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Abstract

In the presence of boundaries, the entanglement entropy in lattice models is
known to exhibit oscillations with the (parity of the) length of the subsystem,
which however decay to zero with increasing distance from the edge. We point
out in this article that, when the subsystem starts at the boundary and ends at
an impurity, oscillations of the entanglement (as well as of charge fluctuations)
appear which do not decay with distance, and which exhibit universal features.
We study these oscillations in detail for the case of the XX chain with one
modified link (a conformal defect) or two successive modified links (a relevant
defect), both numerically and analytically. We then generalize our analysis
to the case of extended (conformal) impurities, which we interpret as SSH
models coupled to metallic leads. In this context, the parity effects can be
interpreted in terms of the existence of non-trivial topological phases.
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1 Introduction

Quantum entanglement is at the heart of quantum mechanics, its diverse theoretical in-
terest covering topics from quantum information science [1] to condensed matter (23] and
high energy physics [4,5]. The entanglement entropy S4 of spatial region A is given by
the von Neumann entropy of the reduced density matrix p4, computed by integrating out
the degrees of freedom located in the complement of A,

Sa=—-Tra(palnpa). (1)

For 1 + 1 dimensional conformal field theories (CFTs), it is possible to derive universal
predictions for the entanglement entropy (see e.g. [6] for a review)

c 4
SAzghl <a>+0/1, (2)
where c is the central charge of the CFT, A is a single interval of length £, a is a UV cutoff,
and we dropped terms which vanish as a — 0. While the logarithmically divergent term is
governed only by the central charge ¢ of the CFT, the constant term, ¢}, is non-universal,
and can be changed by a redefinition of the cutoff.

In the presence of a boundary, however, the constant term becomes more relevant, as the
dependence on the UV cutoff can be eliminated. If A denotes again a single interval of
length ¢, now starting at the boundary of a semi-infinite system, one finds [6]

c 20 5
SAbdr = g In <a> + 7, (3)

with the same cut-off a as in Eq. , along with
¢y — = =Ing, (4)

where In g is the Affleck-Ludwig boundary entropy [7]. Note the factor of 2 in the argu-
ment of the logarithm in Eq. , first pointed out in [8].

Terms of O(1) are also physically meaningful for CFTs with topological defects [9-13].
The case where such defects are inside the interval is well understood, and closely related
to the boundary case (via folding). The case where the topological defect is at the border
of the interva]lﬂ is more controversial [14}/15]. Here, we report on yet other situations where
universal terms of O(1) do in fact appear, with interesting physical interpretations.

The first such situation occurs when combining a conformal defect with a boundaryP]
Specifically, we consider an XX chain with a modified bond (sometimes also referred to as

!To avoid confusion, we use the words boundary and edge to refer to physical boundaries, and the word
border to refer to the extremity or extremities of the sub-systems.
2The case of topological defects in the presence of boundaries can be handled by conformal methods [16].
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impurity bond) of value J’ (the value of the bulk bonds is JJ). In the bulk, the entanglement
of a region of length ¢ ending on the modified bond is known to take the form [17]

(ce(N) +¢), £ (4N +d)

S A imp In— 4+ —————=-, 5
where we have set
J/
A= —. 6
a (6)

In Eq. , ceff(A) is an “effective central charge” whose expression is known analytically,
interpolating between ceg(0) = 0 and ceg(1) = ¢. The term of O(1) also depends on A,
with ¢} (A = 1) = ¢}. There are no parity effects at large distances.

In this article, we combine a conformal defect with a boundary by considering the XX
chain with free boundary conditions, and choosing the interval of length ¢ so that it starts
at the boundary and ends on the modified bond. As discussed below, we find that the
entanglement entropy now exhibits strong parity effects EL and that one can writeﬁ

e ceff(A) (20 | e
SA,imp+bdr == 6 In < + cll ()‘)7

a
o Ceﬂ'(>\) 25 ~1o
SA imptbdr = 5 In <a + &’ (A).

where superscripts e and o denote the cases where the size of subsystem A is even and
odd, respectively. The surprising observation is that the parity effects in Eq. do not
decay with ¢ but remain of order one. In particular,

(7)

We conjecture that &f(A) — &2(\) =4S is a £ independent universal function of the phase
shift at the Fermi surface.

Here, by universal we mean that this term does not depend on the cutoff (in contrast to
e.g. ¢}), and that it can be calculated using field theory, where it depends on a single
parameter - that can be traded with the phase shift at the Fermi surface.

While parity effects for the entanglement entropy are well known to occur in the presence
of a boundaryP| [19,20], these effects, without an impurity, decay with large ¢ (like £~ for
the XX chain’| [21]).

We further study the case when the impurity induces an RG flow. Specifically, we consider
the case of an XX model with two successive modified bonds, giving rise to a resonant
level or “dot”. The symmetry of this problem is different from the case of one impurity,
and as a result the defect is not conformal any longer. Most interesting is the limit where
J" — 0, where universal “healing” is observed, with the chain appearing homogeneous at

distances large compared to a crossover length scale ﬁ o % For an interval in the bulk

3 A different but somewhat related observation was made earlier in [18].

“Here - as in all similar statements below - our results apply to the limits £, L — oo (with % fixed),
that is, in the scaling limit. Most results would not hold in finite size.

SParity effects are known to occur in the bulk as well for general Rényi entropies.

5The entropy for the XXZ chain exhibits strong, oscillating corrections to the conformal result, decaying
with an amplitude £~%, where K is the Luttinger liquid exponent (the dimension of the most relevant
operator in the bulk theory). The XX case has been studied in considerable detail [21], with the result
that

Sabar = % Il +O(1) + fisin[(20 + Dkp]t" +o(¢™Y)

Here, fi is a non-universal constant, kr is the Fermi momentum, so for kr = 5 (no magnetic field) we get

the usual oscillating term (—1)%.
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that ends on the dot on one side (or actually on a dot on either side) the entanglement
obeys a scaling relation of the type [22]

dS A imp
dln/
where G is a sort of running effective central charge. Note that in Eq. we considered
only the derivative of the entanglement with respect to ¢, not S itself, since the latter
quantity involves several non-universal terms of (1) because of the additional T depen-
dency [22]. Once again, we can ask what happens in the presence of such an impurity
combined with a boundary as before. We will then see that

= G((Tp), (8)

dse .
“ZAjimptbdr F((Tg) + f¢((T5)

dln/t 9
dSZ bd ( )
,imp+-bdr o
———— = F({T T
where F, f°, f¢ are non-trivial, universal functioneﬂ The difference,

. o _.dS({TB)
fUTp) — fo(lTB) = 5W’

turns out to exhibit a most interesting crossover between the UV (/Tp < 1) and the IR
(¢Ts > 1) regimes.

(10)

It has often been observed in the past that charge fluctuations exhibit features qualitatively
similar to those of the entanglement [23}24], while being easier to handle technically and
more realistic to measure in an experiment. As we will see below, this is still the case in
our problem, where the qualitative physics of universal parity effects of O(1) is the same
as for the entanglement entropy.

This article is organized as follows. In Section [2, we analyze the XX chain with a sin-
gle modified bond, and establish strong evidence for the aforementioned conjectures. In
particular, we study the von-Neumann entropy in [2.1] and the charge fluctuations in [2:2
In Section |3, we present analytical insights into the problem in the continuum limit and
obtain perturbative results in the regime A < 1. We briefly study extended conformal
impurities with several alternating modified bonds in Sec. [d], yielding interesting physical
insights into the single impurity model in terms of topological phases of the SSH model.
Finally, we consider the resonating quantum dot model in Sec.[f] Conclusions and possible
extensions of our results are discussed in Sec. [6l

2 Single impurity link: numerical study

We start by analyzing non-decaying parity effects for both the entanglement entropy and
charge fluctuations in models with a single conformal defect located at the border of the
subsystem, as introduced in Sec.

2.1 Entanglement entropy

To our knowledge, the function ceg(A) in Eq. has been determined analytically only in
the bulk case of an XX chain with impurity bond, with the result |11}/12,|17]

Coft = —%{[(1—1—3) In(1+s)+ (1—s)In(1—s)] lns+(1+s)LiQ(—s)+(1—3)Li2(s)}. (11)

It is not so clear how F is related to G in the bulk because of potential interactions between the two
borders of the interval.
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Figure 1: Entanglement entropy in a tight binding system with a single impurity
link and open boundaries. (a) Illustration of the model. The bond placed between
sites at ¢ and ¢ + a (corresponding to site indices jo and jy + 1, respectively) is
modified, and has amplitude AJ. The total system size is set to be L = Z¢. (b)
Entanglement entropy of subsystem A (boxed region in (@) with B (non-circled
region in (@) for A = 1 (left) and A = 0.8 (right) as a function of the total system
size L = Z{¢, with Z fixed to Z = 10. For A < 1, non-decaying parity effects of
O(1) are observed, illustrated by the shaded region. The inset shows the pre-
dicted central charges ceg(\) compared to the numerically extracted leading order
behavior for varying impurity strength. (¢) Even component &f(s) (upper panel,
blue circles) and odd component &P(s) (upper panel, red circles) of the entangle-
ment, the corresponding difference &f(s) — &P (s) (lower panel, black circles) and
the isolated boundary parts 5/16/ °(s) — ¢} (s)/2 (lower panel, purple diamonds and
green squares). ¢ (s), é&°(s) and ¢ (s)/2 are obtained by numerically fitting the
data to Eq. for open and Eq. for periodic boundaries.

Here,
#  In(1—
Lis(2) = —/ =) (12)
0 X
and we have introduced the variable
2JJ
s = sin(2 arctan\) = NZENBaER (13)
We recall that J’ is the modified link, and \ = le With the identity
2
Lis(s) = e Lis(1 —s) —Insln(1l — s), (14)
we can rewrite Eq. as
cor =51~ [0+ 9)n(1+9)ns+ (14 9)Lis(—s) + (s~ DLin(L —5) ). (15)
T

an expression which is also often found in the literature. We note that ceg is rather well
approximated by ceg ~ s2. Furthermore, from Eq. , it is evident that the variable s

obeys the symmetry

5@)23<i),

(16)
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and therefore, co being analytical in s, we have

(V) = (1) | (a7)

We also note (see Sec. for details) that the variable s has a physical meaning: s = cos¢,
where £ is the phase shift at the Fermi surfaceﬂ7

|E(N)] = = — 2 arctan), X € [0,1]. (18)

N

It is known that ceg depends only on this phase shift, and not on the microscopic mecha-
nism (such as the exact realization of the “impurity”) giving rise to it, see e.g. [25].

In the following, we consider a non-interacting, one-dimensional chain of hopping electrons,
cf. Fig.[l] (@) for an illustration. Specifically, we consider a system of size L (with N = L/a
sites and a the lattice spacing), which is fixed by the size of subsystem A, i.e., ¢, via L = Z¢,
where Z € N. We introduce a single impurity link of strength J' = A\J at the border of
subsystem A at site jo = £/a. The corresponding Hamiltonian is given by

N
H=-J) (C-]t-l-lcj + C}Cﬂl) —JA-1) (C}0+lcjo + C;ocjoﬂ) : (19)
=1

By first using periodic boundary conditions, we check that the entanglement is given by
the natural generalization of Eq. for finite sizes, i.e.,

/ /

SAimp R (CEH()(;) +9) In (;; sin 7;@) + (cl(/\)2+ Cl), (20)
where we evaluate the entanglement entropy via the correlation matrix of the tight-binding
model [26]. Moreover, we verify that the parity effects decay with increasing size, as
expected in a system with closed boundaries. This is true more precisely when ¢, L become
large, with fixed ratio Z = L/¢ (including the case ¢ < L). In the following, we fix Z = 10,
i.e., the size of subsystem A is 10% of the total system size, with the modified bond located
at the right border. An example of the decay of oscillatory behavior is illustrated in Fig.
The difference of terms of O(1) between the even and odd cases, denoted by 4.5, is found
to vanish as £~! (see inset of Fig. , in agreement with standard predictions for the XX
chain.

Near a boundary, the slope of the entanglement is divided in half, just like for ordinary,
homogeneous systems. We note that there doesn’t seem to be a simple derivation of this
result in the literature, in particular when finite size effects are taken into account. We
have checked numerically that Eq. gets modified as announced in the introduction,

ie.,
. Coff () 2L . wl AN .
Saimptbar = — ¢ 1n <m sin— | + ==+ (M) o
aN) . (2L ml\ A°(N)
S?Limp—‘rbdr = ‘ HG( ) In < S 7;) + [E ) + 6/10()‘)7

where we explicitly take into account the leading order (A dependent) decaying terms
~ (7! for a better quality of the numerical fits. Numerical results for c.g are presented
in the inset of Fig. [I| (b), in excellent agreement with the predicted value, Eq. . The

8The sign of ¢ is discussed below.
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Figure 2: Entanglement entropy difference §.5 between subsystem size even and
odd when A = 0.8. To simulate bulk effects, we apply periodic boundary condi-
tions, and in particular choose Z = 10. The entanglement differences are seen to
scale as ~ 1/L, as depicted in the double logarithmic plot in the inset.

crucial point is now that the parity effects do not decay with L. This is illustrated in
detail in Fig. [I] (b), where the entanglement entropy is shown when increasing L for fixed
Z = 10. In particular, the left panel shows the case A = 1, in which case oscillations decay
as ~ L~!. However, when )\ # 1, finite oscillations persist and saturate towards the value
dS(A) for L — oo, illustrated by the grey shaded region in Fig. [1| (b).

We numerically evaluate the entanglement entropies for varying impurity strengths A
(where we allow both A < 1 and A > 1), and extract the values of 6’16/ °(\) by fitting the
data to Eq. . The upper panel of Fig. [1] (¢) shows the even and odd contributions

élf/ °(\) as a function of s = sin(2arctan())), featuring strong and weak dependencies on

the tunable impurity strength in the even and odd case, respectively. Remarkably, the
difference between these two cases, 6S(\) = &F(A) —&(\) (see the black curve in the lower

panel of Fig. [1] (¢)), is a seemingly simple function of s, exhibiting the symmetry
dS(s) = =6S(—s), (22)

or, equivalently,
0S(A) = =68 (i) . (23)

Like the effective central charge cqg, we expect 4.5 to be a function of the phase shift at the
Fermi surface only. Our curves §5(s) should thus be the same for every similar problem
once s = cos¢ is being used. Examples of this will be given below, in particular when we
extend to impurities that include several modified bonds in Sec.

We further note that 05(s) seems to be well approximated by a simple ellipse with semi-

major (-minor) axis 1 (In2),
0S8 =~ +1In2y/1 — s?, (24)

which, however, turns out to be not exact - a fact that can be proven analytically, as
discussed in Sec. 3.1l

In analogy to Eq. , we further isolate the boundary contribution of the entanglement
entropy,

~lefo ~te/o (A
c{)d/ry()\) = C/ / ()‘) - lé )7 (25)
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Table 1: Simplified valence bond picture for strong (weak) impurity bonds A < 1
(1/X < 1) for both even and odd scenarios. The bonds separating the regions of
the bipartition are illustrated by grey lines, and inter- (intra-) subsystems valence
bonds are depicted by black (dark blue) curved lines. Each blue line corresponds
to an entanglement entropy of In 2.

Akl 1/A«x1

even

odd

where we compute ¢} (\) by fitting the numerical outcome of an impurity system with pe-
~lefo

riodic boundary conditions to Eq. . The boundary contributions ¢, dry()\) are observed
to lie on the same curve, see the lower panel of Fig. [I] (¢) - with the subtle distinction that

Ay (N = &by (1/), (26)

where 0 = e¢,& = 0. Indeed, from Eq. , the (anti)-symmetry of 45()) in Eq.
immediately follows.

The limiting cases of strong and weak modified bonds can be intuitively interpreted in
a simplified valence bond picture [20], the different scenarios in the even and odd cases
depicted in Tab. [} For A < 1, it is unfavorable to form a valence bond over the impurity.
This, in turn, leads to an additional contribution to the entanglement entropy between
the two subsystems on the left and right of the impurity of In2 in the odd case compared
to the even case. For a strong impurity bond, 1/A < 1, on the other hand, it is highly
favorable to form a valence bond over the impurity. Focusing first on the even case, this
leaves an odd number of sites on both sides, that have to be “assigned” a valence bond
partner, leading to an extra valence bond between the two subsystems - and hence an
additional In2 entanglement entropy compared to the odd case. Note that the valence
bond picture does not represent the exact ground state of the impurity chain, however it
provides an intuitive understanding of the observed entanglement entropy differences in
the limits of weak and strong impurities, cf. Fig. [1] (©).

2.2 Charge fluctuations

As mentioned in the introduction, fluctuations usually behave in a way that is qualitatively
similar to entanglement [23]. Although there is, to our knowledge, no precise, universal
version of this statement, many examples have been found, especially in the non-interacting
case. As we will show, our system is no exception. We thus consider the same model
as before, but now instead of the entanglement of the subsystem situated between the
boundary and the impurity, we consider the fluctuations of the number of electrons it
contains.

First, with no impurity and in the bulk, it is well known that the charge fluctuations in the
non-interacting case - up to decaying, non-universal parity terms - take the form

(@~ (QP)a=Fal) = S+, o)
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where the coefficient C' takes the value C' = 1, while Cf is non-universal, and changes as
usual under cutoff re—deﬁnitionsﬂ We emphasize that C' is not related with the central
charge: with interactions of Luttinger type for instance, C' would vary while ¢ = 1 is a
constant. In the presence of an impurity and in the bulk, one can also show (see Sec.
that

_ Ceg(M)+1. £ (CI(N) +C1)
FAimp = 5 In . + g (28)
with
Cop = cos? £ = s°. (29)
Finally, near a boundary but without impurity, one has [23]
1 20 4
fA,de‘ = ﬁ In ; + ? (30)

Note the similarity of all these results with those for the entanglement entropy. This
carries over to finite size effects as well - for instance, equation when the system has
total length L becomes

1 2L 14 C
Fapar = = 1n (S‘ T ) + =L (31)

272 Ta m L 2

Parity effects are also known to occur for the fluctuations. Like in the case of the entan-
glement, they decay with ¢ largﬂ We shall see now that, in the presence of both the
impurity and the boundary, we hav

. Cegr(N) 2L . 7! A¢(N) e o Inl o~

F A imp+bdr = 52 In <7m sin L> + 7 + B ()\)7 + CE(N) )
o Cer(A 2L . w!t A°(\ oo Inl -

F A imp-+bdr = 2752 Do <m Sin L> + é ) + BN+ Cr (V).

For the single impurity link model, we numerically evaluate the correlator G;; = (c;rcj>,
from which the density-density correlations can be computed,

(cleicle;) = (clen) (cfe;) + (clej) (i) = (eler) (elieg) + (eley) (6 = (clei)). (33)

171 5% ] (] 777 Jt
The charge fluctuations in a given interval of length ¢ are then evaluated via
)4 ¢
F(0) =Y (ming) = (na) (mg) = D (cley) (83 = (cfes))- (34)
i,j=1 i,j=1

Note that the open boundary, non-interacting model with an impurity can also be solved
semi-analytically using a plane-wave ansatz that scatters at the impurity. The plane
wave amplitudes as well as the condition for the momentum quantization can then be
solved numerically using the scattering ansatz together with the boundary conditions,
from which the fluctuations can be computed. In our numerical results however, we stick

9For the XX chain, and the cutoff given by the lattice spacing, one can show that C] =
~ is Euler’s constant [23].

0For the XX model for instance, the leading decaying terms for a homogeneous system with a boundary
read

14~y+In2
ﬂ% , where

7 / 4

Ip2,a, 1 D [ln2g+7+ln2] + O,
272 a2 272(20)  w2(20)
where 7 = (L/aw)sinml/L. Note the similarity with the result for the entanglement entropy, however with
the additional oscillating contribution o (—1)*1n l / /. This additional oscillating term has previously been
analyzed for Luttinger liquids (LL), where amplification (suppression) of the decaying parity effects have
been observed for LL parameters K < 1 (K > 1) [23].

HThe coefficients A°, A® are not the same as those appearing in the entanglement. We kept the same
notation for simplicity.

FAbdr =
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Figure 3: Charge fluctuations in a tight binding system with a single impurity link
and open boundaries. (a) Illustration of the model. An impurity is placed between
sites at £ and £+ a (correpsonding to site indices jy and jo+ 1, respectively), with
impurity hopping AJ. The total system size is set to be L = Z/, where we choose
Z = 10. (®) Fluctuations in subsystem A (circled region in (@) for A = 1 (left)
and A = 0.8 (right). For A < 1, non-decaying parity effects of O(1) are observed,
illustrated by the gray background. The inset shows the predicted values of C'()),
cf. Eq. , compared to the numerically extracted leading order behavior for
varying impurity strength. (¢) Even component CN’f (upper panel, blue circles)
and odd component C’{O (upper panel, red circles) of the charge fluctuations, the
corresponding difference C‘{e — C’{O (lower panel, black circles) and the isolated
boundary parts C’¢/° — C" /2 (lower panel, purple diamonds and green squares)
for varying X. C1¢(\), C1°(\) and C?()\)/2 are obtained by numerically fitting the
data to Eq. for open and Eq. for periodic boundary conditions.

to the same strategy as used for evaluating the entanglement entropy, that is we use
numerical diagonalization of the tight-binding matrix, compute the fluctuations and fit
the data to Eq. . In Sec. {4}, we use the plane-wave ansatz to exemplify that the physics
is governed solely by the properties of the system at the Fermi level.

Our numerics are presented in Fig. Akin to the entanglement entropy, we observe
strong parity effects of O(1) for non-trivial impurity bonds A\ # 1, see i.p. Fig. 3| (B).
The parameter Ceg(\), which plays the role of the effective central charge and which
we calculate from a generalization of Eq. similar to what has been done for the
entanglement entropy, is further verified to coincide with analytical predictions (see Sec
for details). Furthermore, the fitted even (odd) components C’¢(s) (C"(s)) of the O(1)
contributions to the fluctuations vary strongly (slightly) with the impurity strength A, but
collapse onto a symmetric curve when considering their difference §F(\) = C"¢(A\)—C"(\).
Note that for the charge fluctuations, the relevant scale is given by 1/4 (in comparison
to In2 for the entanglement), which can be understood by considering a mapping from
the non-interacting tight binding chain to the XX spin model, where (S?S?) = 1/4 at
half-filling, i.e., without a magnetic field.

We further extract the constant term for a system with periodic boundaries, where we
again explicitly take into account the leading order parity terms, i.e., we fit the impurity
system with periodic boundaries to

CetN+1 <2L , 7r€> LAY

272 L ‘

+ B(A)% n W (35)

~FA,imp =

10
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Computing C7(\), we can calculate the isolated boundary contributions to the fluctuations,
C’{)ed/fy()\) = C'¢/°(\) — C'()\)/2. Numerically, we again observe that
Crnry(\) = Gy (1/2), (36)

see the lower panel of Fig. 3] (¢). From Eq. immediately follows the symmetry of
SF(N),
IF(A) = =0F(1/N). (37)

3 Single impurity link: analytical insights

After this detailed, phenomenological study, we now turn to some analytical consider-
ations. In particular, we present a general analysis of the scaling limit together with
perturbative calculations, both for the entanglement entropy in Sec. and fluctuations

in Sec. 3.2
3.1 Entanglement entropy

We start by recalling the formulas for the decomposition of lattice fermions into continuous
fields,

cj s eFFihp 4 e Friyy (38)

At half-filling, kp = 5. For a chain starting at j = 1, to take into account the chain

termination we have formally cj—o = 0, so at that extremity the boundary conditions read
Y1, = —tbr. We use the bosonization formulas (see e.g. [27])

YR = L WiATOR, gy = L pe VAL, (39)

RE
V2T g V2T 7
where 7p 1, are anti-commuting cocycles (Klein factors) necessary to ensure anti-commutation
of the fermion ﬁeldﬂ We see that the boundary conditions correspond to Dirichlet
boundary conditions, i.e.,

oa=0.0)= o+ 1= (n+3) V. (10)

If we consider a homogeneous chain starting at j = 1 with a single modified link at jg
with Hamiltonian-]

[e.9]
H= —JZ (c}ch + c}cﬁl) —JA-1) (c;r'oﬂcjo + c}ocjgﬂ) , (41)
j=1
the bosonized form of the perturbation readq"]
—1)Jo
2m

—iVarg(joa) _ mmReimqj(joa) * h'c'> B

(1™

1 T ;
Cjo+1C%j0 T CjyCjo+1 MRNLE

(42)

2ingrnL cos VAT g(joa).

12Unfortunately, we have not been able to derive the exact form of the curves §S(A) or §F(\).

13We use the convention that ¢r, ¢r commute; we also use non normal-ordered exponentials, so there
is no need for the usual 1/1/a factor

14YWe assume that the Hamiltonian is properly normalized so that its continuum limit is relativistically
invariant, J = %

15We have only retained the leading contribution, which is exactly marginal in the RG sense. All higher
order terms are irrelevant, and should not contribute in the limit £ > 1.
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We have used that nE’L = 1,1, and 7]12%7L = 1. Note that (ingnr)? = —nrnrnenr = 1; in
what follows we will treat the term ingnz as a number (say 1)@ The crucial point is that
the perturbation in the field theory has a component whose sign differs between the cases
Jo even and jp odd.

We can now attempt to carry out a perturbative analysis of the entanglement in the limit
of weak impurities 1 — A < 1. In the continuum limit, the Hamiltonian reads (we take
J = % to ensure a relativistic dispersion relation of low energy excitations with velocity
unity)

H= % / 12 4 (0:6)2] - 21— (=1 cos Vire(a = 0). (43)
0 T

Since the boson sees Dirichlet boundary conditions, we have the non-trivial one-point

function in the half-plane,

(eP9@)\yp = 1 - (44)
(2z) 47

Note that the physical dimension of the r.h.s. is compatible with the values of the confor-

mal weights h = h = %.

We now consider the Rényi-entropy of the interval (0, ¢) using the replica approach of [6].
This involves a p-sheeted Riemann surface R, (with p an integer) with a cut extending
from the origin to the point of coordinates (z = ¢,7 = 0). We expand the partition func-
tion, and thus need for this the one point function of €? on the corresponding surface.
We obtain it by uniformizing via two mappings: If w is the coordinate on R,, the map

u:_(w”ym (15)

w + il

maps onto the disk |u| < 1, while the map

u—1
TR (46)
maps the disk onto the ordinary half-plane. Using Eq. ’ we obtain
(/B8(w.D)) <2€>Wl [(w — i0)(w + i€) (@ — i6) (@ + i0)]" 5V )
R, — |\ — ‘
TN i) (@ — i) (w— i) VP (D + i) 7]

Here, we have used the fact that vertex operators are primary fields, and thus transform
without any anomalous terms. Since two transformations are in fact required to map R,
onto the half-plane w — u +— z, we have refrained from writing the intermediate steps,
and only give the final result.

The perturbative calculation of the entanglement proceeds [28] (in the Euclidian version)

by considering the ratio (we set 2% =L=] = A1 = p and take jo even for the time

mJ ™
being),
R (M) = Zp _ ftwist[D(z)l] ce. [D¢p] exp {_ Zf:l (A[¢]z + ,Uf dr; cos ﬁ@‘(& Tz))} (48)
P (Z1)P (f[Dd)] exp{— (A[gb] + p [ drcos (¢, T))})p ’
and the integral in the numerator is taken with the sewing conditions
pi(0<z<lir=0")=¢;1(0<x<l7=07). (49)

16 A more sophisticated approach would be to realize the cocycles using o matrices o, oy, and diagonalize
the product 0,0y = i0..
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As usual, we trade this problem of p copies of the field for a single field on R, [6]. With
no modified bond, we get the known result,

a\ 2hp c 1
Ryu=0)oc (4)77 hy=S(p—=), 50
=0 ()" =5 (1) (50)
w0 d 1
S=-—R, =—In—. (51)
dp "l 6 a

This is the usual entanglement entropy near a boundary - and we have discarded terms of
order 1 which are independent of .

We now proceed to calculate the ratios R,(u)/Ry(p = 0). To leading order in |u| o
1 — A< 1, one finds

Rw) ([ o
Ryui=0) L+p <;/dn<cosﬁ¢(€, Ti)) R, p/dT(cosB¢(€, 7')>HP> : (52)

Here, 7; parametrizes the p copies (on the p sheets of R,) of the line along which the
perturbation is applied (in the Euclidian formulation).

It is now time to set h = % for our perturbation, cf. Eqgs. &. We observe that we
move from one sheet to the next by (w — i) — e*™(w — if), an operation which does not
change the one-point function. We also observe that

(53)

101 _4
_ 20 [7’2(7-2 + 462)] 2 (P )
(cos Vamd(w,w))r, = (p) [(7‘2 1) — 7_2/p] )
1
with the asymptotics (cos V4rg) ~ (20)~!, 7 > £, and (cos Virg) =~ %(28)*1/1975_1,
7 < £. Because of the subtraction coming from the numerator, we see that the integral
in Eq. converges at large 7. It also converges at small 7, and can in fact be written
elegantly using 7 = 2¢tand, i.e.,

s 1
R, (1) /2 do | (cosf)r ' cos?
——— =142 — =1+ 2ul,. 54
R,(1n=0) T eon o cos20 | 1— (cosf)2/p P Ty (54)

We see from Eq. that we get a correction of O(1) to the entanglement, given by
L

1 d
S=-In| - 2u —1I 55
s (5) + ) (55)
Using the integral
1 2
dx 1+x T
1 1 ==
| (1_332)3/2[ e =, (56)
we find dilp) = ¢ and thus
P p=1
1 / T 1 14 1
=—In| - —u==In{ - —(A—1
S G n<a)+3u 5 n(a>+3( )s (57)

where we used that J = % Recall now that this was done for jy even. The opposite term
of O(1) is obtained for jo odd, leading to

2 -

2
05 3 J 3

(A—1). (58)

13
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Figure 4: (@ The slope of the entanglement entropy differences §S()) fitted in
the window A = (1 —€)...1 and extrapolated to the limit ¢, L. — oo for £ = L/2
(black circles) and ¢ = L/3 (red squares). In the limit € — 0, the slope is given by
the analytically predicted value Eq. (59), here shown by horizontal dashed lines.
(®) The same for fluctuation differences 6F (), where the slope approaches the

limit Eq. .

We see now that Eq. would lead to S ~ In2(X — 1), instead of the exact result
68 = %()\ — 1), hence establishing that the ellipse approximation cannot be exact.

We note that finite size effects can be studied in perturbation theory as well. Following

again [6], we find that the leading term is obtained upon using the more general integral

d (22(1+42)2 7Y

& 1
— dz - 3
dp Jo /1+sin? a2 | (1+a?)r —ar
which is equal to & for £ < L, and ~ 0.500125 for ¢ = % We then find
0S5 =0.636779(\ — 1) (60)

instead of the % slope for an infinite system. When instead fixing ¢ = %, the slope turns
out to be given by 0.642286. We can check these results by ‘ab-initio’ measurements of the
slopes close to A < 1. Using a varying fitting window of A = (1 —¢)...1 and extrapolating
the slopes to infinite system size, we see how the slope close to A < 1 approaches the
analytically predicted value Eq. for vanishing window size € — 0, cf. Fig. [4] (@). The
growing discrepancies for larger fitting values away from e 2 1 suggests that there are
other terms, possibly of the form \log A, which we have not considered in our lowest order
perturbative calculation.

To the order we have considered, the fact that the entanglement gets finite terms of O(1)
arises technically from the facts

(i) that the term coupled to A — 1 acquires a finite expectation value in the presence of
a boundary, and

(ii) that, while this expectation value decays with ¢, the integral over imaginary time
leads to a finite contribution.

While calculating entanglement perturbatively at vanishing temperature leads usually to
difficulties [28], we note that no divergence is encountered at leading order. At this order,
the (anti-)symmetry under A — % also appears clearly.

While our calculation started out with a specific model (the XX chain with one modified
bond), any other system in the universality class of free fermions and with a set of modified

14
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bonds should be equivalent to the field theory action of a free boson perturbed by the term
Eq. up to irrelevant terms. The same calculation should then apply, and we expect
therefore our term of O(1) to be a universal function of the effective amplitude in the

Hamiltonian Eq. .

3.2 Charge fluctuations

We first recall briefly what happens without an impurity or a boundary. Using the same
factorization Eq. as before, we have for the charge density

c;cj — ﬂ#/}R + 1/121/1L + 62”(”1#21/1 + 672“(”'1?21#1%7 (61)

where, at half-filling, Kr = 5. One usually considers (but see below) that the oscillating

terms can be neglected when considering the fluctuations of the charge @ = > i c;f»cj in a

T

given interval. Going over to a continuous description p(z = ja) = iCjr We obtain

{p(z)p(2))e = (: wL@ZJR D (x) - wL@Z)R : (2")) + R <> L + rapidly oscillating terms.  (62)

We now recall that .
7

f T ) = ——m—
WLEWL ) =~
so we find, with Q = foe p(x)dx,
I , 1 1./
(Q —(Q))?*) =2 x 5, dmdmm:plna, (64)

where we regularized UV divergences with the cut-off aEl Note that this result is pretty
much the bosonic propagator since, upon bosonizing and by using ¢ = ¢ + ¢, we obtain

(P)olae ~ - (0:0m()008() + (Gubr(2)0000() +..
-+ + rapidly oscillating terms (65)

~ %(@xqs(x)axaﬁ(a:’)%

and therefore

1
(Q—(@)*) =Fa= —{[o(0) - $(0))%). (66)
Using the free boson propagator on the infinite line,
/ 1 —a
(@) ))e =~ 2] (67)

we recover Eq. .

We now turn to the continuous description of the impurity in the fermionic language. We
have, to leading order,

C;[Cj+1 +h.c. — 2@'(—1)3'(1/121?3 - 1/121%)‘ (68)

17 Although we use the same notation, this cutoff is only proportional to the cutoff discussed in the
numerical calculations.
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Solving the Schrodinger equation in the continuum limit gives, for a modified bond at
position jo and setting ¢ = jpa,

( Yr(0+) > _ < cosé  siné ) < Yr(l—) ) (69)
Yr(l-) —sing cosg Y (l+)

This defines the phase shift & at the Fermi-surface. It is, in general, a non-universal
quantity which must be calculated starting from the lattice model. In our case, we find

£E= (—1)j0 [;r — 2arctan 1]]/] , (70)

where the oscillating factor (—1)7° originates from the alternating term in Eq. (68)). We see
that shifting the weak bond by one site (i.e. exchanging the odd and even cases) amounts

to changing the sign of &, or equivalently changlng A=5 — )\ j,

In the presence of a weak link but no boundary, we can now see how this result is modified.
We can for instance decompose the fermion fields into modes. Assuming the weak link is
at x = ¢, this gives

z,t — ezk(x t) k) +e —ik(x—t) T(k
Yr(@,?) k>0§z[ " t() té()] for x < /£, (71)
(ACH IR . = e D a(k) + et )BTU‘:)]
and similarly
z,t _ dk eik(:p t) k) +e —ik(z— t)bT k
Yr(z,t) k>0 27r [ ket a(k) )7 T< )} forx > /¢ (72)
Y (x,t) _fk>0 [e™ @H0a (k) + etF=+0p (k)]
with matching conditions
a=cos€ a+e Plging a
bl = cos€ BT + e**gin ¢ bf
i 2ikL (73)

a=coséa—e
BT = cos¢ bt — e 2*Lgin¢ g,

siné a

We must now consider the modes a, Bt a, bt (and their conjugates) as independent, while
@, a,b" (and their conjugates) follow from the matching relations. While the RR. and
LL correlators are not modified, we now have a non-zero RL correlator,

sin&
(2im)(x + 2/ — 20)°

W2y () = — (74)

This leads to fluctuations (for an interval in the bulk, with an impurity on one of its
borders) of

1 14
F A imp & 2—7T2(1 + cos? &) In . (75)
We see that the slope interpolates between # when ¢ = 0 (no impurity) to # when the
)2
chain is cut in half. The ‘impurity part’ has a slope proportional to cos? ¢ = s2 = %,

where we now recover the result Eq. and see how C' plays a role similar to the effective
central charge.
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The case with a boundary and no impurity is slightly more convenient to handle via
bosonization. In this case, the left and right components of the bosonic field are not
independent any longer due to the Dirichlet boundary conditions,

1

(p(x,T)p(2', 7)) = i (ln |z — z'\z —In|z — 2/]2) , (76)

where z = —7 +ix. It follows that (using ¢(0) = 0),
14

{[6(0) = &(0O)]%) = ([2(O))) = % In=+o— 1n2 (77)
and thus ) Y
Fapdr = 55 In—. (78)

While the field theory does not control the terms of order one, it does control their differ-
ence, as seen by comparing Eqgs. , with Egs. ,.

Finally, when both the boundary and the impurity are present, we can do perturbation
theory, once again in the bosonized language. What matters then are the connected terms
in the correlator,

(olt.m = 00 cos 667 = 1 [m (1425 )] kL (79)

Hence, the leading correction to the charge fluctuations is given by
2\(1) 1 52
Q1@ =px o x oxoy [ ar[w (145 )]

T 4w
_ K 1172
~ 22 ), dﬂ”[m(”xaﬂ !
where the integral is tabulated and yields 47 1In2. Subtracting the opposite term for the
odd case, it follows that

(@ — QD — (@ — @AM = Mg = AT =Ty A2 0y g

T T J T

where we recall that Jj/ = A. With 4}(—%2 ~ 0.280922 # % we see that the result is, again,
not supported by the naive ellipse shape mentioned previously. We note that the leading

term o In¢ does not get corrections to first order in w, which is in agreement with the
formula for the slope in Eq. .

The foregoing calculation holds when the interval from the edge to the impurity is part
of a half-infinite system. We can otherwise expect finite-size corrections, like for the
entanglement. It is possible to calculate the effect of these corrections on the first order
term by evaluating the propagators on a strip instead of in the half-plane, using a conformal
map, which yields

(@ — (@20 (2)

o0 d 1\1?
_2“2/ S [ln(1+2>] .
™ Jo \/1+sin2”fea:2 x

We ﬁnd that 2152 ~ 0.280922 is replaced by 0.271377 when ¢ = %, or by 0.273147 when
(= g - these are small but non negligible effects. We again check these results by ‘ab-
initio’ measurements of the slopes close to A < 1, obtained by diagonalizing the tight
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binding Hamiltonian. As for the entanglement entropy, we observe that the slope is given

by Eq. for vanishing fitting window, cf. Fig. [4] (b).

Finally, we note that the behavior of the slope of §F close to A = 1 can also be derived
from first order perturbation theory around the exact plane wave solution of the homo-
geneous chain with open boundaries, yielding identical results - see the Appendix for a
discussion.

4 Extended impurities (towards the SSH model)

In this section, we would like to illustrate the fact that the entanglement and fluctuation
oscillations only depend on the phase shift at the Fermi level. Let us for this purpose
consider a system with Njyp, impurity bonds arranged in an alternating fashion, i.e.,

H= —JZ (cinﬂcm%—h.c.) - J[()\<0’1> - 1)C;OC]‘O+1 + (A2 — 1)C;O+2Cj0+3 +...

(83)
o 4 (AEPNimp 2Nomp 1) 1)C}o+2Nimpcjo+2Nimp+1 +he.],
where A7) is the impurity strength between sites jo + i, jo + J.
4.1 General results
To solve the system, we make a plane wave ansatz,
jo—l j0+2Nimp71 ) [ee]
k)= > (Akelkj + Bk€72k1> IR DAL RS (C'kelkj +Dk6%kj) 19)
j=—00 J=jo J=Jjo+2Nimp
(84)
with
H |ky = —2J cos(k) |k) . (85)

By comparing coefficients after applying the Hamiltonian to Eq. (84), we find for cg and
1
Ck

cg = Ay + B
)\<0’1>Czlg _ Ake““ _i_Bkefik_ (86)
The coefficients cz...ci ™MPT" are then constructed with the recursion relation
" 2 cos(k)cp~t — Am=2n—1) =2 for n even
= {,\<n_11,n> (2cos(k)cy™t = ?) for n odd. (87)

This now expresses all tight-binding coefficients lying inside the impurity with the plane
wave coefficients Ay, Bx. We further get two additional equations relating con;,,—1 and
C2Njpp—2 with C and Dy, given by

2 Cos(k)CiNimp_l — >\<2Nimp_2:2Nimp_1>CzNimp_2 + Cke2ikNimp + Dk€—2ikNimp
Czj\fimp_1

= Ce*CNimp=1) | D, o= k(2Nimp—1) (88)

Egs. , fully solve the Njy,, alternating impurity system. In case of half-filling,

these equations simplify considerably, such that

n_ {(_1)n/2(Ak + By) H?z/gil A{26,2i41) for n even (89)

c - . .
; (_1)(n+1)/2i(14k — By)/ HEZQI)/Q 26241 for pn odd.
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Figure 5: Parity effects of (@) the entanglement entropy and (b) the fluctuations
when transitioning from the single impurity link to an “SSH-like” impurity with
a collection of alternating bonds J, A\J. Upon increasing the number of impurities
Nimp = 1,3,5,7 with all A2n2n41) — A the differences quickly saturate to +1n2
(upper panel (@) and +1/4 (upper panel (b)). This can be understood in terms
of an effective, stronger single impurity with strength AVmp. When rescaling §S
and 0F accordingly, the curves become equivalent (lower panels).

Now, using Eq. , we find

Nimp—1
(Ap+Bp) J] AP0 =Cp+ Dy,
=0

Ny 1 (90)
Ay — By = (C, — Dy) H Af2i2i+1)
i=0
where ¢ = 0..Nimp — 1 now runs through all impurity bonds.
Finally, with [, A®%%+1 = A this results in
2A2 1-A2
(o) =% ) (h): 1)
¢ TI+A? 14A2 A

We thus see that the collection of impurities behaves, in fact, like a single one of effective
strength A. Comparing with Egs. ,, we see that the phase shift at the Fermi
surfacd™| is now given by

€= (—1)i0 g —2arctan | [JA®2+0 | (92)

7

On the other hand, we can study numerically the fluctuations or the entanglement for these
extended impurities as well. In analogy with the case of the single modified bond (Niy,p =
1), we define the entanglement and fluctuation differences as the difference between even

8The phase shift depends on k in general. However, it becomes independent of k (and equal to &) for
low-energy excitations, that is excitations whose energy is much smaller than the band-width, and this
irrespective of the modified couplings.
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and odd parities of the part of the system situated between the boundary and the border
of the extended impurity. In practice, this corresponds to comparing two systems where
the cut defining the subsystem as well as the impurity are both shifted by one site.

Restricting to the simplest case where all impurity strengths in the chain are identical,
A = M\Vimp we find for instance that the curves for the Nimp-impurity system coincide
with those for a single impurity upon the rescaling A — A\Nime see Fig. [5| Here, we always
choose an odd number of impurities and cut the system through the central impurity bond.
The observation that the fluctuations become identical upon rescaling A — A\Vime is a clear
indication that the parity effects in the scaling limit are governed by the physics at the
Fermi level, ultimately supporting our conjecture that the differences are universal.

Note that these results are indeed independent on how one defines the subsystem’s border.
For instance, when defining the cut to go through one of the outermost impurity bonds
instead of the central one, we numerically checked that the curves are identica]ﬂ which
is expected since the phase shift at the Fermi surface is independent of the definition of
the subsystem.

When again focusing on the upper curves in Fig. [5| we see that 6S(X\) (6F(\)) approaches
a step function taking values +1n2 (£1/4) for A = 1 in the limit of an infinitely large
Nimp > 1 impurity.

4.2 SSH model

We now observe that entanglement entropy differences in the SSH model [29,30] look
similar to very large alternating impurities. It is interesting to see what becomes of our
observations in the former case. First, we note that the way we define the entanglement
entropy and the fluctuation differences both for the single impurity bond as well as the
extended (alternating) impurities corresponds to comparing the two distinct topological
phases in the limit of a pure SSH model (all weak and strong bonds are exchanged and
the border of the subsystem is moved by one unit).

In this case, the local environment around the border of the subsystem looks identical for
both parities, and its influence gets cancelled when taking the difference, see the upper
part of the inset of Fig.[6] However, the boundary of the system features localized modes
in the topologically non-trivial regime, which remain when we subtract the entanglement
from the trivial regime (where the edge modes don’t exist). This, in turn, results in an
entanglement entropy (fluctuation) difference of exactly In2 (1/4) - in fact for all values
of A, cf. the blue curve in Fig. [6]

Had we, on the other hand, fixed the geometry of the SSH chain and focused on entan-
glement and fluctuation differences arising from merely shifting the subsystem’s border
from even < odd, we would only observe local differences around the impurity (cf. the
lower part of the inset of Fig. [6]). This results in In2 (1/4) differences of the entanglement
(fluctuations) only in the limit A = 0, in which case we can again rely on the valence
bond picture: local valence bonds between dimers lead to differences of In2 (1/4) when
changing the parity of the subsystem’s border, see the red curve in Fig. [6]

It is not clear a priori to what extent the limit Njmp > 1 can be considered as identi-
cal with a pure SSH model since, in all our calculations, we have always considered an
impurity embedded in a gapless bulk (or metallic) system [31]. We observe however that

91n this case both definitions have the same Nimp limit and both scale as described above, making the
curves indeed identical.

20



SciPost Physics Submission

Figure 6: Comparing two different ways of defining the fluctuation differences
between the parities. (i) We both change the subsystem’s parity as well as the
topological phase, i.e., in the language of impurities, we “move” the impurity
together with the subsystem’s border (see the blue curve). Though locally the
systems look the same at the subsystem’s border, the edge modes appearing in
the topologically non-trivial phase lead to a 1/4 contribution for all A. (ii) While
changing the parity of the subsystem, the geometry of the underlying model is
fixed. Here, only local differences are seen, leading to a functional dependence
different from the step function.

the corresponding curves for the entanglement or fluctuation differences are the same step
functions. This means that the two leads coupling to the impurity become effectively de-
coupled in the limiting case of spatially large SSH-type impurities, ultimately also leading
to a contribution of In 2 (1/4) to the entanglement (fluctuation) differences for all impurity
strengths. It seems therefore that the phenomenology of the SSH model and the SSH-type
impurity are similar: in the former case the differences arise from the edge modes appear-
ing in the non-trivial phase, and in the latter they arise from the leads being effectively

decoupled™]

This decoupling of the leads is further confirmed by an analysis of the single particle
energies and wave functions of the SSH model when we add leads of increasing length
to the edges starting with either of the two topological phases. We observe that when
we add leads to the edges of a non-trivial SSH chain, the zero energy modes remain-
though the gap around them closes. Nevertheless, the central SSH chain fully polarizes
the system in the same sense it does for the conventional (full) SSH chain, i.e., the wave
function of the zero modes localized on the right (left) edge only have support on the A
(B) sublattice.

This is illustrated in Fig. [/} The left panel in (@) shows a linear combination of the
zero modes to have weight on both boundaries in the non-trivial SSH chain, localized at
the edges of the system on sublattice A (red dots) on the left and B (blue dots) on the
right. The single particle spectrum around zero energy is shown in the right panel of
Fig. [] @), whereby edge (bulk) modes are marked by blue (black) dots. When coupling
metallic leads to an SSH chain of size 20, we see that - up to a small split due to the
shorter SSH part- (approximate) zero modes are still present, and the corresponding wave
function is polarized on sublattice A (B) to the left (right) of the chain, see Fig. 7| (b).
When now keeping the same system size but further shrinking the SSH impurity part,
we notice how the polarization around the impurity weakens but qualitatively remains
intact even in the extreme limit of a single impurity bond, shown for A = 0.8 in Fig. [7] (©).

20In the language of the SSH model, this corresponds to having negligible overlap between the two
exponentially decaying edge modes.
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Figure 7: Modes |¥(z)|? in vicinity of zero energy for various tight-binding mod-
els. Values of |¥(z)|? are marked in an alternating fashion by red and blue dots
for A and B sublattices. Each model is illustrated in the center of the left panel,
with strong (weak) bonds marked by black (red) lines. Right panels show the
energy spectra close to zero energy, with the two symmetric modes closest to
e = 0 marked in blue. (@ The pure SSH chain features localized zero energy
modes, having support only on sublattice A (B) for the left (right) edge mode.
Here, A = 0.8. (b) An SSH impurity of length 20 attached to two leads of size
30 on either side, again with A = 0.8. The long SSH impurity polarizes the wave
functions close to zero energy, having support only on the A (B) sublattice on the
left (right) to the extended impurity. (¢) A single impurity bond with 40 metallic
sites to each left and right side for A = 0.8. (d) The same as (¢) with A = 0.1.

By decreasing the ratio A, the polarization is enhanced, shown in Fig. [7] () for A = 0.1.
Indeed, we find that for A < 1 the energy split of the two modes around zero energy
scales as ~ eMNimp — \Nimp akin to the scaling law we found for the fluctuation and
entanglement differenced?1]

In the language of the earlier impurity discussion, the above examples shown in Fig.
correspond to the “even case”. If we instead consider the trivial phase of the SSH chain
(“odd case”) and couple leads to it, there are no wave functions that are strongly polarized
on one sublattice only. Hence, when comparing the two opposing geometries (i.e. “even”
and “odd”, which corresponds to non-trivial and trivial in the full SSH limit), we can get
an intuition for the resemblance of terms of O(1) of the SSH and single impurity bond
model: both systems feature low energy modes that polarize the system on a scale that
grows exponentially with the length of the (central) SSH chain oc ANme, This, in turn,
leads to non-quantized values of entanglement/fluctuation differences for small impurity
lengths and strengths.

Note that the problem we considered in this paper is fundamentally different from the
SSH model, in particular because the theory in the bulk is conformal instead of being

2n both cases, a consequence of the scaling of the phase shift at the Fermi energy.
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gapped. However, it is tempting to think of the oscillations we have exhibited as some
sort of measure of “topological phase precursor”, even though the meaning of the (non-
topological) numbers 65 (0.F) other than In2 (1/4) remains unclear.

Lastly, note that the above scaling results would break down if the modified bonds did not
obey the alternating pattern where unmodified bonds sit between two modified ones. An
interesting example with such a different behavior is the case where two successive bonds
are modified, leading to the so-called resonant level model which we discuss now.

5 The quantum dot and RG flows

We consider the case of a “quantum dot”, which is realized by considering a model with
two successive modified bonds, and Hamiltonian

o

H=-J Y dyecen-J <C}0+1% + ch o1+ €y patior + C;[0+1C]'0+2) :
Jj# ;oyzj; +1

(93)

It is customary in this case to think of the site jo + 1 as special (the “dot”), and de-

note C;Z)Jrl = d). In this form, we are dealing with the resonant level model near a

boundary.

The behavior of this model is profoundly different from the physics of the model with
a single modified link [27]. This can be understood if one observes that (in the absence
of a boundary), the latter has the symmetry of reflection through a bond, while the
former has symmetry of reflection through a site. For the single modified link, the term
J' — J corresponds to a marginal perturbation, with energy independent scattering in the
low-energy limit. In contrast, the case with two successive modified links exhibits the
physics of “healing”. When J' & J (and the chain is almost homogeneous), the impurity
behaves as an irrelevant perturbation of the unmodified chain, and the system still looks
homogeneous at low-energy (large scales). When J’ is small, the tunneling term J' is a
relevant perturbation of the two-decoupled chains limit, and the system flows again to a
homogeneous one at at low-energy. For the XX case, the dimension of the tunneling term
coupled to J' in the limit J — 0 is 1/2 (it is 2 in the limit J’ ~ J, while it is equal to the
marginal value 1 for the single modified link). The ensuing physics is close to the one of
the Kondo model in the spin channel [32].

The presence of an RG flow means that there is a characteristic crossover scale which we
shall denote T o (J')?  A? (like before, we set J' = A\J). The dependency of physical
quantities on ¢ and Tp will depend on their behaviour under RG.

While the foregoing considerations apply even to an interacting system (of XXZ type),
they can be made more explicit in the simple XX case. In this case indeed, the transmission
probability (see e.g. [33]) for one-particle energies € < J reads

1
1+ 2 (52)

[t ~ (94)

instead of being a constant (= cos?¢) a low-energy like in the case of a single modified
link. This means that, if we consider the limit J' — 0 while sending the characteristic
energy scale (e.g. the temperature, or, in our case, £~1) also to zero, some non-trivial
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scaling behavior of physical properties emerge@

The scaling form of the entanglement or fluctuations is quite involved [22], and it is simpler
to consider derivatives. As discussed in the introduction already, we observe that these
derivatives exhibit different, finite terms of (’)(1)@ depending on the parity of ¢. Setting

dSe
A, imp+bdr _ F(KTB) + f@(gTB)

dln?
dsg,imerbdr . F(ET )—I—fo(fT ) (95)
din¢ P Bl
we consider in particular the difference of terms of O(1), given by
. o _ dS({TR)
foUTp) = f°(Tp) = 0— (96)

We follow the same strategy as previously for the single impurity bond, Sec. &
as well as the alternating impurity geometry, Sec. [4 and compute entanglement entropy
and fluctuations for varying system sizes while fixing the cut through the system, which
we here choose to be the left impurity bond (i.e. excluding the quantum dot in region A,
see the inset of Fig. [8| (@)). By again considering a fixed ratio Z = 2, we compute the
difference of terms of O(1), Eq. . We observe that it exhibits a particularly interesting,
non-monotonic behavior with a maximum close to the crossover length scale L ~ A\™2, see
the lower panel of Fig. [§] (@). In contrast with the entropies themselves, the difference
between the even and odd cases has a simple scaling form, and can be seen to interpolate
smoothly between the UV (¢/Tp < 1) and the IR (¢/Tp > 1) regimes (see the upper panel
in Fig. 8| (@)). Once again, very similar results are obtained for the fluctuations, as shown
in Fig. [§| ). Note that we find similar results for larger ratios Z = L/, however with
considerably more noticeable finite size effects, which is why we fix the quantum dot to
lie in the center of the chain, Z = 2, in our considerations.

We further note that it is possible to carry out perturbative calculations in this case as well,
but the results are not particularly useful and we refrain from presenting them here.

6 Conclusions

In conclusion, we have uncovered parity effects in entanglement and fluctuations that do
not decay with distance when the boundary is combined with an impurity in an XX chain.
These parity effects contain interesting physical information: they can be construed as
indicating the presence of a topological phase in the SSH model for impurities preserving
the symmetry of reflection through a link (conformal defects), and exhibit Kondo type
physics for impurities preserving the symmetry of reflection through a site (RLM type
model).

From a technical point of view, we note that it would be most interesting to come up with
a derivation of closed-form analytical expressions for the functions 05(s) and 6F(s). This
would presumably require an extension of the derivation [11] of ceg in the presence of a
boundary.

22In contrast, at fixed J' and low enough energy, the system appears healed and the impurity has no
effect.

2The terms f° below originate from terms of O(1) in the entanglement indeed. Notice however that
when taking derivatives, these terms become in fact of the same order at the leading one. Since we focus
on differences between even and odd however, this does not matter.
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Entanglement entropy Fluctuations
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Figure 8: (@) Entanglement entropy for varying positions of the quantum dot,
excluding the dot from subsystem A, as illustrated in the inset of the upper
panel. As for the single impurity bond, 65 is defined as the difference of even
and odd parities of the quantum dot position. The derivative of the difference
with respect to In L, where L is the total system size, is shown in the lower
panel, where a crossover can be observed at LA\? ~ 1. (B) The same for charge
fluctuations.

Finally, we note that the case of a conformal defect with a free parameter is very special
to the non-interacting case. A modified link in an XXZ chain, for instance, would lead
to a quite different behavior, with, depending on the sign of the anisotropic interaction,
either an RG flow towards a uniform chain, or a flow to a chain split into two separate
parts. In both cases, an analysis similar to the one in section [b| of this paper could be
carried out, using e.g. density matrix renormalization group [34-36] techniques.

In conclusion, let us mention that, although we have focused solely on subsystems near
a boundary in this paper, entanglement and fluctuation differences in a periodic system
with two impurities at either border of the subsystem also exhibit finite terms of O(l)@
We hope to discuss this elsewhere.
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Appendix

Perturbation theory for \ ~ 1

To further study the behavior of the slope of  F close to A = 1 presented in Sec we can
perturb the exact plane wave solution of the homogeneous chain with open boundaries,
given by

K@) = sin(ki) 1), (97)
J
with |j) the tight-binding basis and C = 1/2/(L + 1). The corresponding energies read
(0) _ o T
E,7 = —2tcos(k); k= T+1 withl=1,...,L, (98)

where we see that — in contrast to periodic boundary conditions — the states are non-
degenerate. Hence, when introducing a perturbing potential V' (),

V) = (1= Nt{|¢+1){{ +He.}, (99)

=V

we can perform the standard first order perturbation theory for systems with non-degenerate
spectra. In first order, the corrected energies read

Ee=E" 4+ (1 - NEY = —2tcos(k) + (1 — A) (5O |V |kO)

(100)
= —2tcos(k) + (1 — \) sin[k(£ + 1)] sin[k/].
Perturbation of the standing waves leads to
0)11/1%(0)
) = [KO) 4+ (1= ) k) = 5O 4 (1 - 2 Yo VD 0 - )

For the correlator G;; = <cjcj> = > h<kp (ilk) (k|7) then follows in linear order (1 — A),

Gij= > (kD) Q) +1 =X Y @My O + @[@) (kW]5) . (102)
k<kp k<kp
_g© Be
Here,

(i|k©)) = Csin(ki),
. sinfk1 (€ + 1)] sin[kf] + sin[k(Nimp + 1)] sin[k1£
W) =y [k1(£+1)] Q[C[()Sgkl) _[CO(S(k>]p )] sinfk1 /]

(103)

sin(kyi).
ey #k

For computing the difference of the fluctuations between even/odd scenarios, we will con-
sider the two perturbing potentials V¢ V¢ resulting in different perturbed states and
correlation functions Gf]/ ?. The fluctuations at half filling are given by

J4
Fo)y=--> G (104)
i,j=1
i#]

N o~
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The first order correction in (1 — \) to AF = 6F @ + (1 — X\)§FM hence reads

£° £e
b _ (0) (1) (0) ()
sFW =28 N GUGH - Y GG

Zj,O zj,e
ij=1 ij=1
i#] i#]
Using Eqgs. (102) & (103), Eq. (105) can be evaluated numerically. To compare with
the results presented above, we compute the slopes AFW) for different chain lengths and
different impurity bond positions (i.e. at 1/2 and 1/3 of the chain), and extrapolate the
values for L — oco. We find that

(105)

Impurity at L/2: 0.27138

] (106)
Impurity at L/3: 0.27315,

which is in correspondence with the predictions presented in the main text, Sec.
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