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Abstract1

The hyperscaling relation and standard finite-size scaling (FSS) are known to break down2

above the upper critical dimension due to dangerous irrelevant variables. We establish a3

coherent formalism for FSS at quantum phase transitions above the upper critical dimen-4

sion following the recently introduced Q-FSS formalism for thermal phase transitions.5

Contrary to long-standing belief, the correlation sector is affected by dangerous irrele-6

vant variables. The presented formalism recovers a generalized hyperscaling relation7

and FSS form. Using this new FSS formalism, we determine the full set of critical ex-8

ponents for the long-range transverse-field Ising chain in all criticality regimes ranging9

from the nearest-neighbor to the long-range mean field regime. For the same model, we10

also explicitly confirm the effect of dangerous irrelevant variables on the characteristic11

length scale.12
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1 Introduction34

Finite-size scaling (FSS) provides an important tool for extracting critical properties from finite35

systems. It allows one to extrapolate to the thermodynamic limit by exploiting the generalized36

homogeneity of observables provided by renormalization group (RG) theory [1]. In spite of37

being widely used for several decades already, FSS has been insufficiently understood above38

the upper critical dimension duc for a long time. In the context of RG theory, FSS [2] has been39

proven below the upper critical dimension [3] and the breakdown of which for d > duc has40

been identified to be due to the presence of dangerous irrelevant variables (DIV) in the free41

energy sector [4,5]. Even though irrelevant variables flow to zero under successive renormal-42

ization, a DIV cannot be set to zero as the free energy density f is singular in this limit [4]. In43

contrast, the correlation sector was thought to be unaffected by DIV for a long time [4, 6–9].44

This breakdown of FSS is often associated with the breakdown of hyperscaling45

(d + z)ν= 2−α (1)

which is clearly violated above the upper critical dimension, where the critical exponents do46

not depend on the dimension anymore [6]. Historically, in an attempt to fix FSS above the up-47

per critical dimension for thermal phase transitions, an additional characteristic length scale,48

the so-called thermodynamic length scale, was introduced [5, 7, 10]. Although this approach49

is capable of producing correct results in many frameworks [7, 10–17], the theory does not50

capture the full picture in a coherent way [9, 18, 19] as it neither explains the anomalous51

scaling of the characteristic length scale ξ [20] nor the anomalous decay of the correlation52

function [14,19,21–23] above the upper critical dimension. Moreover, the theory is based on53

the disputable claim that the correlation sector is unaffected by the DIV [6–9,19].54

Recently, the topic of FSS above the upper critical dimension has been revisited for thermal55

phase transitions [9, 18, 19, 24]. By relaxing the claim that the characteristic length scale ξ,56

that diverges at the critical point, is bound by the linear system size and allowing the corre-57

lation sector to be affected by DIV, they derived a coherent picture of FSS above the upper58

critical dimension for classical systems, called Q-FSS [9, 19, 24], and derived a generalized59

hyperscaling relation [18,24]. We aim to transfer Q-FSS to quantum phase transitions, which60

we refer to as quantum Q-FSS, pointing out the necessary steps while stressing the differences61

and connection to the classical counterpart.62

Besides the need for a fundamental understanding of FSS, finite-size effects inevitably play63

a role in experiments and numerical simulations of finite systems. For systems which can be64

modelled by a theory above the upper critical dimension, there is a demand for a generalized65

FSS formalism which is also applicable in the regime d > duc. In particular, the upper criti-66

cal dimension becomes accessible in low dimensions for systems with unfrustrated long-range67

interactions as these lower the upper critical dimension with respect to the short-range coun-68

terparts [25]. These long-range interactions have received a lot of interest in quantum systems69

lately as they exhibit remarkable quantum critical properties [26–30].70
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Algebraically decaying interactions are present in dipolar systems such as Rydberg atoms71

[31] and in systems of trapped ions [29,32–42], where the decay exponent of the long-range72

couplings ∼ |x|−d−σ can be continuously tuned [29,39–42]. It shall be explicitly stressed that73

those experimental platforms realize systems with a mesoscopic number of well controlled74

entities in contrast to solid-state bulk systems.75

With vast progress being made in the experimental realization of long-range interacting76

quantum systems, the demand for a theoretical understanding of this long-range regime has in-77

creased. In particular, the long-range transverse-field Ising model (LRTFIM) with algebraically78

decaying Ising couplings has become a paradigmatic model to study the effects of long-range79

interactions [25,43–54]. For a ferromagnetic coupling, those give rise to a continuum of uni-80

versality classes for small decay exponentsσ going over to a mean field regime for even smaller81

σ [47, 48, 51–54]. In this regime, simulations of finite systems cannot be extrapolated to the82

thermodynamic limit within the standard formalism [52]. Even methods operating in the ther-83

modynamic limit potentially need to make use of a generalized hyperscaling relation that is84

also valid above the upper critical dimension for extracting the whole set of critical exponents85

in all criticality regimes.86

Following the spirit of classical Q-FSS [18], we provide a quantum Q-FSS formalism unify-87

ing the scaling predictions from RG with the criticality known from mean field calculations. In88

the course of this, we will derive - similar to the classical case [18] - a generalized hyperscaling89

relation which is also valid above the upper critical dimension. We will validate our theory90

by applying it to numerical data of the one-dimensional ferromagnetic LRTFIM obtained by91

quantum Monte Carlo (QMC) simulations and high-order series expansions using perturbative92

continuous unitary transformations (pCUT) and demonstrate the extraction of the full set of93

critical exponents using quantum Q-FSS.94

The paper is divided into three main parts: Sec. 2 covers the theoretical part of this pa-95

per in which we derive quantum Q-FSS, while in Sec. 3 we validate quantum Q-FSS based96

on a numerical study of the one-dimensional ferromagnetic LRTFIM. We give a conclusion of97

this work in Sec. 4. In detail, we start Sec. 2 with a brief description of the necessary scaling98

framework in the vicinity of a continuous quantum phase transition. Adressing the scaling of99

finite systems, we first consider the well-behaved szenario below the upper critical dimension100

in Sec. 2.1. Quantum Q-FSS is then gradually derived in Sec. 2.2 starting with a treatment of101

DIV similar to the classical case which leads to a modified scaling of observables. In Sec. 2.2.1,102

a necessary argument that fixes the scaling with the linear system size is transferred to the103

quantum case. As the main results, a generalized hyperscaling relation and quantum Q-FSS104

are presented in Sec. 2.2.2 and Sec. 2.2.3 respectively. In Sec. 2.2.4 we draw the connec-105

tion to classical Q-FSS and discuss different perspectives on the modified scaling above the106

upper critical dimension. In Sec. 3 we verify quantum Q-FSS and the generalized hyperscal-107

ing relation derived in Sec. 2 by numerically calculating the full set of critical exponents of the108

one-dimensional LRTFIM in its three criticality regimes by means of QMC and high-order series109

expansions. After introducing the LRTFIM in Sec. 3.1, we briefly introduce the two numerical110

methods together with the observables we measure in Sec. 3.2. In Sec. 3.3 we present the111

critical exponents directly extracted by the two methods respectively as well as the full set of112

critical exponents calculated by using scaling relations including the generalized hyperscaling113

relation. Furthermore, we provide numerical evidence that the correlation sector is affected114

by DIV by studying the FSS of the characteristic length scale.115
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2 Scaling at continuous quantum phase transitions116

We consider a system close to a second-order quantum phase transition with three relevant117

parameters r, H, T vanishing at the critical point. With r ∼ λ − λc being the distance of the118

control parameter λ to the critical control parameter value λc, H denoting the symmetry-119

breaking field coupling to the order parameter m and T being the temperature. Without loss120

of generality, the system is in its symmetry-broken phase for r < 0 and in the symmetric phase121

for r > 0. At the quantum critical point r, H, T = 0, the characteristic length scale ξ diverges122

and the physical quantities exhibit singular behavior in the form of power laws, which get123

characterized by critical exponents:124

χr =
∂ 2 f
∂ r2

∼ |r|−α m(r → 0−)∼ |r|β m∼ |H|1/δ χ =
∂ 2 f
∂ H2

�

�

�

�

H=0
∼ |r|−γ

G(q,ω= 0)∼ |q|−(2−η) ξ∼ |r|−ν ξτ ∼ |r|
−zν.

(2)

Widom proposed the generalized homogeneity of those functions close to a critical point [55,125

56], which was later understood within the framework of RG [57]. Extending this generalized126

homogeneity to finite systems by including the inverse linear system size 1/L as an additional127

relevant parameter is the basis of FSS [1, 58]. Close to the critical point, the singular part128

of the free energy density f and characteristic length ξ asymptotically become generalized129

homogeneous functions (GHF) [6,57–60]130

f (r, H, T, L−1, u) = b−(d+z) f (b yr r, b yH H, bz T, bL−1, b yuu) (3)

ξ(r, H, T, L−1, u) = bξ(b yr r, b yH H, bz T, bL−1, b yuu) (4)

depending on the couplings r, H, T, u and the inverse system length L−1 with the respective131

scaling dimensions yr , yH , z > 0, yL = 1, and yu < 0 governing the linearized RG flow with132

spatial rescaling factor b > 1 around the RG fixed point, at which all couplings vanish by133

definition. All of those couplings are relevant except for u which denotes the leading irrele-134

vant coupling [61, 62]. Other irrelevant couplings with scaling dimensions smaller than yu135

have already been set to zero as f is assumed to be analytic in these parameters. The scaling136

power yr of the control parameter r is related to the critical exponent ν by yr = ν−1 [62].137

The generalized homogeneity of the other observables in Eq. (2) follows from the general-138

ized homogeneity of f (for details see Ref. [59]), e. g., the generalized homogeneity of the139

magnetization140

m(r, H, T, L−1, u) = b−(d+z)+yr m(b yr r, b yH H, bz T, bL−1, b yuu) (5)

follows from taking the derivative of f with respect to H.141

2.1 Scaling below the upper critical dimension142

Below the upper critical dimension, f is an analytic function in u and one can safely set u= 0143

in the homogeneity laws, dropping the dependence on u in Eq. (3)144

f (r, H, T, L−1) = b−(d+z) f (b yr r, b yH H, bz T, bL−1) (6)

as well as in the homogeneity laws for the other observables as it was already done for the145

other irrelevant couplings.146

By probing the singular behavior of the respective GHFs at the critical point approaching147

it along one of the principal axes [59], one can relate the scaling dimensions of the relevant148

variables with the critical exponents149

α= −
d + z − 2yr

yr
, β =

d + z − yH

yr
, δ =

yH

d + z − yH
, γ= −

d + z − 2yH

yr
, (7)
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from which some of the scaling relations, including the hyperscaling relation 2−α= (d+z)ν,150

can be extracted when additionally using y−1
r = ν. Expressing the scaling dimensions in151

terms of the critical exponents, the homogeneity law for an observable O with bulk divergence152

O(r, 0, 0, 0)∼ |r|ω is given by153

O(r, H, T, L−1) = b−ωyrO(b yr r, b yH H, bz T, bL−1) (8)

= b−ω/νO(b1/νr, b(β+γ)/νH, bz T, bL−1) , (9)

where Eq. (7) was used to express yH = (β + γ)yr in terms of critical exponents. From that,154

FSS is readily obtained by setting b = L, thereby fixing the last entry to bL−1 = 1,155

O(r, H, T, L−1) = L−ω/νΨ(L1/νr, L(β+γ)/νH, Lz T ) (10)

with Ψ being the universal scaling function of the observable O.156

However, this FSS only holds for d < duc since u is a DIV above the upper critical dimension,157

meaning that f (r, H, T, L−1, u) is singular at u= 0, which renders the homogeneity Eq. (6) for158

f (r, H, T, L−1, u= 0)meaningless. We will now explicitly consider the case in which u is a DIV.159

2.2 Scaling above the upper critical dimension160

As u is a DIV above the upper critical dimension, it cannot be dropped in the homogeneity161

relations. Instead, we assume for the singular part of the free energy density for small u [6]162

f (r, H, T, L−1, u) = up(d+z) f̄ (upr r, upH H, upT T, upL L−1) , (11)

so that the dependence on u can be absorbed into the other variables up to a global power163

p(d+z) of u. This implies a modified scaling for the free energy density [6]164

f (r, H, T, L−1) = b−(d+z)∗ f (b y∗r r, b y∗H H, bz∗T, b y∗L L−1) (12)

= L−(d+z)∗/y∗LF(L y∗r /y∗L r, L y∗H/y∗L H, Lz∗/y∗L T ) (13)

by defining the modified scaling powers [6]165

(d + z)∗ = (d + z)− p(d+z) yu ,
y∗r = yr + pr yu , y∗H = yH + pH yu ,

z∗ = z + pz yu , y∗L = 1+ pL yu .
(14)

In contrast to the classical case [6], where y∗L was implicitly set to y∗L = yL = 1 by the authors,166

we allow y∗L to be distinct from yL . Fixing y∗L is possible because the scaling powers of a GHF167

are only determined up to a common non-zero factor [59] such that there is a freedom to set168

one non-zero scaling power to an arbitrary non-zero value. We keep the derivation general169

and postpone the discussion of specific choices for the absolute values of the modified scaling170

powers to Sec. 2.2.4 as it has no impact on the derivation of the generalized hyperscaling171

relation (see Sec. 2.2.2) or Q-FSS (see Sec. 2.2.3).172

For a long time, the correlation sector was thought to be unaffected by DIV [6–8]. However,173

classical Q-FSS [9, 18] showed that the correlation sector needs a reexamination as well [9].174

In analogy to classical Q-FSS [9, 18], we therefore allow the characteristic length scale ξ to175

be affected by DIV analogous to the free energy sector. This results in the modified scaling176

[6,18,24]177

ξ(r, H, T, L−1) = b−y∗
ξξ(b y∗r r, b y∗H H, bz∗T, b y∗L L−1) (15)

= LϙΞ(L y∗r /y∗L r, L y∗H/y∗L H, Lz∗/y∗L T ) (16)
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with y∗
ξ
= −1− pξ yu = −y∗r /yr in order to reproduce the correct bulk singularity ξ ∼ |r|−ν178

and defining a "pseudocritical exponent"1
ϙ ("koppa"), which is related to the critical exponent179

ν by180

ϙ=
y∗r

yr y∗L
= ν

y∗r
y∗L

. (17)

Analogous to the case below the upper critial dimension, the modified scaling powers181

can be related to the critical exponents by comparing the singularities of the thermodynamic182

functions in terms of critical exponents with the singularities of the respective GHFs in terms183

of the modified scaling powers. This leads to very similar equations184

α= −
(d + z)∗ − 2y∗r

y∗r
, (18)

β =
(d + z)∗ − y∗H

y∗r
, (19)

δ =
y∗H

(d + z)∗ − y∗H
, (20)

γ= −
(d + z)∗ − 2y∗H

y∗r
, (21)

which fix the quotients of the modified scaling powers to185

y∗r =
(d + z)∗

2
, y∗H =

3(d + z)∗

4
(22)

when inserting the mean field critical exponents α= 0 and δ = 3.186

We want to note that it is to be expected that only the ratios of the modified scaling powers187

can be fixed as the scaling powers of a GHF can be rescaled with a common non-zero factor188

without altering the GHF [59]. Since Eqs. (18) – (21) were extracted from the scaling of189

infinite systems, they only relate the modified scaling powers determining the bulk scaling.190

However, in order to extend the scaling to finite systems, the modified scaling power y∗L needs191

to be connected to the bulk scaling powers y∗r , y∗H , and (d + z)∗ as well. For this, one has to192

consider the scaling of finite systems as it was done for the classical counterpart in Ref. [6]. Af-193

ter finding this last missing ratio intrinsic to the GHF, the homogeneity relations are completely194

determined as the absolute values of the scaling powers are meaningless.195

2.2.1 Linking bulk scaling to finite systems196

Comparing the finite-size scaling of the order-parameter susceptibility with the scaling of its197

modified GHF structure, Binder et al. [6] argued for the classical case that d∗ = d given that198

y∗L = 1. By transferring this argument to quantum systems, we will derive a non-trivial relation199

for (d + z)∗. Unlike in the original argument [6], we will continue to leave y∗L unspecified to200

keep the derivation general. Like Binder et al. [6], we consider the susceptibility in a finite201

system at H = T = 0 which, for a quantum system, is given by an infinite integral over202

imaginary time203

χL = Ld

∫ ∞

0

〈m(τ)m(0)〉L dτ , (23)

1This new exponent ϙ was sometimes called critical exponent [24] as well as pseudocritical exponent [63], but
often simply referred to as "exponent" in the past. We choose to call ϙ a pseudocritical exponent due to its very
similar definition to bulk critical exponents as the ratio of scaling powers defining the power-law behavior of a
thermodynamic quantity in one parameter along its respective principal axis. In contrast to critical exponents, ϙ
defines a power law with respect to a finite linear system size L and is therefore not defined at criticality, at which
L is infinite.
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introducing the short-hand notation OL =O(r, H = 0, T = 0, L−1). In contrast to the classical204

case, where m commutes with H and the susceptibility reduces to χL = Ldβ〈m2〉L , we need205

to take the scaling due to the imaginary-time integral into account. As the correlations are206

expected to decay exponentially in imaginary time 〈m(τ)m(0)〉L ∼ e−∆Lτ〈m2〉L with the finite-207

size energy gap ∆L ∼ ξ−1
τ,L , the integration gives208

χL ∼ Ld



m2
�

L∆
−1
L . (24)

For sufficiently large systems, 〈m2〉L and ∆L take on their bulk values 〈m2〉∞ ∼ |r|
2β and209

∆∞ ∼ |r|
zν and the susceptibility scales as210

χL ∼ Ld |r|2β |r|−zν (25)

close to the critical point r = 0. This scaling has to be compatible with the GHF structure of211

the susceptibility212

χ(r, H, T, L−1) = L[−(d+z)∗+2y∗H ]/y∗LX (L y∗r /y∗L r, L y∗H/y∗L H, Lz∗/y∗L T ) , (26)

that follows from taking the second derivative of Eq. (13) with respect to H. We therefore213

require the scaling function X for large L to scale as214

lim
x→±∞

X (x , 0, 0)∼ |x |2β−zν (27)

to reproduce the correct bulk singularity in |r| and further demand215

−(d + z)∗ + 2y∗H + (2β − zν)y∗r
y∗L

= d (28)

in order to match the scaling in L. Using Eq. (19) and ν = 1/yr , we eliminate the critical216

exponents β and ν in Eq. (28) and obtain217

(d + z)∗ = y∗Ld +
y∗r
yr

z , (29)

which relates the modified scaling power y∗L of the inverse linear system size L−1 with the218

modified bulk scaling powers. This is an important step towards deriving a FSS form above219

the upper critical dimension as the FSS is goverened by the ratio of y∗L with the other mod-220

ified scaling powers (see, e. g., Eqs. (13) and (26)). With this, all ratios of modified scaling221

powers are known, fixing them up to a common non-zero factor that can be chosen freely (see222

Sec. 2.2.4). This global factor does not alter our results which we are about to discuss, starting223

with a generalized hyperscaling relation. However, one can already identify two meaningful224

choices from Eq. (29): For the choice y∗L = 1 that was also taken for the classical counter-225

part [6, 18], (d + z)∗ = d + ϙz and the scaling of imaginary time and temperature seems to226

be modified by a factor of ϙ. On the other hand, when leaving the scaling power y∗r = yr un-227

modified, (d + z)∗ = d/ϙ+ z and the temperature scaling seems unmodified while the spatial228

dimension is reduced by a factor of ϙ.229

2.2.2 Generalized hyperscaling relation230

Hyperscaling is commonly said to break down above the upper critical dimension due to the231

emergence of DIV [5]. We obtain a generalized hyperscaling relation from Eq. (18), which re-232

lates the critical exponent α with the modified scaling powers. Inserting Eq. (29) into Eq. (18)233

yields234

2−α=
�

d
ϙ
+ z
�

ν, (30)

7
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where it was additionally used that ϙ−1 = y∗L yr/y∗r and ν = y−1
r . This already shows that235

rather the spatial dimensions behave different instead of the imaginary-time dimension be-236

cause zν is unaltered while dν→ dν/ϙ with respect to the usual hyperscaling relation.237

This generalized hyperscaling relation also yields a way to determine the new pseudocriti-238

cal exponent ϙ. The regular hyperscaling relation is still valid at d = duc and relates the mean239

field values for α and ν via 2−α = (duc + z)ν. As the mean field critical exponents also hold240

for d > duc, this relation remains valid above the upper critical dimension. Comparing it with241

the generalized hyperscaling relation Eq. (30) gives242

ϙ=
d

duc
for d > duc (31)

for the new pseudocritical exponent. The ratio ϙ/ν = y∗r /y∗L will be of particular importance243

in the quantum Q-FSS form describing the finite-size scaling of observables in finite systems244

above the upper critical dimension. In the classical case [9, 18, 19, 24], a system with spa-245

tial dimension D > Duc and an upper critical dimension Duc has a pseudo-critical exponent246

ϙcl = D/Duc that governs the scaling ξL ∼ Lϙcl at the classical critical point. Considering the247

quantum-classical mapping and demanding that the exponent ϙ of a quantum system should248

coincide with the ϙcl of its classical analogue, the generalization of Q-FSS to the quantum case249

would yield ϙ = (d + z)/(duc + z) which clearly differs from Eq. (31) for any non-zero z and250

d 6= duc. This apparent contradiction will be resolved in Sec. 2.2.4 by taking a closer look on251

the quantum-classical correspondence.252

2.2.3 Quantum Q-Finite-size scaling253

As an important result, FSS above the upper critical dimension is derived. Like standard254

FSS [2], it predicts the rounding of physical quantities in finite systems with respect to the255

bulk behavior. Analogous to the case d < duc, for an observable O with bulk divergence256

O(r, 0, 0, 0)∼ |r|ω the GHF structure is given by 2
257

O(r, H, T, L−1) = b−ωy∗r O(b y∗r r, b(β+γ)y
∗
r H, bz∗T, b y∗L L−1) (32)

= L−ωϙ/νΨ(Lϙ/νr, L(β+γ)ϙ/νH, Lz∗/y∗L T ) . (33)

This also holds for the special case of the characteristic length scale ξ with ω = −ν (see258

Eq. (15)). As a result of ϙ 6= 1, the characteristic length scale of a finite system does not scale259

linearly with the linear system size at the critical point, but with260

ξL ∼ Lϙ . (34)

This is an important, non-trivial consequence of Q-FSS as the characteristic length scale was261

formerly thought to be bound by the linear system size [6] until this claim was relaxed by262

classical Q-FSS [18,24].263

With Eq. (33) and ϙ = d/duc for d > duc, the rounding of finite systems with respect to264

the bulk behavior is characterized in terms of a universal scaling function Ψ and the critical265

exponents. It can be used to extract critical exponents in a mean field regime from finite266

systems [52, 64]. In Ref. [52], this allowed us to benchmark the employed algorithm in the267

numerically challenging regime of long-range interactions.268

2We leave the scaling power z∗ of the temperature undetermined in this scaling law. It governs the FSS of the
finite-size gap with∆L ∼ Lz∗ . Based on the modified scaling power (d+z)∗ (see Eq. (29)), z appears to be modified
as z → y∗r

yr
z and we therefore conjecture that z∗ = y∗r

yr
z, because the scaling power (d + z)∗ is the scaling power of

the Euclidean spacetime volume and, similarily, we have a scaling power y∗L for the spatial dimension which is also
reflected in d → y∗L d in Eq. (29).

8
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In complete analogy to the classical case [19], the definition of ϙ can be extended to d < duc269

by setting270

ϙ=max
�

1,
d

duc

�

(35)

such that the FSS form Eq. (33) holds below as well as above the upper critical dimension.271

For d < duc, the exponent ϙ= 1 recovers the standard FSS forms and the linear scaling of the272

characteristic length scale ξL ∼ L.273

2.2.4 Comparing classical and quantum Q-FSS274

As for now, the classical and quantum Q-FSS appear analogous, but there are some important275

differences to note. The classical pseudocritical exponent ϙcl = D/Duc is also given by the ratio276

of the dimension D of the classical system with respect to its upper critical dimension Duc.277

However, this means that the exponent ϙ of a quantum system differs from the exponent ϙcl of278

its classical D = (d + 1)-dimensional analogue, e. g., for the 4d nearest-neighbor transverse-279

field Ising model (TFIM), ϙ = 4/3 (see App. A for numerical evidence), while for its classical280

analogue, the 5d classical Ising model, ϙcl = 5/4 [18, 20, 24]. The important difference is281

that the quantum system is only finite in d dimensions with the imaginary time dimension -282

constituting the additional classical dimension - being infinite at zero temperature. The (d+1)-283

dimensional classical analogue of a d-dimensional finite quantum system at zero temperature284

therefore has a geometry Ld×∞with d = D−1 finite dimensions and one infinite dimension.3285

This is supported by a study of Brézin [3]. He showed for the classical spherical model286

that in a geometry LD−1 ×∞, the correlation length at the critical point T = Tc for D > Duc287

scales as [3]288

ξL ∼ L(D−1)/(Duc−1) (36)

with the linear system size L. This result was argued to also hold for finite N in the N -vector289

model [3], which includes the Ising model for N = 1. The 5d classical Ising model with290

geometry L4 ×∞ therefore has a ϙ = (D − 1)/(Duc − 1) = 4/3 which is in line with the291

quantum-classical mapping.292

The link between classical and quantum Q-FSS is also visible in a certain choice for the293

modified scaling powers. Up to now, their absolute values remained unspecified as only their294

ratios enter into the generalized hyperscaling relation Eq. (30) and Q-FSS form Eq. (33). As295

the characteristic length scale ξ does no longer scale linearly with L for d > duc, one of these296

length scales inevitably scales with a scaling power that is unusual for a length scale in RG.297

The two choices we consider are given by leaving y∗L = yL = 1 invariant, meaning pL = 0,298

or by leaving the scaling power yξ of ξ invariant by setting y∗
ξ
= −y∗r /yr = −1, meaning299

pξ = pr = 0. The resulting modified scaling powers are compared for the (LR)TFIM in Tab. 1300

and for the classical (long-range) Ising model in Tab. 2.301

The first point to note is that, when the scaling power of the characteristic length scale302

remains the one of a length scale in RG (see the right columns in Tab. 1 and Tab. 2), the modi-303

fying p-factors are equivalent for the quantum and classical model and the total modified bulk304

scaling powers are equivalent for models in terms of the quantum-classical mapping, which is305

consistent with the equivalence of criticality in terms of the quantum-classical mapping. Only306

the scaling power for L−1 differs due to the difference in ϙ and ϙcl. On the other hand, when307

choosing the linear system size L to scale as an ordinary length scale in RG, neither the modify-308

ing p-factors nor the modified scaling powers y∗r coincide. Only y∗L = 1 in both cases coincides309

by construction.310

3In practice, it is sufficient to have a finite inverse temperature β � ξL,τ ∼∆−1
L for which the system does not

feel its finite extent in imaginary time. For larger temperatures we expect a crossover to classical Q-FSS.
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Table 1: Modified scaling powers for the (LR)TFIM when choosing pL = 0 or pr = 0
respectively. The choice pL corresponds to leaving the scaling power of the inverse
system size invariant, while the choice pr leaves the scaling power of the character-
istic length scale invariant.

pL = 0 pr = 0
y∗L yL + pL yu 1 pL = 0 1/ϙ pL = −

1
d

(d + z)∗ d+z−p(d+z) yu d + ϙz pd =
1
3 duc + z pd = −1

y∗r yr + pr yu
2
3 d pr = −

2
3 yr pr = 0

y∗H yH + pH yu
3
4(d + ϙz) pH = −

1
2

3
4(duc + z) pH =

1
2

z∗ z + pz yu ϙz pz = −
1
3 z pz = 0

Table 2: Modified scaling powers for the (long-range) Ising model when choosing
pL = 0 or pr = 0 respectively. The choice pL corresponds to leaving the scaling
power of the inverse system size invariant, while the choice pr leaves the scaling
power of the characteristic length scale invariant.

pL = 0 pr = 0
y∗L yL + pL yu 1 pL = 0 1/ϙcl pL = −

1
D

d∗ d − pd yu d pd = 0 Duc pd = −1
y∗r yr + pr yu

1
2 d pr = −

1
2 yr pr = 0

y∗H yH + pH yu
3
4 d pH = −

1
4

3
4 Duc pH =

1
2

Even though the absolute values of the scaling powers are not important for Q-FSS, we311

prefer the picture in which ξ retains its scaling power yξ = −1 as a length scale in RG. Not312

only because the modifications of the quantum and classical systems are equivalent by virtue313

of the quantum-classical mapping, but also because the length scale ξ is also apparent in bulk314

systems. Here, the scaling does not depend on L−1 = 0 and the choice of modified scaling315

powers retains meaningful. Moreover, for y∗
ξ
= −1, the bulk scaling powers are independent316

of the dimension d just as the criticality is independent of the dimension for d > duc.317

3 Application and verification of quantum Q-FSS318

So far, we derived a coherent quantum Q-FSS theory with a generalized hyperscaling relation319

and FSS forms to extract critical exponents from simulations of finite systems. In this sec-320

tion we verify this formalism by applying it to the LRTFIM on the linear chain. We compute -321

using two independent numerical methods - a full set of critical exponents below and above322

the upper critical dimension. On the one hand, we simulate finite systems using stochastic323

series expansion (SSE) [65–68] quantum Monte Carlo (QMC) to demonstrate the application324

of the FSS scaling forms Eq. (33). On the other hand, we use perturbative continuous unitary325

transformations (pCUT) [69, 70], a series expansion method in the thermodynamic limit, to326

demonstrate the application of the generalized hyperscaling relation Eq. (30). Further, we ex-327

plicitly calculate the characteristic length scale ξL on finite systems with SSE QMC in order to328

demonstrate its scaling with the pseudocritical exponent ϙ and support our claim that the cor-329

relation sector is affected by DIV. The raw data used in this work as well as the extracted scaling330

dimensions of the respective calculated quantities and their conversion to critical exponents is331

provided in Ref. [71].332
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3.1 Long-range transverse-field Ising chain333

We consider the ferromagnetic LRTFIM on the linear chain. The Hamiltonian is given by334

HLRTFIM =
J
2

∑

i 6= j

1
|i − j|1+σ

σz
i σ

z
j − h

∑

j

σx
j , (37)

with Pauli matrices σx/z
i describing spins 1/2 located on lattice sites i. The transverse field is335

tuned by the parameter h> 0 while the ferromagnetic Ising coupling is tuned by the parameter336

J < 0. The positive parameter (1+σ) governs the decay of the Ising coupling constants, from337

a nearest-neighbor model for σ =∞ to an all-to-all coupling for σ = −1.338

The model exhibits a continuous quantum phase transition between a field-polarized and339

a symmetry-broken ferromagnetic phase for all σ > 0. Its upper critical dimension is lowered340

with decreasing decay parameter σ and the universality class of the quantum critical point341

varies as a function of this decay parameter. One may identify three different regimes, namely a342

regime with the well-known 2d Ising criticality for large σ, a long-range Gaussian regime with343

mean field criticality for small σ as well as an intermediate regime with continuously varying344

critical exponents connecting the two limiting regimes. Those regimes and in particular their345

boundaries can be understood by means of a field-theoretical analysis of the critical point346

[25,53,72] considering the one-component quantum rotor action [25]347

A= 1
2

∫

q,ω

( g̃ω2 + aqσ + bq2 + r)φ̃q,iωφ̃−q,−iω + u

∫

x ,τ

φ4
x ,τ (38)

with a, b > 0 and r, u being the mass and coupling term [25]. For σ ≥ 2 the leading term in q348

recovers the nearest-neighborφ4 Ising action with the (d+1)-dimensional Ising criticality [62].349

A detailed analysis of the RG flow of the kinetic sector [53] suggests that this Ising criticality350

holds for even smaller decay exponents σ > 2−ηSR with ηSR being the anomalous dimension351

of the respective short-range model. By a scaling analysis of the Gaussian theory for σ < 2, it352

is possible to derive the long-range mean field critical exponents [25]353

γ= 1, ν=
1
σ

, η= 2−σ, z =
σ

2
. (39)

By inserting these exponents into the hyperscaling relation, the upper critical dimension duc(σ)354

can be derived with [25]355

2−α= ν(d + z)
α=0

−−−−−−→
ν= 1

σ , z=σ2
duc =

3σ
2

. (40)

For the linear chain with d = 1, this results in a regime of mean field criticality, in which356

d > duc, for357

σ <
2
3

. (41)

In this regime, standard FSS is not applicable and the critical exponents can be extracted from358

finite systems only by means of quantum Q-FSS (see Eq. (33)). Inserting the value for the359

upper critical dimension and d = 1 into the expression of the pseudocritical exponent ϙ yields360

361

ϙ=max
�

1,
2

3σ

�

=

¨

1 for σ ≥ 2/3
2

3σ for σ < 2/3.
(42)

In the FSS analysis we will encounter several combinations of critical exponents, for which362

the analytic values are known in the limiting cases of the mean field regime with σ < 2/3 and363

of the short-range regime with σ > 2 − ηSR. These combinations of exponents are given in364

Tab. 3.365
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Table 3: Analytical values in the limiting regimes for the exponents that are directly
accessible by the methods presented in Sec. 3.2.

Regime ν
ϙ

β ϙν γ ϙν zν (2− z −η)ν α

σ < 2/3 σ−1

2/(3σ) =
3
2

1
2 ·

2
3 =

1
3 1 · 2

3 =
2
3

σ
2 ·

1
σ =

1
2 (σ− σ2 )/σ =

1
2 0

σ > 2−ηSR 1 1
2 1 1 2− 1− 1

4 =
3
4 0

3.2 Numerical methods and observables366

We study the one-dimensional LRTFIM with two different methods to validate Q-FSS for quan-367

tum systems. While SSE operates on finite systems, pCUT operates in the thermodynamic limit.368

For the former, we exploit the quantum Q-FSS form Eq. (33) to extract critical exponents from369

simulations of finite systems. In both cases, we utilize the generalized hyperscaling relation370

Eq. (29) in addition to other scaling relations to extract the full set of critical exponents.371

3.2.1 Stochastic series expansion372

We use the SSE QMC approach introduced by A. Sandvik to sample the transverse-field Ising373

model with arbitrary Ising interactions Ji j on arbitrary graphs [65–68]. The SSE approach is374

based on a high temperature expansion of the partition function375

Z = Tr
�

e−βH
	

=
∞
∑

n=0

∑

{|α〉}

(−β)n

n!
〈α|Hn|α〉 (43)

with the idea to extend the configuration space in imaginary time by using an adequate de-376

composition H = −
∑

i Hi and rewriting [65–68]377

Hn = (−1)n
∑

{Sn}

n
∏

p=1

Hi (44)

as sequences Sn of the operators Hi . This extended configuration space is then sampled by378

a Markov chain. We will not go into the details of the algorithm as we follow precisely the379

scheme described in Ref. [52].380

The SSE method is a finite-temperature Quantum Monte Carlo technique. To obtain ground-381

state results, the temperature of the simulation needs to be sufficiently low for the contribution382

of excited states to the averaged observables to be negligible. A systematic approach to ensure383

convergence in temperature within the statistical Monte Carlo error was described in Ref. [52].384

By the application of this scheme, all observables are measured at effectively zero temperature.385

386

As in Ref. [52], we determine the mean squared magnetization 〈m2〉L for a set of transverse387

fields h and system sizes L, where388

m=
1
L

∑

i

σz
i (45)

is the order parameter of the investigated quantum phase transition. In this work, we addi-389

tionally calculate the order-parameter susceptibility390

χL = L

∫ β

0

〈m(τ)m(0)〉L dτ (46)
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using the algorithm of Sandvik and Kurkijärvi [65].391

By performing a data collapse of 〈m2〉L and χL using the scaling predictions from Q-FSS392

(see Eq. (33))393




m2
�

L (r) = L−2βϙ/νM(Lϙ/νr) ,

χL(r) = Lγϙ/νX (Lϙ/νr)
(47)

for vanishing longitudinal field H = 0 and effectively vanishing temperature T = 0 with394

r ∼ h − hc and universal scaling functions M and X , we extract the exponents ν/ϙ, βϙ/ν395

and γϙ/ν. The data collapse was performed as described in Ref. [52].396

In addition to the common critical exponents, we also measure the pseudocritical exponent397

ϙ in the mean field regime by performing a data collapse of the finite-size characteristic length398

scale with scaling399

ξL(r) = LϙΞ(Lϙ/νr) (48)

according to Q-FSS. As ν = σ−1 is known from the Gaussian theory, the only free parameters400

in the fit are ϙ, hc, and the scaling function Ξ.401

For measuring the characteristic length scale ξ, at which the correlations switch to their402

long-distance behavior [62,73], we consider the order-parameter correlation function403

GL(i − j,ω= 0) =
∂



σz
i

�

L

∂ H j

�

�

�

�

�

H j=0

=

∫ β

0

¬

σz
i (τ)σ

z
j (0)

¶

L
dτ

(49)

with H j being a local longitudinal field coupling to spin σz
j at lattice site j. The correlation404

function Eq. (49) is the zero-frequency component of the Fourier transform of the imaginary-405

time correlation function406

GL(i − j,τ) =
¬

σz
i (τ)σ

z
j (0)

¶

L
, (50)

which also contains information on the dynamics of the system. We are not interested in any407

dynamical properties in this study and will therefore only use the zero-frequency correlation408

function in Eq. (49) as well as the equal-time correlation function409

GL(i − j,τ= 0) =
¬

σz
iσ

z
j

¶

L
. (51)

Using the Fourier transform of the correlation functions for τ = 0 and ω = 0, we extract410

the characteristic length scale in the long-range mean field regime, where the criticality is411

described by a Gaussian field theory. The correlation function in Fourier space is given by the412

propagator of the long-range Gaussian field theory [25,63]413

G̃(q,ω)∼
1

aqσ + g̃ω2 +m2
(52)

with m the characteristic energy scale, which in terms of the coupling r is given by m2 ∼ |r|.414

This yields the zero-frequency and equal-time correlation functions [74]415

G̃(q,ω= 0)∼
1

aqσ +m2
, (53)

G̃(q,τ= 0)∼
1

2
p

g̃
p

aqσ +m2
. (54)
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For a finite system, the definition of a characteristic length scale in terms of the correlation416

function is ambiguous [75]. There are several definitions for ξL which will converge to ξ∞ for417

L→∞ [75]. For long-range systems, finding a suitable definition for the characteristic length418

is even more difficult, as the correlation function does not exhibit the usual exponential decay419

of gapped systems but decays algebraically even away from the critical point [73]. Common420

definitions that are tailored for correlation lengths, which specify the exponential decay of a421

correlation function at long distances, such as the second moment422

ξ(2)∞ =

√

√

√ 1
2d

∫

|x|2G(x)dx
∫

G(x)dx
, (55)

therefore might yield ξ(2)∞ =∞ in an infinite system not only at the critical point r = 0, but423

also for r 6= 0 [76].424

We will instead consider the definition [63]425

ξ
(LRω)
L =

1
qmin

�

G̃L(0,ω= 0)− G̃L(qmin,ω= 0)
G̃L(qmin,ω= 0)

�1/σ

(56)

with qmin = 2π/L the smallest wavevector fitting on the finite lattice. By inserting Eq. (53)426

ξ
(LRω)
L =

1
qmin

�

aqσmin +m2
L

m2
L

− 1

�1/σ

= a1/σm−2/σ
L (57)

the momentum dependency cancels.4 In case of the equal-time correlation function, we use427

the square of G̃(q,τ= 0) in order to remove the square-root in Eq. (54) which yields a slightly428

modified formula429

ξ
(LRτ)
L =

1
qmin

�

G̃2
L(0,τ= 0)− G̃2

L(qmin,τ= 0)

G̃2
L(qmin,τ= 0)

�1/σ

= a1/σm−2/σ
L (58)

for the same quantity. In the limit L →∞, the estimates for the characteristic length exhibit430

the correct singularity431

ξ(LR)
∞ = a1/σm−2/σ

∞ ∼ |r|−1/σ ∼ |r|−ν . (59)

3.2.2 Perturbative continuous unitary transformation432

We also use high-order series expansions in the thermodynamic limit employing the method of433

perturbative continuous unitary transformations (pCUT) [69,70] to extract critical exponents.434

The pCUT method comes with the prerequisite that the Hamiltonian must take the form435

H =H0 +V = E0 +Q+
N
∑

m=−N

Tm (60)

with the unperturbed Hamiltonian H0 = E0 +Q where E0 is the unperturbed ground-state436

energy, Q counts the number of quasi-particles, and the perturbation V which must decom-437

pose into a sum of operators Tm that change the system’s energy by m quanta such that438

[Q, Tm] = mTm. The fundamental idea of pCUT is to transform the original Hamilitonian439

H perturbatively order by order into an effective quasiparticle-conserving Hamiltonian Heff440

4It is important that we use a zero-momentum quantity to observe the anomalous scaling of the characteristic
length scale because only zero-momentum quantities are affected by DIV for periodic boundary conditions. A
detailed analysis of the role of Fourier modes can be found in Ref. [9].
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mapping the complicated many-body problem to an easier effective few-body problem with441

[Q,Heff] = 0. The effective Hamiltonian Heff contains products of Tm operators with exact442

rational coefficients and is independent of the exact form of H [69]. Similarly, observables443

O can be mapped to effective observables Oeff resulting in an expression analogous to the444

Hamiltonian. However, the quasiparticle-conserving property is lost [70].445

These model-independent expressions of the effective Hamiltonian and observables come446

at the cost of a second, model-dependent step, where the Hamiltonian must be normal-ordered.447

This is usually done by a full-graph decomposition applying the effective Hamiltonian or ob-448

servable to topologically distinct finite clusters exploiting the linked-cluster theorem which449

states that only linked processes have an overall contribution to cluster-additive quantities450

[77]. For long-range interactions, linked-cluster expansions are only feasible using white451

graphs [47, 48, 77]. This means that additional information is encoded into a multivariable452

polynomial during the application of pCUT while edge colors (colors would correspond to dis-453

tinct distances between interacting sites) on graphs are ignored in the topological classification454

of white graphs reducing the amount of contributing graphs to a finite number [47,48,51,77].455

After employing the pCUT method on white graphs, the resulting contributions must be456

embedded on the infinite chain to determine the contributions in the thermodynamic limit. For457

each realization of a graph on the lattice, every variable of the multivariable polynomial must458

be replaced by the proper coupling strength ∼ |i− j|−1−σ. Due to the hard-core constraint that459

graph vertices must not overlap, the embedding procedure is equivalent to evaluating infinite460

nested sums. As the sums become quite tedious, it is advantageous to evaluate them using461

Markov chain Monte Carlo integration [47]. For a generic quantity κ, the embedding problem462

can be written as463

κ=
∑

n

cκnλ
n, cκn =

n+1
∑

N=2

S[ fN ], (61)

where S[·] is the Monte Carlo sum over all possible configurations and fN contains all graph464

contributions from graphs with N vertices since the sums are identical for a given number of465

graph vertices.466

To extract the critical point and exponents beyond the radius of convergence of the pure467

perturbative series we use DlogPadé extrapolations as described in Ref. [78]. We define the468

Padé extrapolant469

P[L, M]D =
PL(λ)
Qm(λ)

=
p0 + p1λ+ · · ·+ pLλ

L

1+ q1λ+ · · ·+ qMλM
(62)

with pi , qi ∈ R of the logarithmic derivative D(λ) = d
dλ ln(κ) with a physical quantity κ which470

is given as a perturbative series up to order r. The extrapolant is determined such that its471

Taylor expansion up to order r − 1 = L + M must recover the series of D(λ). The DlogPadé472

extrapolant of κ is then defined as473

dP[L, M]κ = exp

�

∫ λ

0

P[L, M]D dλ′
�

. (63)

Given a dominant power-law behavior κ ∼ |λ − λc|−θ , an estimate for the critical point λc474

can be determined by analyzing the poles of P[L, M]D as well as for the exponent calculating475

the residuum Res P[L, M]D|λ=λc
at the physical pole. If λc is known, we can define biased476

DlogPadés by the Padé extrapolant P[L, M]θ ∗ of θ ∗ = (λc −λ)
d

dλ ln(κ). As before, the critical477

exponent θ can be determined by the residuum of P[L, M]θ ∗ at the physical pole. If further the478

exponent θ̂ of the multiplicative logartihmic correction to the dominant power-law is known479

θ ∗ = (λc −λ)
d

dλ ln(κ) + θ̂ / ln(1−λ/λc) can be used.480

Now, turning to the LRTFIM in Eq. (37), we perform high-oder series expansions about the481

high-field limit h� J . The reference state |ref〉 in the unperturbed limit is the fully polarized482

15



SciPost Physics Submission

state |→ · · · →〉 with local spin-flips
�

�← j

�

at arbitrary positions j as elementary excitations. By483

rescaling the energy spectrum of the Hamiltonian with 1/2h and using the Matsubara-Matsuda484

transformation [79] to express the Hamiltonian in terms of hard-core boson operators b(†)j , we485

arrive at486

H = E0 +Q+
∑

i< j

λ(i − j)
�

b†
i b j + b†

i b†
j +H.c.

�

(64)

with the unperturbed ground-state energy E0 = −N/2 with N the number of sites, Q=
∑

i b†
i bi487

counting the number of quasiparticles (QPs), and the coupling termλ(i− j) = J/2h×|i− j|−1−σ.488

After normal-ordering and Fourier transformation, the effective 1QP Hamiltonian becomes489

H̃1QP
eff = Ē0 +

∑

k

ω(k)b†
k bk, (65)

where Ē0 is the ground-state energy andω(k) the 1QP dispersion. Note that we do not consider490

multi-QP properties in this work. With the Hamiltoninan in this form, the control-parameter491

susceptibility and the 1QP excitation gap can be directly determined by492

χr =
d2 Ē0

dλ2
, ∆=min

k
ω(k). (66)

Further, we choose to calculate the 1QP static spectral weight as an observable. Starting from493

the usual definition of the static structure factor and exploiting that it decomposes into a sum494

of spectral weights, we arrive at495

Sz,1QP(k) =
�

�

�〈k|σz
eff,k |ref〉

�

�

�

2
= |s(k)|2 (67)

with σz,1QP
eff,k = s(k)(b†

k + bk) being the effective Pauli z-operator in second quantization re-496

stricted to the 1QP channel. Finally, we note the well-known critical behavior497

χr ∼ |λ−λc|−α, ∆∼ |λ−λc|zν, Sz,1QP(kcrit)∼ |λ−λc|−(2−z−η)ν (68)

of the control-parameter susceptibility, the 1QP excitation gap, and the 1QP static spectral498

weight. Here, we calculated the ground-state energy to order 14, the elementary excitation gap499

to order 11 and the 1QP spectral weight to order 10 in the perturbation parameter. Compared500

to Ref. [47], we were able to add two more perturbative orders to the gap series. Furthermore,501

it should be stressed that the pCUT approach for long-range interactions was only applied to502

the 1QP excitation gap so far [47,50,51] and is here extended to the ground-state energy and503

to observables, specifically to the 1QP spectral weight. For a more elaborate discussion on the504

recent progress of the pCUT approach for long-range systems we refer to the work in progress505

in Ref. [80].506

3.3 Full set of critical exponents and the pseudocritical exponent ϙ507

We now present the critical exponents of the ferromagnetic LRTFIM for different decay expo-508

nents σ ∈ [0.3, 3]. This includes the long-range mean field regime 0< σ < 2/3, the interme-509

diate regime 2/3< σ < 2−ηSR, as well as the onset of short-range criticality for σ > 2−ηSR.510

In addition, we will present the pseudocritical exponent ϙ extracted for different decay expo-511

nents in the long-range mean field regime. Before we show the full set of critical exponents, we512

first present the exponents directly extracted by SSE and pCUT in Fig. 1 and Fig. 2 respectively.513

514

For SSE, those are the exponents ν/ϙ and βϙ/ν determined by a data collapse of the mean515

squared magnetization 〈m2〉L as well as γϙ/ν determined by a data collapse of the order-516

parameter susceptibility χL . In the long-range mean field regime, the extracted exponents517

16



SciPost Physics Submission

0 1 2 3

σ

1.00

1.25

1.50

ν
/
ϙ

0 1 2 3

σ

0.1

0.2

0.3

β
ϙ/
ν

0 1 2 3

σ

0.75

1.25

1.75

γ
ϙ/
ν

Figure 1: Exponents extracted by data collapses of the SSE data as a function of the
decay parameter σ. The field-theoretical predictions in the long-range mean field
regime with σ < 2/3 (see Tab. 3: ν/ϙ = 3/2, βϙ/ν = 1/3, γϙ/ν = 2/3) as well
as the well-known 2d Ising critical exponents in the short-range regime σ > 2 (see
Tab. 3: ν/ϙ = 1, βϙ/ν = 1/2, γϙ/ν = 1) are depicted by black dashed lines. The
expected shift of the short-range regime to σ > 2− ηSR [53] is not reflected in the
exponents due to a rounding of the boundary. The raw data used to extract the
exponents and the numerical values of the exponents are provided in Ref. [71].

agree well with the field-theoretical predictions with small systematic shifts of 1−2% towards518

larger values (ν/ϙ and βϙ/ν) and of 3− 4% towards smaller values (γϙ/ν). This shows that519

the Q-FSS form Eq. (33) indeed predicts the FSS of those observables correctly. The boundary520

to the intermediate regime is rounded and at σ = 2/3, where d = duc, there is a large shift521

due to the occurence of multiplicative logarithmic corrections to scaling [81–86] which we522

did not take into account. In the intermediate regime, the exponents flow monotonously to523

the well-known critical exponents of the short-range model [87] with the regime boundary524

between intermediate and short-range regime being rounded. The short-range exponents are525

in excellent agreement with the ones from the analytic solution [87].526

527

For pCUT, the exponents zν, (2− z −η)ν, and α defined in Eq. (68) are determined using528

(biased) DlogPadé extrapolants from high-order series of the associated quantities. The expo-529

nents zν and (2− z −η)ν are in good agreement with the theoretical predictions in the long-530

range mean field regime as well as in the nearest-neighbor regime apart from small systematic531

offsets. The large deviation at the upper critical dimension atσ = 2/3 arises from the presence532

of multiplicative logarithmic corrections to the dominant power-law behavior in the vicinity533

of the critical point [81–86]. For σ < 0.4, the exponents deviate from the field-theoretical534

predictions by less than 1.1% for zν and by less than 1.0% for (2− z −η)ν. Further, it should535

be noted that the spectral-weight exponent resolves the boundary between the intermediate536

and nearest-neighbor regime better than the gap exponent. The behavior of the exponent α537

is more subtle as the exponent is expected to be zero everywhere apart from the intermedi-538

ate regime [25, 87]. In fact, the dominant divergence at the upper-critical dimension as well539

as in the nearest-neighbor regime is logarithmic which makes the extraction of the exponent540

demanding. In the nearest-neighbor regime, we account for this logarithmic divergence by us-541

ing DlogPadé extrapolants biased with the expected logarithmic exponent one [88]. However,542

this results in a jump at the boundary to the intermediate regime where unknown subleading543

terms to scaling are to be expected that we cannot take into account. Moreover, the deviation544

from the expected constant mean field exponent for σ < 2/3 arises due to the presence of the545

dominant logarithmic divergence at the upper critical dimension σ = 2/3 [81, 83–85] influ-546
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Figure 2: Exponents extracted by (biased) DlogPadé extrapolants of high-order se-
ries from pCUT as a function of the decay parameter σ. The field-theoretical pre-
dictions in the long-range mean field regime with σ < 2/3 (see Tab. 3: zν = 1/2,
(2− z −η)ν = 1/2, α = 0) as well as the well-known short-range critical exponents
in the short-range regime σ > 2−ηSR [53] (see Tab. 3: zν= 1/2, (2−z−η)ν= 3/4,
α= 0) are depicted by black dashed lines. The raw data used to extract the exponents
and the numerical values of the exponents are provided in Ref. [71].

encing the extrapolations for σ ≤ 2/3. It should be noted that the direct determination of α547

is certainly challenging for any numerical technique due to its peculiar behavior.548

549

By means of each method, we extracted a set of three independent critical exponents re-550

spectively. The full set of critical exponents was determined using the generalized hyperscal-551

ing relation as well as the other common scaling relations. This full set of critical exponents552

is depicted in Fig. 3. All exponents agree well with the predictions from field-theory in the553

long-range mean field regime σ < 2/3 up to the small systematic shifts propagating in the554

conversion of exponents. The noteable deviation of β for small σ using the pCUT method555

can be understood by error propagation of α. Analogous, the kinks at σ = 2 − ηSR visible556

for most of the pCUT exponents come from the methodological artifact of the extraction of α557

at the boundary between the nearest-neighbor regime and continuously varying exponents.558

Combining the exponents zν and (2− z − η)ν from pCUT with the exponent α from SSE to559

compensate the deficiency of extracting α directly, the exponents can be further improved in560

the long-range mean field and intermediate regime. However, the rounding of the exponents561

at the boundary to the nearest-neighbor regime deteriorates.562

The results verify the Q-FSS form Eq. (33) that was used for the data collapse of SSE data as563

well as the generalized hyperscaling relation Eq. (30) that was used to convert the exponents564

from both algorithms. Moreover, the study of the long-range mean field regime ensures that565

the employed algorithms are capable of investigating the demanding regime of long-range566

interaction with high accuracy. To the best of our knowledge, the full set of critical exponents567

in the non-trivial intermediate regime is reported for the first time. Previous studies deduced568

up to two critical exponents [52–54]. We want to note that the bump in the exponent α for569

σ § 2/3 is not an artifact due to rounding at the boundary and corrections to the dominant570

power-law behavior close to the critical point, but is also reflected in data of functional RG571

calculations [53] when converting ν and z of Ref. [53] to α using hyperscaling. The bump572

seen in the QMC data when tuning the decay exponent from the short-range regime to the573

long-range mean field regime is very similar to the "bump" when tuning the dimension of the574

respective short-range model from d = 2 to d = 4 with α= 0 for d = 2 and d > 4= duc while,575

in between, α= 0.110087(12) for d = 3 [89]. The remaining exponents interpolate smoothly576
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Figure 3: Full set of critical exponents as a function of the decay parameter σ ex-
tracted by SSE (×), pCUT (♦), and pCUT with the α from SSE (◦). The predictions
for the long-range mean field and short-range criticality are depicted by black dashed
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Eq. (56)) and ξ(LRτ)
L (see Eq. (58)). Both agree within error with the predictions of

ϙ = d
duc

in the mean field regime σ < 2
3 and clearly outrule the long-standing belief

that ξ ∼ L. The data of the characteristic length scale used to extract ϙ and the
numerical values of ϙ are provided in Ref. [71].

between the long-range mean field and short-range regimes.577

The Q-FSS approach becomes essential in the long-range mean field regime. In Fig. 4, we578

show the pseudocritical exponent ϙ, deduced from the data collapse of the finite-size charac-579

teristic length scales Eqs. (56) and (58). Within error, our results agree with the prediction580

of ϙ = max(1, d/duc) derived in Sec. 2.2. Our results clearly rule out the long-standing belief581

that the correlation sector is unaffected by DIV, i. e., ϙ= 1 (gray dashed line in Fig. 4).582

4 Conclusion583

We derived a coherent formalism of FSS above the upper critical dimension for continu-584

ous quantum phase transitions and confirmed the results numerically by means of the one-585

dimensional LRTFIM. Our analysis shows that the Q-FSS formalism developed in Ref. [9, 18,586

19,24,90] for classical systems can be transferred to quantum phase transitions by following587

our derivation. This provides a tool to extract the critical exponents for continuous quantum588

phase transitions above the upper critical dimension from finite-system simulations which is589

especially useful for unfrustrated long-range interacting systems, where the upper critical di-590

mension is experimentally accessible.591

Although the derivation of critical exponents above the upper critical dimension can be592

easily performed with mean field consideration, we stress the non-trival nature of deriving the593

same exponents using FSS. The extraction of these critical exponents from finite systems is in594

and of itself an achievement, which is especially handy to test a method and its accuracy in595

the context of numerically challenging long-range models as the expected critical exponents596

are known.597

In addition to the possibility of extracting critical exponents, we also introduced a general-598

ized hyperscaling relation. We demonstrated the application of this generalized hyperscaling599

relation to derive a full set of critical exponents by means of two independent methods with600

pCUT being a method operating in the thermodynamic limit. This generalized hyperscaling601
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relation makes it possible to perform conversions requiring the hyperscaling relation above the602

upper critical dimension.603

Apart from the mean field critical exponents extracted and converted by Q-FSS, we fur-604

ther present a full set of critical exponents for the one-dimensional LRTFIM in the non-trivial605

regime of intermediate decay exponents, whereas former studies [52–54] only extracting up606

to two independent critical exponents.607

608

So far, we applied the formalism only to numerical data, but a certainly formidable appli-609

cation would be to extract critical exponents above the upper critical dimension from experi-610

mentally measured observable curves using quantum simulators and applying our approach.611

This would build a bridge all the way from DIV in the RG flow down to an experimental real-612

ization. In this context, we want to note that the boundary conditions play an important role613

for FSS above the upper critical dimension as the Fourier modes affected by DIV were found to614

depend on the choice of boundary conditions [9]. For periodic boundary conditions, which are615

often the first choice in numerical studies but not necessarily in experimental realizations, the616

zero-momentum observables such as the uniform magnetization are affected by DIV leading617

to Q-FSS [9], while for free boundary condition other Fourier modes are affected by DIV (see618

Ref. [9] for details).619

Another aspect of our work is the discussion of the connection to the classical Q-FSS the-620

ory. Understanding the connection between the classical and quantum case, paves the way621

to transfer further findings of the classical Q-FSS theory. Possible further studies regarding622

quantum Q-FSS include an in-depth discussion of the correlation sector in analogy to classical623

Q-FSS [19], which resulted in an additional η-like critical exponent ηϙ and a corresponding624

new scaling relation [19]. Furthermore, one could also numerically validate quantum Q-FSS625

for free boundary conditions where applicable [9] or, on the contrary, validate FSS with the626

unmodified scaling powers from Gaussian theory for Fourier modes not affected by DIV [9].627

628

Besides systems above the upper critical dimension, there are also other models for which629

hyperscaling breaks down. In particular, in disordered systems this can also happen due to the630

appearance of dangerous irrelevant variables [8,91].631
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A 4d nearest-neighbor transverse-field Ising model638

In order to draw the connection between classical and quantum Q-FSS, it is instructive to639

consider the 4d nearest-neighbor TFIM as it corresponds to the 5d classical nearest-neighbor640

Ising model. The Hamiltonian of the nearest-neighbor TFIM is given by641

H = J
∑

〈i, j〉

σz
iσ

z
j − h

∑

i

σx
i (69)

21



SciPost Physics Submission

−2 0 2

Lϙ/ν(h− hc)

1.1

1.2

1.3

1.4

1.5

1.6

1.7

L
2
β
ϙ
/
ν
〈m

2
〉 L

collapsed with:
ν = 0.5
β = 0.5
ϙ = 1.3310
hc =7.23009

L = 6

L = 7

L = 8

L = 9

L = 10

L = 11

−2 0 2

Lϙ/ν(h− hc)

0.15

0.20

0.25

0.30

0.35

0.40

0.45

L
−
γ
ϙ
/
ν
χ
L

collapsed with:
ν = 0.5
γ = 1
ϙ = 1.326
hc = 7.23020

L = 6

L = 7

L = 8

L = 9

L = 10

L = 11

Figure 5: Data collapse of the squared magnetization (left) and the order-parameter
susceptibility (right) for the 4d nearest-neighbor TFIM according to Eq. (70). The
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in the fit. The raw data used for these data collapses is provided in Ref. [71].

with the sum being restricted to pairs 〈i, j〉 of nearest-neighbor sites. The universality of this642

model in d dimensions is the (d + 1)-dimensional classical Ising universality by virtue of the643

quantum-classical mapping [62, 92]. The upper critical dimension is duc = 3, making the 4d644

model the lowest-dimensional representative with d > duc. According to quantum Q-FSS,645

ϙ = d/duc = 4/3, while for the 5d classical analogue, ϙcl = D/Duc = 5/4. To provide data for646

this discrepancy, which got explained in Sec. 2.2.4, we perform a data collapse of the squared647

order parameter 〈m2〉L and order-parameter susceptibility χL (see Eq. (33))648




m2
�

L (r) = L−2βϙ/νM(Lϙ/νr) ,

χL(r) = Lγϙ/νX (Lϙ/νr)
(70)

while fixing the mean field critical exponents ν = 1/2, β = 1/2 and γ = 1. The collapses of649

the data is shown in Fig. 5 together with the respective exponents and critical field values.650

Both fits yield an exponent ϙ651

ϙm2 = 1.3310(9)

ϙχ = 1.326(9)
(71)

very close to the prediction ϙ= 4/3.652
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