N
3
- 5.0
s
o 2z
[%2] =1
= 1 & 45
w0 3
g’ 3
0s i 4.0

075 100 125 150 175

0.75 1.00 1.25 1.50 1.75
51/5; 51/5;

e 9. Figure 6,7: It might be useful to report semi-major axis and in dimen-
sionless qualities rather than in S.I. units. That way the results could be
easily scaled for other systems.

Response: PTL: Thank you kindly for this excellent suggestion.
We have now normalized our semi-major axes by dividing by
the semi-major axis corresponding to the total initial encounter
energy, or dnom = Gm?/(2|Ey|).The plot was updated.

10. Page 17: It would be useful to quantify various adjectives used while
describing the results. For instance it would to useful to quantify what
the authors mean by wide binaries.

Response: PTL: We have gone through the paper, and done our
best to add explanations to any terms that are ambiguous. Ex-
amples include, explaining what a ”wide” or ”compact” binary
is.

11.Page 17: Do your results change by changing the criteria for ergodicity?
For instance would a choice of N > 2 significantly change the comparison
with theoretical predictions?

Response: PTL: We have checked this, and using a less stringent
cut on the number of scrambles (i.e., N > 2) does not improve
the agreement. We see improved agreement if we use a more
stringent cut (i.e., N > 4).
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e 12. Section 6.1.1 : It is not clear why authors are discussing quantum
mechanical effects in the discussion section when the analysis was based
on purely Newtonian and Relativistic calculations.

Response: PTL: We thank the reviewer for pointing this out,
and ultimately agree. Hene, we have now gone through the
paper to remove the connection to quantum mechanical effects.
We used that as an example, since chaotic regions of phase space
require a probabilistic theory, as do problems where quantum
mechanical effects become important.

e 13. Sections 6.2.1-6.2.2: It would be useful if the authors could elaborate
on these sections with some order of magnitude calculations.

Response: PTL: We have now done this in the indicated sections,
with our edit indicated in red-faced font. We find the time between
binary formation events due to triple single star interaction of 4 Globular
Clusters from Harris Catalog. We asume a total mass of 0.5M, within a
1pc core radius, where the mass-to-light ratio is 2 times the core volumen.
Results are described in section 6.1.1 indicated in red-faced font



Figure 1: Each panel represents trajectories during a three-body encounter for
a different perturbed triangle. Red, blue, and orange stars represent the initial
position for each one of the systems. The black arrows indicate the direction of
the final state of the system, where one of the particles is ejected and a binary
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Abstract

We present numerical simulations of the gravitational three-body problem, in which
three particles lie at rest close to the vertices of an equilateral triangle. In the unper-
turbed problem, the three particles fall towards the center of mass of the system to form
a three-body collision, or singularity, where the particles overlap in space and time. By
perturbing the initial positions of the particles, we are able to study chaos in the vicin-
ity of the singularity. Here we cover both the singular region close to the unperturbed
configuration and the binary-single scattering regime where one side of the triangle is
very short compared to the other two. We make phase space plots to study the regular
and ergodic subsets of our simulations and compare them with the outcomes expected
from the statistical escape theory of the three-body problem. We further provide fits to
the ergodic subset to characterize the properties of the left-over binaries. We identify
the discrepancy between the statistical theory and the simulations in the regular subset
of interactions, which only exhibits weak chaos. As we decrease the scale of the pertur-
bations in the initial positions, the phase space becomes entirely dominated by regular
interactions, according to our metric for chaos. Finally, we show the effect of general rel-
ativity corrections by simulating the same scenario with the inclusion of post-Newtonian
corrections to the equations of motion.
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1 Introduction

The gravitational two-body problem was solved analytically by Newton in his PhilosophizNat-
uralis Principia Mathematica. His work made it possible to predict exactly the positions and
velocities of two self-gravitating point masses at any point in the future, given their initial
masses, positions and velocities.

After Newton, generations of mathematicians and physicists tried to obtain an equivalently
elegant solution for the three-body problem, without success. It was eventually Poincaré [1]
who showed that such a solution would be impossible since the general three-body problem
is an example of chaos in nature.

Many centuries passed with little further progress, but the introduction of computer sim-
ulations in the late 1900’s by Aarseth and collaborators [2-5] re-vitalised popularity in the
three-body problem, allowing researchers to confront their analytic models directly with com-
puter simulations. This allowed for the development of analytic approximations for regions of
phase space that are regular (i.e., the interactions are prompt and never enter a long-lived res-



SciPost Physics Submission

onant state; see [6] and the text below for a more detailed definition). However, only recently
the probabilistic theories of the three-body problem have begun to be explored [7-13].

A prerequisite to having a chaotic three-body interaction is that the system enters a long-
lived resonant state, where all three particles undergo numerous close approaches before the
interaction ends. If the interaction ends promptly, with the incoming single star interacting
with the initial binary components only once before the interaction ends, the interaction is
said to be regular and analytic solutions can typically be found e.g. [14-16].

There are two main states for the time evolution of a chaotic three-body system in a res-
onant state. The first state consists of a hierarchy, which is composed of a temporary close
binary system and a temporary single star going on a prolonged excursion with a total en-
ergy approaching zero but remaining negative. The time evolution is such that the system
continually breaks apart into such a hierarchy, with the temporary single sometimes going on
long-lived and sometimes short-lived excursions. The second state is such that all three parti-
cles are in approximate energy equipartition, leading to a fast and chaotic exchange of energy
and angular momentum e.g. [17,18]. These "scramble states" are needed for the system to
become chaotic, such that the particles lose all memory of their initial conditions, recalling
just the total energy, total angular momentum and the particle masses. The time evolution
continues in this way, inter-changing between these two states chaotically. Eventually, if all
bodies are point particles, the interaction ends with one of the particles being ejected with a
positive total energy and a finite velocity at spatial infinity [9].

Chaos can be defined as occurring when small perturbations to the initial conditions re-
sults in different macroscopic outcomes (e.g., which of the three particles is the one to be
ejected). The extreme sensitivity to the initial conditions manifests itself through the expo-
nential growth of small perturbations that can exhibit unpredictable and divergent behaviour,
yielding completely different outcomes for nearly identical sets of initial conditions [19]. This
implies numerical and physical consequences [20] and, as already mentioned, points to the
need to develop a probabilistic theory for chaotic regions of phase space [10,11,21,22].

This extreme sensitivity to the initial conditions can also result in diverging trajectories
through phase space purely due to the accumulation of numerical errors, which act as small
perturbations to the system at each time-step, effectively mimicking and amplifying the effects
of chaos. We depict this behaviour in Figure 1, by showing the trajectories of the particles in
position space for similar sets of initial conditions. Consequently, a high degree of accuracy and
precision is needed over long-time-scale integrations, to ensure that the simulated solutions
are correct, and to remove the concern of numerical errors mimicking the effects of chaos.
The development of sophisticated gravity integrators has proved essential by reducing the
accumulation of numerical errors, and guaranteeing the reliability of orbital integrations over
long periods of times (i.e., many orbital periods) [20,23-25]. Most dynamical systems display
some aspect of chaos, including solar system small bodies e.g. [26-28], small stellar systems
e.g. [6,10,11,29-33], star clusters e.g. [34,35], galaxies e.g. [36], and so on.

In this paper, our focus is to study chaos in the vicinity of a singularity in the three-body
problem. The singularity we consider is a three-body collision at the system centre of mass,
which occurs when the three particles are released from rest, each initially at the vertex of a
perfect equilateral triangle. This creates a singularity in the gravitational acceleration, since
the particles overlap in both space and time upon reaching the system centre of mass for this
idealized initial configuration. By perturbing the planar equilateral triangle and releasing the
particles from rest, they will arrive at the system centre of mass at nearly the same time, but
slightly offset. In this way, we can probe the interaction outcomes directly in the vicinity of the
singularity, resolving it down to very small spatial scales. Our experiments are designed to be
entirely planar, with each system composed of three point-particles with equal masses, each
located initially at a randomly sampled position for the corresponding vertex for that particle.
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This experiment is in the zero angular momentum limit, since there is no angular momentum
for any configuration initially at rest.

In Section 2, we introduce a number of key definitions used throughout this paper to de-
scribe chaotic three-body interactions. In Section 3, we present our methods and experimental
set-up, including justification for our choice of gravity integrator TSUNAMI [37] and the issue
of regularization, the initial conditions, the number of simulations performed, and so on. In
Section 4 we present the theoretical expressions used to compare analytic theory with our nu-
merical scattering experiments. In Section 5, we present the results of our experiments, with
a focus on comparing the simulated distributions for the final binary semi-major axis (i.e.,
the inverse binding energy distribution), eccentricity, single star escaper velocity, and the total
interaction lifetimes to the theoretical expectations. In Section 6, we summarise our results
and discuss their implications for the three-body problem, chaos in the vicinity of a singularity.
Finally, we discuss the properties of binaries formed via three-body interactions of isolated
single stars in dense isotropic stellar systems.

2 Quantifying Chaos

In this section we introduce several key definitions used throughout the paper to describe
chaotic interactions.

We introduce the concept of ergodicity, its relation to Lévy flights and their combined im-
plications to defining a chaotic interaction in the three body problem. As already discussed,
separating three-body interactions into ergodic and regular subsets is critical for a proper com-
parison between the simulated data and theoretical predictions. The regular subset tends to
correspond to prompt interactions, for which analytic methods have already been developed
to quantify the outcome properties as a function of the initial conditions. The ergodic subset
tends to correspond to longer-lived resonant interactions, and require a probabilistic theory to
quantify the outcome properties as a function of the initial conditions.

2.1 Ergodicity

When comparing simulations of three-body interactions to theoretical predictions, it is crucial
to first define a criterion for when the interaction formally becomes a chaotic one. This is
typically done by quantifying the amount of time all three particles have comparable ener-
gies and are in an approximate state of energy equipartition. If this criterion can be achieved
multiple times, the system gradually loses memory of its initial conditions (i.e., the particles
no longer remember from where they originated in the initial phase space), leaving the sys-
tem only knowing the total interaction energy, the total angular momentum and the particle
masses. Stone and Leigh [11] found that if the system enters two or more such states, which
the authors term "scrambles", then this removes most of the regular subset, leaving beyond
only the ergodic subset of the interactions. More recently, other authors have begun to ex-
plore more sophisticated methods for defining when an interaction formally becomes ergodic
e.g. [13,38].

We also point out that longer integration times for the simulations tend to correlate with
increased error accumulation. As already discussed, this can mimic the effects of chaos. Hence,
one must be careful to manage the errors properly in order to identify the subset of interactions
that should correspond to the true end state of the system (i.e., what nature would produce).
Our methods for managing error accumulation in the simulations are described in detail in
Section 3.
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Figure 1: Each panel shows the trajectories in position-space for all three particles for
different sets of initial conditions. Red, blue, and orange stars represent the initial
positions for each of the particles. The black arrows indicate the directions of ejection
for all three particles, where one of the particles is ejected as a single particle and
the other two form a binary system
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2.2 Lévy flights

Lévy flights correspond to very long excursions of one of the particles, where the particle has
nearly zero but still negative total energy and remains barely bound to the system. These
correlate with very long integration times, since the duration of these excursions can be very
long e.g [39,40].

The nature of Lévy flights remains an open research question. Lévy flights are a class of
random walks with a heavy-tailed distribution. In our context, a Lévy flight is an extremely
long excursion following a fast chaotic interaction (see [39—41]), whereas interactions without
exceedingly long Lévy flights tend to follow an exponential drop-off in the cumulative interac-
tion lifetimes, which can be described using a half-life formalism (see [13,38-40] for a more
in-depth discussion of the relevant physics).

The importance of Lévy flights for defining chaotic interactions is still not completely un-
derstood. For example, consider a three-body interaction that undergoes a very long excur-
sion or Lévy flight with the energy of the single being very close to zero. The interaction ends
promptly at the end of the Lévy flight, with the single interacting once with the temporary
binary followed by a prompt ejection and the end of the interaction. If this experiment is
repeated with minute perturbations to the initial conditions, one can imagine that these sim-
ulations, grouped very closely together in phase space, will all end with a prompt ejection of
the returning single, only altering the properties of the ejected single and the left-over binary
very slightly. This would, at least in principle, introduce a small regular subset into three-body
interactions that were already defined as being chaotic, having achieved our chosen criterion
for ergodicity. These subsets should occupy sufficiently small phase space volumes, however,
that they should constitute <1% of our chaotic subset.

2.3 Scramble cut

A scramble is defined as a temporary state in which all three particles have comparable energies
and are not in a hierarchical configuration. We define Ny as the number of scrambles, which
is the number of times the system has entered into such a temporary state of approximate
equipartition. If the system achieves approximate energy equipartition, it can lose all memory
of the initial conditions and become ergodic, retaining only memory of the particle masses, the
total interaction energy and the total angular momentum. Stone and Leigh [11] showed that
two or more such scrambles are a sufficient criterion to remove most of the regular regions of
phase space, leaving only the ergodic subset. In this paper, if a three-body interaction satisfies
the criterion Ng > 4, where Ng is the number of scrambles, it is defined to be a chaotic or
ergodic interaction. After applying this cut, we find that 82.1% of our simulations correspond
to the chaotic region and 17.9% to the regular region.

3 Method

In this section, we describe the numerical simulations used to perform all numerical exper-
iments conducted in this paper. We first present TSUNAMI, the gravity integrator we use to
compute the time evolution of our three body systems, before moving on to describing how
we define our initial conditions and set up our experiments.

3.1 N-body Integrator

We use TSUNAMI [37], a few-body code ideally suited to follow the time evolution of strongly
interacting systems. TSUNAMI manages the computations using sophisticated regularization
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techniques to achieve the required accuracy and precision, which are needed to properly model
very close approaches between particles.

TSUNAMI implements a leapfrog scheme derived from a time-transformed Hamiltonian,
using a combination of the logH and TTL schemes [42,43]. Here we use only the logH formu-
lation. Because the leapfrog scheme is accurate only to 2nd order, we increase the accuracy
of the integration by employing a Bulirch-Stoer extrapolation scheme [44] with a tolerance of
107!, TSUNAMI also includes the post-Newtonian terms of order 1, 2 and 2.5 [45]. For more
details on the implementation and performance of TSUNAMI, we refer to [46].

3.2 Initial conditions

In the following sub-sections, we describe how the initial conditions for our suites of numerical
simulations are defined.

3.2.1 Unperturbed initial configuration

The initial conditions are generated by perturbing the positions of the particles from the unper-
turbed triangular configuration. The unperturbed triangular configuration is described here.
We label each particle with the numbers 1,2,3, which also indicate the side of the triangle
that each particle opposes. The initial, unperturbed positions for the particles 1 and 2 are
P, = (x1,¥1,%21) = (1.5,1.5,0) and P, = (x5,Y,%,) = (2.5,1.5,0). Note that the triangle
side is 1au. This represents a perfect equilateral triangle, where each side will have a length
sp = (] — x9)? — (1 — ¥2)*)®° in Cartesian coordinates. The initial position of particle P,
was then calculated as:

X3 = X1+_, (1)

SA 23 0.5
Y3 = J’z"‘(SZA—(?) ) . (2)
We set z = 0, and focus on purely 2D coplanar configurations.

3.2.2 Perturbed initial configurations

We perturb the initial positions of the particles in the following way. The position of every
particle is chosen within a radius of size rg, from the vertex, as shown in Figure 2. First,
we randomly draw a perturbation radius r within a circle of r,e,. Since r represents a radial
perturbation, we randomly sample it from a distribution uniform in rgen. The position of each
particle is perturbed by the same amount r, but with a radial direction that is independently
drawn for each particle. Specifically, the direction of the perturbation is set by the angles 6,
6, and 05 for particle 1, 2 and 3. The angles are sampled from a uniform distribution in the
range (0, 27).

We generate three different sets of simulations with different perturbation magnitudes, in
order to increase sampling in the vicinity of the singularity and to re-perform our calculations
with post-Newtonian corrections turned on. To explore the entire phase space, we first sample
each generated particle within a rge, = 0.5au circle positioned at the vertex of the oppos-
ing side of the triangle. To explore the vicinity of the singularity we increase our sampling
resolution and use instead rye, = 1077 au.

We assume identical point particles and purely Newtonian forces for Set A and Set B. In
Set A we assumes a vertex radius of 0.5 au, while for Set B, the sampling is performed using
a vertex radius of 1077 au.
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Figure 3: Left panel: three perturbed triangles configurations. The green circles
indicate the boundaries where each new particle can be generated. Top-right panel:
initial state of the system corresponding to an equilateral triangle 1 au side. Bottom-
right panel: the distribution of perturbation radius, defined as the distance from the
perturbed position to the vertex of the triangle.
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Table 1: For Set A and Set B, the initial particle positions are sampled following
the procedure described in Section (3.2.2). For Set C, the initial configurations are
shown in Section (3.4). The variable r, corresponds to the Schwarzschild radius for
a 1M, particle.

Number of Particle Vertex
Simulations radius radius [au]
Set A 107 Point particle 0.5
Set B 5x 10° Point particle 1077
SetC  5x10° 500, 0.5

We re-run the same simulations in Set C but with post-Newtonian corrections turned on.
These are required very close to the singular regions in the three-body problem, in order to
avoid nonphysical solutions (e.g., escape velocities for the single star that exceed the velocity
of light). This requires the introduction of a critical radius to define the conditions for a merger
to occur, which we will come back to in more detail below. The initial particle velocities are
always zero and the particle masses are all set to 1 Mg,

Table 1 shows the number of simulations performed for each set (Column 2), the particle
radii (Column 3), and our choices for the sampling radii rye, (Column 4).

As shown in Figure 2, for every new triangle that we generate, we re-compute the lengths
of each side, where S; S, and S5 represent the initial lengths of the sides opposing particles 1,
2, and 3, respectively. These choices are made to set a good balance between drop-in time and
the total number of simulations we can perform (i.e., shorter drop-in times result in simulations
that finish quicker, hence we can perform more simulations for a constant total real-time run-
time), and to connect each one of the possible initial configurations to the properties of the
ejected particle and the left-over binary (see Figure 4 and Figure 8).

3.3 Ejection criteria

To determine when a particle is ejected from the system, we check the state of the system
at every time step (each simulation has a maximum integration time of 10° yrs). The most
bound pair is defined as the binary, and at every time-step, we check if the ejected single
remains bound to the binary centre of mass. The integration stops if the escaping single star
has positive total energy and the final hyperbolic binary-single orbital separation is 100 times
that of the most compact binary semi-major axis.

Roughly 0.12% of our simulations in Set A did not finish, i.e the integration time needed
for some systems to fulfill our ejection criteria is longer than our total integration time. This
is typically due to long-lived Lévy flights, where the return time of the escaper exceeds our
chosen maximum integration time. This represents a negligible fraction of our simulations,
and our results remain unchanged without these simulations.

3.4 Simulations with post-Newtonian corrections

We use Set A to define our initial particle positions, but set the radius of each particle to be
equal to 500 times the Schwarzschild radius. Particles are assumed to merge using the sticky-
star approximation: if the particle radii overlap in both time and space, we assume a merger
occurs. We choose 500 Schwarzschild radii for the following reasons. First, when two particles
are closer than this distance, they are practically decoupled from the rest of the system, and the
binary will merge very quickly. Second, the post-Newtonian approximation used to correct the
Newtonian acceleration begins to break down at around this distance [45]. Third, by avoiding



SciPost Physics Submission

integrating the final part of the inspiral we save a great amount of computational run-time.
This is because, as the period of the merging binary decreases, the post-Newtonian corrections
would start to dominate and the integration time would increase. This scenario is avoided
by choosing 500r, for the particle radius and by adopting the sticky-star approximation to
determine when the particles merge (i.e., when their radii overlap in both time and space)

4 Theoretical Expectations

In this section, we describe the theoretical expressions (see Chapter 7 of [47]) for the expected
distributions of the final binary orbital energy or, equivalently, the final binary semi-major
axis (i.e.,the inverse binding energy distribution), the final binary eccentricity, the single star
ejection velocity and total system lifetime, for comparison to our numerical scattering results.

4.1 Dividing the phase space into ergodic and regular subsets

In order to properly compare our simulated data to theoretical expectations, the simulations
must first be divided into chaotic and regular subsets. This is done using the criterion defined
in Section 2.3. In Section 5, we will perform our comparisons with and without applying these
cuts, to better understand how the chaotic and regular subsets are each contributing to the
total distribution (i.e., without applying any cuts for ergodicity).

4.2 Orbital energy distribution

We use the inverse orbital energy distribution we obtain from our simulations to compare to
the theoretical binary orbital energy distributions provided in [47] and shown in Figure. 7. As
we are working with particles released from rest, the initial kinetic energy is equal to zero. We
can thus write the initial energy in terms of the potential energy alone, and the binary binding
energy in terms of the binary semi-major axis:

m;m m;m mom

EO=—G(12 1M 23)’ 3)
[ty —1o| [y —13]  |ry—r3]
m,m

Ep = —G( “ ”). 4
2a

The variables m, and m; correspond to the particle masses in the final left-over binary
post-interaction.

The distribution used in [47] for the inverse orbital energy is given by Equation 5, where
% = |Ey|/|Eg| corresponds to the inverse binary orbital energy. For the planar case, this is

f(z) = 3.5, (5)

4.3 Eccentricity distribution

We compare our simulated results to several different theoretical eccentricity distributions in
Figure. 7. These are described below.

The thermal distribution for the binary eccentricity, which assumes a detailed steady-state
balance between binary creation and destruction [48], is given by Equation 6 :

f(e)de = 2ede. (6)

10
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In the planar case, the eccentricity should be distributed as Equation 7

f(e)de =e(1—e2)2de. (7)

The power-law index on (1—e?) is taken to be —1/2, which is appropriate for the low angular
momentum limit [8,49].
4.4 Escape velocity distribution

We adopt Equation 7.19 in [47] for the escape velocity distribution shown in Figure. 7. This
is appropriate to the planar case and is given by

(3.5Eo|""(m;M /mp))v,dvs
(IEo| + 5(m,M/mp)v2)°/2

fvs)dvg (8)

5 Results

In this section, we present the results of our numerical scattering experiments. We begin by
presenting the phase space plots for our zero angular momentum equilateral triangle set-up,
before moving on to the final calculated distributions for the post-interaction binary orbital
energy, orbital eccentricity, escaper velocity and total system lifetime. We then compare these
to the expected theoretical predictions, using our phase space plots to identify the origins of
the disagreements between our theoretical calculations and the simulated data.

5.1 Phase space divided by ejected particle identity

We represent the initial phase space in 2 dimensions, so that each point in this space corre-
sponds to a unique initial configuration (i.e. a single simulation). For our purpose, the param-
eters chosen for the X and Y axes are the ratios between the lengths of the sides of each of the
generated triangles, as shown in Figure. 3. Here, S;, S, and S5 correspond to the lengths of the
sides opposing, respectively, particles P;, P,, and P;. We then plot the ratios S;/S, and S;/S;
on each axis to construct our phase space plots for the outcomes of the perturbed equilateral
triangle experiment. In this coordinate system, the singularity is located at the coordinates
(1,1), and corresponds to the initial conditions for a perfect equilateral triangle.

We colour-code each data point, using the colour associated with the ejected particle (see
Figure. 4). In this case, uniform swaths of colour correspond to prompt regular outcomes (i.e.,
these initial configurations evolve passing through 4 or less scrambles) and multi-coloured
patches correspond to chaotic regions of phase space (i.e., systems that experience more than
4 scrambles in their lifetime).

5.1.1 Full phase space

The central panel in Figure 4 shows the phase space limitedto 0 < S;/S, <3and0 < S;/S3 <3
for the interactions of Set A.

Near the singularity, we see regular swaths of uniform colour, separated by chaotic regions
of phase space. In the regular regions, small perturbations to the initial state (i.e., equilateral
triangles where the particles have similar initial positions) do not lead to a different particle
being ejected. In the multi-coloured regions of our phase space corresponding to chaotic or
ergodic regions, the identity of the ejected particle is very sensitive to the initial conditions,

11
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Figure 4: Phase space plot, color-coded by ejected particle. X- and y-axes indicate the
ratio between the sides S;/S, and S; /S5 of the perturbed equilateral triangles. The
singularity is at S;/S, = S;/S3 = 1, corresponding to a perfect equilateral triangle.
Each subsequent inset corresponds to a zoom-in on the regions in the phase space.
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Figure 5: Same as Figure 4, but zoomed on specific regions of the phase space. Top
panels, left to right: each subsequent inset on the top is a zoom-in on the singularity
(see panels a,b,c, and d). Bottom panels e and g zoom on the regime of binary-single
scattering, where one side is very small compared to the others. Bottom right panels
f and h: the zoomed-in version of the two different shapes we see emerging in panels
eand g.

causing different particles to be the ones ejected in spite of very minor changes to the initial
conditions.

Moving away from the central singularity, we see emerging more and more chaotic re-
gions of phase space. Moving far from the singularity to initial conditions corresponding to
extremely deformed triangles, the phase space has three arms. In each arm, the initial con-
figuration is approaching the binary-single scattering regime, since the length of one of the
sides of the triangle is very small. The arm that goes to the top represents the deformation
of the triangle where particle P; (coloured by orange) is initial far from particles P; and P,.
Similarly, the arms that goes to the right and the left bottom represent the deformation of the
triangle where the particles P, (coloured by blue) and P; (coloured by red) are far from the
others.

5.1.2 Zoom-in on the singularity

In Set B, the perturbations to the equilateral triangle are very small. Therefore, we can better
appreciate the behaviour of the system very close to the three-body collision.

Each top panel in Figure. 5 is a subsequent zoom-in on the central singularity, with the
zoom-ins becoming more extreme going from left to right. We see regular coloured regions
with clear boundaries separated from the chaotic ones. As we zoom-in more and more on
the central singularity, we find that the chaotic regions disappear to eventually become fully
regular in the vicinity of the singularity (i.e., we see only regular patches in uniform colors).

13
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Panel a is a zoom-in on the singularity for Set A. We see regular uniformly coloured re-
gions with clear boundaries separated from the chaotic ones. In panel b (a subsequent zoom-in
on the singularity corresponding to panel a) we see a plume of uniform colour emerging in
between the red and yellow swaths of regular regions of uniform colour. This blue plume be-
comes prominent as we zoom-in more, until eventually we are left with only uniform colouring
in the vicinity of the singularity as it is shown in panel d. Here we find that the chaotic regions
disappear and the phase space becomes fully regular in the vicinity of the singularity.

5.1.3 Zoom-in on the binary-single regime

The bottom left panel of Figure 5 shows the same phase space as Figure 4 of our Set A , but
for smaller values of S;/S, and S;/S3. The right middle pair of panels shows the binary-single
scattering regime. The bottom right figures show two zoom-in on the regular regions of the
binary-single scattering regime.

The three corners of the phase space in Figure 5 correspond to the binary-single scattering
regime, where two of the bodies are very far from the third. In panel e, we see regular regions
repeating at approximately regular intervals, which are separated by chaotic patches of phase
space. The first three regular regions have roughly the same shape (see panel f). However,
the second zoom-in panel reveals two bulges arising from the centre of each regular region
(see panel g). The bulges increase in size as we move farther into the extreme binary-single
scattering regime (see panel h). Importantly, the regular structures do not disappear and
appear to continue indefinitely down to increasingly small scales.

5.2 Including post-Newtonian corrections and general relativistic effects

Very near to the singularity, general relativity should begin to become important as the dis-
tance between the particles approach the Planck scale. We re-perform our suite of scattering
experiments, adopting the same sets of initial conditions, but now including post-Newtonian
corrections to account for the effects of general relativity. The results of this exercise are shown
in Figure 6, which shows how Figure 5 changes when general relativity is accounted for.

We find that turning on general relativity (i.e turning on post-Newtonian corrections)
causes us to lose information in the binary-single regime. This is made evident by the light-
grey data points, which correspond to prompt mergers of two of the particles. This loss of
information (i.e., chaotic and regular zones of the parameter space are replaced by the grey
area) occurs because the two black holes merge quickly when they approach the Schwarzschild
radius, because of gravitational wave radiation losses. In the binary-single regime of the phase
space, two particles always begin very close together at the beginning of the simulations. This
is not a problem for the Newtonian regime, but leads to quick mergers in the post-Newtonian
regime.

5.3 Comparison with theoretical expectations

In this section, we present our final simulated distributions of binary orbital energies, orbital
eccentricities, escaper velocities and total system lifetime, and compare the results to the the-
oretical expectations provided in Section 4. Because the statistical theory is based on purely
Newtonian physics, we compare it only with our Set A, which does not include post-Newtonian
corrections.

5.3.1 Distributions of outcome properties

In the top panels of Figure 7, the histograms show the final distributions of binary energies,
binary eccentricities, ejected particle velocities, and system lifetimes. The distributions are
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Figure 6: Same as Figure 5, but employing post-Newtonian corrections. The dark
grey dots correspond to simulations ending in a two-body collision, or merger.

separated into regular (all simulations with Ng < 4) and ergodic (all simulations with Ng > 4)
subsets, along with the entire suite of simulations in Set A. The criterion for separating the
two subsets is Ng > 4, as discussed in Section 2.3.

In the middle panels of Figure 7, the histograms show the distributions of initial system
energies, binary orbital energies, and the inverse binding energies. Relative to the theoretical
expectation, we find too many compact binaries (i.e., binary stars with energies E,/Ep < 0.6
) and obtain not enough wide binaries (i.e., binary stars that with energies E,/Eg = 0.6).

In the bottom panels of Figure 7, the histograms show the distributions of binary orbital ec-
centricities, ejected particle velocities and inverse binding energies, respectively, and compare
them with our theoretical expectation (see the equations in Section 4). Our results produce an
excess of eccentric binaries relative to a thermal distribution (Equation 6), but agree overall
quite well with the zero angular momentum distribution (Equation 7). Relative to the theoret-
ical expectation for the ejection velocities (Equation 8), we obtain an excess of high-velocity
escapers and a lack of low-velocity escapers.

5.3.2 Phase space distribution of outcome properties

Figure 8 shows the initial phase space plots colour-coded by the properties of the final particles.
The use of the initial phase space plots is particularly useful to identify the regular regions,
which are likely the cause of the disagreement between the simulations and the statistical
theory.

In the zero angular momentum limit, our naive expectation is to preferentially produce
compact binaries with high eccentricities (i.e., binaries with low orbital angular momentum).
But this is not always observed in our experiments. This occurs because the escaper tends to
carry away some significant angular momentum, requiring the binary to retain the remaining
reservoir of angular momentum (but going in opposite directions in order to cancel out to
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Figure 7: Distributions of outcome parameters. The green lines show the distribu-
tions for our entire suit of experiments, blue lines correspond to the regular subset
where Ng < 4, the red line correspond to the ergodic subset where Ng > 4. Bottom
panels show the ergodic subset along with the theoretical curves shown in 4.

zero). This is clearly observed in Figure 8 upon comparing the ejection velocities to the orbital
properties of the binary. The final binary semimajor axes in the top right panel of Figure 8 are
expressed in units of
Gm?
norm = _Z_EO, )

that is the semimajor axis corresponding to the initial energy of the system.

Focusing on the exterior boundaries of the regular regions surrounding the central singu-
larity, we observe higher ejection velocities corresponding to higher eccentricities and wider
binaries. Conversely, focusing on the interior boundaries of the same regular regions, we see
higher ejection velocities correlating with low eccentricities and more compact binaries. Focus-
ing on the singularity, we observe compact binaries correlated with high eccentricities and high
ejection velocities. In the limit of the escaper velocity becoming very low, we tend to observe
either high eccentricities and wide binaries or low eccentricities and compact binaries, since
the escaper is no longer able to carry away much angular momentum, or Lg ~ 0. Conversely,
as the escaper velocity reaches its maximum near the singularity, we observe more compact
binaries and higher eccentricities, since the binary is left with little to no remaining angular
momentum. It is for these reasons that we observe a supra-thermal eccentricity distribution
(e.g., [11]) and a binary orbital energy distribution that prefers compact binaries.

The shortest-lived systems (i.e., those that satisfy the ejection criteria during the early in-
tegration times of the system) are closest to the singularity, with the external borders of the
main regular regions reaching the longest lifetimes, and correlating with low ejection veloc-
ities, high eccentricities, and compact binaries. Very near to the singularity, the very short
interaction lifetimes likely indicate regular interactions, which is consistent with the progres-
sive zoom-in on the singularity shown in Figure 5. The low lifetime regions are surrounded
by a narrow strip of very long Lévy flight interaction (i.e., one of the particles goes on a long
excursion before the ejection criteria is satisfied), consistent with the results of [38].
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Figure 8: Color-coded phase space plot showing the final binary semi-major axes in
units of a,,,, (top left panel), orbital eccentricities (top right panel), escaper ejection
velocities (lower right panel) and total system lifetimes (lower left panel).
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Figure 9: Top panels: phase space for the ergodic subset near the singularity (left)
and in the binary-single scattering regime (middle and right). The bottom panel
shows the same regions of the top panels, but for the regular subset instead.
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5.3.3 Weak chaos and the disagreements between theory and simulations

In this section, we summarize our findings regarding the disagreements between our theoret-
ical expectations and simulated results, as presented in the previous sections. This is done
in an effort to identify their origins using the post-interaction distributions of binary orbital
energies, orbital eccentricities and escaper velocities. In this section, we divide our total suite
of simulations into ergodic and regular subsets. To do this, we select our data following the
the scramble number criterion discussed previously in Section 2.3 (Ng > 4), and isolate most
of the regular regions from the chaotic ones. Approximately 17.9% of the simulations belong
to the regular regions and 82.1% belong to the ergodic regions, revealing that most of the
parameter space is chaotic.

One of the main inconsistencies of the data with our theoretical expectations is the bump
at z = 0.71 in the inverse binding energy distribution (see the right-hand middle panel of
Figure. 7). In order to identify the origin of this bump, we plot separately the distributions for
the ergodic and regular subsets for both E, and E;. We find a misalignment between the peaks
of the regular E, and Ej distributions relative to the medians (see middle insets of Figure. 7).
The origin of this misalignment can be traced back to the slightly asymmetric distribution of
initial binary orbital energies from which we sampled our initial conditions, which slightly
over-populate the hard end of the distribution relative to the soft end.

As a consequence of this misalignment, we expect a bump in the regular subset of the
inverse binding energy distribution, as seen in the right-most middle panel of Figure. 7. In
fact, the ratio between the medians of the E; and Ep distributions matches the peak in the
inverse binding energy distribution for the entire suite of simulations, therefore confirming
that the origin of the misalignment is in the regular, and not in the ergodic, subset.

5.3.4 Ergodic and regular phase space

We can better appreciate the clear distinction between regular regions and the chaotic regions
by separating them in the initial phase space plots of Figure. 4.

Figure 9 shows the region of our phase space close to the singularity for which S;/S, =
S1/S3 (left column) and the binary-single regime (S; > S,, S3 (middle and right panels). The
last two panels show a zoom-in of the middle panels. The top row shows the ergodic subset,
and the bottom row shows the regular subset. As expected, our scramble criterion neatly
separates the regular and chaotic regions, including the triangle-shaped regions around the
singularity and the self-repeating structures in the binary-single regime.

6 Discussion & Summary

In this paper, we consider an idealized initial configuration of the general three-body problem,
in order to study chaos in the vicinity of a singularity in the general N-body problem. The
experiment we perform is to construct an equilateral triangle, with the initial positions of
the three identical particles located at each vertex. For a perfect equilateral triangle, all three
particles will eventually collide at the centre of the triangle in a three-body collision, if released
from rest at the same time and all particles have equal masses. This would give rise to a
singularity in the Newtonian acceleration because the particles would occupy the same position
in space and time at the system centre of mass. By perturbing the triangle and re-performing
the experiment, the particles arrive at the origin slightly offset in space and time. The larger
the perturbations, the farther is the parameter space from this singularity.

We perform in total 107 simulations using the TSUNAMI code [37]. The large suite of
simulations proves necessary in order to generate phase space plots with sufficient resolution
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to be interpretable (i.e., the chaotic and regular zones of the parameter space are clearly
identified). With our final suite of numerical simulations, we generate the final distributions
of binary orbital energy, orbital eccentricity, escaper velocity, and total interaction lifetime.
We then compare these distributions to the standard theoretical expectations provided in the
literature. We find significant differences in the final orbital properties of our binaries, relative
to the theoretical expectations, including more eccentric orbits and a higher fraction of more
compact binaries. Using our phase space plots, we explain the origins of these differences,
which primarily come down to the total angular momentum carried away by the escaping
single star. For example, in the limit of v, — 0, the left-over binary tends to be more circular,
since it contains the entire angular momentum reservoir of the interaction.

Finally, using our results for this idealized experiment in the zero-angular momentum limit,
we make predictions for the expected properties of binaries formed via three-body interactions
of initially isolated single stars in very dense environments. We expect these predictions to
be most applicable to star clusters with isotropic stellar velocity distributions and little to no
rotation.

6.1 Astrophysical implications

In this section, we discuss the properties of binaries formed via three-body interactions in dense
environments, and compare our results to theoretical expectations for the ergodic subset of
our simulations.

6.1.1 Three body binary formation in isotropic clusters

In isotropic star clusters, binaries formed from three-body interactions of initially all single
stars should have a low total angular momentum. This is because there is little to no angular
momentum in the cluster, and the stellar orbits are such that three single stars that meet
near the cluster centre of mass should be on nearly radial orbits, causing the three stars to
approach their common centre of mass with small impact parameters. In the opposite limit of
high angular momentum and three-body binary formation in clusters with significant rotation,
we would expect the opposite. That is, the three stars should all approach their common centre
of mass with large impact parameters, causing the total angular momentum to be large, since
the orbits tend to be less radial and more tangential due to rotation. In this paper, we focus
on the zero angular momentum limit, and defer the rotating case to a future paper.

We expect binary formation via 1+141 scatterings to be the dominant rate in very dense
environments [50]. The rate is given by [51]:

i ) kms™yo 5
(F)=1o110 (55 o) (=) e, o

where n is the number density, m is the average mass and v, is the 3D root-mean-square
velocity. Assuming m = 0.5 M, a mass-to-light ratio of 2 and multiplying by the core volume
of a typical globular cluster (i.e., assuming a core radius of 1 pc), we find using values taken
from the Harris globular cluster catalog [52] for NGC 362, NGC 6397, NGC 6256 and NGC
6522 that the time between binary formation events due to 14+1+1 scatterings of all single
stars are, respectively, ~ 609 Gyr, 22 Myrs, 2.2 Gyrs and 5.5 Gyrs. Hence, although often rare,
binary formation due to 14+1+1 scatterings of all single stars do occur in the densest Milky
Way globular clusters well within the lifetime of the cluster. Post-core collapse clusters are
therefore the most likely to harbour binaries formed via 14141 interactions.
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6.1.2 Binary properties

For the ergodic subset, stars are ejected at higher velocities relative to the theoretical expecta-
tion. Hence, the single star can take away a significant fraction of the total angular momentum
reservoir. In this limit, we produce more wide binaries relative to the theoretical expectation,
along with very high eccentricities. In the limit that the single star takes away no angular mo-
mentum (i.e., its final velocity at infinity is zero), we find more compact binaries and smaller
eccentricities relative to the theoretical expectations.

Overall, our results suggest that binaries formed from three-body interactions in isotropic
star clusters should end up with orbital parameters that correspond to rapid coalescence for
binaries composed of two black holes due to the emission of gravitational waves (GWs). We
tend to find either compact circular binaries or wide very eccentric binaries. In both cases,
the merger times will be short, since the timescale for a merger to due gravitational wave
emission is proportional to the binary orbital separation o< a* (i.e., more compact binaries
merge faster) and also proportional to (1 —e®)”/? for the orbital eccentricity [53].
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