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Abstract1

The ferrimagnetic phase of the sawtooth chain with mixed ferromagnetic nearest-neighbour2

interactions J and antiferromagnetic next-nearest-neighbour interactions J ′ (within the3

isotropic Heisenberg model) was previously characterized as a phase with commensurate4

order. In this paper, we demonstrate that the system in fact exhibits an incommensurate5

quantum spin spiral. Even though the ground state is translationally invariant in terms6

of the local spin expectations ⟨Si⟩, the spiral can be detected via the connected spin-spin7

correlations ⟨Si · Sj⟩ − ⟨Si⟩ · ⟨Sj⟩ between the apical spins. It has a long wavelength that8

grows with J ′ and that soon exceeds finite-system sizes typically employed in numerical9

simulations. A faithful treatment thus requires the use of state-of-the-art simulations for10

large, periodic systems.11

In this work, we are able to accurately treat up to L = 400 sites (200 unit cells) with12

periodic boundary conditions using the density-matrix renormaliztion group (DMRG).13

Exploiting the SU(2) symmetry allows us to directly compute the lowest-energy state for14

a given total spin. Our results are corroborated by variational uniform matrix product15

state (VUMPS) calculations, which work directly in the thermodynamic limit at the cost16

of a lower accuracy.17
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1 Introduction40

1.1 Frustration and ferrimagnets41

The Lieb-Mattis theorem [1, 2] states that for a bipartite Heisenberg system with an-42

tiferromagnetically coupled sublattices A and B, the ground state has the total spin43

|Smax,A − Smax,B|, where Smax,A and Smax,B are the maximally possible spins of the re-44

spective sublattices. For the common case that the sublattices are equivalent (i.e., consist45

of atoms with the same spin) and are of equal size, this yields a singlet ground state. If46

they are inequivalent, one obtains a ferrimagnet with a predictable ground-state spin and47

opposite orientations of the sublattice polarizations.48

The situation gets more complicated if frustration is allowed to enter into the picture49

and the couplings become non-bipartite. In addition, mixed ferro- and antiferromagnetic50

couplings can result in a ferrimagnet even for equivalent sublattices. This is the case we51

will consider in this paper.52

Interacting localized spins are commonly described by the Heisenberg model, which53

can be generally written down as54

H =
∑
i<j

JijSi · Sj , (1)

where Si = (Sx
i , S

y
i , S

z
i ) is the spin operator at site i and Jij are the coupling constants that55

define the geometry. Since the Heisenberg Hamiltonian commutes with each component56

of the vector of the total spin Stot =
∑

i Si as well as with its square,57

[H,S2
tot] = 0, (2)

there exists a simultaneous eigenbasis of H and S2
tot, and the ground state can in principle58

take any value of Stot between 0 and LS, where L is the number of sites and where Stot59

is determined from60 〈
S2
tot

〉
= Stot (Stot + 1) . (3)

Intuitively, it is clear that for the mixed-coupling case, where Jij > 0 for some sites and61

Jij < 0 for others, there should be a region where neither the singlet state Stot/L = 0, nor62
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the ferromagnet Stot/L = S minimizes the energy and the ground state will have some63

partial polarization 0 < Stot/L < S. For later purposes, we also introduce the quantum64

number Mtot related to the conservation of the z-component, i.e., a U(1) spin symmetry:65

⟨Sz
tot⟩ =

∑
i

⟨Sz
i ⟩ = Mtot. (4)

Since the Lieb-Mattis theorem does not hold anymore in the frustrated case, Stot66

must be determined from a full many-body calculation. In addition, frustration may67

favour non-collinear spin-spiral or canted states [3–5]. This should be understood in a68

quantum sense: A finite polarization can be interpreted as a spontaneous breaking of the69

SU(2) symmetry down to U(1), with the total spin pointing along the quantization axis.70

Hence, there is no classical non-collinear order, where the angle of the classical vector71

⟨Si⟩ = (⟨Sx
i ⟩ , ⟨S

y
i ⟩ , ⟨Sz

i ⟩) would vary as a function of the site index i [6]. However, the72

spin-spin correlations may peak at a value of the wavevector not equal to 0 or π, which73

signals non-collinearity. An alternative diagnostic is the susceptibility to small twists [3,7].74

From an experimental perspective, there are several examples of systems with mixed75

ferro- and antiferromagnetic interactions. Some one-dimensional cuprates can be described76

as extended S = 1/2 Heisenberg chains with nearest-neighbour exchange J < 0 and next-77

nearest-neighbour exchange J ′ > 0 [8–11]. Another case are single-molecule magnets78

(SMM), a subclass of which is based on Mn ions of various sizes and geometries [12]. The79

largest to date are the {Mn70} and {Mn84} wheels [13,14] with S = 2 Mn(III) centres and80

a surprisingly low total spin of Stot = 5 − 8. These are finite, but still quite challenging81

systems, which have received thorough theoretical attention only recently [15], pointing82

to a necessity of mixed FM-AFM interactions to achieve such a low spin.83

1.2 The sawtooth chain84

In this work, we focus on another FM-AFM system, the “sawtooth” or “delta” (∆) chain85

[3, 5, 16–21], which consists out of vertex-sharing triangles and which is probably the86

simplest 1D geometry with geometrical frustration1 (see Fig. 1). It features a two-site unit87

cell with alternating “apical” (A) and “basal” (B) spins. The corresponding Heisenberg88

Hamiltonian is given by89

H = J
∑
i

(
SA
i · SB

i + SA
i · SB

i+1

)
+ J ′

∑
i

SB
i · SB

i+1, (5)

where the sums run over the unit cells (L = 2Ncells). J and J ′ are the exchange coupling90

constants, one of which sets the energy scale. The sawtooth chain comes essentially in91

two variants: An AFM-AFM one with both J > 0 and J ′ > 0 [3, 21–28]; and a mixed92

FM-AFM one with J < 0 and J ′ > 0 [5, 17–20].93

Experimentally, the sawtooth geometry is found for atacamite (AFM-AFM, S = 1/2,94

J ′/J ≈ 3.29) [29], for the ring molecule Fe10Gd10 [30] (FM-AFM, mixed S = 5/2 and95

S = 7/2, J ′/
∣∣J∣∣ ≈ 0.65) and for a malonato-bridged Cu complex [17] (FM-AFM, S = 1/2,96

J ′/
∣∣J∣∣ ≈ 0.91).97

In this paper, we investigate the homogeneous FM-AFM S = 1/2 case, relevant for the98

last material. We note that J ′/
∣∣J∣∣ ≈ 0.91 [17] is within the interesting region J ′/

∣∣J∣∣ ∼ 1,99

where the couplings are of equal strength. We will thus pay special attention to the point100

J ′/
∣∣J∣∣ = 1 in this work.101

1While the kagome lattice is also composed out of vertex-sharing triangles, it is complicated by closed
loops. The sawtooth chain, on the other hand, is a special case of a delta tree without closed loops [16].
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Figure 1: Sketch of the FM-AFM sawtooth chain and the proposed magnetic order in the
ferrimagnetic phase. The apical and basal sites are labeled as “A” and “B”, respectively.
(a) Schematic visualization of the spin-spin correlations. (b) Visualization of the spin
polarization pattern. Both the quantum spin spiral (A-A) and the AFM order (B-B) can
only be detected via the connected spin-spin correlations and not via the polarization.

If the coupling between the apical spins cannot be neglected, one needs to add the102

corresponding term to the Hamiltonian:103

Hγ = γJ ′
∑
i

SA
i · SA

i+1. (6)

For γ = 1, the Hamiltonian reduces to an extended Heisenberg chain [31,32]. In this work,104

we only deal with the sawtooth limit γ = 0.105

1.3 Previous results106

We briefly summarize the state of knowledge regarding the S = 1/2 AFM-AFM saw-107

tooth chain. It features three phases as a function of J ′/J , namely gapless antiferro-108

magnetic, gapped dimerized, and gapless non-collinear [3, 21]. The non-collinear phase109

has not been much explored to the best of our knowledge; most studies have focused on110

the dimerized phase, where a valence-bond solid (VBS) ground state appears for J ′ = J ,111

which has solitonic excitations [21–23]. Flat magnon bands appear at the specific point112

J ′/J = 1/2 [28,33–35] and lead to an exceptionally large jump from full saturation to half113

saturation due to localized magnons [24–27].114

We will now recapitulate prior results for the mixed-coupling (FM-AFM) S = 1/2 saw-115

tooth chain, which is the subject of this paper. A first theoretical treatment used exact116

diagonalization (ED) as well as density-matrix renormalization group (DMRG) calcula-117

tions for odd chain lengths L = 7, 11, 15, . . . , 31, 47, 67 [18]. For J ′ = 0 the system must118

clearly be ferromagnetic (with Stot/L = 1/2), and it is found that ferromagnetism persists119

for small J ′/
∣∣J∣∣. A transition to a ferrimagnetic phase is observed for J ′/

∣∣J∣∣ = 0.5. The120

total spin per site was found to follow Stot/L = (L− 1) / (4L)+1/2L and thus approaches121

1/4 for L → ∞. No further statements on the nature of the ground state were given in122

this paper [18].123

Later works mostly dealt with particular regimes and specific questions such as the124

crossover between the Ising and Heisenberg limits [19], the comparison of magnetization125

curves with the experiment [20], or the thermodynamics around the critical point [36], in126

particular with an application to the ferromagnetic molecule Fe10Gd10 [37].127

Recently, the system received renewed interest, and the properties of the ferrimagnetic128

phase (including the finite-γ case) were investigated in great detail using the DMRG129
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for finite systems with open and periodic boundary conditions (exploiting the U(1) spin130

symmetry and using bond dimensions up to χ = 8000) [5]. For γ = 0, previous results [18]131

were confirmed, whereby the total spin per site for even rings up to L ∼ 50 is of the form132

Stot/L = 1/4 + 1/L, implying that Stot/L can be extrapolated in the thermodynamic133

limit. The phase was characterized as a commensurate ferrimagnet that only becomes134

incommensurate for γ > 0.135

In this paper, we revisit the sawtooth chain using DMRG with periodic boundary136

conditions. We exploit the full SU(2) spin symmetry of the problem, access rings larger137

by about a factor of 10 and come to a different conclusion about the nature of the ground138

state: We find that the total spin takes irrational values 0.25 ≲ Stot/L ≲ 0.28 and probably139

reaches 1/4 only for J ′ → ∞. The ground state is characterized by an incommensurate140

quantum spin spiral in the connected apex-apex correlations
〈
SA
i · SA

j

〉
−

〈
SA
i

〉
·
〈
SA
j

〉
.141

The main reason for this discrepancy is that the wavelength of the spiral is generally very142

large; it grows with J ′ and soon exceeds finite-system sizes that were considered in prior143

works. Another confounding factor are the very small energy gaps between the various144

spin sectors (in particular for large values of J ′/
∣∣J∣∣), which renders the exploitation of the145

SU(2) symmetry extremely beneficial for this problem.146

2 Technical details147

2.1 Finite systems148

For finite systems, we use the DMRG algorithm, which is a well-established approach149

to compute ground state properties of 1D problems variationally in the space of matrix-150

product states [38,39]. Its effectiveness rests on the so-called “area law” for the entangle-151

ment entropy [40], which guarantees a low entanglement for ground states of short-ranged152

Hamiltonians on 1D chains with open boundary conditions, which can be used to truncate153

the full Hilbert space to a much smaller relevant space. The main control parameter of154

this truncation is called the “bond dimension” χ. We use the one-site algorithm with a155

subspace expansion method [41] to dynamically increase the bond dimension during the156

iterations and have selectively checked that the two-site algorithm [39] yields the same157

results.158

It was shown that for the sawtooth chain, the interpretation of results obtained for159

open boundary conditions can be subtle and complicated [5], probably because the Friedel160

oscillations at the open ends interfere with the delicate spin order and the small energy161

gaps. Hence, it is better to use periodic boundary conditions, but this generally diminishes162

the effectiveness of the DMRG and one needs to employ extremely large bond dimensions.163

However, we can counteract this by exploiting the SU(2) symmetry of the problem [42,43]164

and access very large effective bond dimensions χeff, while numerically working with a165

much smaller and tractable χSU(2) ≪ χeff.166

The exploitation of the SU(2) symmetry boils down to using the Wigner-Eckart the-167

orem which states that under SU(2) symmetry, matrix elements only depend on the spin168

projections via Clebsch-Gordan coefficients that can be separated out. This means that169

the local blocks within the DMRG ansatz state effectively correspond to 2Sblock+1 states170

for every intermediate value of Sblock. The gain is diminished for high polarizations, as171

one is typically only interested in the sector with the maximal spin projection Mtot = Stot,172

which can also be efficiently obtained with a U(1) code. Nevertheless, SU(2) remains ben-173

eficial, as it exactly projects out unwanted total-spin states with the same Mtot, allows us174

to compute the lowest energy in every sector of the total spin E0 (Stot) and to distinguish175
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L symmetry χ or χSU(2)

40 SU(2) 500
60 SU(2) 2000
100 SU(2) 2000
200 SU(2) 2000
252 SU(2) 3000
300 SU(2) 4000
400 SU(2) 6500
∞ no symm. 1000-1200
∞ U(1) 3000-4000
∞ SU(2) 3000

Table 1: Typical bond dimensions and system sizes used in this work in terms of the
system size L and the symmetries exploited in the algorithm. For finite systems, we always
use periodic boundary conditions. For L = ∞ and the case of SU(2), we can only access
the sector Stot = 0. Note that for SU(2) and the Stot = 0 sector, the effective bond
dimension is χeff = g · χSU(2) with a gain factor of g ∼ 5− 10.

between a low-spin and a high-spin solution. Table 1 shows the typical bond dimensions176

used in this work. Large values of Stot require a stable computation of Wigner 3j and 6j177

symbols for large inputs, for which we use the WIGXJPF library [44].178

For finite systems, we identify the absolute ground state from the minimum of E0 (Stot).179

The error is assessed by computing the variance per site180

Var (E) /L =
(〈

H2
〉
− ⟨H⟩2

)
/L. (7)

As we show in App. A.1, this measure is proportional to the actual error in the ground-181

state energy density, allowing us to put error bars on the computed energies. We choose182

the bond dimension such that Var (E) /L ≤ O
(
10−6

)
around the minimum of E0 (Stot).183

In addition, we can assess the accuracy by comparing with results of Lanczos diagonal-184

ization for smaller system sizes up to L = 36 (see App. A.1). In this case, we exploit the185

U(1) symmetry and the conservation of the total momentum and extract the multiplets186

of the total spin from the degeneracies in the spectrum.187

Since the variance per site has the dimension of energy squared and its scale changes188

with J and J ′, we ensure that the largest parameter in the Hamiltonian is of modulus 1:189

First, we set J = −1 and increase J ′ up to J ′ = 1. Then, we keep J ′ = 1 and let J go to190

zero. Only the ratio J ′/
∣∣J∣∣ matters for the phase diagram.191

The main advantage of working with a finite system is the high accuracy of the DMRG192

with the SU(2) symmetry. The main disadvantage are the finite-size effects which become193

quite severe for the given problem, even for system sizes of O(102) sites, as will be shown194

below.195

2.2 Infinite systems196

For infinite boundary conditions, we use the variational uniform matrix-product state197

(VUMPS) formalism [45, 46], which is based on the time-dependent variational principle198

and offers improved efficiency over the original infinite DMRG [38]. Our numerical unit cell199

encompasses two physical unit cells (4 sites) in order to allow for AFM order. While finite-200

size effects are eliminated, this approach comes at the disadvantage that the exploitation201

of symmetries is limited: We can only use Stot = 0 in the case of SU(2) and only a rational202
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Mtot within the unit cell in the case of U(1). Since the finite-system data indicates that203

the physical ground state is generally not a spin singlet, we can thus not employ the highly204

efficient SU(2) numerics.205

If U(1) symmetries are exploited in the infinite system, there is to the best of our206

knowledge no practical way to compute the value of Stot/L in the Mtot = 0 sector. In207

order to access Stot/L, we switch off the symmetry altogether [47]. Within the degenerate208

set of 2Stot + 1 states, the DMRG tends to converge to the Mtot = Stot sector, whose209

entanglement is minimal. In this case, ⟨Sz,α
i ⟩ and ⟨Sx,α

i ⟩ (α = A,B) take finite, transla-210

tionally invariant values (⟨Sy,α
i ⟩ vanishes by time-reversal symmetry), and make up the211

dominant contribution to the total spin formula in Eq. (3) [48]:212

Sα
tot/Ncells ≈

√
⟨Sx,α

i ⟩2 + ⟨Sz,α
i ⟩2, Stot/L ≈

(
SA
tot/Ncells + SB

tot/Ncells

)
/2. (8)

As an error estimate for infinite systems, we look at the convergence with respect to the213

bond dimension χ (see App. A.3).214

2.3 Expectation values, spin structure factor215

A polarized ground state has a (2Stot+1)-fold degeneracy, and one needs to specify w.r.t. to216

which of these states expectation values are computed. Within the SU(2)-symmetric217

approach for the finite system, we can directly access each member of the multiplet [42,43].218

In the infinite system, one can straightforwardly only determine the state with Mtot = 0219

using the U(1)-symmetric algorithm; or the state with Mtot = Stot if no symmetries are220

exploited.221

In order to demonstrate the existence of a quantum spin spiral, we want to compute222

the static spin structure factor, i.e., the Fourier transform of the spin-spin correlations.223

For a local operator Oα
i , we define the connected correlation function as224 〈

Oα
j O

β
l

〉
c
=

〈
Oα

j O
β
l

〉
−
〈
Oα

j

〉 〈
Oβ

l

〉
. (9)

For the specific case of a ring with an even, finite number of unit cells Ncells, the static225

spin structure factor is obtained as follows:226

Cαβ[O](k) =
1

Ncells

Ncells/2∑
j,l=−Ncells/2+1

eik(j−l)
〈
Oα

j O
β
l

〉
c

=

Ncells/2∑
l=−Ncells/2+1

eik(j0−l)
〈
Oα

j0O
β
l

〉
c

=
〈
Oα

j0O
β
j0

〉
c
+ eikNcells/2

〈
Oα

j0O
β
j0+Ncells/2

〉
c

+

Ncells/2−1∑
d=1

[
eikd

〈
Oα

j0O
β
j0+d

〉
c
+ e−ikd

〈
Oα

j0O
β
j0−d

〉
c

]
.

(10)

We have assumed translational invariance, so that the result is independent of the site j0,227

and have rewritten the summations in terms of the distance d. In the infinite system, one228

can evaluate the same equation for Ncells → ∞, which on a technical level is achieved by229

using the MPS transfer matrix [46]. For α = β, real matrix elements, and neglecting the230

second term that extends across the whole system, Eq. (10) reduces to a cosine transform:231

Cαα[O](k) ≈
〈
Oα

j0O
α
j0

〉
c
+ 2

Ncells/2−1∑
d=1

cos (kd)
〈
Oα

j0O
α
j0+d

〉
c
. (11)
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In the finite case with SU(2) symmetry being exploited, we compute2232

Cαβ[S] = Cαβ[Sx] + Cαβ[Sy] + Cαβ[Sz], (12)

and k can only take discrete values k = 2πn/Ncells with n = 0, 1, . . . Ncells − 1. Due to the233

SU(2) symmetry of the problem, the first term in Eq. (9) is independent of Mtot for the234

vector-vector correlations. In order to subtract the correct asymptotic value (and avoid235

a divergence at k = 0), the second term is evaluated for Mtot = Stot. In the infinite case236

with U(1) symmetry being exploited, we compute237

lim
Ncells→∞

Cαβ[Sz], (13)

where k can take continuous values. In this case, both terms in Eq. (9) depend on the238

choice of Mtot, while we can only access the sector Mtot = 0. However, we observe that239

the first term in Eq. (9) does not take a finite asymptotic value and that the second term240

vanishes (see Sec. A.4 and Fig. 16).241

While the two correlation functions in Eqs. (12) and (13) do not coincide exactly,242

they can both be used to demonstrate the existence of a spin spiral and to determine its243

wavevector kpeak ̸= 0, π.244

2Note that within the SU(2)-symmetric approach, the question of accessing individual x, y, z-

components of either
〈
Sα
j · Sβ

l

〉
or

〈
Sα
j

〉
becomes meaningless. Technical details can be found in

Refs. [42,43].
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0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30

Stot/L

−0.27185

−0.27184

−0.27183

−0.27182

−0.27181

−0.27180

E
0
/L

L =∞: Stot/L = 0.270(2), E0 = −0.2718(5)

L =∞
no symm.

L =∞
U(1)

L=100
SU(2)

L=200
SU(2)

L=252
SU(2)

L=400
SU(2)

10−4 10−3

χ−1 or χ−1
eff

−0.2718

−0.2717

E/L, L =∞
no symm.

U(1), Mtot = 0

SU(2), singlet

Figure 2: Lowest energies of the sawtooth chain with J = −1, J ′ = 1 in various sectors
of the total spin Stot for finite systems, obtained using the SU(2)-symmetric DMRG with
periodic boundary conditions. The lowest energy among the sectors is compared with the
infinite-system (VUMPS) calculations, where one cannot target a specific sector of Stot

(horizontal lines). The vertical dotted line shows Stot/L computed according to Eq. 8 for
the infinite system without symmetries. The respective bond dimensions can be found
in Tab. 1, and the estimation of error bars is outlined in App. A.1. The inset shows the
energy of the infinite system as a function of the inverse (effective) bond dimension χ−1

(eff)

(solid lines are inter/extrapolations). The two-site variance for the infinite system [45] is
of the order of 10−5 (no symmetries), 10−4 [U(1)] and 10−3 ∼ 10−4 [SU(2)].
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3 Exemplary case J = −1, J ′ = 1245

Figure 2 shows the energy profile E0 (Stot) for finite systems (compared with the infinite246

one) in the interesting case of J = −1, J ′ = 1. For finite systems, the total spin per site247

must be rational, and we find the lowest-energy state (i.e., the true ground state) in the248

sector Stot/L = 27/100 for L = 100, 200 and in the sector Stot/L = 68/252 for L = 252.249

In all cases, these are the closest possible rational values to 0.270, so that this result seems250

converged w.r.t. the system size. The infinite-system result (without symmetries) appears251

to be irrational, and to the leading digits we obtain Stot/L ≈ 0.270(2). Thus, our results252

are not in agreement with Stot/L = 1/4 that was obtained before [5, 18], motivating a253

deeper investigation.254

The ground-state energies are in good agreement between the finite- and infinite-system255

calculations (both for the case that no symmetry and that U(1) symmetry is exploited). In256

the curve E0(Stot)/L, we observe a steep barrier towards high spins and a much shallower257

barrier towards small spins, where the energy density E0/L varies only in the fifth digit258

after the decimal point for the system sizes considered. Moreover, the energy gaps become259

smaller with larger system sizes, indicating gapless excitations, but only with respect to a260

decrease of the total spin.261

It is notable that large, macroscopic changes in the total spin have very small gaps.262

Even the sector Stot = 0 is very close in energy to the ground state, as was noticed263

before [5]; the inset of Fig. 2 shows that the singlet energy approaches the ground-state264

energy for large bond dimensions. This is, however, not an effect of frustration and is265

already observed for the FM Heisenberg chain3.266

3For the FM Heisenberg chain, the total spin needs no calculation, as one can analytically show that it
is maximal [49].
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Figure 3: Total ground-state spin per site Stot/L for various finite systems with periodic
boundary conditions. For L ≤ 36, the results were obtained using exact diagonalization
(Lanczos algorithm). For the other values, we used the DMRG with SU(2) symmetries
and identified the true ground state from the minimum of E0 (Stot) similarly to Fig. 2.
FM and FiM denote the ferromagnetic and ferrimagnetic phase, respectively.
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Figure 4: The same as Fig. 3 but plotted as a function of the inverse system size L−1

for various values of J ′/|J |. The curve f(L−1) = 0.25+L−1 is shown for comparison. For
small J ′/

∣∣J∣∣, the points collapse to f(L−1) for a certain range of L (green area), but this
is not the case for larger L or larger J ′/

∣∣J∣∣ (red area).
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Figure 5: The same as in Fig. 2, but for J ′/ |J | ≈ 1.3 and different system sizes L. The
circle marks the absolute minimum. It is evident that small systems waver between two
minima before eventually settling in the high-spin minimum, cf. the orange line in Fig. 4.

4 Total spin in the ferrimagnetic phase267

We now study the behaviour when moving away from the point J = −1, J ′ = 1. Figure 3268

shows Stot/L as a function of J ′/
∣∣J∣∣ for different system sizes. The transition from the269

ferromagnet Stot/L = 1/2 to the ferrimagnet at J ′/
∣∣J∣∣ = 0.5 is unambiguous.270

At the quantum critical point J ′/
∣∣J∣∣ = 0.5, the DMRG finds that all values of the271

total spin are degenerate within the numerical accuracy, whereas Lanczos (as well as full272

SU(2) diagonalization for smaller systems) indicates that only the values Stot = L/2, L/2−273

1, . . . , L/4, 0 are degenerate.274

In the ferrimagnetic phase, we observe the following features: (a) After crossing the275

quantum critical point, Stot/L jumps discontinuously to a value slightly above (but dif-276

ferent from) 0.25. (b) One can reach convergence for Stot/L w.r.t. the accessible system277

size up to J ′/
∣∣J∣∣ ≲ 1. (c) For J ′/

∣∣J∣∣ ≳ 1 it appears that we cannot access systems that278

are large enough to obtain convergence, and Stot/L features plateaus at various values of279

the spin. In particular, Stot/L at some point jumps to a low-spin state 0.005 ∼ 0.01 and280

eventually to zero. (d) The value of J ′/
∣∣J∣∣ where this jump happens increases with the281

system size.282

The chaotic behaviour with respect to the system size already points towards incom-283

mensurate behaviour, while the observation (d) suggests that the low-spin state is a finite-284

size effect. We investigate these questions in more detail below.285

In order to shed light on the discrepancy between our data and prior results, we286

now plot the same data as a function of 1/L in an attempt to perform an extrapolation287

w.r.t. the system size (see Figs. 4 and 5), as was done in Refs. [5,18]. One observes that for288

not too large J ′/
∣∣J∣∣, the points start collapsing on the curve Stot/L = 1/4 + 1/L, which289

makes it tempting to extrapolate Stot/L = 1/4 in the thermodynamic limit. However, if290

we increase the system size further instead of extrapolating, we find that the behaviour291

becomes chaotic somewhere around L = 44. For J ′/
∣∣J∣∣ ≳ 1.5, the results in fact do not292
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Figure 6: The same as Fig. 3, but including DMRG data obtained for the infinite system
(VUMPS) without exploiting symmetries. In addition, the crosses indicate sectors of
Stot in the finite system for which the energy density is within 10−3 of the ground-state
energy density, illustrating the extreme shallowness of the energy minima (cf. Fig. 7). The

inset shows the (translationally invariant) apical and basal polarization
√
⟨Sx,α

i ⟩2 + ⟨Sz,α
i ⟩2

(α = A,B) for L = ∞.

fall on Stot/L = 0.25 + 1/L at all. In both cases, this indicates that an intrinsic length293

scale is surpassed, and this length scale increases with J ′/
∣∣J∣∣. It is thus essential to access294

systems larger than this length scale (green area of Fig. 4). This is probably a reason for295

the discrepancy between our results and previous works.296

Next, we compare the behaviour of large, finite systems L = 100, 200 with results297

obtained directly in the thermodynamic limit via the VUMPS algorithm (see Fig. 6).298

One finds that the infinite-system result for Stot/L is in good agreement with the one for299

L = 100 up to J ′/
∣∣J∣∣ ≈ 1 and with the one for L = 200 up to J ′/

∣∣J∣∣ ≈ 1.5 (and still in300

moderate agreement up to J ′/
∣∣J∣∣ ≈ 2.2). The crosses in the plot indicate energetically301

close sectors of the total spin for the finite system, illustrating again that the energy302

minimum is extremely shallow. Finite-size wavering within these minima is thus not303

surprising (cf. Fig. 5). One also notices that a second shallow minimum (Stot/L ∼ 0.01)304

develops around J ′/
∣∣J∣∣ ≳ 2 at very low spins and eventually becomes the absolute one.305

This jump to low spins is not found in the infinite system. Thus, we concur with Ref. [5]306

that this jump is most likely a finite-size effect.307

One should note that for J ′/
∣∣J∣∣ = ∞ (equivalent to J = 0, J ′ = 1), the apical spins308

become free spins. Thus, the ground state is degenerate for all values of Stot/L = 0 . . . 1/4309

[18]. This raises the question what the effect of an infinitesimal J < 0 is. Our numerical310

methods are ill-posed to answer this question because any gap will also be infinitesimal.311

Nevertheless, we note the following: The inset of Fig. 6 displays the polarization of the312

apical and basal spins for the infinite system computed without symmetries, i.e., in the313

sector Mtot = Stot. The polarization is translationally invariant, i.e., ⟨Sα,x
i ⟩ and ⟨Sα,z

i ⟩314

are independent of i within numerical inaccuracies (in the sector Mtot = 0, one finds315
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Figure 7: Schematic representation of the energy landscape E (Stot). The parameter
J ′/

∣∣J∣∣ is increasing from left to right. The yellow blob indicates the absolute energy
minimum. The curves are all exaggerated and the real minima are much more shallow
(see Figs. 2 and 5).
For J ′/

∣∣J∣∣ < 0.5, the system is a ferromagnet with maximal spin. At the quantum critical
point J ′/

∣∣J∣∣ = 0.5, we find that E (Stot) is completely flat and that all Stot values are
degenerate for large L within the numerical accuracy (see Fig. 6). For J ′/

∣∣J∣∣ > 0.5, we
find a ferrimagnet with 0.25 ≲ Stot/L ≲ 0.28. For finite systems, a low-spin minimum
appears if J ′/

∣∣J∣∣ is increased further. Eventually this minimum flattens out and the ground
state becomes a singlet. Such a singlet ground state is not found in the thermodynamic
limit. Finally, for J ′/

∣∣J∣∣ = ∞, the apical spins become free spins and the ground state is
degenerate for the values 0 ≤ Stot/L ≤ 1/4.
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〈
Sz,A
i

〉
≈

〈
Sz,B
i

〉
≈ 0), which we can also confirm for finite systems. We see that the316

apical spins get more and more polarized towards 1/2, while the basal spins approach 0.317

This suggests that in the limit J ′/
∣∣J∣∣ → ∞, one approaches Stot/L = 1/4 very slowly.318

However, since the infinite-system calculations become progressively more difficult, we319

are only able to reliably treat J ′/
∣∣J∣∣ = 3 ∼ 4 and cannot exclude the possibility that320

additional effects happen for larger values.321

Figure 7 is a schematic summary of the findings discussed in this chapter.322

5 Static spin structure factor323

Next, we demonstrate the existence of a quantum spin spiral. We first note that such a324

spiral cannot be detected from the polarization alone since the ground state is transla-325

tionally invariant (up to numerical errors). In the sector Mtot = Stot, the expectations326 〈
SA
i

〉
and

〈
SB
i

〉
take values which do not depend on the cell index i; for Mtot = 0, we have327 〈

SA
i

〉
=

〈
SB
i

〉
= 0. Thus, we compute the static spin structure factor, and we perform the328

calculation both in the finite and infinite system4. The results are shown in Figs. 8 and 9.329

Figure 8 shows the apex-apex structure factor CAA[S] for various finite L and J = −1,330

J ′ = 1. It features a peak at a small non-zero value of the momentum, and conver-331

gence w.r.t the system size can be reached. For the largest systems of L = 300, 400, we332

find kpeak = 14/150π ≈ 0.093π and kpeak = 18/200π ≈ 0.090π. This corresponds to a333

wavelength of λcells = 2π/kpeak ≈ 21.4 ∼ 22.2 unit cells or λ = 2λcells ≈ 42.9 ∼ 44.4 sites.334

While the largest system sizes of L = 200, 300, 400 all yield very similar results, there335

are strong outliers in the smaller systems: For L = 60 (inset), we find kpeak = 4/30π ≈336

0.13π or λ = 30 sites, so that slightly decreasing the wavelength to a value that is com-337

mensurate with the system size seems to be energetically favourable. The peak becomes338

much sharper.339

Figure 9 shows CAA[Sz] in the infinite system with a continuous k and for different340

values of J ′/
∣∣J∣∣ = 1. For J ′/

∣∣J∣∣ = 1, we find kpeak ≈ 0.097π in agreement with the finite-341

size calculation. The peak moves closer to zero as J ′/
∣∣J∣∣ is increased. At J ′/

∣∣J∣∣ = 3,342

we have kpeak ≈ 0.048 and thus roughly a doubled wavelength of about λ ≈ 82.8 sites as343

compared with J ′/
∣∣J∣∣ = 1. We note that the correlations between the basal spins simply344

remain antiferromagnetic, with a sharp kpeak = π (see the left inset of Fig. 9).345

In summary, we conclude that the apex spins form a quantum spin spiral with a346

very long wavelength that increases with J ′/
∣∣J∣∣. Thus, finite-size rings only reflect the347

behaviour in the thermodynamic limit as long as L accommodates at least several wave-348

lengths. Quantitatively, we find that at least L ≳ 2.5λ is necessary. This again illustrates349

that one needs to access large systems and explains the discrepancy with prior results.350

In Fig. 10, we study the structure factor for a fixed system size of L = 100 as J ′/
∣∣J∣∣351

is increased beyond J ′/
∣∣J∣∣ = 1. At J ′/

∣∣J∣∣ = 1.4, we see that a second peak develops352

at the smallest possible non-zero k-value of 2π/50 = 0.04π (λ = 100) in addition to the353

main peak at 6π/50 = 0.12π. For J ′/
∣∣J∣∣ = 1.5, the main peak shifts to 4π/50 = 0.08π354

(λ = L/2 = 50), which coincides with the plateau above Stot/L ≳ 0.2 in Fig. 6. Finally,355

the spiral collapses completely at J ′/
∣∣J∣∣ = 2 in favor of pure ferromagnetic alignment356

with kpeak = 0. This means that as soon as the wavelength of the spiral becomes too357

large, finite-size spirals that form a “standing wave” on the ring with λ = L or λ = L/2358

start to compete. Eventually, collinear alignment becomes energetically favourable and359

the spiral breaks down. This coincides with the jump to a low-spin state in Figs. 3 and 6,360

4We reiterate that the spin structure factor is defined differently in both cases and partially depends
on the choice of Mtot. Details can be found in Sec. 2.3
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Figure 8: Static apex-apex spin-structure factor as a function of the momentum k for
finite systems with periodic boundary conditions and J = −1, J ′ = 1 (Eqs. (11) and (12)
with α = β = A).
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Figure 9: Static apex-apex spin-structure factor for the infinite system with the U(1)
spin symmetry exploited (Eqs. (10) and (13) with α = β = A). The right inset shows the
position of the peak as a function of J ′/

∣∣J∣∣ with the same colours as the main plot. The
left inset shows the corresponding base-base structure factor (α = β = B).
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Figure 10: The same as Fig. 8, but for a fixed system size of L = 100 and different values
of J ′/

∣∣J∣∣. The inset shows the position of the main peak as a function of J ′/
∣∣J∣∣.

giving more evidence that the low-spin plateau is a finite-size effect: The long-wavelength361

quantum spin spiral breaks down in a finite system that is too small to host it. In other362

words, the value of the total spin is related to the wavevector of the spiral; we observe363

that the long-wavelength spiral is only favorable in combination with a large polarization364

of 0.25 ≲ Stot/L ≲ 0.28.365

6 Conclusion366

We have demonstrated that the ground state of the FM-AFM sawtooth chain with J ′/
∣∣J∣∣ >367

0.5 is a ferrimagnet that features an incommensurate quantum spin spiral for the apical368

spins as well as ordinary antiferromagnetic correlations between the basal spins. The in-369

commensurate behaviour is seen in the spin-spin correlations, while the ground state itself370

is translationally invariant.371

The wavelength of the spiral is large and grows with J ′/
∣∣J∣∣, quickly exceeding sizes372

L = 20 − 60 that are used in typical finite-size calculations (with periodic boundary373

conditions). By exploiting the SU(2) spin symmetry within our DMRG approach, we are374

able to accurately treat systems of L = 200− 400 sites with effective bond dimensions in375

the range of 105 − 106. Using the VUMPS formalism, we can tackle the infinite system376

without finite-size effects at the cost of a lower accuracy. The two methods complement377

each other and corroborate the above conclusion.378

Finally, we have argued that the low-spin plateau found for the FM-AFM sawtooth379

chain is a finite-size effect related to the competition of the incommensurate infinite-380

system spiral with finite-system spirals of wavelength λ = L,L/2. An intriguing question381

is whether the same physics underlies the Mn wheels (as well as related magnetic molecules382

[12]), which are finite systems of 70-84 magnetic centres [13–15] and which also exhibit383

a low-spin ground state stemming from from mixed FM-AFM exchange couplings [15].384

In particular, one may wonder whether or not the low-spin state in these systems is also385
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connected to quantum spin spirals with wavelengths spanning across the whole molecule.386

Overall, the FM-AFM sawtooth chain presents an interesting example of the caveats387

that come with an extrapolation in the system size. Of course, we cannot fully exclude388

the possibility that additional effects appear on even larger length scales beyond what has389

been considered here.390

An open question for future work is how our observations are affected by an additional391

apex-apex coupling γ ̸= 0 (see Eq. (6)) or if the case of AFM-AFM couplings also features392

similar incommensurate behaviour, in particular when polarized by magnetic fields [29].393
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A Error estimates404

A.1 Energy405

In order to translate the energy variance per site (Eq. (7)) into an actual error bar for the406

energy, we compute the ground state for different energy variances per site and compare407

with the result of exact diagonalization for L = 36 (see Fig. 11).408

The typical range of values for the variance that we can achieve for large systems is409

Var (E) /L ∼ 10−8 − 10−5. We find that in this regime, the variance is linearly related to410

the true error ϵ:411

ϵ ∼ 0.337 Var (E) /L. (14)

The prefactor may of course depend on both J ′/
∣∣J∣∣ and L, but Fig. 11 illustrates that412

it is roughly the same for J ′/
∣∣J∣∣ = 0.9 and J ′/

∣∣J∣∣ = 2. By comparing with exact-413

diagonalization results for L = 16 (not shown) we find that the relationship still holds.414

Thus, we assume that Eq. (14) is generally valid, at least as an order-of-magnitude415

estimate. This allows us to put error bars ±ϵ on the energy densities shown in Fig. 2.416

A.2 Finite system: translation invariance417

We can check to which extent the ground state of the finite system with periodic boundary418

conditions is in fact translationally invariant. To this end, we compute
〈
SA
i

〉
and

〈
SB
i

〉
(for419

Mtot = Stot) and quantify their spread using the standard deviation of the distribution for420

all choices i = 1, 2 . . . Ncells. We reiterate that within the SU(2)-symmetric approach, it421

becomes meaningless to ask for the individual component, one obtains
〈
SA,B
i

〉
as a scalar422

number. Figure 12 shows a histogram for L = 300, where the results are converged to423

three digits. Note that we are hereby showing the worst case, and the distribution is even424

narrower for L = 100, 200.425
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Figure 11: Comparison of the energy density E0/L computed using DMRG with the
exact-diagonalization (ED) result obtained via spinpack [50] for L = 36, J ′/

∣∣J∣∣ = 0.9
(left) and J ′/

∣∣J∣∣ = 2 (right), for various values of the total spin Stot. The DMRG results
are computed for different bond dimensions χSU(2), which corresponds to different energy
variances per site (see Eq. (7)). The black line is a linear fit, see Eq. (14). For J ′/

∣∣J∣∣ = 2
and Stot = 8, 9 we were only able to achieve an agreement within ϵ ∼ 10−10 − 10−9.
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Figure 12: Histogram of the spin polarization
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(base) for L = 300,

Stot/L = 81/300 = 0.27, J = −1, J ′ = 1 for all values of i. The standard deviation of the
distribution is taken as the error.
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sulting distribution is taken as the error.

We can repeat the same procedure for a non-local quantity, namely the connected426

spin-spin correlations of Eq. (9), which should depend only on the distance d =
∣∣l− j

∣∣ and427

not on the choice of j. We average over all possible choices of j:428

Cαβ[S](d) :=
〈
Sα
j · Sβ

j+d

〉
c
=

Ncells∑
j=1

〈
Sα
j · Sβ

j+d

〉
c
, (15)

and take the standard deviation as a measure of error. Note that this quantity is inde-429

pendent of Mtot due to the SU(2) symmetry. Since the calculation is more costly, we only430

apply it to selected points. The result for L = 100, 200, 300 is displayed in Fig. 13 for431

11 ≤ d ≤ L/4 with the corresponding error bars. We see again that the ground state is432

translationally invariant; the error bars are imperceptible for L = 100, 200.433

A.3 Infinite systems: error analysis434

For the infinite system, we check how the results of Fig. 9 depend on the bond dimension435

χ. In the simulation, we let χ grow dynamically and compute the structure factor once436

the variational error becomes sufficiently small (see Ref. [45] for details). The result for437

J = −1, J ′ = 1 is displayed in Fig. 14. We see that there is no significant change around438
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the main peak, but there is some variation for very small k. We extrapolate the result439

in χ−1 at selected points and find that no appreciable additional peak develops in this440

region.441

A.4 Comparison between finite and infinite systems442

Finally, we compare the full spin-spin correlations
〈
SA
j · SA

j+d

〉
between finite and infinite443

systems (see Fig. 15). We reiterate that this quantity does not depend on the choice of444

Mtot. The comparison between the curves with L = 100 and L = 400 indicates that445

finite-size effects are still manifest for L = 100 and d ≥ 10.446

The infinite-system calculation can reproduce the correlations for small distances (d ≤447

10) rather well even for small bond dimensions χ. In the long-range regime, however,448

any finite χ always leads to an exponential decay and thus very large deviations from the449

L = 400 result (which is converged w.r.t. the bond dimension).450

Notably, however, the long wavelength of the oscillations is still reproduced. Figure 16451

shows that this is almost entirely due to the z-component, so that the quantum spin spiral452

manifests itself as a peak in the corresponding structure factor (see Sec. 5). This again453

illustrates that both Eq. (12) and Eq. (13) can be used to demonstrate the existence of454

the spiral.455
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