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Abstract

A non-isolated physical system typically loses information to its environment, and when
such loss is irreversible the evolution is said to be Markovian. Non-Markovian effects are
studied by monitoring how information quantifiers, such as the distance between phys-
ical states, evolve in time. Here we show that the Fisher information metric emerges
as the natural object to study in this context; we fully characterize the relation between
its contractivity properties and Markovianity, both from the mathematical and opera-
tional point of view. We prove, for classical dynamics, that Markovianity is equivalent
to the monotonous contraction of the Fisher metric at all points of the set of states. At
the same time, operational witnesses of non-Markovianity based on the dilation of the
Fisher distance cannot, in general, detect all non-Markovian evolutions, unless specific
physical postprocessing is applied to the dynamics. Finally, we show for the first time
that non-Markovian dilations of Fisher distance between states at any time correspond
to backflow of information about the initial state of the dynamics at time 0, via Bayesian
retrodiction. All the presented results can be lifted to the case of quantum dynamics by
considering the standard CP-divisibility framework.
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1 Introduction

The information contained in an evolving open system may undergo two possible dynamical
regimes, dubbed Markovian or non-Markovian. Markovian evolutions are characterized by
memoryless environments, where at each time the dynamical trajectory can be represented
by physical transformations that solely depend on the immediately previous time step [1, 2].
It follows that in this regime the information contained in the system undergoes a monotonic
degradation. On the other hand, non-Markovian dynamics are distinguished by memory ef-
fects, meaning that at any time the evolution might in general depend on all the previous
time steps of the trajectory. This property allows information to flow back into the system.
The complete characterization of non-Markovianity passes through the classification of the
possible backflow phenomena that these evolutions can offer. This task is at the core of the
non-Markovian witnessing problem [3, 4]. More specifically, one needs to find information
quantifiers and specific initializations of the system (which may include ancillas) that are able
to signal the non-Markovian nature of the evolution via revivals of an otherwise monotoni-
cally decaying information. Different quantifiers have been considered in this context, such
as for state discrimination [5, 6], channel capacity [7], volume of accessible states [8] and
correlations [9, 10]. This approach allows to understands how we can gain benefits from
non-Markovian evolutions and, at the same time, it is committed to test the correspondence
between its phenomenological and mathematical definition.

A quantity that has attracted a lot of attention from the community is the trace distance.
In the classical case, it is given by

DTr(p,q) = |p − q |=
∑

i

|pi − qi| , (1)

where p and q are two classical probability distributions. Such distance quantifies the distin-
guishability between the states p and q , as the error probability of distinguishing the two in
a single-shot measurement is lower bounded by Perr =

2−|p−q |
4 [11]. Moreover, this quantity

decreases under physical maps, leading to a monotonic decrease for Markovian evolutions [3]
(cf. Appendix A). Hence, one consequence associated to the loss of information due to Marko-
vianity is a continuous decrease in the ability of an agent to discriminate between any two
states.

Still, the effects linked to Markovianity go well beyond what can be quantified by the trace
distance alone. In the following we study an alternative quantifier: the Fisher information
distance. This can be defined from its value between two infinitesimally close points. That is,
given a small perturbation |d| ≪ 1 it reads

D2
Fish(p, p + d)≃ 〈d,d〉p :=

1
2

∑

i

d2
i

pi
, (2)

where we define the Fisher scalar product 〈a, b〉p :=
∑

(ai bi)/(2pi) 1. This quantity has nu-
merous operational interpretations: in metrology it is used to derive the Cramér-Rao bound [13,
14], a fundamental limit on the precision with which a parameter can be estimated; it quanti-
fies the asymptotic distinguishability between multiple copies of two states (Chernoff bound [15]);

1Integrating Eq. (2) over the space of states one can obtain the general expression of the distance
DFish(p,q) =

p
2arccos (pp · pq) [12].
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moreover, it also arises as the infinitesimal expansion of the relative entropy [16] (in fact, it
can be shown that any f -divergence locally behaves as the Fisher information [17]).

While the relation between Fisher metric and Markovianity has been previously partially
analyzed [18] here we characterize it completely. In fact, a key characterisation of the Fisher
metric is given by the Chentsov’s theorem: this says that the Fisher information is the unique
Riemannian metric that contracts under the action of all stochastic maps [19,20] (for the quan-
tum case, see Petz [21]). This is the starting point of our work. In particular, we study whether
this strong relation between stochasticity and contractivity of the Fisher information can be
reversed. That is, is it true that a map is Markovian if and only if it contracts monotonically
the Fisher information? What are the operational consequences of the contraction/dilation of
such metric?

2 Framework

Before passing to the main treatment, we introduce here the main objects of interest for the rest
of the work. A stochastic map (or channel) T (t,0) is a linear operator that evolves probability
vectors (or states) p ∈ S(RN ), in the symplex defined as S(RN ) := {p ∈ RN |pi ≥ 0∧

∑

i pi = 1},
from a time 0 to t,

T (t,0)[p(0)] = p(t) . (3)

It follows from this definition that, for every t,
∑

i

T (t,0)i j = 1 , T (t,0)i j ≥ 0 ∀ i, j . (4)

In fact, the elements T (t,0)i j can be interpreted as the conditional probability of ending up in

microstate i at time t starting from j at time 0, i.e. T (t,0)i j = P(i, t| j, 0).
Assuming the channel to be continuous and differentiable in time, as well as invertible 2,

one can define the intermediate channel T (t,s) between two increasing times s and t as

T (t,s) ≡ T (t,0) ◦ T (s,0)
−1

, t ≥ s ≥ 0 . (5)

Channels with these properties constitutes the class of smooth evolutions. From its definition,
it is easy to verify that T (t,s) still satisfies

∑

i T (t,s)i j = 1 ∀ j, which can be equivalently rewritten
as

T (t,s)j j = 1−
∑

i ̸= j

T (t,s)i j ∀ j , (6)

and corresponds to the requirement that the dynamics preserves the normalisation.
In the limit of infinitesimal time-steps, a smooth evolution T (t,0) is generated by the rate

matrix

R(t) ≡ lim
δt→0

T (t+δt,t) −1
δt

, (7)

such that d
dt T (t,0) = R(t) ◦T (t,0). Thanks to the condition in Eq. (6) (see also Eq. (10a) below),

one can always decompose R(t) as

R(t) =
∑

i ̸= j

a(t)i← j ( |i 〉〈 j | − | j 〉〈 j |) , (8)

2Invertibility of the maps can can be always physical satisfied by introducing undetectable ϵ-noises to the dy-
namics.

3



SciPost Physics Submission

where a(t)i← j are real coefficients called rates.
A smooth evolution T is called stochastic-divisible or Markovian 3 [2,3] if for any partition

of the interval [0, t] it can be split into intermediate channels, all of which are stochastic

T (t,0) = T (t,tk−1) ◦ T (tk−1,tk−2) ◦ · · · ◦ T (t1,0) . (9)

Since the composition of two Markovian evolutions is again Markovian, one can check the
stochastic-divisibility of a channel by studying maps of the form T (t+δt,t) ≈ 1 + δt R(t) for
all possible times. is, we require T (t+δt,t) to be stochastic, imposing on the rate matrix, via
Eq. (4),

∑

i

(δi j +δtR(t)i, j ) = 1+δt
∑

i

R(t)i, j = 1 ∀ j, (10a)

δi j +δtR(t)i, j ≥ 0 ∀ i, j , (10b)

where δi j denotes the Kronecker delta. The first conditions implies that
∑

i R(t)i, j = 0, which
leads to the canonical decomposition (8). If we now focus on the second condition in Eq. (10)
we see that R(t)i, j ≥ 0 whenever i ̸= j. In the parametrisation above this means that a(t)i← j ≥ 0.
It follows that the rate matrices generating stochastic evolutions form a cone, whose elements
are matrices of the form (8) having all the rates ai← j positive. Since a smooth evolution T is
Markovian if and only if T (t+δt,t) is stochastic ∀t, we can give the following definition:

Definition 1. A smooth evolution is Markovian if and only if for all times t the rates a(t)i← j are
positive for all pairs of microstates i ̸= j.

Remark. In the case of quantum dynamics the evolutions are given by Completely Positive
and Trace Preserving (CPTP) superoperator T (t,0) acting on density matrices, giving rise to
the evolution T (t,0)[ρ(0)] = ρ(t). In analogy to Eq. (9), we adopt the canonical definition
of quantum Markovianity as CP-divisibility [3], i.e., T (t,0) is said to be Markovian if for any
partition of the interval [0, t], it can be written as the composition of intermediate maps that
are CPTP. As for classical dynamics, Markovianity of smooth quantum evolutions becomes
equivalent to the positivity of the rates of the master equation [22]. For simplicity of exposition,
all the following results are presented in the classical scenario, but thanks to a technical Lemma
(Appendix C) we can lift them to the quantum regime. The precise proofs are deferred to
Appendix D.

3 Contractivity of the Fisher metric and non-Markovianity detec-
tion

From now on we will omit time-dependency when no confusion can arise. The Fisher distance
between any two points decreases under the action of stochastic maps. This directly implies
that under Markovian dynamics the Fisher metric contracts continuously. Indeed, simple al-
gebra (cf. Appendix B) yields, for infinitesimal d,

d
dt

D2
Fish(p, p + d) = −

∑

i ̸= j

ai← j Ii← j ≤ 0 , (11)

3Markovian evolutions are an essential tool for the description of multi-time process {t0, t1, . . . }
where the evolution of the state only depends on the latest previous sampling of it, i.e.
P(ik, tk| jk−1, tk−1; jk−2, tk−2; . . . ) = P(ik, tk| jk−1, tk−1), a condition equivalent to Eq. (9) [3].

4



SciPost Physics Submission

where we implicitly defined

Ii← j :=
1
2

�

di

pi
−

d j

p j

�2

p j (12)

as the Fisher information flow associated to the rate ai← j . These are positive objects, so that
the contraction of the Fisher metric is directly associated to the positivity of the rates ai← j .

Now suppose that for some time t there is a negative rate a(t)
ĩ← j̃
< 0 (i.e., the evolution is

non-Markovian). Is this sufficient to reverse the contraction of the Fisher information? The
positive answer is given by the following

Theorem 1. A smooth evolution T (t,0) is Markovian if and only if it induces a decrease in Fisher
distance between any two points in S(RN ) at all times, i.e.

T (t,0) is Markovian ⇔ DFish(T
(t+δt,t)[p], T (t+δt,t)[q])≤ DFish(p,q) ∀t, ∀p,q ∈ S(RN ) .

(13)

Note that applying an intermediate map T (t,s) to all the points in the state space S(RN )
is in general not physically defined, as only points in the image of T (s,0) are guaranteed to
be physical states after applying T (t,s) (cf. Eq. (5)). Still, by considering the infinitesimal
evolution T (t+δt,t) ≃ 1 + δtR(t), each point in the interior of S(RN ) is guaranteed to be a
physical state after evolving for a δt small enough. This allows d

dt DFish(p,q)|t to be well
defined at all times for all points in the interior of S(RN ).

Proof. As the ⇒ implication in Eq. (13) is trivial from the above discussion, only the proof
of the opposite ⇐ is needed. For that, suppose that the first instance of non-Markovianity
happens between time t and t +δt. In order to prove the statement it is sufficient to consider
the Fisher distance between any two infinitesimally close points p and p + d, with |d| ≪ 1,
evolving according to T (t+δt,t). Then, for any negative rate a(t)

ĩ← j̃
< 0, one can find a point p

and a perturbation d such that d
dt D2

Fish(p, p+d)> 0. In fact, assume without loss of generality
that a1←2 < 0 and consider p and d of the form

p =













O(ϵ)
1− ϵ
O(ϵ)

...
O(ϵ) ,













, d =













O(ϵ)
O(ϵ)
O(ϵ2)

...
O(ϵ2)













, (14)

where ϵ is an arbitrary small number and we assume that the vectors p and p+d are properly
normalised. Notice that it is always possible to choose p and p + d in the interior of S(RN )
(i.e., with strictly positive components). Inserting this expression in Eq. (11) we find that the
only term of order O (1) comes from setting i = 1, j = 2 in the sum above. That is, at leading
order,

d
dt

D2
Fish(p, p + d) = −a1←2

d2
1

p2
1

+O (ϵ) . (15)

Since a1←2 < 0 we can always find a ϵ small enough so that this quantity is strictly positive.
Hence, for any non-Markovian dynamics there always exists p and d such that D2

Fish(p, p +d)
locally increases, proving the Theorem.
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Theorem 1 can be seen as a completion of Chentsov’s Theorem, as it implies that not only
the Fisher information decreases under Markovian evolutions, but also that an evolution con-
tracting the Fisher distance between any two points has to be Markovian. The proof generalizes
to the case of quantum dynamics in the canonical CP-divisibility framework [3], by consider-
ing a copy of the system on which the dynamics acts trivially, i.e., the evolution is given by
T (t,0) ⊗1N and the set of states is considered on the global bipartition (cf. Appendix D.1).

Interestingly, a similar theorem cannot hold for the trace-distance as one can explicitly
construct non-Markovian evolutions that monotonically contract DTr(p,q) for any two points
(see Appendix A). This corroborates the interpretation of the Fisher metric as the canonical
distance whose contractivity identifies stochastic-divisible maps. Still, the argument that lead
to Thm. 1 has a shortcoming: even if non-Markovianity implies the dilation of the Fisher
information, this is not sufficient to produce an operational witness. In fact, assume that at
time t there is a local dilation for two points close to p̃. In order to observe it, one would
need to initialise the system in the state p(0) = (T (t,0))−1 p̃. If p̃ is outside the image of T (t,0),
this cannot be achieved physically. That is, the drawback of this approach is that the Fisher
metric is point-dependent, and the witnessing point might be excluded by the dynamics T (t,0).
On the other hand, the trace-distance is translational invariant, i.e., DTr(p,q) = |d| where
d = p − q . Then, as soon as any two points p and q are increasing their trace-distance, in
order to present an operational witness it is sufficient to consider a point r in the interior
of the image of T (t,0) and ϵ small enough for rϵ = r + ϵ(p − q) to be in the image as well.
Then, DTr(r , rϵ) = ϵDTr(p,q) and this increases by assumption. Moreover, if one adds a finite
number of ancillary degrees of freedom on which the dynamics acts trivially, one can always
find such two points for any non-Markovian evolution (see [5] and App A). A similar property
does not hold for the Fisher distance, as it lacks translation invariance. More specifically,

Theorem 2. No finite number n of copies of the channel T (t,0) nor ancillary degrees of freedom
of any dimension M is enough to witness all non-Markovian evolutions via revivals of the Fisher
distance between two initially prepared states.

Specifically, given n copies of the system, and an ancilla with arbitrary dimension M , the
state space will be S(RN⊗n ⊗RM ) and the dynamics acting on it T̄ (t,0) = T (t,0)

⊗n ⊗1M .

Proof. We constructively provide, for any n and M , a counterexample in which all the states
in the image of T̄ (t,0) continue decreasing their Fisher distance between time t and t + δt,
even if T (t+δt,t) ≃ 1+ δtR(t) is non-stochastic. Here we provide the proof for the single copy
case, deferring the multiple cases one to Appendix D.2. The map we consider is then given by
T̄ (t,0) = T (t,0)⊗1M and the rate matrix by R̄(t) = d

dt T̄ (t,0) = R(t)⊗1M . Suppose now that there
is a unique negative rate aĩ← j̃ and that the image of T (t,0) is contained to a small ball around

an appropriate vector π (e.g., by a map of the form T (t,0)[p] = π(1− ϵ)+ ϵp). Attach at time
0 an arbitrary ancilla, so that the initial state is given by p(0) ∈ S(RN ⊗RM ), and define w to
be its reduced marginal on RM , whereas the dynamics is given by T̄ (t,0) = T (t,0) ⊗ 1M . Then,
the state at time t will be ϵ-close to

p(t)∼ π⊗ w +O (ϵ) . (16)

Notice also that the rate matrix R̄(t) = d
dt T̄ (t,0) = R(t) ⊗ 1M has the following coordinate

expression

[R̄]i j,αβ = Ri jδαβ i, j ∈ {1, . . . , N} α,β ∈ {1, . . . , M} , (17)

so that the rates are simply given by aiα← jβ = ai← jδαβ . In this scenario, the evolution of the
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Fisher distance (as expressed in Eq. (11)) becomes

−
∑

i ̸= j,α

ai← j

�

diα

piα
−

d jα

p jα

�2

p jα +O (ϵ) with p jα = π jwα . (18)

Again, consider the case in which at time t a single rate becomes negative, for definiteness
say a1←2 < 0. Then, it is sufficient that a2←1π1 > |a1←2|π2 to see that the sum in Eq. (18) is
strictly negative in the limit ϵ→ 0. Hence, even if the dynamics is non-Markovian, there is no
increase in Fisher distance on the image of T (t,0), proving Theorem 2 for n= 1.

In the same way, even using multiple copies of the channel does not help finding a witness.
The proof easily generalises to n ≥ 2, as presented in App. D.2. It should be noticed that the
condition of finite copies in Thm. 2 cannot be dropped: in fact, in the limit of infinite copies,
one can perform full tomography of the evolution, allowing to reconstruct its action also on
points outside of the image of T (t,0).

Despite the above "no-go" Theorem, we can introduce an operational non-Markovianity
witness which does not require additional copies of the channel, but only some specific post-
processing of the states. More specifically, the following technical theorem holds

Theorem 3. For any state p and perturbation d on S(RN ⊗ RM ) (where we admit an M-
dimensional ancilla), it is possible to implement a class of transformations Fd depending on d
and on T (t,0) that witness non-Markovianity at time t. That is, if T (t+δt,t) is stochastic, for any
choice of d, one has that

DFish(Fd ◦ T (t+δt,0)[p], Fd ◦ T (t+δt,0)[p +d])≤ DFish(Fd ◦ T (t,0)[p], Fd ◦ T (t,0)[p +d]) (19)

whereas in the presence of non-Markovianity (i.e., for T (t+δt,t) not stochastic) there exists at
least one d for which the inequality is reversed (i.e., the Fisher distance of the post-processed
states increases). Moreover, for classical systems M = 2 is enough to witness in this way all
non-Markovian evolutions.

The specific proof is given in Appendix D.3. Theorem 3 ensures that any break of stochastic-
divisibility in the interval [t, t + δt] can be operationally witnessed via backflow of Fisher
information between states that undergo the transformation Fd before being measured. The
specific construction that we used here requires the knowledge of the previous dynamics T (t,0),
which makes such witnessing unpractical. Still, this protocol should be considered as a proof
of principle of the possibility of witnessing non-Markovianity through post-processing.

4 Backflows of information from Bayesian retrodiction

In most of the literature about non-Markovianity backflows of information are considered by
studying states p(t) at time t [3,4], while the question about backflows of information about
the initial state p(0) remains instead largely unexplored. Even if one can argue that the in-
vertibility of the dynamics preserves the information about the initial conditions (as these can
be recovered as p(0) = T (t,0)

−1
[p(t)]), actually retrieving the initial state from p(t) requires

full tomography both of the state and of the channel, and a post-processing of such data which
cannot be performed physically in a single-shot scenario.

Conversely, we consider here a Bayesian inversion of p(t) that allows us to compare it with
the initial state through a physically implementable transformation. In particular, define the
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prior as a vector π representing our knowledge about the system at time 0. Given an evolution
T (t,0), the Bayes-recovery map is defined as

T̂t = Jπ ◦ T⊺t ◦ J−1
T[π] (20)

where we use the shorthand notation Tt := T (t,0), and we introduced the map Jp , correspond-
ing to the diagonal operator that multiplies each component of a vector by the corresponding
component of p, i.e. [Jp]i j = δi j p j .

The map T̂t is stochastic (i.e., physically implementable) and represents a recovery of the
state via statistical retrodiction [23, 24]. Indeed if one identifies the coordinates of the prior
with the corresponding probability, i.e., πi ≡ P(i, 0), and the components of the maps with the
corresponding transitions, i.e., (Tt)i j ≡ P(i, t| j, 0), it is easy to verify that (T̂t)i j ≡ P(i, 0| j, t)
satisfies the Bayes rule. It should also be noticed that T̂t perfectly recovers the prior at all
times (π= T̂t ◦ Tt[π]).

This channel allows us to study how much information is stored in the evolved state p(t)
about its initial conditions. In particular, we can compare the distance between p(0) and the
retrodicted state p̂(t) := T̂t[p(t)] = T̂t ◦ Tt[p(0)]. We also assume that the prior contains
some knowledge on the initial conditions, so that we can write p(0) = π+ d, for some small
|d| ≪ 1. Moreover, since π is perfectly recovered, we also have that p̂(t) = π+ d̂(t). Then,
the Fisher information between p(0) and p̂(t) reads

D2
Fish(p(0), p̂(t))≃




d − d̂(t),d − d̂(t)
�

π
. (21)

Interestingly, this object is directly connected to the Fisher information at time t:

Theorem 4. The contractivity of the Fisher information at time t is in one-to-one correspondence
with the expansivity of Eq. (21). That is,

d
dt

D2
Fish(p(0), p̂(t)) =

d
dt




d − d̂(t),d − d̂(t)
�

π
≥ 0 (22)

if and only if the Fisher information contracts for any two points in the vicinity of Tt[π].

Proof. The main ingredient in the proof of this theorem is given by the following identities

〈d, T̂t Tt[d]〉π = 〈Tt[d], Tt[d]〉Tt [π] = 〈T̂t Tt[d],d〉π, (23)

which can verified by directly substituting T̂t with its definition in Eq. (20). One can read
from these equalities the following two facts: first, T̂t can be used to put in relation the Fisher
information at time 0 and at time t; secondly, T̂t Tt is self-adjoint with respect to 〈•,•〉π. This
allows to rewrite Eq. (22) as

d
dt




d, (1− T̂t Tt)
2[d]

�

π
= −2



d, (1− T̂t Tt)
d

dt
T̂t Tt[d]

·

π
. (24)

First notice that (1− T̂t Tt) is positive definite. In fact, this can be seen from

〈d, T̂t Tt[d]〉π = 〈Tt[d], Tt[d]〉Tt [π] ≤ 〈d,d〉π , (25)

where the last inequality follows from the contractivity of the Fisher information. Moreover, we
also have that 〈d, d

dt T̂t Tt[d]〉π =
d

dt 〈Tt[d], Tt[d]〉Tt [π], so that − d
dt T̂t Tt is positive if and only

if the Fisher contracts monotonically. If this is the case, we can use the fact that the product
of two positive operators has positive spectrum. On the other hand, if the Fisher metric is
expanding at time t, there exists an eigenvector d̃ of − d

dt T̂t Tt with negative eigenvalue λ < 0,
so that

−2


d̃, (1− T̂ T )
d

dt
T̂ T[d̃]

·

π
= 2λ




d̃, (1− T̂ T )[d̃]
�

π
< 0, (26)

proving the claim.
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Figure 1: The main quantity analyzed in this work is the rate of contraction/dilation
of the Fisher metric, i.e., d

dt DFish(p,q), with |p − q | ≪ 1, when both p and q evolve
according to the local intermediate map T (t+δt,t). We characterize the mathematical
and operational meaning of the negativity/positivity of such rate, both inside and
outside the image of the evolution T (t,0).

This theorem tells us that the ability of an agent of retrieving the initial state of the dynam-
ics decreases under Markovian evolution. Moreover, in the case in which there are backflows
in the Fisher information, non-Markovianity helps obtaining more information about the initial
state.

5 Conclusions

In this work we characterized the relation between Markovianity, Fisher metric contractivity
and information flow, both from the mathematical and operational point of view. The resulting
picture can be seen in Fig. 1: we showed that monotonous contractivity of the Fisher metric on
the whole set of states and at all times, is mathematically equivalent to Markovianity (Thm. 1).
As known, when the metric dilates locally inside the image of the evolution Im(T (t,0)), a back-
flow of Fisher information can be operationally witnessed. At the same time, non-Markovian
evolutions might in general show Fisher metric dilations only outside the image of the evolu-
tion itself, regardless of the number of copies of the channel and ancillary degrees of freedom
available (Thm. 2). To witness operationally non-Markovianity in such cases, one needs post-
processing to be appended to the dynamics (Thm. 3). Finally, we showed that dilations of the
Fisher metric between evolving states can be mapped to a backflow of information about the
initial states by applying Bayesian retrodiction (Thm. 4).

Our results corroborate the idea that the Fisher Information metric is the natural object
whose contractivity properties characterize memory effects in open system dynamics, both
from the mathematical and operational point of view.

5.1 The case of quantum dynamics

The results were presented for classical dynamics in order to keep the exposition clean. In
fact, whereas the Fisher information distance is uniquely defined for classical systems, the

9
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presence of non commutative observables allows only for the definition of a family of Fisher
information in the quantum case (see Appendix C). Despite this technical difficulty, we also
show in Appendix C that in order to study the interplay between Markovianity and Fisher
information we can limit ourselves to the diagonal subspaces, practically going back to the
classical constructions (details for each case are given in Appendix D). The only case in which
we cannot ignore the non-uniqueness of the quantum Fisher information are the expression
of the Fisher information flows Eq. (12), and Thm. 4. Both of these results will be generalised
to the quantum regime in the forthcoming work [25].

Moreover, it should be noticed that for quantum dynamics we identify Markovianity with
CP-divisibility [3]. This enforces an important difference with the classical case: whereas for
the classical dynamics the minimal space that can be used to probe the Markovianity of an
N -dimensional system is given by S(RN ), the corresponding for quantum systems is given by
two copies of the same Hilbert space on which the dynamics acts as T (t,0) ⊗ 1N . In fact, it is
not possible to distinguish P-divisibility from CP-divisibility by restricting to the system space
alone without the use of any ancillas.

Funding information The authors acknowledge support by the Government of Spain (FIS2020-
TRANQI and Severo Ochoa CEX2019-000910-S), Fundacio Cellex, Fundacio Mir-Puig, Gener-
alitat de Catalunya (CERCA, AGAUR SGR 1381). PA is supported by “la Caixa” Foundation
(ID 100010434, Grant No. LCF/BQ/DI19/11730023). MS is supported by European Union’s
Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant
No. 713729. DDS is supported by ERC AdG CERQUTE.

A The trace distance: contractivity and witnesses

The trace distance between two classical states is given by |p − q |Tr ≡
∑

|pi−qi|. Interestingly,
it only depends on the vector d := q − p and not on the base-point p. Distances satisfying this
condition are called translational invariant. Then, we can write its evolution as:

d
dt

DTr(p,q) =
d

dt
|d|Tr =

∑

i

d
dt
|di|=

∑

i

sign(di)ḋi . (27)

For classical systems, given a rate matrix decomposed as in Eq. (8), one has that

ḋi =
∑

j

Ri, j d j =
∑

j
j ̸=i

�

ai← jd j − a j←idi

�

, (28)

so that we can rewrite Eq. (27) as
∑

i, j,i ̸= j

sign(di)
�

ai← jd j − a j←idi

�

=
∑

i, j,i ̸= j

(sign(d j)a j←idi − sign(di)a j←idi) = (29)

=
∑

i, j,i ̸= j

�

sign(d j)− sign(di)
�

a j←idi ≤ 0 , (30)

where the last expression is clearly negative whenever a j←i are positive: in fact, either d j
and di have equal sign, in which case the term is null, or sign(d j) = −sign(di), so that
the factor (sign(d j) − sign(di)) = −2sign(di), and we can rewrite the terms in the sum as
−2sign(di)di = −2|di| .

This shows explicitly how the trace distance decreases under Markovian maps. Is the re-
verse true? That is, if the evolution stops being stochastic-divisible, i.e., some aĩ← j̃ is negative,

10
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can one always find two points for which the trace distance between them increases? Differ-
ently from the Fisher distance, the answer to this question is negative: one easy counterex-
ample can be given in dimension N = 2, with a1←2 < 0 and a2←1 > 0 with |a2←1| > |a1←2|.
Plugging such choice in Eq. (30), and using the fact that in dimension 2, d satisfies d1 = −d2,
it is easy to check that the derivative of |d|Tr stays negative.

This fact could sound counter-intuitive: it is well-known that a map is stochastic if and
only if each vector v decreases in trace-norm [3]. Yet, we have proven here that the trace
distance cannot witness all non-Markovian evolutions, without resorting to ancillas. An easy
resolution of this paradox is given by noticing that the test vectors used here are all in the
form d = p−q , constraining them to be of zero trace. This lowers the dimension of the tested
vectors by one, resolving the contradiction. It is in fact straightforward to verify that simply
by choosing vi = δi,2 in our example above one would be able to witness non-Markovianity
(where δi, j is the Kronecker delta). Still, the trace condition prevents us from accessing this
vector.

If one allows for the use of ancillas, though, the situation changes. In fact, consider an
ancillary set S(RM ) on which the dynamics acts trivially (i.e., states belong to S(RN ⊗ RM )
and the dynamics is of the form T̄ (t,0) = T (t,0) ⊗ 1M ). It is now sufficient to consider the
following vector on the extended space

d = v ⊗ danc , v ∈ RN , vi = δi,2 , danc ∈ RM , Tr [danc] = 0, (31)

to witness the non-Markovianity in the example above. Notice that the trace condition on danc
ensures that d is traceless, so this is a valid distance vector. Then, since its derivative takes the
form ḋ = v̇ ⊗ danc, the trace distance increases in time

d
dt
|d|= |v̇ ⊗ danc|= |v̇ ||danc|> 0 , (32)

as v was chosen to have |v̇ |> 0 when a1←2 < 0. Notice that the ancilla can have dimension as
small as 2. The same kind of reasoning is used in Ref. [5] for the case of quantum dynamics.
From these simple considerations and from reference [5] we have the following

Lemma 1. Given a non-stochastic-divisible dynamics T (t,0), adding a finite ancilla and consider-
ing the dynamics T (t,0)⊗1M allows for witnessing any such dynamics via revivals in trace distance
between initially prepared states. A finite number M of ancillary degrees of freedom is enough,
and in the classical case M = 2.

In the quantum case, M = N + 1 is needed, where N is the dimension of the quantum
state [5]. We close the section with a final remark. Notice that even less than a finite ancilla
would be enough. By this we mean that it is enough to enlarge the state space with an addi-
tional microstate that does not interact with the others, i.e., considering S(RN ) → S(RN+1)
and a dynamics of the form T ′ = T ⊕ 1 (i.e., T ′i j = Ti j for i, j ∈ {1, . . . , N} and T ′i j = δi j if

one between i and j is the N + 1 index). Given v ∈ RN such that |v̇ | > 0, one can consider
d ∈ RN+1 with

d =

¨

di = vi if i ∈ {1, . . . , N}
di = −

∑N
i=1 vi if i ≡ N + 1

(33)

Since the map T is trace-preserving at all times, such vector satisfies

|ḋ|= |v̇ | , (34)

allowing for the witnessing of non-Markovianity. This result should be compared with the
discussion above about how the trace condition lowers the accessible dimension by one.
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B Rates of Fisher Information flow and contractivity

We present here a decomposition of the derivative of the Fisher information in a sum of inde-
pendent flows. In particular,by explicitly using the expression in Eq. (8) for the dynamics we
can compute

2
d

dt
D2

Fish(p, p + d) =
∑

i

�

2di ḋi

pi
−

d2
i

p2
i

ṗi

�

=

=
∑

i, j

�

2di(ai← jd j − a j←idi)

pi
−

d2
i

p2
i

(ai← j p j − a j←i pi)

�

=

=
∑

i, j

�

2did jai← j

pi
−

d2
i

pi
a j←i −

d2
i

p2
i

p jai← j

�

=

=
∑

i, j

ai← j

�

2did j

pi
−

d2
j

p j
−

d2
i

p2
i

p j

�

=

= −
∑

i ̸= j

ai← j

�

di

pi
−

d j

p j

�2

p j ≤ 0 , (35)

where between the third and the fourth line we made the change of variable i → j in order
to factor out ai← j . Whenever the evolution is Markovian (i.e., the rates ai← j are all positive),
the Fisher information is contracting, in analogy with what happened for the trace distance.
On the other hand, if one compares the result in Eq. (30) with what we just obtained, there
is an important difference between the two: whereas the evolution of the trace distance only
depends on d (mirroring the translational invariance of this quantity), the Fisher information
explicitly depends on the base-point. This difference will be particularly important in the
constructions of the next sections.

C The quantum Fisher information metric and its relation to the
trace distance

The extension of the Fisher information to quantum systems is done by generalising Chentsov’s
theorem to completely positive, trace preserving maps (CPTP). That is, a metric on quantum
states is called monotone if it decreases under all CPTP maps. Then, it was shown by Petz
in [21] that all such metrics are induced by scalar products of the form:

K f
ρ(A, B) :=

1
2

Tr
�

A† J−1
f ,ρ[B]

�

, (36)

where J f ,ρ is a self-adjoint superoperator given by:

J f ,ρ := Rρ f (LρR−1
ρ ), (37)

and Lρ/Rρ are the left/right multiplication operators acting as Lρπ = ρπ (respectively
Rρπ = πρ) and f : R+ → R+ is a standard operator monotone function. Despite its com-

plicated form, the interpretation of K f
ρ(A, B) as the natural extension of the Fisher information

to the quantum regime is corroborated by the result in [26], where it was shown that the
same quantity emerges from the local expansion of the quantum generalisation of Csizár di-
vergences. For this reason, we define the family of quantum Fisher distances as

D2
Fish, f (ρ,ρ +δρ)≃ K f

ρ(δρ,δρ) :=
1
2

Tr
�

δρ† J−1
f ,ρ[δρ]

�

. (38)
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The uniqueness of the classical Fisher metric is hence substituted with a whole family of dif-
ferent monotone metrics. It is interesting to point out, though, that when J f ,ρ acts on diagonal
states it behaves (independently of f ) as the multiplication byρ. That is, if [A,ρ] = [B,ρ] = 0,
with a small abuse of notation we have

K f
ρ(A, B) :=

1
2

Tr

�

A†B
ρ

�

= 〈A, B〉ρ , (39)

that is all the quantum Fisher metrics collapse to the classical one for diagonal states. This
feature allows us to lift most of our classical constructions to the quantum scenario without
further complications.

Specifically, the following Lemma will be particularly relevant:

Lemma 2. Given a state ρ =
∑

i ρi |i 〉〈i |, any perturbation δρ can be decomposed in diagonal
and coherent part as:

δρ = δρ∆ +δρC with [ρ,δρ∆] = 0 and 〈i |δρC |i 〉= 0 , (40)

that is, δρ∆ is the diagonal part of the matrix δρ and δρC the off-diagonal. Then for all f

Tr
�

δρ J−1
f ,ρ[δρ]

�

= Tr
�

δρ∆ J−1
f ,ρ[δρ∆]

�

+ Tr
�

δρC J−1
f ,ρ[δρC]

�

= (41)

= 2 〈δ,δ〉ρ + Tr
�

δρC J−1
f ,ρ[δρC]

�

, (42)

where the components of the vectors δ, ρ are specified as

ρi = 〈i |ρ |i 〉 , δi = 〈i |δρ |i 〉= 〈i |δρ∆ |i 〉 . (43)

This result directly follows from the fact that

Tr
�

δρ∆ J−1
f ,ρ[δρC]

�

= Tr
�

δρC J−1
f ,ρ[δρ∆]

�

= 0 , (44)

since J−1
f ,ρ[δρ∆] is itself diagonal in the basis |i 〉 of eigenvectors of ρ. Then, we can use the

Lemma above to prove the following corollary:

Corollary 1. Consider a perturbation of the form δρ = δρ∆+dt δρC , where dt is an infinites-
imal quantity. Then, from Lemma 2 it follows that

Tr
�

δρ J−1
f ,ρ[δρ]

�

= Tr
�

δρ∆ J−1
f ,ρ[δρ∆]

�

+O
�

dt 2
�

= 2 〈δ,δ〉ρ +O
�

dt 2
�

. (45)

In particular, the time derivative of the Fisher Information between ρ and ρ+δρ for [ρ,δρ] = 0
coincides with the derivative of the classical Fisher Information. That is:

1
2

Tr
�

δρ J−1
f ,ρ[δρ]

�

= 〈δ,δ〉ρ and
1
2

d
dt

Tr
�

δρ J−1
f ,ρ[δρ]

�

=
d

dt
〈δ,δ〉ρ . (46)

In fact, consider the scenario in which initially the perturbation is of the form δρ ≡ δρ∆.
In order to compute the derivative, one considers the evolution of the state ρ+δρ for a time
dt , which we denote by ρ̃ + δρ̃. Then, the perturbation has the form δρ̃ = δρ̃∆ + dt δρ̃C ,
so that we are in the situation of Eq. (45) (notice that it doesn’t matter whether we take δρ̃∆
to be diagonal with respect to ρ or to ρ̃, as this difference only contributes to order O (dt )).
Since quadratic terms in dt do not contribute to the derivative, these considerations prove
Eq. (46).

Finally, in the next Lemma we show that there are special points for which the trace dis-
tance and the Fisher information locally coincide. This result allows us to lift the many con-
structions present in the literature for the trace distance to the study of the Fisher information
metric.
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Lemma 3. Choose an arbitrary perturbation δρ. Then, consider the state ρδρ =
|δρ|

Tr[|δρ|] . It
holds that

D2
Fish(ρδρ,ρδρ +δρ) =

1
2

D2
Tr(ρδρ,ρδρ +δρ) =

1
2

Tr [|δρ|]2 . (47)

Moreover, since [ρδρ,δρ] = 0, one can use Corollary 1 to show that:

d
dt

D2
Fish(ρδρ,ρδρ +δρ) =

1
2

d
dt

D2
Tr(ρδρ,ρδρ +δρ) =

1
2

d
dt

Tr [|δρ|]2 (48)

In fact, since [ρδρ,δρ] = 0, the quantum Fisher information and its derivative can be
studied just by looking at the quantity 〈δ,δ〉ρδρ . But this is given by:

2 〈δ,δ〉ρδρ =
∑

i

δ2
i

�

|δi |
Tr[|δρ|]

� =
∑

i

δ2
i

|δi|

∑

j

|δ j|=

�

∑

i

|δi|

�2

= D2
Tr(ρδρ,ρδρ +δρ) . (49)

The fact that not only one can locally identify the Fisher distance and the trace distance, but
also their first derivatives will be of key importance in many of our derivations.

D Additional proofs

D.1 Theorem 1: quantum case

In the case of a quantum map T (t,0) non-Markovianity means that T (t,0) is not CP-divisible.
This implies that there exists a time t for which the Choi state T (t+dt ,t) ⊗1N [

�

�ψ+
�


ψ+
�

�] de-
velops some negative eigenvalue (where

�

�ψ+
�

is the maximally entangled state). Call |v 〉
the corresponding eigenvector. Since T (t+dt ,t) is infinitesimal, the Choi state must be close
to
�

�ψ+
�


ψ+
�

�. But then, in order for |v 〉 to correspond to a negative eigenvalue it must con-
tain a non-zero component |v⊥ 〉 orthogonal to

�

�ψ+
�

. To see this, assume the opposite, i.e.,
|v 〉 ≡

�

�ψ+
�

(as it is parallel to
�

�ψ+
�

and normalised); then, from perturbation theory we know
that the corresponding eigenvalue must be 1+O (dt ) > 0. This contradicts the assumption
that |v 〉 is associated to a negative eigenvalue.

Consider now the stateρ =
�

�ψ+
�


ψ+
�

� and the perturbationδρ = ϵ( |v⊥ 〉〈v⊥ |−
�

�ψ+
�


ψ+
�

�).
With this choice we have that [ρ,δρ] = 0. Moreover, the evolution of δρ through T (t+dt )

can only generate an off-diagonal component of order O (dt ). Hence, we are in the situation
of Corollary 2, that is we can neglect the off-diagonal contributions completely. In this way,
we can simulate the process with a classical dynamics by only considering transitions from the
diagonal into itself. Then, it is enough to notice that the classical rate av⊥←ψ+ is negative by
assumption. This concludes the proof.

D.2 Theorem 2: many copy case

Consider the dynamics T̄ (t,0) = T (t,0)
⊗n ⊗ 1M acting on the state space S(RN⊗n ⊗ RM ). The

rate matrix in this case is given by

R̄(t) =
d

dt
T̄ (t,0) =

n
∑

l=1

1
⊗(l−1)
N ⊗ R(t) ⊗1⊗(n−l)

N ⊗1M . (50)
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Denoting by latin letters the indexes on the copies of the system space, and by greek letters
the indexes of the ancillary space, we can express the rates as

ā(t)(i1 i2...in,α)←( j1 j2... jn,β) =
n
∑

l=1

a(t)il← jl

�

δi1 j1 . . .δil−1 jl−1
δil+1 jl+1

. . .δin jnδαβ
�

. (51)

In analogy with the construction for a single copy, it is now sufficient to consider a dynamics
T (t,0) such that the image of T (t,0) is contained in a small ball around an appropriate π, i.e.,

p(t)∼ π⊗n ⊗ q +O (ϵ) , π ∈ S(RN ) , q ∈ S(RM ) . (52)

In this case Eq. (35) takes the form

−
∑

i⃗ ̸= j⃗,α

āi⃗α← j⃗α

�

di⃗α

pi⃗α
−

d j⃗α

p j⃗α

�2

p j⃗α +O (ϵ) with p j⃗α = π j1 . . .π jn
qα . (53)

Suppose now that a1←2 is the only negative rate of R(t). We want to show that despite the
onset of non-Markovianity, the Fisher distance continues to decrease for all the points in the
image of T̄ (t,0), i.e., the derivative expressed in Eq. (53) is negative. Then, consider for the
moment the positive contributions to Eq. (53). These are given by

−
n
∑

l=1

a1←2

�

d j⃗l=1α

p j⃗l=1α

−
d j⃗l=2α

p j⃗l=2α

�2

p j⃗l=2α
, (54)

where j⃗l=2 is the string j⃗l=2 = ( j1, . . . , jl−1, 2, jl+1, . . . , jn). We can now compare Eq. (54) with
the following contribution

−
n
∑

l=1

a2←1

�

d j⃗l=1α

p j⃗l=1α

−
d j⃗l=2α

p j⃗l=2α

�2

p j⃗l=1α
, (55)

where we defined j⃗l=1 in analogy with j⃗l=2. Summing up Eq. (54) and Eq. (55) then turns
out to be negative whenever p j⃗l=1α

a2←1 ≥ p j⃗l=2α
|a1←2|, i.e., π1a2←1 ≥ π2|a1←2|, in complete

analogy with what happened in the single copy case.

D.2.1 Theorem 2: quantum case

Theorem 2 holds also in the quantum setting. The extension of the proof makes use again of
Lemma 2. In particular, we exploit a quantum dynamical map T (t,0) with a strong dephasing
which reduces the states to be (almost) classical. That is, consider the evolution given

T (t,0)[ρ] =D(ϵ2) ◦F (ϵ1)
π [ρ] , (56)

where

F (ϵ1)
π [ρ] = (1− ϵ1)π+ ϵ1ρ , (57)

D(ϵ2)[ρ] = (1− ϵ2)ρD + ϵ2ρ , ρD =
∑

i

|i 〉〈i |ρ |i 〉〈i | , (58)

and |i 〉 is an eigenbasis of π (so that D is the dephasing operator in the basis of π).
Now thanks to Lemma 2 for small enough ϵ2, one can compute the Quantum Fisher Infor-

mation and its instantaneous variation by reducing it to its classical value. To be precise, as
the Theorem considers multiple copies of the channel and ancillary degrees of freedom, one
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needs to verify that also in this case the evolution of the Fisher Information collapses onto
the classical case. Consider any initially prepared ρ and ρ+δρ quantum states of H⊗n⊗CM ,
where H is the N -dimensional space of the single-copy channel, and an M -dimensional ancilla
is allowed. Then the evolution to time t is given by

T̄ (t,0) = T (t,0)⊗n
⊗1M , (59)

where T (t,0) is as in Eq. (56). By defining σ to be the reduced state of ρ on the ancillary
degrees of freedom, one has

T̄ (t,0)[ρ] = π⊗n ⊗σ+O (ϵ1) . (60)

At the same time, it also holds that

T̄ (t,0)[δρ] = ϵ1δρD +O (ϵ1ϵ2) , (61)

where δρD =D(0)⊗n ⊗1M [δρ]. As such it can be expressed as

δρD =
∑

γ

θ
(γ)
D ⊗ω

(γ) , [θ (γ)D ,π⊗n] = 0 , (62)

where the θ (γ)D are operators on H⊗n and ω(γ) on CM . The quantum Fisher Information can
then be computed as

ϵ2
1

2
Tr
�

δρD J−1
f ,π⊗n⊗σ[δρD]

�

+O
�

ϵ3
1

�

+O
�

ϵ2
1ϵ2

�

. (63)

By substituting the expression for δρD, we get that the leading order is

ϵ1
2

2

∑

γ,γ′
Tr
�

θ
(γ)
D J

−1
f ,π⊗nθ

(γ′)
D

�

Tr
�

ω(γ)J−1
f ,σω

(γ′)
�

:=
ϵ1

2

2

∑

γ,γ′
M(1)

γγ′
M(2)

γγ′
. (64)

Given that only the first trace is time-dependent (the evolution on the ancillary degrees of
freedom is trivial), the instantaneous derivative of the above equation can be written as

ϵ1
2

2

∑

γ,γ′

�

d
dt

M(1)
γγ′

�

M(2)
γγ′

, (65)

that is, as the trace-product of two matrices, d
dtM

(1) and M(2). We now notice that M(2)

is positive definite, therefore it is enough for d
dtM

(1) to be negative definite in order for the
product to be ≤ 0.

To prove the quantum version of Theorem 2 it is then sufficient to provide a non-Markovian
evolution for which d

dtM
(1) is negative definite. It is also enough to consider the case in which

M(1) reduces to its classical value, due to [θ (γ)D ,π] = 0. That is

M(1)
γγ′
= 2

¬

θ (γ),θ (γ
′)
¶

π
, (66)

where θ (γ) and π are the vectors given by the diagonal components of θ (γ) and π respectively.
It is then clear that choosing at time t a dynamics of the form

T (t+δt,t) = 1+δtL , (67)
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where L is a semi-classical Lindbladian with rates ai← j and jump operators |i 〉〈 j |

L[ρ] =
∑

i ̸= j

ai← j

�

|i 〉〈 j |ρ | j 〉〈i | −
1
2
{ | j 〉〈 j | ,ρ}

�

, (68)

will induce the classical dynamics locally described by the rates ai← j on the diagonal subspace
of quantum states.

Finally, the classical version of Theorem 2, given above D.2, ensures that there are instances
in which at least one of the ai← j is negative (and hence T t+δt,t non-CP) while d

dtM
(1) is

negative definite. This concludes the proof.

D.3 Proof of Theorem 3

Despite the negative result given by Theorem 2, we provide here an explicit construction to
convert a non-Markovianity witness based on the trace-distance to one that uses the Fisher
metric by exploiting a particular kind of post-processing.

Consider, in fact, the case in which during a non-Markovian dynamics there is some δρ
such that d

dt |δρ|
2
Tr is increasing in time. As we saw in Appendix A, to guarantee the existence

of such δρ, it is sufficient to use an ancilla, namely by considering the dynamics T (t,0) ⊗ 12
for the classical case, and T (t,0) ⊗1N+1 for the quantum case.

Thanks to Lemma 3, we also know that on the base-point ρδρ it holds that

d
dt

DFish(ρδρ,ρδρ +δρ) =
1
2

d
dt
|δρ|2Tr > 0 . (69)

It is useful to repeat the computation of this derivative here. We obtain

d
dt

DFish(ρδρ,ρδρ +δρ) =
1
2

d
dt

∑

i

δρ2
i

(ρδρ)i
=
∑

i

�

δρi δρ̇i

(ρδρ)i
−

1
2

δρ2
i (ρ̇δρ)i
(ρδρ)2i

�

. (70)

The last term does not contribute to the sum: in fact, the first term already gives 1
2

d
dt |δρ|

2
Tr,

so the last term must be zero due to Lemma 3. On the other hand, it is not difficult to carry
out the explicit calculation, giving

∑

i

δρ2
i (ρ̇δρ)i
(ρδρ)2i

=

�

∑

i

δρ2
i (ρ̇δρ)i
δρ2

i

�

 

∑

j

|δρ j|

!2

= 0 , (71)

where we used the expression of ρδρ, together with the fact that ρ̇δρ is traceless. Hence,
we showed that despite the explicit dependence of the Fisher information on ρδρ, there is
no contribution in its derivative coming from ρ̇δρ. In some sense, we can deduce that the
base-point could be frozen and the Fisher information would still have a backflow.

This intuition inspires the following construction. Define the stochastic operator F as

F (ϵ)π [σ] = (1− ϵ)π+ ϵσ , (72)

where π is some arbitrary state and ϵ is a small parameter. That is, the operator F is an almost-
complete erasure of prior information, sending all the states close to π. If σ and τ are two
states, their difference ∆ := σ−τ is transformed as:

F (ϵ)π [∆] = F (ϵ)π [σ]− F (ϵ)π [τ] = ϵ∆ . (73)
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In particular, the Fisher information between p and p +d transforms under the application of
this filter as

D2
Fish(F

(ϵ)
π [p], F (ϵ)π [p + d]) =

∑

i

ϵ2 d2
i

πi
+O

�

ϵ3
�

≃ D2
Fish(π,π+ ϵd) +O

�

ϵ3
�

. (74)

Then, choose π as π := ρδρ. Then, we can construct a witness of the non-Markovianity of
the evolution at time t through the Fisher information, by applying the filter F (ϵ)ρδρ to the final
state. This gives:

d
dt

D2
Fish(F

(ϵ)
ρδρ
[ρ(t)], F (ϵ)ρδρ[ρ(t) +δρ(t)]) = (75)

= lim
dt→0

 

D2
Fish(F

(ϵ)
ρδρ
[ρ(t + dt )], F (ϵ)ρδρ[ρ(t + dt ) +δρ(t + dt )])− D2

Fish(F
(ϵ)
ρδρ
[ρ(t)], F (ϵ)ρδρ[ρ(t) +δρ(t)])

dt

!

=

(76)

= lim
dt→0

�

D2
Fish(ρδρ,ρδρ + ϵ δρ(t + dt ))− D2

Fish(ρδρ,ρδρ + ϵ δρ(t)) +O
�

ϵ3
�

dt

�

= (77)

= ϵ2 d
dt
|δρ(t)|2Tr +O

�

ϵ3
�

, (78)

where in Eq. (77) we used the result from Eq. (74). Regarding the last equality, on the other
hand, it should be noticed that in Eq. (77) ρδρ does not depend on time. Still, thanks to
the remarks made above, we know that ρ̇δρ does not contribute to the derivative, so we can
apply Lemma 3. Incidentally, in the main text we use the notation Fd := F (ϵ)ρδρ , where d is the
diagonal part of δρ.

Now, the quantity constructed is contractive under Markovian dynamics, as the trace dis-
tance is contractive. On the other hand, by choosing δρ to be a witness of non-Markovianity
for the trace distance, we also obtain a witness in this scenario. There is a shortcoming to this
construction, though: in the definition of the post-processing F (ϵ)ρδρ one uses the perturbation

δρ(t), and not just δρ(0) (in fact, to be more precise, the filter is actually given by F (ϵ)ρδρ(t)). In
this way, one has to know in advance the structure of the dynamics to provide an explicit con-
struction. Still, this example serves more as a proof of principle of the possibility of designing
post-processing filters to exploit the Fisher information for the detection of non-Markovianity.
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