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We present microscopic, multiple Landau level, (frustration-free and positive semi-definite) par-
ent Hamiltonians whose ground states, realizing different quantum Hall fluids, are parton-like and
whose excitations display either Abelian or non-Abelian braiding statistics. We prove ground state
energy monotonicity theorems for systems with different particle numbers in multiple Landau levels,
demonstrate S-duality in the case of toroidal geometry, and establish complete sets of zero modes
of special Hamiltonians stabilizing parton-like states, specifically at filling factor ν = 2/3. The
emergent Entangled Pauli Principle (EPP), introduced in Phys. Rev. B 98, 161118(R) (2018)
and which defines the “DNA” of the quantum Hall fluid, is behind the exact determination of the
topological characteristics of the fluid, including charge and braiding statistics of excitations, and
effective edge theory descriptions. When the closed-shell condition is satisfied, the densest (i.e., the
highest density and lowest total angular momentum) zero-energy mode is a unique parton state. We
conjecture that parton-like states generally span the subspace of many-body wave functions with the
two-body M -clustering property within any given number of Landau levels, that is, wave functions
with Mth-order coincidence plane zeroes and both holomorphic and anti-holomorphic dependence
on variables. General arguments are supplemented by rigorous considerations for the M = 3 case of
fermions in four Landau levels. For this case, we establish that the zero mode counting can be done
by enumerating certain patterns consistent with an underlying EPP. We apply the coherent state
approach of Phys. Rev. X 1, 021015 (2011) to show that the elementary (localized) bulk excitations
are Fibonacci anyons. This demonstrates that the DNA associated with fractional quantum Hall
states encodes all universal properties. Specifically, for parton-like states, we establish a link with
tensor network structures of finite bond dimension that emerge via root level entanglement.

I. INTRODUCTION

Realistic many-body problems, in which interactions
play an important role can rarely be exactly solved. Over
the decades, a rather fruitful modus operandi for analyz-
ing certain many-body systems has been to construct
physically motivated variational wave functions. This
particular approach has been extremely insightful and
witnessed monumental successes in several arenas includ-
ing the BCS theory of superconductivity1 and Laughlin’s
description of the simplest odd-denominator Fractional
Quantum Hall (FQH) states2. The investigation of nu-
merous variational wave functions and associated “parent
Hamiltonians” (i.e., Hamiltonians whose ground states
are the posited variational wave functions) has attracted
renewed attention. This has, perhaps, been most acute
for the rich plethora of FQH states. Certain FQH states
have, for some time by now, been suspected of featur-
ing non-Abelian exchange statistics3,4. Complementing
variational techniques, many other celebrated theoreti-
cal frameworks have been advanced to investigate these
systems. These notably include effective field theories5,6,
Jain’s composite fermion picture7, general parton con-
structions8–11, and the study of spectral properties of
pseudopotentials12–15 that allows for a systematic expan-
sion of general rotationally symmetric interactions. Pseu-
dopotentials and parton states and, in particular, their
connection are a central focus of our study.

In the current work, we will demonstrate that an ex-
tensive set of systems with only two-body interactions
have ground states that represent arbitrary quantum Hall
(QH) fluids. The kinetic energy will be quenched in
low-lying Landau level (LL) states. The resulting as-
sociated Hamiltonians will be positive semi-definite op-
erators whose densest (i.e, minimum total angular mo-
mentum consistent with the largest filling fraction) zero-
energy modes realize particular Abelian or non-Abelian
QH vacua. We will investigate the universal short-range
components of these two-body interacting Hamiltonians
in the presence of low-lying LLs mixing. By fixing the
subspace determined by a chosen number of LLs, we will
outline a general scheme to obtain such positive semi-
definite, and frustration-free, parent Hamiltonians and
investigate their many-body (zero-energy) ground states.
By altering the number of LLs and pseudopotentials, we
will determine FQH states at various filling fractions as
ground states of those parent Hamiltonians.
The recent renewed interest in parton-like FQH

states8–11,16 is, in part, driven by the advent of new
platforms for the physics of the QH effect, specifically
graphene and related structures. Especially, in multi-
layer graphene, a degeneracy or near degeneracy of mul-
tiple LLs10,17–19 invites a study through guiding princi-
ples based on mixed-LL wave functions. On the other
hand, powerful tools to identify the universality class of
(especially non-Abelian) FQH trial wave functions have
traditionally favored holomorphic, lowest Landau level
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(LLL), guiding principles. The seminal insights by Moore
and Read3 on conformal block-type holomorphic wave
functions and their direct association to an edge effective
theory allow for an unambiguous transition between mi-
croscopic wave functions and universal physics. It is, a
priori, not clear how to achieve such a conversion between
microscopic and universal properties, in similarly general
terms, for non-holomorphic, multiple-LL wave functions.
Our recent work14,15, however, suggests that such a tool
is now emerging, specifically for a large class of states
falling into a paradigm which we called the “Entangled
Pauli Principle” (EPP). In this work, we will elaborate
why this, in particular, includes all parton-like states.

Our approach rests on three pillars. First, we estab-
lish one-dimensional reductions for the states in question
as well as their quasihole/edge excitations. This relies
on the generalization of concepts involving “dominance”
or “root patterns”, first discussed for holomorphic LLL
wave functions20–25, to the non-holomorphic case. The
crucial enrichment resulting from this generalization is
that root states also become locally entangled, as op-
posed to their holomorphic counterparts. These root
states can be understood as the “DNA” of the underly-
ing QH states14. This understanding arguably becomes
complete only if one allows for the possibility of entan-
glement, as some of us recently demonstrated for Jain
composite fermion states15.

The second pillar involves the machinery used to derive
the aforementioned EPPs not as properties of trial wave
functions, but as necessary criteria satisfied by “root
states” of zero-modes of an associated parent Hamilto-
nian. This step depends crucially on the correct gener-
alization of the concept of “dominance” from the holo-
morphic wave function context to that of mixed-LL wave
functions. It is central to establishing the full zero-mode
space of the given Hamiltonian, thus replacing the for-
malism based on symmetric polynomials characteristic
of the LLL context. This formalism is generally not ap-
plicable to non-holomorphic wave functions. Through
matching of mode counting with an appropriate confor-
mal field theory (CFT), the correct edge theory can, in
principle, be identified beyond doubt, within the setting
of microscopic wave functions and their parent Hamilto-
nians. We have demonstrated this procedure for a variety
of non-holomorphic wave functions of interest14,15, and
argued that wherever this approach is feasible, the iden-
tification of universal physics rests on as solid grounds as
it does for any holomorphic, LLL, wave function. Here,
we will further establish the broad applicability of these
techniques.

The third pillar concerns the bulk properties of the
system more directly. It consists of a method to work
out the statistics of the quasiparticles directly from the
DNA as defined by the EPP. While the EPP efficiently
encodes field theoretic concepts such as fusion rules26,27,
our method is different in that it is not built on the as-
sumptions of an effective theory that adheres to the ax-
ioms of local quantum field theory28,29. In particular, no

explicit contact with modular tensor categories is made.
Instead, the formalism proceeds based on the knowledge
that a complete set of quasihole excitations is encoded
in patterns satisfying the EPP, and on an Ansatz of how
localized quasihole excitations can be expressed through
coherent states formed from a basis that is in one-to-one
correspondence with these patterns. Consequences of lo-
cality and S-duality on the torus are naturally enforced
within this Ansatz, without reliance on suppositions re-
garding underlying field-theoretic frameworks. This for-
malism, too, has been first worked out in the context of
holomorphic LLL wave functions21,30–33. As we will see,
through the notion of an EPP, the formalism generalizes
effortlessly to the context of mixed-LL wave functions,
where one has to consider the entire root state with its
entanglement as opposed to simple root patterns previ-
ously used in the LLL case. It is here where the approach
unfolds its full utility, as alternative methods to ascertain
the statistics and underlying topological quantum field
theory are far less abundant and general. The present
formalism offers a general, consistent and highly con-
straining approach to determine field theoretic makeup
from microscopic principles.

Interestingly, our approach provides a microscopic
many-body account for long-sought excitations exhibit-
ing non-trivial anyonic exchange statistics. Non-Abelian
anyons are essential for viable topological quantum com-
puting platforms34. Ising anyons have been earlier identi-
fied as excitations of the Moore-Read3 (MR) Pfaffian and
Jain-221 vacua14. However, Ising anyons cannot realize
universal topological gates. By contrast, the non-Abelian
Fibonacci anyons obey integer SU(2)3 (or, equivalently,
SO(3)3) fusion algebra35 allowing for universal quantum
computation36,37. In this paper, we will pay particular
attention to the subspace of four LLs. We will compute
the Berry (more precisely, the Wilczek-Zee38,39) phase
and braiding matrix associated with the braiding of zero-
mode excitations30,31, and show that the four LLs ground
state precisely features Fibonacci anyons. Prior to our
work, it was known that excitations of FQH Hamiltoni-
ans with k-body (k > 2) interactions exhibit Fibonacci
anyons. This is the case of the k = 4 Read-Rezayi (RR)
state40,41 which can be obtained from correlation func-
tions of certain CFTs. Important differences exist be-
tween our results and the prominent candidate RR state.
Our Hamiltonian only contains (k = 2) two-body interac-
tions projected onto 4 LLs as opposed to a (k = 4) four-
body interacting Hamiltonian with an RR ground state
in the LLL. Related to this, our ground state has order
M > 1 zeros on a two-body (as opposed to a k-body)
coincidence plane. Finally, our state appears at a filling
fraction of ν = 2/3, whereas the RR state corresponds to
ν = 3/5.

Several earlier investigations depicted putative ν = 2/3
Abelian and non-Abelian phases in terms of a bilayer
FQH system featuring a 1/3 Laughlin state in each
layer42–46. In these works, different phases were found
when varying interlayer and intralayer interactions of the
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Hamiltonian. In particular, in Refs. [42] and [43] a stable
phase with Fibonacci anyon quasiparticles has been ob-
tained in the thin torus limit. Contrary to these previous
studies, our Hamiltonian has no free parameters. More-
over, our exact calculations are not, in any way, restricted
to the thin torus limit.

In addition, we establish a profound connection be-
tween the theory of (anti-)symmetric multivariate poly-
nomials in holomorphic and anti-holomorphic variables,
displaying special clustering properties, and the zero-
modes of certain QH Hamitonians. In first quantiza-
tion, a state that is a product of M Slater determinants,
formed out of single-particle orbitals, is a parton-like
state. Correspondingly, a closed-shell parton state is a
parton-like state with Slater determinants that have the
lowest possible total angular momentum (in the case of
Landau orbitals), rendering them unique. A closed-shell
constraint provides the necessary and sufficient condi-
tion for the existence of unique densest parton-like states,
which can be classified according to the order of their ze-
ros in the vicinity of coincidence planes. The algebraic
order of these zeros relates to the two-bodyM -clustering
exponents for arbitrary particle pairs in the wave func-
tion. As will be discussed and proved for some cases,
parton-like states span the subspace of many-particle
wave functions with the two-body M -clustering prop-
erty. Furthermore, we will demonstrate that both the
closed-shell condition and the fixed two-body clustering
exponent, lead to a unique expression for the densest
ground state of the corresponding frustration-free (two-
body) QH parent Hamiltonian.

The remainder of this paper is organized as follows.
In Section II, we will sketch the formalism that we em-
ploy to obtain the frustration-free QH two-body parent
Hamiltonian in the subspace of NL LLs. In Section III,
we discuss the determination of its ground states and, in
particular, the densest ground state. Here, the concept
of “Entangled Pauli Principle” (EPP)14 will be made
vivid for the case of four LLs. For the general class of
k-body, positive semi-definite, parent Hamiltonians with
multiple-LLs (and arbitrary internal degrees of freedom)
we show that the ground state energy increases mono-
tonically with the number of particles. In Section IV, we
prove an S-duality for our class of multiple-LL Hamil-
tonians in toroidal geometry, and show how this duality
together with the EPP imply braiding statistics with-
out leaving the microscopic setting, within the multiple-
LL proper generalization of the framework of Ref. [30]
that utilizes the entanglement of root states. Here, we
will show that for the case of NL = 4 LLs, the excita-
tions posses Fibonacci anyon statistics. In Section V,
we discuss more general propositions on parton states
and relate the two-body M -clustering exponent to nec-
essary and sufficient conditions for parton states to be
the unique ground states of projected frustration-free
QH Hamiltonians, providing general considerations and
a simple application of our conjecture. Finally, we close
the paper with Section VI paying special attention to

the case M = 3 in four LLs. In this section we provide
a simple algebraic recipe to determine the root pattern
and state of an arbitrary parton-like state. Root states,
or DNAs, are obtained as the solutions to entanglement
rules, the EPPs, and encode universal features of the
quantum Hall fluid. We will show that the underlying
entanglement has a simple tensor network structure ren-
dering the root states (fermionic) matrix-product states.
The inverse problem, that is, given a root pattern, es-
tablishing the parton-like states compatible with such a
pattern, is also addressed algorithmically. This step is
crucial to argue for the (over)completeness of parton-like
states in spanning the zero-mode subspace. We conclude
by rigorously showing completeness in the case M = 3
and NL = 4.

II. FRUSTRATION-FREE QH HAMILTONIANS

In this section, we present a general formalism for es-
tablishing the second-quantized frustration-free Hamil-
tonians of interacting electrons confined to two spatial
dimensions in the presence of an applied (perpendicular
to the plane) magnetic field. As long known47, under the
influence of such a magnetic field, electrons occupy LL
orbitals. Strong interactions among electrons may, how-
ever, effectively lead to the occupation of multiple LLs
that Jain denominated as Λ-levels. We focus on two-body
interactions with rotational and translational symmetry
although the general formalism extends to k-body inter-
actions with k > 2. It is therefore convenient to employ
the relative angular momentum eigenstates in order to
construct a basis.

A. Building a two-fermion basis

Consider electrons of mass me and charge e < 0 mov-
ing on the infinite xy-plane in the presence of an exter-
nal perpendicular magnetic field B = ∇ × A = −Bẑ,
(B > 0). Let us start with a brief review of LL physics
and establish the notation used in this paper. Denoting
the ith particle’s location in the plane by the complex
number(s) zi = xi + iyi (z̄i = xi − iyi), the kinetic energy
of N electrons is given by,

HK =

N∑

i=1

π2
i

2me
=

N∑

i=1

(n̂i +
1

2
) ℏωc, (1)

where πi = −iℏ∇i − e
cA(xi, yi) is the kinematic momen-

tum, ℏ the reduced Planck’s constant, and c the speed of

light. Ladder operators ai and a
†
i given by,

ai =
iℓ

ℏ
√
2
(πxi + iπyi) , a

†
i =

−iℓ
ℏ
√
2
(πxi − iπyi), (2)

where ℓ =
√

ℏc
|e|B is the magnetic length, define the (LL

index) number operator n̂i = a†i ai, and ωc = |e|B
mec

the
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cyclotron frequency. One can also define a new set of
dynamical variables,

bi =
1

ℓ
√
2
z̄i − a†i , b

†
i =

1

ℓ
√
2
zi − ai, (3)

which are known as the cyclotron-orbit-center or guiding
center operators. The ladder operators (ai, bi) with the
algebra

[bi, b
†
j ] = δij = [ai, a

†
j ] , [ai, bj] = [ai, b

†
j ] = 0, (4)

provide a complete description of LL physics, where sin-
gle particle basis states are given by

|ni, si⟩ =
1√
ni! si!

a†ni

i b†sii |0, 0⟩ , (5)

and the integers ni and si are the eigenvalues of the num-

ber operators n̂i and n̂
b
i = b†i bi, respectively. The vacuum

state |0, 0⟩ is obtained by solving ai |0, 0⟩ = 0 = bi |0, 0⟩,
with ni = 0 corresponding to the LLL. With the aid of
the above operators, the total angular momentum oper-
ator of N particles can be written as

Ĵ =

N∑

i=1

Ĵi, with Ĵi = ℏ(n̂bi − n̂i), (6)

and, therefore, the single particle basis states satisfy

Ĵi |ni, si⟩ = ℏ(si − ni) |ni, si⟩ = ℏji |ni, si⟩ = Ji |ni, si⟩ . (7)

For two particles, raising and lowering operators in the
center of mass coordinate frame are given by48

ac =
1√
2
(a1 + a2) , ar =

1√
2
(a1 − a2),

bc =
1√
2
(b1 + b2) , br =

1√
2
(b1 − b2), (8)

where subindex c stands for center of mass and r for rela-
tive. Here, n̂c+ n̂r = n̂1+ n̂2, with n̂c,r = a†c,rac,r (whose

eigenvalues are nc,r), and n̂
b
c,r = b†c,rbc,r (whose eigenval-

ues are 2j − m and m, respectively). The relative and
total angular momentum operators in the two-particle
system are, respectively, given by

L̂r = ℏ (n̂br − n̂r) , Ĵ = ℏ (Ĵ1 + Ĵ2). (9)

These center of mass frame operators enable the con-
struction of a two-fermion basis. A normalized fermionic
two-particle state of a definite relative angular momen-
tum Lr = ℏ(m − nr) and total angular momentum
J = ℏ (2j − nc − nr) can be written as

|nc, nr, 2j −m,m⟩ = a†nc
c a†nr

r b†2j−m
c b†mr√

nc!nr!(2j −m)!m!
|0, 0⟩ . (10)

While the basis states in Eq. (10) are suitable to describe
a system with rotational symmetry, the LL indices of the

individual particles, ni, are not fixed. Our aim, how-
ever, is to define a two-fermion basis confined in the sub-
space of NL lowest lying LLs, i.e., 0 ≤ ni ≤ NL − 1, for
i = 1, 2. To systematically generate the fermionic basis
with a well-defined LL index for individual particles, we
introduce the following fermionic basis states labelled by
{n1, n2, j,m}

|I⟩F = Gn1,n2

± |0, 0, 2j −m,m⟩
=

∑

nc,nr

Cncnr
|nc, nr, 2j −m,m⟩ , (11)

where

Gn1,n2

± =
1√

n1!n2! 2(1 + δn1,n2)
(a†n1

1 a†n2

2 ± a†n2

1 a†n1

2 ),

Cncnr
= ⟨nc, nr, 2j −m,m |I⟩F .

The +(−) sign is used whenever m ∈ odd(even).
In a disk geometry, within the symmetric gauge

A(xi, yi) = B
2 (yix̂ − xiŷ), as further elaborated on in

Appendix A, we obtain

|I⟩F =
1

2
√
1 + δn1,n2

j∑

k=−j

ηk(j,m) |α1, α2⟩ . (12)

Here, we employed the following 2 × 2 determinant
Dα1α2

(1, 2) = ⟨z1, z̄1; z2, z̄2|α1, α2⟩, αi = (ni, si),

Dα1α2(1, 2) =

∣∣∣∣
ϕn1,j−k(1) ϕn1,j−k(2)
ϕn2,j+k(1) ϕn2,j+k(2)

∣∣∣∣ , (13)

where ϕni,si(i) = ⟨zi, z̄i|ni, si⟩ ≡ ϕαi , for i = 1, 2. The
functional form of the coefficients ηk(j,m) contains in-
formation about the geometry of the system24. For the
disk geometry it is given by

ηk(j,m) = (−1)m+j−k

√
(j − k)! (j + k)!

22j−1(2j −m)!m!

×
j−k∑

q=0

(−1)q
(
2j −m

q

)(
m

j − k − q

)
. (14)

For a given j, each state |I⟩F will be specified by the
reduced set {n1, n2,m}. By imposing 0 ≤ ni ≤ NL −
1, the basis states of Eq. (12) span a two-fermion basis
projected onto the subspace of the lowest NL LLs.
We can express the two-fermion basis in a second quan-

tization representation. This is especially advantageous
when discussing the QH parent Hamiltonian projected
onto the subspace of NL LLs, and its ground states.
Equation (13) suggests a natural map

1√
2
Dα1α2 → c†n1,j−n1−kc

†
n2,j−n2+k|0⟩. (15)

Here, |0⟩ is the Fock space vacuum and c†n,l (cn,l) are

fermionic creation (annihilation) operators, creating (an-
nihilating) an electron with LL index n and angular mo-
mentum ℏl. Thus, one may transition from the fermionic
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states of Eq. (12) to a second quantized representation
by a replacement of the type24

|I⟩F → Tn1,n2 +
j;m , (16)

where

Tn1,n2 +
j;m =

1√
2(1 + δn1,n2

)

×
j+n1∑

k=−j−n2

η
k+

n2−n1
2

(j +
n2 + n1

2
,m) c†n1,j−kc

†
n2,j+k.

(17)

It can be checked that the two-fermion operators Tn1,n2 +
j;m

satisfy

⟨0|Tn1,n2 −
j;m Tn1,n2 +

j;m |0⟩ = 1, (18)

where Tn1,n2 −
j;m = (Tn1,n2 +

j;m )†.
So far, we examined a system on a plane of an un-

bounded spatial extent. For finite size systems, the num-
ber of angular momentum orbitals in each LL is restricted
by the number L of available distinct single particle an-
gular momentum modes. As an example, in Fig. 1 we
depict the LL orbitals (solid bars) and project only up
to four LLs (black solid bars). The horizontal axis repre-
sents the angular momentum of the LL orbitals and the
vertical axis provides the LL index.

FIG. 1. Projection onto the lowest NL = 4 LLs (black solid
bars) with L = 6. Each solid bar represents a LL orbital
ϕni,si with horizontal and vertical axis representing angular
momentum Ji (in units of ℏ) and LL index ni, respectively.

For NL LLs, each single particle angular momentum
mode may, at most, correspond to NL orthogonal or-
bitals. Consequently, in Eq. (17), j must be restricted to
the interval [−NL+1,L−NL]. Assuming integer orbital
numbers j ± k, it can be checked that j may assume the
2L− 1 consecutive values24

j = −NL + 1,−NL + 3/2,−NL + 2, · · · ,L−NL. (19)

Here, −min(ȷ̃,L − 1 − ȷ̃) − n1−n2

2 ≤ k ≤ min(ȷ̃,L − 1 −
ȷ̃) + n1−n2

2 , where ȷ̃ = j + n1+n2

2 .

B. Projected two-body Hamiltonians

We next outline a simple general recipe for writing
down QH parent Hamiltonians in terms of fermionic op-
erators. The positive semi-definite property of these
Hamiltonians will, importantly, give rise to a systematic
way of generating ground states (zero-energy modes) for
NL LLs. To this end, we utilize the two-fermion basis
derived above and project a two-body QH Hamiltonian
onto NL LLs. By expressing the projected Hamiltonian
in a second quantized form, we show that the projected
Hamiltonian is a “frustration-free Hamiltonian”.
Consider a (repulsive) short range interaction potential

Hint =
∑

i<j

V (ri − rj), (20)

that enjoys rotational and translational symmetry. The
pair interaction V (ri − rj) = V (rij) can, generally, be
represented as an infinite sum48

V (ri − rj) =

∞∑

α=0

Vα Lα(−ℓ2∇2
ij) δ

2(ri − rj), (21)

where Lα(x) is the αth Laguerre polynomial49. The ex-
pansion coefficients Vα can be determined from the spe-
cific form of the interaction, viz.,

Vα = 4πℓ2
∫

d2k

(2π)2
Ṽ (k)Lα(ℓ

2k2) e−ℓ2k2

, (22)

where Ṽ (k) is the Fourier transform of the potential (see
Appendix B for a derivation). For the LLL, α can be
identified with the relative angular momentum of the
pair, and as such, Vα would represent the energy penalty
for having a pair in such a state. This approach, known as
the pseudopotential expansion, was first pioneered in the
context of FQH physics and LLL by Haldane12. Gener-
ically,13 Eq. (21) may be considered as an expansion of
the interaction potential in powers of its range (magnetic
length) ℓ. This can be seen by noting that, for a ground
state of Hint with filling fraction ν, the average distance
between electrons is47 ∼ ℓ/

√
ν. Thus, for a short range

two-body interaction, it is typically sufficient to keep the
first few pseudopotentials.
As shown below, the interaction potential Hint, when

projected onto NL LLs, is a positive semi-definite and
frustration-free operator. These universal properties may
be made explicit by keeping α = 0, 1,

V (ri − rj) = (V0 + V1 + V1ℓ
2 ∇2

ij) δ
2(ri − rj). (23)

Due to the antisymmetry of the fermionic wave function,
the first two terms on the righthand side of Eq. (23) have
vanishing expectation values. Therefore, we analyze only
V (ri − rj) ≡ V1ℓ

2∇2
ijδ

2(ri − rj), as our interaction po-
tential. We will refer to this potential as the Trugman-
Kivelson (TK)13 Hamiltonian

Hint = V1ℓ
2
∑

i<j

∇2
ijδ

2(ri − rj), (24)
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whose ground states satisfy theM -clustering property in
the coordinate representation (Appendix B).

The spectral decomposition of the Hamiltonian in the
projected two-fermion basis reads

Ĥint ≡ PNL
Hint PNL

=
∑

j

∑

ξ

Eξ |ξ⟩⟨ξ|. (25)

Here, PNL
represents the projection operator onto the

NL LLs and |ξ⟩ =
∑

I Λ
ξ
I |I⟩F are the eigenvectors of

the interaction in the two-fermion basis |I⟩F with expan-

sion coefficients Λξ
I . The index I runs over the entire

two-fermion basis in the subspace of NL LLs. The posi-
tive semi-definite property of the Hamiltonian is evident
when Eξ ≥ 0, as will be demonstrated for the case of four
LLs. Putting all of the pieces together, the TK Hamilto-
nian may be expressed as a sum over angular momentum
terms24,

Ĥint =
∑

j

Ĥj , (26)

where Ĥj =
∑

ξ EξT ξ+
j T ξ−

j is a positive semi-definite
operator with

T ξ+
j =

∑

I

Λξ
I T

n1,n2 +
j,mI

, T ξ−
j = (T ξ+

j )†. (27)

Note that for the Hamiltonian in Eq. (26), in general,

[Ĥj , Ĥj′ ] ̸= 0 for j ̸= j′. Nevertheless, there can be a
common zero-energy state. In the subspace of NL LLs,
Eξ ≥ 0, and a zero-energy state may appear if and only if

Ĥj |Ψ0⟩ = 0 for all j. Whenever such a zero-energy state
exists (and as we will explain such states do indeed exist),
the projected Hamiltonian is, by definition, a frustration-
free Hamiltonian.

Obtaining the projected Hamiltonian for NL = 1, 2
and 3 LLs was previously explored14,24,50. This led to
the discovery of non-trivial structures for ν = 2/5 and
ν = 1/2 FQH ground states and their excitations. In the
current paper, we will chiefly focus on NL = 4 LLs.

C. QH Hamiltonian in the subspace of four LLs

The full two-fermion basis for NL = 4 LLs is of dimen-
sion 40 (see Appendix C). Diagonalizing the interaction
matrix leads to only 12 nonzero eigenvalues,

Eξ ∈ V1
4π

{ 325

16
,
323 + 47

√
17

32
,
69

8
,
31 + 3

√
33

8
, (28)

323− 47
√
17

32
,
75 + 7

√
57

32
,
31− 3

√
33

8
,
13 +

√
89

16
,

13 +
√
129

32
,
75− 7

√
57

32
,
13−

√
89

16
,
13−

√
129

32
, 0, · · · , 0

}
.

We note that Eξ ≥ 0. Thus, the positive semi-definite
Hamiltonian projected onto NL = 4 LLs is given by

Ĥint =
∑

j

∑

ξ

EξT ξ+
j T ξ−

j , (29)

where in the operators T ξ+
j each individual operator

Tn1,n2 +
j,m is specified by a set of numbers {n1, n2,m} as

given in Table VIII of Appendix C.

III. GROUND STATES OF QH HAMILTONIANS

By its nature, any positive semi-definite Hamiltonian
can only have non-negative eigenvalues. Thus, any non-
trivial zero-energy eigenstate of Eq. (26), if it exists, will
be a ground state which satisfies

Ĥj |Ψ0⟩ = 0 ∀j ⇐⇒ T ξ−
j |Ψ0⟩ = 0 ∀ξ, j. (30)

These zero-energy states collectively exhaust the ground
state manifold. As we will explain, one may indeed pre-
cisely find these zero-energy states for any given number
of particles N at filling fractions ν = (N−1)/(L−1). The
filling fraction of the ground state, on the other hand,
determines the electron density ρ = (B/ϕ0)ν, where
ϕ0 = hc/|e| is the electron’s magnetic flux quantum.
Therefore, exploring the ground states of the Hamilto-
nian family considered here leads to candidate incom-
pressible states with different Landau level filling factors.
Assuming that we have determined a set of zero-energy
ground states from Eq. (30), an important question is
whether adding or removing electrons may increase the
ground state energy. The answer to this question estab-
lishes the relationship between the electron density and
the ground state energy of the FQH state, which we will
explore in the next subsection.

A. Monotonicity of the ground state energy

The kinetic energy in our particle number conserving
system is quenched; the system is dominated by interpar-
ticle interactions. An interesting question for a general
system with k-body interactions is what is the relation
between the ground state energies of N and N−n (n > 0)
particles. As demonstrated in Ref. [51], for general k-
body interaction positive semi-definite Hamiltonian, the
energy of the ground state is monotonically increasing in
the number of particles. Reference [51] focused on flavor-
less and spinless electrons (thus, e.g., spinless electrons
confined only to the LLL). In what follows, we generalize
this earlier result to a broader setting in which the elec-
trons may have several internal degrees of freedom (such
as the LL index and angular momentum).
Consider a general k-body Hamiltonian,

Hk =
∑

[n]

V[n] c
†
n1
c†n2

· · · c†nk
cnk+1

cnk+2
· · · cn2k

, (31)

where nl = (n1l , n
2
l , · · · ), l = 1, 2, · · · , 2k, represents a

set of labels such as the band index, angular momen-
tum, spin, etc., and [n] = {n1, · · · ,n2k}. Note that the
Hamiltonian Hk conserves the number of particles,

[Hk, N̂ ] = 0. (32)



7

Here, N̂ =
∑

nq
c†nq

cnq
. We next consider an N ′-particle

density matrix ρN ′ and further define

ρN ′−1 =
1

N ′
∑

nq

cnq
ρN ′c†nq

, (33)

such that N̂ρN ′ = ρN ′N̂ = N ′ρN ′ . This implies that
Tr[ρN ′ ] = Tr[ρN ′−1] = 1. We next establish the following
identity

Tr[ρN ′−1Hk] =
N ′ − k

N ′ Tr[ρN ′Hk]. (34)

To show this, we first compute

Tr[ρN ′Hk] =
1

N ′Tr[ρN ′N̂Hk], (35)

and use the operator identity

N̂Hk = kHk +
∑

nq

c†nq
Hkcnq

, (36)

to obtain

Tr[ρN ′Hk] =
k

N ′Tr[ρN ′Hk] +
1

N ′Tr[Hk

∑

nq

cnq
ρN ′c†nq

]

=
k

N ′Tr[ρN ′Hk] + Tr[ρN ′−1Hk]. (37)

This indeed establishes the identity in Eq. (34).
Now, if N ′ < N (setting N ′ = N − n) then, by induc-

tion,

Tr[ρN−nHk] = [N, n, k] Tr[ρNHk], (38)

where

[N, n, k] =
(N − n + 1− k)(N − n + 2− k) · · · (N − k)

(N − n + 1)(N − n + 2) · · ·N .

If ρN is chosen such that the ground state energy
E0(N) = Tr[ρNHk], then by the Ritz variational
principle52, we get

Tr[ρN−nHk] ≥ E0(N − n). (39)

Equivalently,

E0(N − n) ≤ [N, n, k] E0(N). (40)

If the Hamiltonian is a positive semi-definite operator
then E0(N) ≥ 0 for any N and

E0(N − n) ≤ [N, n, k] E0(N) ≤ E0(N).

For the particular case of n = 1, we find that

E0(N − 1) ≤ N − k

N
E0(N) ≤ E0(N). (41)

This inequality proves the monotonicity of the ground
state energy. Equation (41) allows for the inclusion of

general LLs and angular momentum (ni = (n, j)) indices.
Thus, if a zero-energy ground state exists for a given
density then, for all lower electron densities, the ground
state energy must strictly vanish.
The above demonstration of monotonicity may be gen-

eralized to a linear combination of k-body interactions51

H =

kmax∑

k=kmin

Hk, (42)

with kmax − kmin ≥ 0. From Eq. (38),

Tr[ρN−nH] = [N, n, kmin]Tr[ρNH] + δE. (43)

Here,

δE =

kmax∑

k=kmin

([N, n, k]− [N, n, kmin]) Tr[ρNHk]. (44)

Similar to the above, if E0(N) = Tr[ρNH] then the Ritz
variational principle mandates that

E0(N − n) ≤ [N, n, kmin]E0(N) + δE. (45)

Note that in (44) the term in parenthesis is negative semi-
definite since [N, n, kmin] ≥ [N, n, kmin + δk] ≥ 0 when
0 ≤ δk ≤ kmax − kmin. Then, whenever δE ≤ 0

E0(N − n) ≤ [N, n, kmin]E0(N) ≤ E0(N), (46)

which is in particular guaranteed if all Hk’s are positive
semi-definite.

B. Determining the densest zero-energy mode:
Entangled Pauli Principle (EPP)

Here, we explicitly determine the ground state of the
projected Hamiltonian in Eq. (26) for an N -particle sys-
tem. Intuitively, the densest ground state of this type of

FIG. 2. All ground states of positive semi-definite Hamiltoni-
ans of the form of Eq. (31), with densities ν less or equal to
the maximal density νmax are zero-energy states. For densities
exceeding that threshold value, ν > νmax, the ground states
have positive energies.
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Hamiltonians corresponds to an incompressible QH liq-
uid. The monotonicity that we established in the pre-
vious subsection indeed indicates that if we find a zero-
energy ground state with filling fraction ν, then for all the
smaller filling fractions (with fixed L) the ground states
will also be zero-energy eigenstates, i.e., E0 = 0. (This
is schematically illustrated in Fig. 2.)

Since the size of LL orbitals is directly associated with
the magnitude of its angular momentum, when there are
several zero-energy states with the same bulk filling frac-
tion ν, we will define the one with smallest total angular
momentum J to be the densest state. When alluding to
“the ground state”, we will mainly refer to the densest
zero-energy ground state.

The ground state |Ψ0⟩ can be written as a linear super-
position of Slater determinants in the occupation number
representation basis,

|Ψ0⟩ =
∑

n

Cn|n⟩, (47)

with coefficients Cn ∈ C. Each basis state |n⟩ (a single
Slater determinant),

|n⟩ = c†n1,j1
c†n2,j2

· · · c†nN ,jN
|0⟩, j1 ≤ j2 ≤ · · · ≤ jN ,

is associated with a total angular momentum partition53

(due to the rotational symmetry of the projected Hamil-
tonian) {λ} = λj1λj1+1 · · ·λj · · ·λjN . Here, 0 ≤ λj ≤ NL

represents the multiplicity of occupied orbitals with fixed
angular momentum ℏj, where jmin = −NL + 1 is the
lowest possible value, and jmax = L − NL the largest
possible one (A word of caution: Whenever j refers to
angular momentum it must be an integer). A “multiplic-
ity” λj > 1 implies that electrons occupy orbitals with
the same angular momentum ℏj and different LL index
n. An equivalent alternative notation for the occupation
number configuration is afforded by {j1, · · · , jN}. For
instance, the N = 3 Slater determinant

c†n,jc
†
n′,jc

†
n′′,j+2|0⟩ = |2n,n′01n′′⟩ = −|2n′,n01n′′⟩. (48)

has an associated angular momentum partition {λ} =
201 ≡ {j, j, j + 2}.
Any basis state element |n⟩ in the expansion above

can be classified as being one of two (mutually exclusive)
types: (i) an expandable |n′⟩ or a (ii) non-expandable
state (which with some abuse of notation we will denote
by |n⟩)24. By fiat, expandable states can be obtained
by an “inward squeezing” of other basis states appearing
in Eq. (47) with non-zero coefficient. If this is not the
case, we refer to the basis state as “non-expandable”.
Here, by “inward squeezing”, we refer to an inward pair
hoping process in the occupation number basis, i.e.,

|n′⟩ ∝ c†n1,j1
c†n2,j2

cn3,j3cn4,j4 |n⟩, (49)

where j3 < j1 ≤ j2 < j4. For instance, in Fig. 3, the
state |022,3021,320,30⟩ (expandable state in yellow (or

FIG. 3. Example of an inward squeezing process for a state
consisting of six electrons (J = −2ℏ), confined to the four low-
est LLs. The electron configuration prior to (after) squeezing
is represented by blue (yellow) color.

light shade)) is obtained from an inward squeezing of
|13021,3030,2,30⟩ (non-expandable state in blue (darker
shade)). We point out that the total angular momentum

of |n⟩ given by J = ℏ
∑jN

j=j1
j λj does not change under

the inward squeezing process.
The projection of Eq. (47) onto its non-expandable

states is often termed the “root” or “dominant” state.
We can schematically write the ground state in Eq. (47)
as

|Ψ0⟩ = |Ψroot⟩+ |Squeezed States⟩. (50)

Here, |Ψroot⟩ represents the root state while all
expandable Slater determinants are encapsulated in
|Squeezed States⟩. For the LLL, the root state is typi-
cally a single Slater determinant 20,24,54 obeying a gen-
eralized Pauli exclusion principle20. For example, in the
occupation number basis, such a principle may state that
q consecutive states can be occupied by at most p parti-
cles. This can gives rise to a QH state at ν = p/q. By
contrast, when multiple LLs are present, in account of
the degeneracy of the fixed angular momentum orbitals,
0 ≤ λj ≤ NL, a given root pattern may correspond to
various non-expandable Slater determinants. As a re-
sult, the root state is a linear superposition of all such
non-expandable Slater determinant states,

|Ψroot⟩ =
∑

nroot

Cnroot |nroot⟩, (51)

where Slater determinants |nroot⟩ have a common occupa-
tion number configuration {λ}root. This reveals an essen-
tial entangled structure associated with the root state,
which replaces the generalized Pauli exclusion principles
with an EPP as the underlying organizing principle14,15.
The EPP encodes the entanglement structure that de-
termines the densest possible root state (associated with
the incompressible zero mode state), and various quasi-
hole type and/or edge excitations, which can be thought
of as inserting domain walls of various types into the
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densest root state (see below). Generically, |Ψroot⟩ con-
tains central information such as density of the QH state,
quasiparticle charge and exchange statistics30,31, and, in
the thin cylinder (Tao-Thouless55) limit, it constitutes
the exact ground state55–62. For these reasons, |Ψroot⟩
expresses the “DNA” of the QH state14.

1. Entangled Pauli Principle and pseudospin classification

We next study the two-particle ground states for NL =
4 LLs and show that their root states can be understood
via its pseudospin structure, i.e., they carry representa-
tions of a certain su(2) pseudospin algebra. First, let
us define the relevant su(2) pseudospin algebra S± =∑

j≥0 S
±
j and Sz =

∑
j≥0 S

z
j where

S+
j = 3c̃∗1,j c̃0,j + 2c̃∗2,j c̃1,j + c̃∗3,j c̃2,j ,

S−
j = 3c̃∗2,j c̃3,j + 2c̃∗1,j c̃2,j + c̃∗0,j c̃1,j , (52)

Sz
j =

3

2
c̃∗3,j c̃3,j +

1

2
c̃∗2,j c̃2,j −

1

2
c̃∗1,j c̃1,j −

3

2
c̃∗0,j c̃0,j ,

with c̃∗ni,ji
(c̃ni,ji) being the pseudofermion creation (an-

nihilation) operator15, which satisfies {c̃∗n1,j1
, c̃n2,j2

} =
δn1,n2δj1,j2 . We note that the pseudospin algebra is local
in angular momentum space, i.e., for each j the genera-
tors satisfy the su(2) algebra. Here, the pseudospin op-

erator is defined as usual, Ŝ2 = S+S−+(Sz)2−Sz, with
the eigenvalue of S(S + 1). The corresponding pseudo-

fermion basis states are z̄ni

i z
ji+ni

i . In Section V, we will
expand on the utility of this algebra to locally detect cer-
tain degeneracies associated with elementary excitations,
emerging from the domain wall structure in the EPP de-
scription of the zero mode spectrum.

The pseudospin language is particularly useful to un-
derstand the EPP structure. To see this, we study the
root states with the following patterns: 2, 11, 101, and
1001. We start our discussion with a two-particle root
state with multiplicity 2, i.e, two particles with the same
angular momentum,

|Ψ0⟩ =
∑

n,n′

Cn,n′ |2n,n′⟩. (53)

There are 12 coefficients up to an overall normalization to
satisfy 12 linear constraints from Eq. (30). For a single
angular momentum site constraints ξ = 9, 12 are not
independent. This leads to only 11 linear equations for
the coefficients, which can be uniquely solved.

For pseudospin classification purposes, it is more con-
venient to work in the pseudofermion basis. The basis
elements are defined as

|(λj1)n(λj1+1)n′′ · · · (λj2)n′) ≡ c̃∗n,j1 c̃
∗
n′′,j1+1 · · · c̃∗n′,j2 |0⟩.

(54)

Therefore, the unique ground state becomes

|Ψ0⟩ =|23,0) + 3|21,2), (55)

where both particles occupy orbitals with angular mo-
mentum index j = 0 (which we suppressed in (55)). One
can check that this state is annihilated by both S+ and
S− operators in the pseudospin algebra, and it carries
the S = 0 representation. We note that the eigenvalues
of Sz are determined by the total LL index of the states
as n + n′ − 3. Multiplicity 2 in the root pattern thus
forms a singlet and is generalized entangled with respect
to the u(N = 2) algebra (single Slater determinants are
unentangled with respect to the same algebra)63,64.
Consider next the 11 pattern in the root state. The

corresponding ground state,

|Ψ0⟩ =
∑

n,n′

Cn,n′ |1n1n′⟩, (56)

has 16 parameters up to a normalization factor to satisfy
12 constraints. We thus get 4 different solutions, which
can be expressed as

|Ψ̃(1)
0 ⟩ =|1012) + |1210)− 2|1111),

|Ψ̃(2)
0 ⟩ =|1013)− 2|1112) + |1211),

|Ψ̃(3)
0 ⟩ =|1310)− 2|1211) + |1112),

|Ψ̃(4)
0 ⟩ =|1113) + |1311)− 2|1212), (57)

In terms of the su(2) pseudospin algebra, |Ψ̃(1)
0 ⟩, |Ψ̃(2)

0 ⟩+
|Ψ̃(3)

0 ⟩ and |Ψ̃(4)
0 ⟩ carry a spin triplet representation, while

|Ψ̃(2)
0 ⟩ − |Ψ̃(3)

0 ⟩ is a spin singlet. Hence, 11 is the root
pattern realizing pseudospins S = 0 and 1.
Now, let us consider the 101 root pattern. The corre-

sponding ground state,

|Ψ0⟩ =
∑

n,n′

Cn,n′ |1n01n′⟩+ C ′
n,n′ |02n,n′0⟩, (58)

has 16 coefficients Cn,n′ associated with the root state
and 6 coefficients C ′

n,n′ associated with inward-squeezed
states to satisfy 12 linear constraints and a normaliza-
tion condition. We thus expect to obtain 10 possible
solutions. One of those solutions, however, has already
been discussed in Eq. (55), where all the Cn,n′ are zero
(i.e., only the squeezed state contributes). As a result,
we obtain 9 independent solutions in the pseudofermion
basis,

|Ψ(1)
root⟩ = |11010)− |10011),

|Ψ(2)
root⟩ = |12010)− |11011),

|Ψ(3)
root⟩ = |11011)− |10012),

|Ψ(4)
root⟩ = |12011)− |11012),

|Ψ(5)
root⟩ = |13010)− |12011),

|Ψ(6)
root⟩ = |11012)− |10013),

|Ψ(7)
root⟩ = |13011)− |12012),

|Ψ(8)
root⟩ = |12012)− |11013),

|Ψ(9)
root⟩ = |13012)− |12013). (59)
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In this case, |Ψ(.)
root⟩ is no longer the same as |Ψ0⟩ as we

have excluded inward squeezed terms C ′
n,n′ . These root

states can be linearly combined to form pseudospins S =
0, 1, and 2 representations in the following way,

S = 0, Sz = 0 : |Ψ(6)
root⟩+ |Ψ(5)

root⟩ − 2|Ψ(4)
root⟩,

S = 1, Sz = 1 : |Ψ(7)
root⟩ − |Ψ(8)

root⟩,
S = 1, Sz = 0 : |Ψ(5)

root⟩ − |Ψ(6)
root⟩,

S = 1, Sz = −1 : |Ψ(2)
root⟩ − |Ψ(3)

root⟩,
S = 2, Sz = 2 : |Ψ(9)

root⟩,
S = 2, Sz = 1 : |Ψ(8)

root⟩+ |Ψ(7)
root⟩,

S = 2, Sz = 0 : |Ψ(6)
root⟩+ |Ψ(5)

root⟩+ 4|Ψ(4)
root⟩,

S = 2, Sz = −1 : |Ψ(2)
root⟩+ |Ψ(3)

root⟩,
S = 2, Sz = −2 : |Ψ(1)

root⟩. (60)

Finally, we consider the pattern 1001 in the root state.
The corresponding two-particle ground state,

|Ψ0⟩ =
∑

n,n′

Cn,n′ |1n001n′⟩+ C̃n,n′ |01n1n′0⟩, (61)

has 16 parameters Cn,n′ associated with the root state

and 16 parameters C̃n,n′ associated with inward-squeezed
states to satisfy 12 linear constraints and a normaliza-
tion condition. We thus expect to find 20 possible solu-
tions. Four of those solutions, however, we have already
discussed in Eq. (57), where all the Cn,n′ are zero in
Eq. (61). Excluding those 4 solutions, we get 16 indepen-
dent solutions each of which consists of an unentangled
root state (with a single Slater determinant) of the form
|1n001n′⟩. From these 2-particle considerations, we may
now infer/anticipate the following EPP, to be generalized
to N -particle root states further below:

1. 2 is the highest multiplicity in the allowed ground
state root pattern. It can only occur as a pseu-
dospin singlet with S = 0.

2. 110 pattern can appear in the root state in pseu-
dospins S = 0, 1 representations.

3. 101 pattern can appear in the root state in pseu-
dospins S = 0, 1, 2 representations.

4. 1001 pattern can appear in the root state as an
unentangled state.

Root states (DNA) consistent with the above EPP ad-
mit a matrix product state (MPS) representation that
highlights its patterns of entanglement. We discuss this
next.

2. MPS construction of DNA from the Entangled Pauli
Principle

We have so far established constraints for the ground
state wave function of two particles, formulated as two-
particle EPPs for the root states. It remains to show

21 1 1 1 1 1 1 10 00 010 0 0

21 11 0 11 0 0 1

FIG. 4. MPS representation of EPPs. Every circle represents
a (pseudo-)spin-3/2 degree of freedom formed by three sym-
metrized spin-1/2, in a generalized AKLT construction. As-
sociated MPSs are then formed by associating a rank-3 sym-
metric tensor with each circle, whose indices are represented
by three emanating lines. Lines between different tensors can
form singlet bonds via contraction (with a Levi-Civita ten-
sor ϵαβ), represented by a small solid box, as discussed in
the text. The various constraints of the EPP can be satisfied
by such contractions. The top row represents the various 2-
particle root states (labeled by corresponding root patterns)
discussed in Sec. III B 1. Degeneracies are recovered by con-
sidering “dangling bonds” (see main text). The bottom row
shows a sequence of “minimum charge” (see Sec. IV) domain
walls between 110 and 020 patterns. Such domain walls carry
a single spin-1/2 degree of freedom.

two things. First, that the same constraints apply to
the root states of any N -particle zero modes. Moreover,
that any state that is consistent with these constraints
does appear as the root state of some zero mode. To-
gether, this will then allow zero mode counting in terms
of all possible “DNAs” of zero modes, namely, the root
states consistent with the EPP. It will also allow for the
construction of a complete set of zero modes in terms
of parton-like wave functions. The latter results will be
derived in Sec. VI. In the following several subsections,
we focus on elevating the EPP to N -particle zero modes
and their root states, and on solving for all possible N -
particle root states consistent with this EPP.

We begin by assuming that rules 1.-3. of the preced-
ing section apply to any N -particle root state, and that,
in the spirit of rule 4., there are no further constraints.
In particular, there are no constraints, at root level, on
particles that are separated by more than two orbitals.
We will prove this below. For now, let us construct the
solutions to these constraints.

It is easy to formulate solutions to the EPP, as formu-
lated above, using a generalized AKLT construction65.
Note that in our pseudospin description, a pair of parti-
cles can be decomposed into S = 0, 1, 2 and 3 represen-
tations, while each individual particle carries a S = 3/2
representation. The latter can be represented as a sym-
metric rank-3 tensor with indices taking on two distinct
values. This, in turn, can be understood as describing
three “virtual” spin-1/2 degrees of freedom in a totally
symmetric state, as done in the AKLT-construction, giv-
ing rise to matrix product or simple tensor network states
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solving the EPP-constraint. We will represent a symmet-
ric rank-3 tensor M I

I(1)I(2)I(3) by a circle with three legs,
as in Fig. 4. The superscript I labels the four possible Sz

values such a spin-3/2 state can have (not represented in
figure). We now associate with each circle with a spin-3/2
state

∑

I

M I
I(1)I(2)I(3) |I⟩ . (62)

We may consider all states obtained by tensoring N
copies of these states together. This gives us many “vir-
tual” degrees of freedom encoded in the subscripts, which
we may utilize to satisfy the desired constraints, associ-
ated with a certain root pattern.

We begin by looking at a situation where a 1 in
the pattern is padded by two zeros left and right,
i.e., . . . 00100 . . . . In this case, the EPP imposes no
constrained on this isolated particle, and the indices
I(1)I(2)I(3) in Eq. (62) can be chosen arbitrarily. Note
that the choice of I(1)I(2)I(3) reflects the Sz values of
the virtual spin-1/2 degrees of freedom, thus, the total
Sz of the state. Therefore, only one I in Eq. (62) will
contribute for given I(1)I(2)I(3). Note that due to the
symmetry of the tensor, this choice of virtual indices only
recovers the four-fold (not 2× 2× 2 = 8-fold) degeneracy
associated with a spin-3/2, as it must. In the following,
we must always take into account this symmetry when
counting degeneracies in terms of free, “dangling spin-1/2
bonds”.

Next we consider a 101 configuration in the root pat-
tern. According to the EPP, these cannot be in a spin-3
state, i.e., must be in the subspace formed by the spin-
0, 1, and 2 representations. As in the original AKLT-
construction, we can achieve this by joining two virtual
spin-1/2 degrees of freedom into a singlet. This is done by
contracting two indices on the two different tensors repre-
senting the two particles with the totally anti-symmetric
tensor ϵαβ , indicated by a small box in Fig. 4. If the 101
unit is unconstrained on either side (there are at least two
0’s on either side), then there will be two pairs of dan-
gling virtual bonds on either side. Owing to symmetry,
each such pair is associated with a spin-1 degeneracy, i.e.,
a 3-fold degeneracy. This recovers the 9-fold degeneracy
of the 101-pattern observed in the preceding section.

Similarly, given now a 11-configuration in the root pat-
tern, we would contract two indices on the two different
tensors via an ϵαβ-tensor, as shown in the figure. This
realizes the constraint of the pair being in the spin-0 ⊕
spin-1 subspace. Each of the two isolated dangling bonds
now represents a two-fold degeneracy, recovering the ex-
pected 4-fold degeneracy from the preceding section.

Finally, we can also represent a doubly occupied mode
at root level through two tensors with all indices paired
into singlets. If now I, and I ′ are the physical (spin-
3/2) degrees of freedom of the two fermions, since the
latter are now occupying the same “site”, i.e., mode, it is
important to check that the resulting expression is anti-
symmetric under exchange of I and I ′. This is indeed the

case. This leads to the generalized entangled two-particle
state associated with a “2” discussed above.
Longer units of entangled . . . 11011 . . . are now formed

analogously, as shown in the figure. An important spe-
cial situation are domain walls at root level of the form
. . . 20020011011 . . . and . . . 1101101011011 . . . , i.e., do-
main walls representing shifts between the densest pos-
sible patterns, 200 and/or 110. These domain walls will
play an important role in Sec. IV, in that they repre-
sent elementary (charge 1/3, see Sec. IV) excitations. As
seen in the figure (bottom row), there is a single dangling
bond associated to any such domain wall. The associated
elementary excitations thus carry a pseudospin-1/2.

3. The densest N-particle ground state

We now formally elevate the EPP to apply to gen-
eral N -particle zero modes and their root states, as al-
ready assumed in the preceding subsection. Let us be-
gin by showing that in an N -particle root state, when
NL = 4, a single angular momentum orbital can have a
maximum multiplicity of 2 (here, we follow the method
utilized in14). To see this, we proceed by assuming mul-
tiplicity p for orbitals with angular momentum ℏj. The
corresponding root state can then be written as

|Ψroot⟩ =
∑

n1,n2,...,np

Cj
n1n2...np

c†n1,j
c†n2,j

. . . c†np,j
|np⟩+ |rest⟩,

(63)

where |np⟩ is a Slater determinant with N − p parti-
cles, and |rest⟩ includes other Slater determinants in

the root state such that ⟨rest|c†n1,j
c†n2,j

. . . c†np,j
|np⟩ = 0.

Generically, there are 4!/(4− p)!p! coefficients Cj
n1n2...np

,
which determine the pseudospin structure at angular mo-
mentum ℏj. Now, contracting Eq. (30) with |n2⟩ =

c†n3,j
. . . c†np,j

|np⟩ and complex conjugating, we obtain

⟨Ψ0|T ξ+
j |n2⟩ =

40∑

I=1

Λξ
I

∑

k

η
k+

n2−n1
2

(j +
n2 + n1

2
,mI)

× ⟨Ψ0|c†n1,j−kc
†
n2,j+k|n2⟩ = 0. (64)

By definition, since the root state consists of the non-
expandable states, only k = 0 terms can be nonzero in
the last line. This gives,

40∑

I=1

Λξ
I ηn2−n1

2
(j +

n2 + n1
2

,mI)C
j
n1n2...np

= 0, (65)

where for each set of particles (n3, . . . , np) we get ξ =
1, · · · , 11 constraints. It is clear that the number of con-
straints for p = 3 and 4 is larger than the number of
coefficients, which leads to Cj

n1n2...np
= 0. For p = 2,

however, we get 12 coefficients and 11 constraints, which
uniquely determine the coefficients up to an overall fac-
tor. As a result, multiplicity 2 in the root state represents



12

the same singlet state identified above for N = 2, irre-
spective of j.

One can follow steps similar to those that led to
Eq. (64) to obtain constraints associated to the ap-
pearance of Slater determinants of the form |n⟩ =

c†n1,j−k′c
†
n2,j+k′ |n2⟩ in the root state. Here, for all n, k′ ≥

0 and −k′ ≤ d ≤ k′, we assume that c†n,j+dcn,j+d|n2⟩ = 0.

The expansion coefficients Cj,k′
n1,n2

of such determinants
are found to be subject to the same general constraints
already observed for two particles, e.g., the pattern 11
can appear only in the pseudospin 0 and 1 representa-
tions (or any linear combination thereof). As a result,
in an N -particle root state, the local EPP and thus the
spin structure of two-particle clusters, 2, 11, 101, 1001,
etc., are analogous to the two-particle root states.

It is straightforward to check that 21 and 201 are not
allowed in the root pattern, as they would give rise to an
over-constrained system of linear constraints. In these
cases, each electron in 2 would have to be further en-
tangled with the 1 at the right. For a 111 pattern,
the two leftmost 1’s would have to be in the subspace
of pseudospin 0 or 1 representation, and similarly the
two rightmost 1’s. An additional constraint would apply
to the two outermost 1’s. Overall, we will get an over-
constrained system. We can thus conclude that the con-
figuration 111 is also not allowed in the ground state root
pattern. In contrast, as expected from our 2-particle con-
siderations above, we find no constraint for the pattern
1001. We thus anticipate that this pattern can generally
appear at root level, where the sites corresponding to 1’s
are subject to no other constraints than already men-
tioned (involving nearest- or next-nearest neighbor occu-
pied sites next to the 1001 pattern). Analogous state-
ments apply for patterns 2002, 2001, 1002, or patterns
with more than two 0’s separating adjacent sites. We
may indeed anticipate that all states satisfying the con-
straints listed here may appear as root states in some
zero mode. That this is so, however, will follow from
explicit construction in Sec. VIA 2. Indeed, the results
of this section will then lead to a proof that no further
zero modes can exist, and that a complete set of zero
modes has been found, thus allowing rigorous zero-mode
counting in terms of possible root states14.

As an immediate corollary to the above results, no root
state can be “denser” than that corresponding to a pat-
ter with repeated unit cell 200. This pattern corresponds
to a filling factor of 2/3, and thus, no zero modes can ex-
ist at higher filling factor. We thus gets an upper bound
ν = 2/3 for our ground state. Note that orbitals with
negative angular momentum are somewhat special, as
their existence depends on LL index. As as result, we
will show in Appendix D that the densest possible root
pattern is subject to left boundary condition of the form
1002002002... . Formally, a root state with bulk pat-
tern ...110110110... is also possible (all constraints can
be satisfied, and there is a corresponding zero mode, see
Sec. VIA 2). This pattern also realizes a state with fill-

ing factor 2/3 in the thermodynamic limit. However, this
pattern and the corresponding zero mode have a slightly
higher angular momentum, for given particle number,
than the state associated to the root pattern

{λ}root = 100200200 . . . 2002 . (66)

We will thus consider the zero mode associated with the
latter the “densest” zero mode.

IV. BRAIDING STATISTICS: A CASE FOR
FIBONACCI ANYONS

A key aspect of our formalism is reduction of parton
states to root states. This reduction has some tradition
in the literature for single component states20,22,24,66,67.
Indeed, one benefit of this reduction is that it grants ac-
cess to the braiding statistics of the underlying Abelian
or non-Abelian QH state. This is so not only by making
contact with data predicted by field theory, such as de-
generacies, but rather more directly, under the assump-
tions of the “coherent state Ansatz”30,31,62 the root data
self-consistently lead to braiding statistics without invok-
ing or appealing to a field-theoretic formalism. In other
words, the assumptions of the coherent-state Ansatz pro-
vide an entirely microscopic framework to arrive at braid-
ing. Recently14, we have demonstrated that this ap-
proach does, in principle, generalize to parton states by
correctly deriving the braiding statistics68 for Jain’s 221
state. The application to the present case, which we will
pursue in full detail in the following, will expose more
general features of this formalism.
At its core, the coherent state method assumes the

existence on the torus of an orthonormal basis of nh-
quasihole states labeled by root patterns. This orthogo-
nality is justified by the assumption of adiabatic evolu-
tion21 of quasihole states in the thin torus limit, where
these states evolve into (torus versions of) our root states
discussed in detail in the preceding sections. Wave func-
tions of localized quasiholes are then naturally described
as coherent states in this basis. This Ansatz is then con-
strained in non-trivial ways by symmetries, notably S-
duality on the torus, as well as topological and locality
considerations, which strongly constrain braiding.
Before we review this formalism in detail, we observe

that our ground state pattern 200200 . . . and 110110 . . .
are formally identical to those of the bosonic Gaffnian
state, if the underlying entanglement structure is ignored.
For these reasons, much of the following calculations can
go in parallel with that carried out in Ref. [31] for the
Gaffnian, explicitly ignoring the fact that the Gaffnian
probably cannot be supplied with a gapped parent Hamil-
tonian. The present case will differ from the Gaffnian
calculation, as both the fermionic nature of the underly-
ing particles as well as the entanglement structure of the
root state must be taken into account in crucial places
(see Section IVC4 on mirror symmetry for further de-
tails). More generally, within the coherent state formal-
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ism, the result we obtain cannot be attributed to any
bosonic state, or any single-component fermionic state
with the given underlying root patterns. Indeed, at the
single component level, a given set of root patterns may
or may not be consistent62 with a given statistics of the
underlying constituent particles (fermions or bosons). As
a direct consequence, entanglement at the root level is
necessary to allow for a complete description of certain
phases in the FQH regime via root patterns. In the
present context, the aforementioned differences with the
bosonic Gaffnian case of Ref. [31] are of significant physi-
cal importance also since the present case has been linked
to a topological phase69, whereas the Gaffnian is thought
to be critical70. In particular, the results obtained in the
following will be consistent with the effective field theory
of Ref. [69].

A. Symmetry and S-duality on torus

Central to the program described above is the notion of
modular S-duality on the torus. We begin by reviewing
how this duality is realized by single-particle LL physics
and we will later generalize it to our interacting multiple
LLs many-body Hamiltonians.

We will start with a torus defined as the infinite com-
plex plane modulo a lattice generated by fundamental
periods L1 = Lxx̂, L2 = L∆x̂ + Ly ŷ: For points on the
torus, we may thus choose complex coordinates z = x+iy
with the identification z ≡ z + Lx(r + τs), where r
and s are any integers and the complex aspect ratio

τ = τ1 + iτ2 = L∆

Lx
+ i

Ly

Lx
is called the modular pa-

rameter of the torus. Modular transformations on the
torus are generated by the realization that the periods
L1 and L2 are not unique. Specifically, the replacement
L2 → L2 + L1 does not change the lattice or the un-
derlying torus. The same is true for the replacements
L1 → L2, L2 → −L1. These two transformations
acting on the lattice are known as modular T and S-
transformations, respectively, and generate the modular
group. These transformations extend trivially to linear
transformations of the 2D plane that leave the lattice of
periods invariant, and as such, generate non-trivial trans-
formations from the torus to itself. Modular parameters

FIG. 5. Modular space representation of the torus. S-duality,
a simple rotation in the modular space connects two tori of
different aspect ratios, namely τ → − 1

τ
.

associated to fundamental periods related to each other
by a modular transformation describe the same torus. In
particular, this leads to the identification of τ → 1 + τ
for the modular T -transformation, and τ → − 1

τ for the
modular S-transformation. If we insist that the period
L1 is always along the x-axis, we may, somewhat loosely
speaking, associate to the modular S-transformation the
active “rotation” depicted in Fig. 5.
Note that, for most values of the parameter τ , the for-

mal replacement τ → −1/τ does not constitute a true
symmetry of the Hamiltonian, essentially since the unit
cell is not in general invariant under the change shown
in Fig. 5, and generates the same lattice only modulo
a non-trivial rotation. Rather, therefore, the formal re-
placement τ → −1/τ is associated to two different de-
scriptions of the same physics. We will now explore the
consequences of this duality first at the level of single
particle, LL physics on the torus.
At the single particle level, a chief manifestation of S-

duality is the existence of two mutually dual choices of
basis that we will denote by ψn,j and ψ̄n,j , respectively.
Here, n is a LL index, and j will index the eigenvalue
of ψn,j and ψ̄n,j under magnetic translations along the
L1-direction (for ψ̄n,j) and the L2-direction (for ψn,j),
respectively. As we will show below, these two basis sets
are mutually related by discrete Fourier transform in j.
This is quite natural, since in the presence of a magnetic
field B, operators corresponding to x and y coordinates
behave as position/momentum conjugate pair upon LL
projection. To elaborate this point, we start with the ba-
sis ψ̄n,j , as with our convention, the magnetic translation
in the L1-direction is simpler (L∆-independent)

ψ̄n,j =
∑

s

ϕ̄n,j+sNϕ
. (67)

The number of flux quanta, Nϕ =
BLxLy

ϕ0
, can be iden-

tified with the integer L = N/ν, for N electrons on the
torus with filling fraction ν, and ϕ̄n,j is the nth LL wave
function on the cylinder with linear momentum j. By
construction, ϕ̄n,j will satisfy proper magnetic periodic
boundary conditions in the L1-direction, and as we will
see, the sum in Eq. (67) will properly periodize it in the
L2-direction. To construct ϕ̄n,j , we assume a particu-
lar gauge Aτ = By(x̂ − τ1

τ2
ŷ) which is perpendicular to

τ1x̂ + τ2ŷ
71. ϕ̄n,j can be readily solved for in terms of

Hermite polynomials, as the single particle Hamiltonian
H can be expressed in terms of â†â, where,

âϕ̄0,j =
1√
2

(
∂x + i∂y +

τ

τ2
y

)
ϕ̄0,j = 0,

â†ϕ̄n,j = − 1√
2

(
∂x − i∂y −

τ̄

τ2
y

)
ϕ̄n,j = ϕ̄n+1,j ,(68)

with τ̄ = τ1−iτ2. In the above equations, we have set the
magnetic length scale to one, i.e., ℓ = 1 (2πL = LxLy).
Also, we do not require basis states to be normalized,
just that their normalization is independent of j. We
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now introduce the magnetic translation operator under
the gauge Aτ ,

t(l) = e
−l.∇−ily

(
x− τ1

τ2
y
)
, (69)

where l = lxx̂+ ly ŷ. Periodic magnetic boundary condi-
tions read

t(L1)ψ = ψ,

t(L2)ψ = ψ . (70)

The evaluation of these conditions is somewhat easier in
“skewed” coordinates Lx(x∆+ τy∆) = x+ iy , where the
magnetic translation operator reads

t(l) = e−l.∇−ilyLxx∆ , (71)

The orbital ϕ̄n,j is fully determined by the requirement
that it has x-momentum quantum number j and satisfies
Eq. (68). The solution, in skewed coordinates reads

ϕ̄n,j = Hn

(√
−i2πτL

(
y∆ − j

L

))
e−i2πjx∆+iπτL(y∆− j

L )
2

.

(72)
Having well-defined x-momentum 2πj/Lx, ϕ̄n,j already
satisfies the first of the boundary conditions. The small-
est nonzero translations in the L1-direction and L2-
direction that are consistent with Eqs. (70) are given
by t1 = t(L1/L) and t2 = t(L2/L), respectively. One
easily checks that t2ϕ̄n,j = ϕ̄n,j+1, immediately implying
t2ψ̄n,j = ψ̄n,j+1, where, at the same time, ψ̄n,j+L = ψ̄n,j .
Since t(L2) = (t2)

L, the second of Eqs. (70) follows for
ψ̄n,j . We summarize the algebraic properties of t1, t2 and
their action on the ψ̄n,j basis as follows

[t1, H] = [t2, H] = 0, t1t2 = ω̄t2t1, ω̄ = ω−1 = ei
2π
L ,

t1ψ̄n,j = ω̄jψ̄n,j , t2ψ̄n,j = ψ̄n,j+1 (73)

In particular t1 and t2 satisfy a Weyl algebra72, which, as
we will see, essentially fixes the change of basis between
the ψ̄n,j basis and its dual counterpart, ψn,j .
Before we elaborate further, we wish to construct the

ψn,j basis via continuous deformation of the magnetic
lattice. One advantage of the skewed coordinates is that
Eq. (72) and the ψ̄n,j derived via Eq. (67) fully retain
their meaning if L1, L2 are arbitrary and in particular L1

is not necessarily aligned with the x-axis. That is, these
equations will define a complete set of LL-orbitals for a
torus described by any magnetic lattice in the complex
plane, for some gauge. If we now continuously deform L1

into the initial L2 and L2 into minus the initial L1, as
described in the beginning of this section, the resulting
orbitals will again be a valid basis for the original torus.
This is, however, a different set of orbitals, as τ goes to
−1/τ during the transformation, and the skewed coor-
dinates now refer to (L2,−L1) as opposed to (L1,L2).
Restoring the original skewed coordinates thus amounts
to the replacements x∆ → y∆, y∆ → −x∆ in Eq. (72),
on top of the replacement τ → −1/τ . The corresponding

replacements in Eq. (67) will then define the ψn,j in some
gauge, not equal to the original gauge.
We proceed by finally showing that after gauge fixing,

the ψn,j so defined are related to the ψ̄n,j via discrete
Fourier transform. From their characterization in the
preceding paragraph, it is straightforward to see that, t1
and t2 act as follows on the ψn,j :

t2ψn,j = ωjψn,j , t1ψn,j = ψn,j+1 . (74)

This actually involved a re-labeling j → L − j, so as to

have t1, and not t†1, increase the j-index. With the help
of Eqs. (73) one immediately shows that the right-hand
side of

ψn,j =
1√
L

∑

j′

ω̄jj′ ψ̄n,j′ (75)

satisfies Eq. (74). Noting further that the quantum num-
bers n and j uniquely specify an orbital, by completeness
the ψn,j must be linear combinations of the ψ̄n,j with
fixed n. Therefore, the first of Eqs. (74) already requires
Eq. (75) to be true up to a phase that possibly depends
on n and j. Requiring also the second of Eqs. (74) ren-
ders this phase j-independent, and we may set it equal
to 1 by convention. Indeed, in Appendix E we show in
detail that the right-hand side of Eq. (75) evaluates to

ψn,j = e−i2πLx∆y∆

∑

s

ϕn,j+sL,

ϕn,j = Hn

(√
i2π

L

τ

(
x∆ − j

L

))
ei2πjy∆−iπ L

τ (x∆− j
L )

2

.

(76)

Notice that this is obtained from Eq. (67) via the re-
placements τ → −1/τ , x∆ → y∆, y∆ → −x∆, j → −j,
up to the initial factor exp(−i2πLx∆y∆), which fixes the
gauge. Thus, the discrete Fourier transform realizes S-
duality at the single-particle level.
In the following, we will usually specialize to tori with

L∆ = 0. In this case, x∆ = x
Lx

and y∆ = y
Ly

, and

the S-duality relation as well as additional symmetries
can be simply stated in terms of the original complex z
coordinate, as shown in Table I. We now extend these
symmetries/dualities to interacting many-body systems.
For magnetic translations, we define many-body opera-

tors T1 =
∏N

i=1(t1)i and T2 =
∏N

i=1(t2)i, where (t1,2)i
acts on the ith particle. While both of these translation
operators commutes with Ĥint, they inherit non-trivial
commutation relations from the single-particle operators

via T1T2 = ω̄
N
L T2T1. From this, it follows that a ground

state with filling fraction ν = p
q must have ground state

degeneracy that is a multiple of q. Likewise, one estab-
lishes straightforwardly that Ĥint has the inversion sym-
metry introduced in Table I. Moreover, for L∆ = 0 there
are anti-unitary operators that implement the combina-
tion of a mirror symmetry (in x or y) with time-reversal
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x-translation t1 t1ψn,j = ψn,j+1 t1ψ̄n,j = ω̄jψ̄n,j

y-translation t2 t2ψn,j = ωjψn,j t2ψ̄n,j = ψ̄n,j+1

Inversion Ī Īψn,j = ψn,−j Īψ̄n,j = ψ̄n,−j

x-mirror Ix Ixψn,j = ψn,−j Ixψ̄n,j = ψ̄n,j

y-mirror Iy Iyψn,j = ψn,j Iyψ̄n,j = ψ̄n,−j

S-duality ψ̄n,j(z) = eixyψn,j(−z)κ→κ̄

TABLE I. Action of symmetry operations and S-duality on
single-particle wave functions on a torus without skewness
(L∆ = 0). In the presence of finite skewness, similar rela-
tions in particular for S-duality can be defined in skewed co-
ordinates (x∆, y∆). For vanishing skewness, the replacement
τ → −1/τ and its associated dual descriptions of the torus
reduces to an exchange of inverse radii κ = 2π

Ly
, κ̄ = 2π

Lx
. The

“mirror symmetries” Ix and Iy both involve a time-reversal
transformation that we mostly leave understood, and so are
anti-unitary operators. Inversion Ī = IxIy = IyIx.

symmetry, see Table I. For simplicity, we will just refer
to these symmetries as “mirror symmetries”.

Finally, we wish to evaluate the action of S-duality on
the interacting Hamiltonian. In most situations, we start
with an interaction V (r1−r2) defined in the infinite disk
that we lift to the torus by periodizing, i.e., defining the
following matrix elements on the torus:

V̂
Lx,Ly

n,j =
1

2

∫
d2r1d

2r2 (77)

(
ψ∗
n1,j1(r1)ψ

∗
n2,j2(r2)V

t(r1 − r2)ψn3,j3(r2)ψn4,j4(r1)
)
,

where

V t(r1 − r2) =
∑

ℓ1,2=0,±1,...

V (r1 − r2 + ℓ1L1 + ℓ2L2),

where j ≡ (j1, j2, j3, j4), n ≡ (n1, n2, n3, n4) are multi-
indices. This then defines the following second-quantized
two-body interaction on the torus:

Ĥint =
∑

{n,j}
V̂

Lx,Ly

n,j c†n1,j1
c†n2,j2

cn3,j3cn4,j4 . (78)

Here, the sum is taken over all possible pairs (ni, ji) with
i = 1, · · · , 4 and j1 + j2=j3 + j4, the latter being the
consequence of translational invariance.

Next, we Fourier transform the fermionic operators,

c†ni,ji
=

1√
L

L−1∑

l=0

ω̄jil c̃†ni,l
, (79)

which, according to Eq. (75), is the same as passing to
the basis dual to that of the original creation operators
via S-duality. This leads to the dual Hamiltonian

ĤD
int =

1

L2

∑

l

∑

{n,j}

(
ω̄j1l1+j2l2ωj3l3+j4l4

V̂
Lx,Ly

n,j c̃†n1,l1
c̃†n2,l2

c̃n3,l3 c̃n4,l4

)
. (80)

For the above, one straightforwardly obtains the matrix
elements in the dual basis, which are obtained from the
original matrix elements via Fourier transform:

1

L2

∑

j

(
ωj1l1+j2l2 ω̄j3l3+j4l4 V̂

Lx,Ly

n,j

)
≡ ˆ̃V

Lx,Ly

n,l .(81)

By the single-particle analysis at the beginning of this
section, these Fourier transformed, dual matrix elements
ˆ̃V
Lx,Ly

n,l are obtained from the original ones V̂
Lx,Ly

n,j via
the formal replacement, or analytic continuation, effect-
ing L1 → L2, L2 → −L1. Again, this is so since this re-
placement leads to a description of the same magnetic lat-
tice in terms of an alternate basis, effecting precisely the
same change of basis as the Fourier transform Eq. (79).
(Note that being a density-density interaction, V (r1−r2)
is gauge invariant). Moreover, if the original interaction
V (r1 − r2) in the infinite plane is rotationally invariant,
it is equally legitimate to associate the dual matrix ele-

ments ˆ̃V
Lx,Ly

n,l to the actively rotated lattice of Fig. 5. It

then follows that, assuming now L1 to be real, ˆ̃V
Lx,Ly

n,l is

obtained from V̂
Lx,Ly

n,j via a formal replacement/analytic

continuation effecting L1 → |L2|, τ → −1/τ . This is pre-
cisely the S-duality that all interactions considered in the
work will exhibit. In particular, the TK-Hamiltonian13

manifestly does so by rotational invariance in the infinite
plane.

B. Quasiholes and domain walls in toroidal
geometry, coherent state construction

Braiding statistics in two spatial dimensions are de-
fined as the result of adiabatic transport when two quasi-
particles (quasiholes) are exchanging positions. In a
topological phase, one expects that the result of such
adiabatic transport only depends on the topology of the
exchange path, modulo a trivial Aharonov-Bohm (AB)
phase. The non-AB part of the adiabatic transport then
defines a representation of the braid group. In situations
where the quasiparticle (quasiholes) positions and other
locally observable quantum numbers do not completely
specify the state of the system, one expects this repre-
sentation to be non-Abelian.
It might seem at first glance hopeless to attempt to

describe an intrinsically (2+1)-dimensional phenomenon
such as braiding in a language constructed from one-
dimensional patterns. For starters, we should establish a
faithful representation of quasiholes in root pattern de-
scriptions. According to our earlier results, it must be
possible in principle, though. Indeed, we have estab-
lished that there exists a one-to-one correspondence be-
tween 1D patterns consistent with an EPP, and a com-
plete set of zero modes of the parent Hamiltonian of a
4 LLs-projected Hamiltonian. Therefore, if we limit our
discussion to the braiding of quasiholes (as opposed to
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quasiparticles) injected into the incompressible ground
state, any state describing such localized quasiholes is
guaranteed to have an expansion in a basis labeled by
patterns that correspond to the EPP. Since the states in
this basis carry momentum quantum numbers, such an
expansion will be non-trivial – or a coherent state. This is
so because localized quasiholes break translational invari-
ance in any directions and therefore cannot carry well-
defined momentum quantum numbers. As is by now well-
known30,31, the correspondence between the 2D space
the braiding takes place in, and the “one-dimensional”
coherent states is through a phase-space picture: The
coherent states describe wave packets of fractionalized
domain walls centered about certain points in the two-
dimensional phase space of a one-dimensional quantum
system. Indeed, even single-particle physics in a LL can
be viewed in similar terms, as a LL has an innate one-
dimensional structure. As mentioned before, it is a mani-
festation of the fact that the x- and y- position operators
satisfy canonical commutation relations after LL projec-
tion. While thus the quasihole locations will be encoded
in this manner in the coherent state, other quantum num-
bers are represented by patterns more straightforwardly.
Minimum charge domain walls can be created in various
ways between the “200200 . . . ” and “110110 . . . ” patterns
of our ground state, respectively. By a Su-Schrieffer-type
counting argument, these domain walls will have a charge
of 1/3, and so do the associated quasiholes. To further
illustrate this point, we consider two wave functions with
root patterns of equal length

200200200200200200200200200200200200200
200110110020020011011002002001101100200

While first pattern has 26 particles, in the second pat-
tern we have 24 particles with six domain walls. Hence
these six domain walls have a total charge equal to 2.
As all domain walls are related by translation and/or
mirror symmetry, each of them must have a 1/3 quasi-
hole charge. The 1/3 quasihole charge can also be de-
rived from domain walls between a 110110 . . . and a
1011001 . . . ground state pattern, which we see as fol-
lows:

200200200200200200200
110110110110110110110
110101101011011010110

Both the “200” and “110” patterns in the first two lines
have 14 particles and represent the densest (ground state)
patterns. The last pattern has three domain walls of
“1101011” type. By the same counting argument, each
carries a 1/3 charge. Any pattern consistent with our
EPP can be decomposed in an arrangement of (possibly
fused) charge 1/3 domain walls of the types discussed.

At the heart of the formalism is the existence of a ba-
sis of quasihole states, within each sector of given charge
and/or angular momentum, that is associated to patterns
satisfying the EPP. Such patterns were discussed in the
preceding paragraph. So far, we have elaborated in detail

on the existence of such a basis for the disk geometry.
Analogous statements hold for the cylinder and sphere
geometries, where essentially the same polynomial wave
functions apply. Here, however, we will be working on the
torus. On the torus, there are some fundamental differ-
ences, chiefly because wave functions are not polynomial,
and there is no well-defined notion of “inward-squeezing”
or “dominance”. We must therefore first elaborate how
this basis is realized on the torus.
The construction of such a basis rests on the assump-

tion that the quasihole states on the torus can be adi-
abatically evolved into the “thin torus limit” that we
next briefly discuss. Henceforth, we will work with purely
imaginary τ . A thin torus is one where τ → 0 or τ → ∞
(for fixed number of flux quanta). The assumption of
adiabatic continuity has been extensively investigated66.
It is generally assumed to hold for all frustration-free
positive semi-definite Hamiltonians of the kind discussed
here. While torus wave functions and their Hamiltonians
are harder to study directly, the thin torus limit is locally
indistinguishable from a thin cylinder limit. In the latter
case, we know that not only does the EPP apply to all
zero modes, but that zero modes must also reduce to the
very root states satisfying the EPP14,50. The same must
then hold true on the torus. In the following, we will use
the round ket notation |a, α) for states satisfying the EPP
on the torus. The notation will be expounded on below
and in Tables III, IV. For now, we will take {a, α} to be
an abstract label to encode the pattern. Then |a, α) is a
complete set of zero modes in the thin torus limit τ → 0,
where patterns refer to the ψn,j single particle basis con-
structed above. Likewise, we can construct a complete
set of zero modes in the dual thin torus limit −iτ → ∞,
denoted by |a, α). The only difference between the |a, α)
and the |a, α) is that the former refer to patterns (“root
states”) constructed from the single particle basis ψ̄n,j ,
as opposed to ψn,j . Both kinds of round kets represent
thin torus zero modes, but in opposite thin torus limits.

FIG. 6. Left- and right-most quasiholes (denoted by white cir-
cles) are moved from gray bands to black bands. Their move-
ment can be faithfully represented using x-direction move-
ment of corresponding domain walls. This picture breaks
down as soon as quasiholes cross along the x-direction. Such
operation is thus topologically prohibited in the coherent state
method. Different ordering of quasiholes belong to different
configurations σs. All configurations for two and three quasi-
holes are displayed in Figs. 7 and 8, respectively.
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The zero-mode bases we work with at arbitrary given
(imaginary) τ will be defined via adiabatic evolution from
the thin torus bases sets as a function of modular parame-
ter. We will denote the basis obtained in this way via adi-
abatic evolution from the |a, α) by |a, α⟩ = U(τ, 0)|a, α),
where U(τ, τ ′) is a unitary operator associated with the
adiabatic evolution from modular parameter τ ′ to mod-
ular parameter τ . The |a, α⟩ thus depend on τ , but we
will mostly leave this understood. Likewise, we define
|a, α⟩ = U(τ, i∞)|a, α). An important property of the

|a, α⟩, and likewise the |a, α⟩, is that by virtue of the
unitarity of adiabatic evolution, and the fact that the
|a, α) are manifestly orthogonal, they, too, are orthogo-

nal. Moreover, we will take the |a, α), |a, α), and thus the

|a, α⟩, |a, α⟩, to be normalized. An important difference

between the |a, α), |a, α) and their adiabatically evolved

counterparts |a, α⟩, |a, α⟩ is the fact that |a, α), |a, α)
represent torus zero modes at very different modular pa-
rameters, whereas the |a, α⟩, |a, α⟩ are each complete sets
of torus zero modes at the same modular parameter τ .
As a consequence, the |a, α⟩, |a, α⟩ are related to one
another by a unitary transformation. This is the mani-
festation of S-duality within the zero-mode space on the
torus.

In the ψn,j (ψ̄n,j) basis, domain walls are localized
along x (y) direction. The associated charge depletion is
likewise localized in the x (y) direction, but delocalized
along y (x) direction. The latter follows from the fact
that these states are adiabatically evolved from states
that are eigenstates of translation in y (x), and the adi-
abatic evolution preserves these quantum number. For
a description of braiding statistics, we desire to have a
description of quasiholes that are localized in both x and
y coordinates. Following Ref. [30], we can construct a
coherent state Ansatz, |ψα(h)⟩,

|ψα(h)⟩ =
∑

a

nh∏

i=1

ϕαi (hi, ai) |a, α⟩ , (82a)

ϕαi (hi, ai) = eiβ(κhiy+δαi )ai−γ(hix−κai)
2

, (82b)

where h = {h1, h2, ..., hnh
} is the set of complex coor-

dinates for the locations of nh quasiholes such that the

FIG. 7. Configurations σ0, σ1 for two quasiholes. Braid ma-
trix can be expressed as overlap of coherent states in configu-
rations σ0 and σ1. Application of global path symmetry Fx,
Fy and mirror symmetry Ix, Iy takes one configuration to an-
other.

FIG. 8. Six configurations for three quasiholes. Braid matrix
can be expressed as overlap of coherent states in configura-
tions σ2n and σ2n+1, for n = 0, 1, 2. Application of Fx, Fy and
Ix, Iy changes configurations non-trivially (see Table II).

position of the ith quasihole is given by hi = hix + ihiy .
a = (a1, a2, ..., anh

) is an ordered set of numbers, to be
further specified below, s.t, 1 ≤ a1 < a2 < ... < anh

≤ L
determining the orbital locations of the domain walls in-
serted into a topological sector identified by the label α,
such that a, α together completely determine the thin
torus state |a, α⟩ adiabatically evolved from. For given
n, α thus identifies a certain sequence of patterns 200
and 110 that are separated by the domain walls. Ta-
bles III and IV show our conventions for nh = 2 and
nh = 3. As we will elaborate in later sections, there is a
two-fold degeneracy associated to any minimum charge
domain wall, corresponding to a local pseudo-spin 1/2
degree of freedom. We will ignore this degree of free-
dom here and assume that all quasiholes are in the same
pseudo-spin state, rendering them locally indistinguish-
able. The Gaussian form factor ϕαi (hi, ai) then local-
izes the ith quasihole in x near hix , since κai is the x-
location of the ith domain wall in position space, with
κ = 2π/Ly. γ determines the shape of the quasihole,
and is assumed to be chosen such that it is circular. The
precise value of γ will not be needed. The y-location of
the quasihole is determined by the x-momentum phase
factor of the Gaussian. One can determine the param-
eter β to be 1/3 from S-duality and symmetries on the
torus with the methods of Ref. [30]. Thus, the Gaus-
sian form factor ϕαi (hi, ai) when viewed as a function of
hi exactly has the form of the LLL wave function of a
charge 1/3-particle. The parameters δαi represent an off-
set between a quasihole’s x-momentum and y-position.
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σ Fx(σ) Fy(σ) Ix(σ) Iy(σ)
σ0 σ2 σ4 σ5 σ5

σ1 σ5 σ5 σ4 σ2

σ2 σ4 σ0 σ3 σ1

σ3 σ1 σ1 σ2 σ4

σ4 σ0 σ2 σ1 σ3

σ5 σ3 σ3 σ0 σ0

TABLE II. Transmutation of σs as a result of global path Fx,y

and mirror Ix,y operations for three quasiholes. Fx moves
rightmost quasihole from (hx, hy)→ (hx−Lx, hy). Fy moves
topmost quasihole from (hx, hy) → (hx, hy − Ly). Mirror Ix
moves each quasihole at (hx, hy) to (Lx − hx, hy), while Iy
moves each quasihole at (hx, hy) to (hx, Ly − hy). For two
quasiholes, Fx(σ) = Fy(σ) = Ix(σ) = Iy(σ) = σ′ ̸= σ.

These offsets are not arbitrary, since they can, in prin-
ciple, depend on the type of domain wall. Moreover,
are not free to shift the origin of our coordinate system
arbitrarily, as below we will argue that by duality, an
analogous expression holds in the dual basis. Such com-
plete formal analogy does not, however, survive arbitrary
changes in origin. One may indeed see that a certain ori-
gin is naturally made special in our description of a LL
once the gauge, and equally importantly, certain arbi-
trary phases in the magnetic translation operators have
been fixed73. By symmetry arguments30, the shifts δαi
may be restricted to zero and π. Moreover, they must be
the same for the same types of domain wall (between the
same ground state patterns on either side), and also for
domain wall types related by inversion. The last impor-
tant observation about the coherent state Ansatz Eq. (82)
is that since the domain wall positions ai are ordered,
1 ≤ a1 < a2 < ... < anh

≤ L, the Ansatz is justifiable
only as long as the x-positions hix of the quasiholes are
ordered similarly, and are moreover well-separated (com-
pared to a magnetic length) in x. In is only then that the
ϕαi describe well-separated, non-overlapping wave pack-
ets (see Fig. 6). We now employ our dual basis construct.
We will argue that local operators like the density ρ̂(x, y)
are represented by the same matrix when passing to the
dual basis if x and y are rotated with the replacement
κ → κ̄ where κ̄ = 2π/Lx. From this it follows that an
analogous coherent state Ansatz exists in the dual basis,

|ψα(h)⟩ =
∑

a

nh∏

i=1

ϕ̄αi (hi, ai)|a, α⟩, (83a)

ϕ̄αi (hi, ai) = e−iβ(κ̄hix−δαi )ai−γ(hiy−κ̄ai)
2

, (83b)

where ϕ̄αi (hi, ai) = ϕαi (−ihi, ai)κ→κ̄ according to the S-
duality relation in Table I, and quasiholes must now be
separated well in the y direction. Thus, different condi-
tions dictate the validity of Eqs. (82) and (83), respec-
tively. In the following, we will pay special attention to
configurations where both expressions are valid. Under-
standing that both the hix and the hiy must be pairwise
distinct (by [much] more than a magnetic length), we will

usually follow the convention h1x < h2x < . . . . This is
assumed in Eq. (82), because the domain walls ai are gen-
erally ordered in the same manner. For the same reason,
however, the right-hand side of Eq. (83a) assumes that
h1y < h2y < . . . . Strictly speaking, in general these two
ways of ordering quasiholes need not be the same, but
differ by an (implicit) permutation σ. Thus, as long as
we stick with the former convention, Eq. (83a) must thus
be replaced with

|ψα(h)⟩ =
∑

a

nh∏

i=1

ϕ̄αi (hσ(i), ai)|a, α⟩. (84)

In essence, σ labels different configurations of quasiholes,
as shown in Figs. 7 and 8 for two and three quasiholes,
respectively. It is not possible to traverse from one con-
figuration to another without violating one of the two
conditions that render both Eqs. (82) and (83) valid,
or by crossing the boundaries of the unit cell of our lat-
tice defining the torus in the extended zone-scheme infi-
nite plane. The latter process, however, also changes the
topological sector (see below).

FIG. 9. In each configuration σ, corresponding to quasihole
ordering, quasiholes can be faithfully represented as domain
walls. In the 4 LLs projected ground state of the Ĥint of
Eq. (29), there are 3 types (up to translation symmetry) of do-
main walls, namely 200110, 110200 and 1101011. A sequence
of these domain walls, α, is topologically distinct from an-
other sequence α′. Each α defines a topological sector within
each configuration σ. For 2 and 3 quasiholes configurations,
we have 9 and 12 topological sectors, respectively. (see Tables
III and IV)

Consider now a quasihole configuration labeled by σ,
such that both the “original” coherent state expression
(82) and its dual (83) are valid. Then, as the quasihole
locations h identify a d-dimensional subspace in the nh-
quasihole zero-mode space, where d is the (nh-dependent)
number of topological sectors (see Fig. 9). By assump-
tion, both the original and the dual coherent states con-
stitute orthonormal bases for this subspace. We thus
have the general relation

|ψα(h)⟩ =
∑

α′

uσαα′(h)|ψα′(h)⟩. (85)
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FIG. 10. Braiding, an exchange operation of two consecutive
quasiholes, can be thought of in terms of the overlap matrix

between |Ψσ⟩ and |Ψσ′⟩. |Ψσ⟩ is a column matrix of |ψσ
α⟩s

for all topological sectors αs. Configurations σ and σ′ are
identical except h1x < h2x in σ gets changed to h1x > h2x .

where uσ(h) is a unitary matrix that depends smoothly
on hole positions within each component of configu-
rations space characterized by a well-defined σ. In-
deed, the h-dependence of these matrix-valued transi-
tions functions can be determined30 from adiabatic trans-
port (holonomy) as follows: uσ(h) = u(h)ξσ, with u(h) =

exp[iβ
nh∑
i=1

hixhiy ]. From now on, we will refer to ξσ as the

transition matrix.

C. Braiding in coherent state language

The goal is now to work out the result of adiabatic
transport along an exchange path such as shown in
Fig. 10, using the coherent state description. To un-
derstand how non-trivial braiding comes about in this
language, we first observe that we introduced not one
but two well distinct methods of defining what a topo-
logical sector is. One is to say that a quasihole state
lie in the topological sector α if its Ly → 0 limit un-
der adiabatic evolution consists of a sequence of patterns
identified with α. The alternative definition is analogous,
except utilizing the opposite limit Lx → 0. The relation
between these two notions of a topological sector is non-
trivial. Hence, we generally expect the transitions func-
tions to have off-diagonal matrix elements. The assump-
tion that justifies the term “topological sector” is the
following: We assume that no local operator has matrix
elements between |a, α⟩ and |a′, α′⟩ as long as the same
is already true in the associated thin torus limit, i.e., for
the states |a, α) and |a′, α′). For the latter to be true, it
is clearly sufficient that α ̸= α′ and all domain walls are
well-separated. In particular, under the same conditions
that the coherent state expression Eq. (82) holds, i.e.,
that all quasiholes are well separated in x, no local oper-
ator has matrix elements between |ψα(h)⟩ and |ψα′(h′)⟩.
This includes the local density operator. It is for this rea-
son that localized quasiholes can be formed from |a, α⟩
with a fixed α. Moreover, adiabatic transport where lo-
cal quasiholes are dragged along some path, where the
dragging can be thought of as being facilitated via slowly

changing local potentials, does not lead to changes in the
topological sector, as long as the coherent state |ψα(h)⟩
remains well defined. Analogous statements hold for the
dual coherent states, |ψα(h)⟩. Luckily, the above does
not rule out transitions into a different topological sec-
tor along the exchange path shown in Fig. 10. This is
so, because along such a path, the conditions for the va-
lidity of either coherent state certainly becomes violated
somewhere. In particular, the condition the both quasi-
holes are well separated in x becomes violated. Related
to that, the configuration label σ, where well-defined, as-
sumes multiple values during the path. On the other
hand, everywhere along the exchange path, at least one
of the two coherent state expressions holds. We may thus
evaluate the result of the adiabatic exchange in Fig. 10
using the following strategy. Close to the initial/final po-
sitions, we use the coherent state (82) to work out the
result of adiabatic transport. At appropriate locations of
well-defined σ, we change between the original and the
dual coherent state descriptions by means of Eq. (85),
and so in between those locations, we describe the adia-
batic transport using the dual coherent state description.
It follows from the above discussion that locally, i.e., in
the coherent state description appropriate to the respec-
tive segment of the path, no transitions between topo-
logical sectors happen, and all the information about the
braid matrix χ that describes the result of the adiabatic
exchange is contained in the transition matrices ξσ, eval-
uated in the two configurations where a change of basis
is performed. Details are given in Ref. [30]. The result
is, with a trivial Aharonov-Bohm phase dropped,

|Ψfinal⟩ = ξσ0 (ξσ1)
† |Ψinitial⟩ ⇒ χ = ξσ0 (ξσ1)

†
. (86)

Here, |Ψ⟩ denotes a column vector, respectively for the
initial/final state, with the coefficients of the different
ψα(h) with different α as columns. One can proceed anal-
ogously for more than two quasiholes, where one neigh-
boring pair is exchanges with the other quasiholes staying
fixed.

Via Eq. (86), that task of calculating braiding has been
reduced to the evaluation of the transition matrices ξσ.
In the following, we will show that these matrices are
sufficiently constrained by various symmetry and locality
considerations. To this end, we find it educational to
discuss some concrete examples of how translation and
mirror symmetry as well as certain processes involving
“global paths” act on root patterns (see Figs. 11-13).

1. Inversion symmetry

In Table I, we defined inversion symmetry with respect
to a rather arbitrary center. In combination with mag-
netic translations, we can, of course, fix any point on the
torus to be the center of our inversion symmetry (note
that on the torus, inversion always fixes two points). This
can be used to constrain or fix a number of parameters
we so far introduced explicitly or implicitly. Consider the
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FIG. 11. Translation moves each particle by one unit in linear momentum space, |a⟩ → |a+ 1⟩. If the last orbital L = 25 is
occupied, it gets moved to L + 1, outside our modular coordinates. We have to move this last particle from L + 1 → 1 by
commuting through other particles. For a system with two quasiholes the total number of particles are always even, thus we
get an extra sign θT (α) in fermionic systems. Moreover, resulting pattern belongs to a different topological sector α′ = T (α).
θT (α), T (α)s are tabulated for all αs in the table for two and three quasiholes, respectively.

(c, α̃) α patterns a1 a2
∑

j jnj T (α) θT (α) F (α) θF (α) I(α) θI(α)

(−1,1) 1 0200200 11011011 0020020020 8− s 15 + s 209 2 1 5 1 3 −1
(0,1) 2 00200200 11011011 002002002 9− s 16 + s 225 3 1 6 1 2 −1
(1,1) 3 200200200 11011011 00200200 10− s 17 + s 191 1 1 4 −1 1 −1
(−1,2) 4 1011011 00200200200 1101101 7 + s 19− s 208 5 −1 2 −1 6 1
(0,2) 5 11011011 00200200200 110110 8 + s 20− s 199 6 1 3 1 5 −1
(1,2) 6 011011011 00200200200 11011 9 + s 21− s 215 4 −1 1 1 4 1
(−1,3) 7 10110110 1 0110110 1 01101101 9 17 208 8 −1 8 1 9 1
(0,3) 8 110110110 1 0110110 1 0110110 10 18 199 9 1 9 −1 8 −1
(1,3) 9 0110110110 1 0110110 1 011011 11 19 215 7 −1 7 1 7 1

TABLE III. Topological table for 2 quasiholes (even fermion number): Sectors α with hix ∼ κai. Position of domain walls are
chosen while maintaining the inversion symmetry. Moreover, ai+3 can be identified with ai due to the torus degeneracy of the
wave function. Domain wall 200200 110110 is related to 11011 002002 by inversion symmetry. Domain wall 110 1 0110 maps
to itself under inversion. For bosonic case, θT = θF = θI = 1 for all α. In [31], the topological sector α is denoted by (c, α̃).

(c, α̃) α patterns a1 a2 a3
∑

j jnj T (α) θT (α) F (α) θF (α) I(α) θI(α)

(−1,1) 1 0200 110110110 1 011011011 0020020 5− s 14 23 + s 296 2 1 8 1 3 1
(0,1) 2 00200 110110110 1 011011011 002002 6− s 15 24 + s 315 3 1 9 1 2 1
(1,1) 3 200200 110110110 1 011011011 00200 7− s 16 25 + s 275 1 1 7 1 1 1
(−1,2) 4 10110 1 011011 00200200200 1101101 6 12 + s 24− s 296 5 1 2 1 9 1
(0,2) 5 110110 1 011011 00200200200 110110 7 13 + s 25− s 285 6 1 3 1 8 1
(1,2) 6 0110110 1 011011 00200200200 11011 8 14 + s 26− s 304 4 1 1 1 7 1
(−1,3) 7 1011 00200200200 110110 1 01101101 4 + s 16− s 22 296 8 1 5 1 6 1
(0,3) 8 11011 00200200200 110110 1 0110110 5 + s 17− s 23 285 9 1 6 1 5 1
(1,3) 9 011011 00200200200 110110 1 011011 6 + s 18− s 24 304 7 1 4 1 4 1
(−1,4) 10 10110 1 0110110 1 0110110 1 01101101 6 14 22 296 11 1 11 1 12 1
(0,4) 11 110110 1 0110110 1 0110110 1 0110110 7 15 23 285 12 1 12 1 11 1
(1,4) 12 0110110 1 0110110 1 0110110 1 011011 8 16 24 304 10 1 10 1 10 1

TABLE IV. Topological table for 3 quasiholes (odd fermion number): Sectors α with hix ∼ κai. Position of domain walls are
chosen while maintaining the inversion symmetry. Moreover, ai+3 can be identified with ai due to the torus degeneracy of the
wave function. Domain wall 200200 110110 is related to 11011 002002 by inversion symmetry. Domain wall 110 1 0110 maps
to itself under inversion. For the bosonic case, θT = θF = θI = 1 for all α. In [31], the topological sector α is denoted by (c, α̃).
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domain wall positions ai, which we think of as the “or-
bital positions” of our domain walls. Our different types
of domain walls have different symmetry character when
it comes to inversion. If we regard a symmetric domain
wall of the type . . . 1101101011011 . . . , symmetry dictates
that its domain wall position should coincide with the or-
bital index of the central 1 in this pattern. This can be
made rigorous as follows. One consequence of its sym-
metry is that it is possible to have a single domain wall
of this type on the torus, with no other domain walls
present, if we appropriately choose the number of flux
quanta. We may then write a single quasihole coherent
state of the form Eq. (82) for the topological sector asso-
ciated to the pattern . . . 1101101011011 . . . . Now choose
an inversion center that preserves this topological sector.
We may then demand that applying this inversion to the
coherent state produces, up to a phase, the coherent state
in the same topological sector with the hole sent from po-
sition h to 2hI − h, with hI the inversion center. From
the completeness of our coherent states, given that the
operation of inversion as described will produce a zero
mode in the same topological sector with a quasihole lo-
calized at 2hI − h. One may show that to be consistent
with these observations, the domain wall position a1 en-
tering the (nh = 1) coherent state Eq. (82) must indeed
coincide with the orbital index of the unpaired 1 in the
pattern associated to |a1, α⟩. For details, we again refer
the reader to Ref. [30].

The situation is rather different for the other
type of domain wall. Consider the pattern
20020011011002000200. It is easy to see that due
to lack of inversion symmetry, on the torus such domain
wall must always come in pairs. There is then no
argument that the “correct” way to choose the domain
wall positions a1 and a2 in the pattern is for them to
be chosen integers. Here, “correct” again means that
the coherent state expression (82) succeeds at localizing
the two quasiholes precisely at the complex coordinates
given by the parameters h1, h2. Clearly, the first domain
wall is localized somewhere between the terminal zero of
the first 200-string and the leading 1 of the 110-string.
However, there is no immediately obvious way to make
this more precise. However, we must plug in some real
numbers a1 into the coherent state Ansatz Eq. (82).
Hence we must make a choice. The only way to avoid
bias is to introduce a parameter s and say that the
domain wall position is of the form integer−s for the first
domain wall. Inversion symmetry arguments of the flavor
discussed for single, inversion-symmetric domain wall
then still imply that the second domain-wall position
must be of the form integer+s, as shown in the following

schematic: 200200
1−s s

11011
s 1−s

00200200,

where represents domain walls. This shows, in par-
ticular, that the parameter s cannot be absorbed into a
coordinate shift (which would in any case also adversely
affect conventions for the 1101011-type domain walls).
We will subsequently constrain s, and our solution for

the braid matrix will crucially depend on it.
Similar arguments can be made about the parameters

δαi . In the case of a 20020011011002000200-type topologi-
cal sector, one can similarly show that δα1 = −δα2 mod 2π.
Anticipating that mirror symmetries, which we will dis-
cuss in more detail below, lead to similar constraints,
we note that analogous requirements with respect to Ix-
symmetry imply δα1 = δα2 mod 2π. Together, these two
constraints fix all δαi -parameters to be 0 or π modulo 2π.
Since a shift of any δαi by 2π only changes coherent state
by overall phases, we can simply take δαi = 0, π for all
i and α. Furthermore, all δαi referring to domain walls
related by mirror/inversion symmetry must be the same,
and similarly, using translational symmetry, all δαi refer-
ring to domain walls related by translational symmetry
must be the same. It follows that there are only two in-
dependent δαi , one for 200200110110-type domain walls
(and their mirror images), and one for 1101101011011-
type domain walls. Lastly, for reasons related to the fact
that the 1101101011011-type domain walls can exist as
single domain walls on the torus, combining the above
symmetries with duality turns out to fix the δαi for such
domain walls completely (mod 2π). In the following sub-
section, we will show the associated δαi to be 0.

2. Translation symmetry

The Hamiltonian commutes with magnetic transla-
tions. Thus, under adiabatic evolution in the thin torus
limit, the action of magnetic translations on the basis
|a, α⟩ is the same as that on the “bare”, thin torus states
|a, α). This is straightforward to work out. Analogous
statements hold for the dual basis, giving:

Tx |a, α⟩ = θT (α) |a+ 1, T (α)⟩ , (87a)

Ty |a, α⟩ = e−iκκ̄
∑

j jnj |a, α⟩
⇒ Ty |a, α⟩ = f(α)eiβκκ̄

∑
i ai |a, α⟩ , (87b)

Ty|a, α⟩ = θT (α)|a+ 1, T (α)⟩, (87c)

Tx|a, α⟩ = eiκκ̄
∑

j jnj |a, α⟩
⇒ Tx|a, α⟩ = f∗(α)e−iβκκ̄

∑
i ai |a, α⟩. (87d)

Here, T (α) and θT (α) are tabulated in Tables III-IV
for two and three quasiholes, respectively. In Eqs.
(87b),(87d), we have used β = 1/3 to recast the phase
factor appearing in terms of domain-wall positions. The
factor

e−iκκ̄(
∑

j jnj+β
∑

i ai) = f(α) (88)

does not depend on the positions ai themselves, but only
on the topological sector. Keep in mind that within a
fixed topological sector, each domain wall has a stride of
3, i.e., the value ai is fixed modulo 3. Related, the choice
β = 1/3 is crucial in rendering Eq. (88) dependent on the
topological sector only.
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The above equations crucially differ from those in
Ref. [31] by a fermionic sign θT (α). The application
of Tx on |a, α⟩ moves every particle to one site to the
right (a → a + 1). In this operation if a particle
on the rightmost orbital crosses the boundary used in
our fermionic ordering conventions (which may be taken
to be increasing in orbital index), it reappears as the
leftmost particle, thanks to periodic boundary condi-
tions, thus θT (α) = (−1)(#of fermionic permutations). Here
(#of fermionic permutations) is the number of permu-
tations needed to reorder fermion operators in the root
state according to increasing orbital index.

As an example, consider Table III for two quasiholes.
In the α = 1 case, we get no particle moving from left to
right, hence, θT (1) = 1. For α = 2, two particles simulta-
neously cross the boundary, hence, θT (2) = 1. For α = 4,
one particle crosses the boundary, hence, θT (4) = −1. In
the three quasihole case, due to odd total particle num-
ber, the number of permutations is always even, hence,
θT (α) = 1 for all αs and there is no difference with the
case studied in Ref. [31].

Using Eqs. (87) in Eqs. (82), (83) we obtain the effect
of the translation operators on coherent states:

Tx |ψα(h)⟩ = θT (α)e
−iβ

∑
i(κhiy+δαi ) |ψT (α)(h+ κ)⟩ ,

(89a)

Ty |ψα(h)⟩ = f(α) |ψα(h+ iκ̄)⟩ , (89b)

Ty|ψα(h)⟩ = θT (α)e
iβ

∑
i(κ̄hix−δαi )|ψT (α)(h+ iκ̄)⟩,

(89c)

Tx|ψα(h)⟩ = f∗(α)|ψα(h+ κ)⟩. (89d)

One sees that this has the expected effect, namely, up to
phase, to shift the position variables by κ and κ̄, respec-
tively, for Tx and Ty. While the first and third of these
equations follow straightforwardly from the definition of
the coherent states, the remaining two crucially depend
on Eq. (88) and thus the fact that β = 1/3. β can thus be
uniquely determined From the requirement that Tx and
Ty act consistently in on the two mutually dual versions
of the coherent states30.

Now we are in a position to apply these operations
directly in the S-duality relation (85), in order to obtain
a first crucial set of constraints on the transition matrices:

|ψα(h)⟩ = u(h)
∑

α′

ξσαα′ |ψα′(h)⟩

⇒ Tx |ψα(h)⟩ = θT (α)e
−iβ

∑
i(κhiy+δαi ) |ψT (α)(h+ κ)⟩

= u(h+ κ)e−iβ
∑

i κhiy θT (α)e
−iβ

∑
i δ

α
i

×
∑

α′

ξσT (α)α′ |ψα′(h+ κ)⟩

= u(h)
∑

α′

ξσαα′f∗(α′)|ψα′(h+ κ)⟩

⇒ θT (α)e
−iβ

∑
i δ

α
i ξσT (α)α′ = ξσαα′f∗(α′), (90a)

where we have used Eq. (85) (first line) on the right hand
side of Eq. (89a) (second line), and compared this to the
effect of applying Tx to the first line and evaluating the
right hand side via Eq. (89d). The last line is obtained
by comparing coefficients in the two lines preceding it.
It is advantageous to cast this as a matrix equation.

Let us define the following matrices using the Kronecker
delta δαα′ ,

e−iβδT
αα′ = δαα′e−iβ

∑
i δ

α
i , (90b)

BTαα′ = θT (α)δT (α)α′ , fαα′ = δαα′f(α). (90c)

With this we can condense Eq. (90a) into matrix form,

e−iβδTBT ξ
σf = ξσ. (91)

Similarly, while the above was obtained from the ac-
tion of Tx along with S-duality, we can get analogous
equations by using Ty instead:

f(α)ξσαα′′ = ξσαα′e−iβ
∑

i δ
α
i θT (α

′)δT (α′)α′′ (92a)

⇒ fξσ = ξσe−iβδTBT . (92b)

The effect of these equations is the following. Follow-
ing [30], one may group the topological sectors in Ta-
bles III-IV into “supersectors” of three sectors each, re-
lated by local lattice translations (Tx or Ty in the mutu-
ally dual cases, respectively). Using the above equations
utilizing translational symmetry, all matrix elements of
ξσ between any two given supersectors are linearly re-
lated. Thus, the number of independent variables in
the ξσ-matrix, for nh = 2 quasiholes, is reduced from
27 to 9. These equations also further constrain the δαi -
parameters. To see this, let us focus again on nh = 2
quasiholes for the moment. Iterating Eq. (91) three
times, we obtain

ξσ = (e−iβδTBT )
3ξσ(f)3 . (93)

One easily finds that f3 is the identity, while
(e−iβδTBT )

3 = (e−iβδT )3. This equation thus reduces
to

ξσ = e−3iβδT ξσ . (94)

e−3iβδT is a diagonal matrix, and any of its entries that
is not equal to 1 would, by the above equation, force an
entire row of ξσ to vanish. This cannot happen, since ξσ

is unitary. Hence, e−3iβδT is the identity. Since 3β = 1,
this gives

∑

i

δαi = 0 mod 2π. (95)

For two domain walls, this is just the familiar fact that δαi
for two mutually inverted domain walls are either both
0 or both π, also already concluded from mirror and in-
version symmetry. However, when the above argument is
repeated for a single or for three domain walls, one finds
that δαi = 0 for the 1101101011011-type domain walls.
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FIG. 12. Global path operation Fx moves rightmost domain walls to the further right by three lattice sites at a time. Application
of Fx twice more moves the domain wall across the right boundary (in the modular space), which in turn, changes topological
sector α(= 4) to F (α). To determine F (α)(= 2), we next apply T 3

x twice. Notice that T 3
x does not change the topological

sector. In this example, 1100200-type domain wall finally gets moved to the left. The resulting state can also be constructed
by moving one particle for each arrow. In this case, the leftmost particle has to cross the boundary to go to rightmost position.
This process introduces a fermionic sign factor θF (α) as well as a change in topological sector, α→ F (α).

3. Global path (F ) operation

So far, we have one separate transition matrix ξσ for
every configuration σ. To eliminate enough parameters
in order to evaluate the braid matrix Eq. (86), it will
be necessary to establish relations between the transi-
tion matrices for different configurations. As we hinted
when introducing the different configurations σ, it is not
possible to move quasiholes from one configuration σ to
another configuration σ′ while keeping both our expres-
sions for |ψα(h)⟩ and |ψα(h)⟩ well defined, unless we move
across the boundary of our unit cell defining the torus in
the magnetic “extended zone scheme”. Now we wish to
make use of this feature. To do so, we define two opera-
tions that cross boundaries in the extended zone scheme.
Let Fx be the operation of analytically continuing74 the
expressions for |ψα(h)⟩ and |ψα(h)⟩ in hnh

, i.e., the “righ-
most” particle coordinate, into the region hnhx

> Lx. In
the case of |ψα(h)⟩, one thereby transitions into a dif-

ferent topological sector F (α), but not so for |ψα(h)⟩.
The analytically continued state |ψα(h)⟩ now describes
a zero mode in the topological sector F (α) with quasi-
holes at positions h′, which is the same as h, except the
rightmost position hn has become the leftmost position
at hn − Lx > 0. This also changes the configuration σ
associated with h to σ′ = Fx(σ) associated to h′. By the
usual completeness argument, the analytically continued
state |ψα(h)⟩ must be equal up to a phase to the coherent

state |ψF (α)(h
′)⟩. Indeed, it may be checked directly that

this is so. The analytically continued state, however, by
means of the duality relations Eq. (85), is still related
to the dual coherent states via the transition matrix el-
ements ξσαα′ , whereas the state |ψF (α)(h

′)⟩ is, by means
of the same equation, connected to the dual states via

the matrix elements ξ
Fx(σ)
F (α)α′ . In this way, we establish a

matrix relation between ξσ and ξFx(σ). In a completely
analogous manner, we define an operation Fy that takes
the topmost particle and moves it over the boundary in
the extended zone scheme, affecting now the sector of the
dual coherent state |ψα(h)⟩ via the function F (α), and
sending the configuration σ to Fy(σ). In this way, we

obtain a matrix relation between ξσ and ξFy(σ).

For two quasiholes, there are only two configurations
σ (Fig. 8), and the above will suffice to express the tran-
sition matrices for one in terms of that of the other, a
crucial step in evaluating the braid matrix from Eq. (86).
For three particles, all configurations σ can still be related
to each other via the actions of the Fx and Fy moves and
the mirror symmetries to be discussed in the following
subsection. These actions are summarized in Table II.

Beyond relating transition matrices for different σ, the
Fx/y-moves also lead to additional constraints on any one
ξσ. To see this, we will focus in σ0 = id, i.e., where
particles are ascending in hx as well as hy. For σ = id,
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one easily verifies the relation,

Fx(Fy(id)) = id. (96)

which constraints ξid, and, via the aforementioned rela-
tions, all other ξσ.
At the level of the basis |a, α⟩, the Fx operation can be

given an interpretation that manifests continuity under
periodic boundary conditions. Let a = (a1, . . . , anh

) be a
set of domain wall positions in the topological sector α.
Suppose anh

+ 3 ≤ L. In this case, Fx |a, α⟩ = |a′, α⟩ is
simply the state in the same topological sector where the
“last” domain wall has hopped to the right by 3 units,
such that a′ = (a1, . . . , anh

+ 3). On the other hand, if
anh

+ 3 > L, we move into a different topological sector.
In this case, a′ = (anh

+ 3− L, a1, . . . anh
− 1), and

Fx |a, α⟩ = θF (α) |a′, F (α)⟩ . (97)

Here, θF (α) is a fermionic factor as a result of restor-
ing the order of fermionic orbitals after hopping75. It is
given in Tables III and IV. This operation now allows
us to continuously evolve the coherent state |ψα(h)⟩ as
the x-coordinate of the rightmost particle changes from
hnhx

< Lx to hnhx
> Lx: In the coherent state expres-

sion Eq. (82), we usually assume that all quasihole co-
ordinates are well away from the boundaries of our ex-
tended zone scheme unit cell. In this manner, we need
not worry about the limits of the sums over domains wall
positions, due to exponential localization. This changes
when, hnhx

≈ Lx. In this case, many basis states |a′, α⟩
may enter the coherent state with appreciable weight
such that a′ = (a1, . . . , anh

+ 3q), where q, and anh
≤ L,

but anh
+ 3q > L. Then, since a = (a1, . . . , anh

) is still
a proper set of domain wall positions in the topological
sector α, we can make the identification

|a′, α⟩ ≡ F q
x |a, α⟩ . (98)

Here, F q
x is the operation that applies the action defined

for Fx to the last domain wall in a q-times (even after
this domain wall possibly becomes the “first” during this
process, thus strictly, F q

x ̸= (Fx)
q). With this, the co-

herent state |ψα(h)⟩ evolves smoothly as hnhx
≈ Lx and

even as hnhx
≫ Lx (where ≫ signifies multiple mag-

netic lengths). In the latter case, the identification (98)
straightforwardly leads to the following identification of
coherent states:

|ψα(h)⟩ ≡Fx θF (α)e
iβL(κhiy+δαi ) |ψF (α)(h

′)⟩ , (99a)

where h′ is obtained from h = (h1, . . . , hnh
) via h′ =

(hnh
−Lx, h1, . . . , hnh−1) (we tacitly assume hnh

−Lx <
h1).
On the other hand, |ψα(h)⟩ already evolves smoothly

as hiy is increased beyond Ly. It is straightforward to
verify that

|ψα(h)⟩ = ei2πβai(α) |ψα(h
′′)⟩ , (99b)

where i is the index of the quasihole with largest hiy ,
h′′ = (h1, . . . , hi − iLy, . . . , hnh

), and we have defined
ai(α) the domain wall position of the ith particle in the
topological sector α, which is well-defined modulo 3. The
above two equations then also hold, mutatis mutandis,
for the dual coherent states |ψα(h)⟩:

|ψα(h)⟩ ≡Fy θF (α)e
−iβL(κhi′y−δα

i′ )|ψF (α)(h′′)⟩, (99c)

|ψα(h)⟩ = e−i2πβai(α)|ψα(h′)⟩. (99d)

Using these relations now in the usual manner inside the
S-duality relation (85), we get, for Fx:

|ψα(h)⟩ = u(h)
∑

α′

ξσαα′ |ψα′(h)⟩

⇒ θF (α)e
iβLδαi δF (α)α′′ξ

Fx(σ)
α′′α′ = ξσαα′e−i2πβai(α

′) ,

from which we read off the corresponding matrix equa-
tion:

eiβδiBF ξ
Fx(σ)ei2πβai = ξσ. (100a)

Similarly, using Fy and the S-duality, (85), gives

ei2πβaiξFy(σ)(eiβδFi′BF )
−1 = ξσ , (100b)

where, in the above, we have defined the following ma-
trices:

eiβδFiαα′ = δαα′eiβLδαi , BFαα′ = θF (α)δF (α)α′ ,

ei2πβai
αα′ = δαα′ei2πβai(α

′).

Finally, using Eqs. (100) together with the observation
(96) gives the following matrix equation constraining ξid:

ei2πβaieiβδiBF ξ
idei2πβai(eiβδFi′BF )

−1 = ξid . (101)

4. Mirror symmetry

We summarized the representation of mirror symmetry
in Table I. Since mirror symmetries commute with the
Hamiltonian and adiabatic evolutions, their actors on the
basis |a, α⟩ and be worked out from the bare thin torus

limits |a, α), and similarly for |a, α⟩. We stress again,
that Ix and Iy are both anti-linear, in fact, anti-unitary
operators, where the basis |a, α⟩ is invariant under Iy,

and the basis |a, α⟩ is invariant under Ix, but the two
other pairings are non-trivial, and change, in general, the
topological sector. Detailed actions are as follows:

Ix |a, α⟩ = θI(α) |L− a, I(α)⟩ , (102a)

Iy |a, α⟩ = |a, α⟩ , (102b)

Iy|a, α⟩ = θI(α)|L− a, I(α)⟩, (102c)

Ix|a, α⟩ = |a, α⟩ . (102d)
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FIG. 13. A mirror symmetry operation is defined here with respect to a mirror positioned at a = L = 25. A mirror symmetry
operation can be viewed as composition of two operations. First operation, that needs the explicit form of the root state, moves
|a⟩ → |L− a⟩ and adds an overall minus sign due to the entanglement structure of the root state, see Section III B 2 and Eq.
(215). In the starting configuration, a takes value from 1 to L. Any particle at angular momentum L will go to 0 after this
operation. In order to keep the original modular coordinates, we have to commute the leftmost particle from 0 to L. This
process generate extra fermionic phase θI(α) = −θT (α) and a change in topological sector, α→ I(α).

In the above, we used the shorthand notation L − a for
(L− anh

, L− anh−1, . . . , L− a1). The map I(α) is given
in Tables III and IV. A sign θI(α) is generated in the
non-trivial ones of these operations, also shown in these
tables, similar to the sign generated in translation and
F -moves. However, unlike for translations and F -moves,
this sign does not only depend on the fermionic nature
of their underlying particles, but also receives non-trivial
contributions from the reversal of bonds connecting these
particles. To understand the origin of these extra minus
signs, one must consider the entanglement structure of
the root states, constructed later in Eq. (215). Each
bond in the MPS representation of the root state carries
a Levi-Civita tensor. Under mirror symmetry they will
acquire an extra −1 sign. At this point, our “topolog-
ical tables” crucially differ from both single-component
bosons (the Gaffnian case of Ref. [31]) as well as single
component fermions (there would be no consistent solu-
tion for reasons related to results of Ref. [62]).

Using the above, it is straightforward to work out the
action of mirror (anti-unitary) operations on coherent
states:

Ix |ψα(h)⟩ = θI(α)e
−iβL

∑
i(κhiy+δαi ) |ψI(α)(Lx − h∗)⟩ ,

(103a)

Iy |ψα(h)⟩ = e−i2β
∑

i(π+δαi )ai(α) |ψα(h
∗ + iLy)⟩ ,

(103b)

Iy|ψα(h)⟩ = θI(α)e
iβL

∑
i(κ̄hix−δαi )|ψI(α)(h∗ + iLy)⟩,

(103c)

Ix|ψα(h)⟩ = ei2β
∑

i(π−δαi )ai(α)|ψα(Lx − h∗)⟩, (103d)

where, again, expressions like Lx − h∗ are shorthand no-
tations for the implicated action on all quasihole coor-
dinates. This also changes the configuration from σ to
Ix(σ) or Iy(σ), as shown in Table II. Just as with the
other symmetries, we will use the above in the S-duality
relation Eq. (85):

|ψα(h)⟩ = u(h)
∑

α′

ξσαα′ |ψα′(h)⟩

⇒ Ix(y) |ψα(h)⟩ = u∗(h)
∑

α′

(ξσαα′)
∗
Ix(y)|ψα′(h)⟩.

Simplifying above, just as we did for the other symme-
tries and operations, we obtain two matrix equations,

e−iβL
∑

i δ
α
i θI(α)δI(α)α′ξ

Ix(σ)
α′α′′ = (ξσαα′′)∗ei2β

∑
i(π−δα

′′
i )ai(α

′′)

⇒ e−iβδIBIξ
Ix(σ)e−iβ−aI = (ξσ)∗, (104a)

e−i2β
∑

i(π+δαi )ai(α)ξ
Iy(σ)
αα′′ = (ξσαα′)∗e−iβL

∑
i δ

α′
i θI(α

′)δI(α′)α′′

⇒ e−iβ+aI ξIy(σ)
(
e−iβδIBI

)−1
= (ξσ)∗. (104b)

Here, we have again introduced following matrices:

e−iβδI
αα′ = δαα′e−iβL

∑
i δ

α
i , BIαα′ = θI(α)δI(α)α′ ,

eiβ
±aI

αα′ = δαα′ei2β
∑

i(π±δα
′

i )ai(α
′).

If we combine the above two equations, we arrive at
every possible constraint on transition matrices from in-
version symmetry alone. In particular, this can be used,
in a manner similar to the one observed for F -moves, to
constrain ξσ for one given σ. Since, again, all σ’s are
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related by F -moves and mirror symmetry (for two and
three particles), it suffices to focus on σ = id.

Ix(Iy(id)) = id. (105)

This then leads to the following constraint on ξid:

(e−iβ+aI )∗e−iβδIBIξ
ide−iβ−aI

(
(e−iβδI )∗BI

)−1
= (ξid).

(106)

5. Locality constraints

We have so far determined symmetry/operations con-
straints on the transition matrix ξσs. Further constraints
can be derived considering locality constraints on the
braid matrix χ itself. In Section IVB, we already com-
mented on the way locality factors into the coherent state
formalism: Matrix elements of local operators between
basis states |a, α⟩, |a′, α′⟩ can be non-zero only if the
underlying root states |a, α), |a′, α′) differ from one an-
other only locally. This is in particular true for matrix
elements of the identity operator, i.e, the inner products
⟨a′, α′|a, α⟩. In particular, we argued in this way that the
Berry connection matrix ⟨ψα|∇ijψα′(h)⟩, where ∇ij con-
tains derivatives with respect to the coordinates of the
moving quasiholes i and j, is diagonal in α, α′ as long as
quasiholes are well separated in hx. It is useful to contem-
plate a calculation of the Berry matrix along the whole
exchange path using the |ψα(h)⟩ coherent state, even for
segments where the hx-separation of the braided quasi-
holes is small. This should be possible in principle, even
though we avoid technicalities by using the dual states
|ψα(h)⟩ along those segments.
Let’s contemplate a pair of quasiholes that initially,

for well separated hx, is in the first of the following two
topological sectors:

transition is possible between:
1011011 00200200200 1101101,
10110110 1 0110110 1 01101101,

The pair will remain in the first of these two topological
sectors while well separated in x; however, at some point
along the exchange path, the intermediate 200200-string
of the pattern will become small. By the above argu-
ment, off-diagonal matrix elements in the Berry matrix
between the first and the second sector are then possi-
ble. Hence, the transition between these two sectors as
a result of the exchange path is possible. Note that we
regard the “outer” 110110-strings as essentially infinitely
long during the process, as we consider the braided pair
is well removed in x from all other quasiholes. In par-
ticular, then no transition is possible during which these
outer strings change. An example is the following:

transition is not possible between:
0200200 11011011 0020020020,
1011011 00200200200 1101101.

Indeed, a stronger statement is possible. Consider the
first of the two sectors above. It is not possible to re-
place the inner 100100-string with any other string such
that two charge 1/3 domain walls remain between strings.
Thus, given the outer 20200-strings, by locality (and
charge constervation), we cannot make a transition from
the first of these two sectors into any other sector.
The above considerations impose strong constraints on

the braid matrix. Let us write the topological sector la-
bel α as α = (c, α̃), as shown in Tables III and IV. Here,
α̃ is thought of as labeling a “supersector” of transla-
tionally related sub-sectors c. This leads to the following
structure of the braid matrix:

χαα′ = δcc′ χ̃α̃α̃′ . (107)

Indeed, the labeling is such that identical “outer” strings
only happen for identical c. Moreover, sectors with dif-
ferent c but same α are related by translation, justifying
the above factorization. Further constraints apply to the
super-sector factor χ̃. For two quasiholes, the above ar-
guments imply:

χ̃(2) =



× 0 0
0 × ×
0 × ×


 , (108)

where × stands for elements that are not necessarily zero.
The zeros, on the other hand, are required precisely by
the arguments made for the two cases studied above for
two domain walls. Similar arguments imply the following
structure for χ̃ for three quasiholes, where we assume that
the two leftmost quasiholes are being braided:

χ̃(3) =



+ 0 0 0
0 + 0 0
0 0 + +
0 0 + +


 , (109)

where we used a different symbol, +, for matrix elements
not necessarily zero, for reasons that will become appar-
ent shortly. The study of three quasiholes is necessary
in this formalism, among other things, because certain
pairings of domain walls require a third domain wall on
the torus. This is true for the leftmost domain wall with
α̃ = 1, and α̃ = 2. Our locality arguments then immedi-
ately imply that the braiding in these sectors, again for
the two leftmost quasiholes, is diagonal, as shown above.
For α̃ = 3 and α̃ = 4, however, the braiding of the two
leftmost quasiholes involve pairs of domains walls that
were already resent in the two-quasihole cases. In those
cases, locality implies that the result does not depend on
the presence or absence of a third, far removed, quasi-
hole. For these reasons, the lower right 2 × 2 blocks of
χ̃(2) and χ̃(3) must be same:

(
× ×
× ×

)
=

(
+ +
+ +

)
. (110)
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In the remainder of this section, we will use the symmetry
and locality constraints discussed above, respectively, on
the transition matrices and the braid matrix for two and
three quasiholes to determine braiding statistics.

D. Braid matrix for two quasiholes

We begin by considering the linear constraints on the
transition matrix ξid from translation symmetries. Using
Eqs. (91), (92b), along with the inversion symmetry δα1 =
−δα2 mod 2π, ξid is reduced to the following form,

ξid =



ξ̃11V ξ̃12V I ξ̃13V I

ξ̃21IV ξ̃22IV I ξ̃23IV I

ξ̃31IV ξ̃32IV I ξ̃33IV I


 , (111)

with

V =




1 Ω2 Ω
Ω2 1 Ω
Ω Ω Ω


 , I =



1 0 0
0 −1 0
0 0 −1


 , (112)

in the α basis of Table III, where, to simplify expressions,
we introduced Ω = ei2π/3. From F -moves, Eq. (101),

it turns out that ξ̃22 = ∆2p2ξ̃11, ξ̃23 = −∆pξ̃13, and
ξ̃23 = −∆pξ̃13 with p = −Ω−1−s and ∆ = Ω−La, where
a is related to the one unknown δ-parameter related to
the ...200200 110110... type domain wall via δαi = 2πa,
a = 0, 12 . Note that for two quasiholes on the torus,
L = 1 mod 3. Using, finally, the inversion symme-
try constraint Eq. (106), most of the parameters ξij are
forced to vanish if a = 1/2. The only solution consistent

with a = 1/2 can only have 4s = −1 mod 3 with ξ̃12,

ξ̃21 = ∆2p2ξ̃12, and ξ̃33 non-zero, and in Eq. (86), gives
a diagonal braid matrix. a = 1/2, 4S = −1 mod 3 solu-
tion, however, can be shown to be inconsistent while con-
sidering mirror symmetry for the three quasiholes case.
We will thus proceed with a = 0, thus fixing the last re-
maining δ-parameter. In summary, we have reduced ξid,

Eq. (111), to the following:

ξid =



ξ̃11V ξ̃12V I ξ̃13V I

ξ̃12IV p2ξ̃11IV I −ξ̃13IV I
ξ̃31IV −pξ̃31IV I ξ̃33IV I


 , (113)

We may now use the above form for ξid to continue the
program described above. For determining ξσ1 , where σ1
denotes the only other configuration for two particles, we
may use either F -moves, Eq. (100), or mirror symmetry
Eq. (104). Since one involves complex conjugation, and
the other does not, by comparison we may express all
complex conjugated remaining ξ̃ij parameters through
their un-conjugated counterparts in the following. We
then obtain the braid matrix from Eq. (86). Comparing
this braid matrix with the locality constraint (108) yields
two quadratic equations in the ξij-parameters. Further-
more, one obtains four more quadratic equations from
the requirement that the braid matrix is unitary. This
yields the following six non-linear equations,

2pξ̃11ξ̃12 + pξ̃213 = −Ω2,

2pξ̃231 − ξ̃233 = −Ω2,

p2ξ̃211 + ξ̃212 − pξ̃213 = 0,

ξ̃31(−pξ̃11 + pξ̃12) + ξ̃13ξ̃33 = 0,

(1 + p2)ξ̃11ξ̃12 − pξ̃213 = 0,

ξ̃31(ξ̃11 − pξ̃12) + ξ̃13ξ̃33 = 0. (114)

where the first four express unitarity, and the last two
locality. From these equations, all the ξij can be deter-
mined when the parameter p, is known.

ξ̃211 = − Ω2

(1 + p)2
,

ξ̃12 = ξ̃11,

ξ̃213 = ξ231 = (p+ p−1)ξ̃211,

ξ̃233 = (1− p)2ξ̃211, (115)

One then obtains for the braid matrix:

χ̃(2) = e−iβπ



p−1 0 0

0 p(p+ p−1 − 1) ±(1− p)
√
p+ p−1

0 ±(1− p)
√
p+ p−1 p+ p−1 − 1


 . (116)

Not yet having enough information to determine the re-
maining parameter gives us another reason to proceed
to three particles. Indeed, the remaining parameters can
ultimately be determined from Eq. (110). For complete-
ness, we mention that in writing Eq. (116), we have tac-
itly assumed p ̸= ±i. For p = ±i one finds additional
solutions that lead to a diagonal braid matrix. These so-

lutions turn out to be inconsistent when similarly com-
pared with the three quasihole result below, as already
remarked in a similar context above. For details, we re-
fer to Ref. [30], where equations differ in detail, but the
procedure is similar.
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E. Braid matrix for three quasiholes

For three quasiholes, we may proceed in a manner that
is perfectly analogous to that for two quasiholes in the
preceding section. As opposed to two quasiholes (see Ta-
ble III), in this case the total number of fermions is always
odd for all topological sectors (see Table IV). Hence, all
the fermionic sign-factors θT , θF , and θI are identical
to the bosonic ones31, since in those topological sectors
permutations do not distinguish bosons from fermions.
Therefore, the formulas in this section will be identical
to corresponding formulas in Ref. [31]. We will nonethe-
less reproduce them here for self-containedness.

Again, there are a great multitude of simple linear
constraint rendering many of the elements of ξid propor-
tional to one another. These are the constraints ended in
translational-, F -move, and inversion symmetry, ξid by
itself, to wit, Eqs. (91), (92b), (101), and (106). Indeed,
in the present case, translational symmetry by itself leads
to a major simplification of the ξσ, in that they factorize
via

ξσ = ξ̃σ ⊗ U , (117)

where ξ̃σ acts on supersectors α̃, and U acts on subsectors

c, and where

U =




1 Ω Ω2

Ω Ω Ω
Ω2 Ω 1


 , ξ̃id =




ξ̃11 ξ̃12 ξ̃13 ξ̃14
ξ̃21 ξ̃22 ξ̃23 ξ̃24
ξ̃31 ξ̃32 ξ̃33 ξ̃34
ξ̃41 ξ̃42 ξ̃43 ξ̃44


.

This factorization happens here, and not for two quasi-
holes, because of the aforementioned absence of non-
trivial fermionic-phase factors. The elements of ξ̃id,
which we will denote by ξ̃ij , can then be further deter-
mined using the global path operation and mirror sym-
metry, Eqs. (101), (106), yielding the following addi-
tional relations:

ξ̃22 = ξ̃33 = p2ξ̃11, (118a)

ξ̃31 = ξ̃13 = ξ̃21 = ξ̃12, (118b)

ξ̃32 = ξ̃23 = −pξ̃12, (118c)

ξ̃34 = ξ̃24 = −pξ̃14, (118d)

ξ̃43 = ξ̃42 = −pξ̃41 , (118e)

Again, we may now evaluate the braid matrix by plug-
ging in the above into Eq. (86), by first obtaining (ξσ2)∗

for the other configuration (σ2) that appears when the
leftmost pair is braided, starting in the configuration
σ0 = id. This can be done by subsequently applying
first Iy via Eq. (104b), and then Fx via Eq. (100a), to
the transition matrix ξid. For the resulting braid matrix
we then obtain

χ̃(3) =




ξ̃11 ξ̃12 ξ̃12 ξ̃14
ξ̃12 ξ̃11p

2 −ξ̃12p −ξ̃14p
ξ̃12 −ξ̃12p ξ̃11p

2 −ξ̃14p
ξ̃41 −ξ̃41p −ξ̃41p ξ̃44


 .




−ξ̃12pΩ ξ̃11p
2Ω ξ̃12Ω −ξ̃41pΩ

−ξ̃11pΩ ξ̃12Ω − ξ̃12Ω
p ξ̃41Ω

−ξ̃12pΩ −ξ̃12pΩ −ξ̃11pΩ −ξ̃41pΩ
−ξ̃14pΩ −ξ̃14pΩ ξ̃14Ω ξ̃44Ω


 , (119)

where again we only display the “supersector” factor in
Eq. (107), and where the zeros come from the locality
constraint Eq. (109). These matrix elements are not au-
tomatically zero, but rather, enforcing their vanishing
gives us the following three constraints:

p2ξ̃211 − (p− 1)ξ̃212 − pξ̃214 = 0, (120a)

(p2 − p)ξ̃11ξ̃12 + ξ̃212 − pξ̃214 = 0, (120b)

−pξ̃11ξ̃41 + (p− 1)ξ̃12ξ̃41 + ξ̃14ξ̃44 = 0. (120c)

Finally, by imposing the locality of ξid one imposes that
of ξ̃id, as U is already unitary. This yields the following
four additional equations:

|ξ̃11|2 + 2|ξ̃12|2 + |ξ̃14|2 = 1, (121a)

3|ξ̃41|2 + |ξ̃44|2 = 1, (121b)

ξ̃12ξ̃
∗
11 +

−1 p2ξ̃11ξ̃
∗
12 − p|ξ̃12|2 − p|ξ̃14|2 = 0, (121c)

ξ̃41ξ̃
∗
11 − 2p−1ξ̃41ξ̃

∗
12 + ξ̃44ξ̃

∗
14 = 0. (121d)

The non-linear equations (118-120) have the following31

solution:

ξ̃11 = − eiθ1

(1 + p)2
, ξ̃12 =−1 ξ̃11,

ξ̃214 = e−i2θ2 ξ̃241 = (p+ p−1 − 1)ξ̃211,

ξ̃44 = eiθ2 ξ̃11. (122)

in terms of two additional unknown phases θ1 and θ2.
In Eq. (119), this gives the following result for the braid
matrix:
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χ̃(3) = e−iβπeiθ1




1 0 0 0
0 1 0 0

0 0 p(1− p) ±eiθ2p
√
p+ p−1 − 1

0 0 ±eiθ2p
√
p+ p−1 − 1 ei2θ2(1− p)


 . (123)

As a final step, it turns out that the remaining unknowns
are largely determined by the locality argument requir-

ing consistency between the two quasihole and the three
quasihole braid matrix, Eq. (110):

(
p(p+ p−1 − 1) ±(1− p)

√
p+ p−1

±(1− p)
√
p+ p−1 p+ p−1 − 1

)
= eiθ1

(
p(1− p) ±eiθ2p

√
p+ p−1 − 1

±eiθ2p
√
p+ p−1 − 1 ei2θ2(1− p)

)
. (124)

Comparing matrix elements yields the following equa-
tions:

eiθ1 = p2, eiθ2 = 1, (125a)

p+ p−1 = φ =
1 +

√
5

2
⇒ p = e±iπ/5. (125b)

s = 2± 3

10
. (125c)

As we will now explain, this determines all braiding pro-
cesses in terms of two possible and closely related non-
Abelian solutions. Eqs. (125) in the two quasihole and
three quasibole braid matrices, Eq. (116) and Eq. (123),
respectively, then give the following

χ̃2 = Ω



p 0 0
0 p−1φ−1 p2φ−1/2

0 p2φ−1/2 φ−1


 , χ̃3 = Ω




p−2 0 0 0
0 p−2 0 0
0 0 p−1φ−1 p2φ−1/2

0 0 p2φ−1/2 φ−1


 . (126)

Together, these equations imply the following when ap-
plied to the braiding of any pair of quasiholes, in a pat-
tern with n quasiholes: If the pair was linked by a 110-
string bounded by two 200-string (as for two quasiholes,
α = 1, 2, 3), the state picks up a phase e−iβπp. If the
pair was linked by a 110-string bounded by one 110-string
and one 200-string (as for three quasiholes, α = 1–6), the
state picks up a phase e−iβπp−2. Finally, if the linking
string is either 200 or 110, and is bounded by 110-strings
on both sides (as is is for the last six α’s for both two and
three quasiholes), the state stays in the same topologi-
cal sector with an amplitude e−iβπp−1φ−1 if the linking
string is 200, and an amplitude e−iβπp−1φ−1 if the link-
ing string is 110. Furthermore, there is an amplitude
for transitioning between these two respective sectors of
e−iβπp2φ− 1

2 . It is easy to see that these off-diagonal
blocks, which we just described, have the same eigenval-
ues as those appearing in the diagonal blocks described
above. In the topological sector basis, one can thus de-
termine the result of any braiding process, for each of the
two solutions associated to the two ways to resolve the
± sign in these expressions. One may easily see, though,
that these two solutions are related by an Abelian phase
plus complex conjugation. Moreover, they share the same

Abelian phase with the bosonic case of Ref. [31]. Just
as in this reference, one may therefore show that these
solutions describe Fibonacci-type anyons. However, we
stress once more that both the assumptions of fermionic
constituent particles, as well as that of root state entan-
glement of a certain type have been essential to arrive at
this solution using the coherent state method.

V. PARTONS AS THE DENSEST ZERO MODES

In the previous sections, we have developed a general
framework and an organizing principle (the EPP) for de-
termining the densest zero-energy state of frustration-free
QH Hamiltonians. While our second quantized technique
is applicable to any k-body Hamiltonian with LL mixing,
it is often the case that QH physics is studied in the first
quantization approach. In this section, we make con-
nections to the theory of symmetric (and antisymmetric)
polynomials in holomorphic and anti-holomorphic vari-
ables, which correspond to the first-quantized descrip-
tion of the QH problem. In the LLL (the holomorphic
case), many tools exist to uniquely identify subsets of
these polynomials as determined by various clustering
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conditions enforced by frustration-free Hamiltonians. For
multiple LLs, these tools generally do not work. The
present section is devoted to the development of alterna-
tive methods. As we will show, the parton states have the
fundamental polynomial property of being the densest
zero modes of certain frustration-free QH Hamiltonians
in the presence of multiple LL mixing.

A. Multivariate Polynomials with the M-clustering
property

Let AN be the algebra of multivariate polynomials
P (Z, Z̄) in variables (Z, Z̄), where Z = {z1, z2, · · · , zN}
and Z̄ = {z̄1, z̄2, · · · , z̄N}, with zi = xi + iyi and
z̄i = xi − iyi, i = 1, · · · , N . Polynomials P (Z, Z̄) con-
sist of sums of monomials, which are products of (not
normalized and without Gaussian factors) single-particle
orbitals (identical to those orbitals used to define pseud-
ofermions),

ϕαi
(zi, z̄i) = ϕαi

(i) = z̄ni

i zsii . (127)

Here, αi = (ni, si) represents a pair of non-negative inte-
gers. We will be interested in working within linear sub-
spaces satisfying 0 ≤ ni ≤ NL−1 (i.e., those restricted to
NL LLs). Moreover, as we will now discuss, finite dimen-
sional subspaces may be obtained by placing additional

restrictions on (the number operator n̂bi = b†i bi eigenval-
ues of Eq. (5)) si, via 0 ≤ si ≤ smax and/or restrictions on
the total angular momentum of the polynomial. Finally,
we will further restrict our linear subspaces of interest
by the condition their elements are either symmetric or
antisymmetric under the exchange operations

(zi, z̄i) ↔ (zj, z̄j), i, j = 1, · · · , N , i ̸= j, (128)

of all pairs of variables. Let the total angular momentum
operator be defined as

Ĵ = ℏ
N∑

i=1

(zi∂zi − z̄i∂z̄i). (129)

The application of the total angular momentum opera-
tor on any monomial in the variables (Z, Z̄) leaves the
monomial invariant up to a multiplicative (angular mo-

mentum) factor J = ℏ
∑N

i=1(si − ni). It is clear that
the total angular momentum operator defines a linear
map Ĵ : AN → AN that also preserves all linear sub-
spaces defined above. Ĵ has the natural (infinite) basis
of eigenstates (127). However, we shall now consider the
finite-dimensional linear subspaces HN,J,n of AN of poly-
nomials of angular momentum less than or equal to J and
maximum degree n = NL − 1 in each z̄i, and their (anti-

)symmetrized subspaces (Â)ŜHN,J,n. Note that, more-
over, all such polynomials automatically have bounded si,
i.e., satisfy 0 ≤ si ≤ smax with an appropriately chosen
smax depending on N , J , and n. The subspaces HN,J,n

form finite dimensional Hilbert spaces having an inner
product (ℓ = 1/

√
2)

⟨P |P ′⟩ =
∫
dZdZ̄ P̄ (Z, Z̄)P ′(Z, Z̄) e−

1
2

∑N
i=1 ziz̄i . (130)

From now on, we will be working in these finite dimen-
sional Hilbert spaces HN,J,n

Within the space of polynomialsHN,J,n, there are fam-
ilies of polynomials that have special properties. A poly-
nomial P (Z, Z̄) ∈ HN,J,n has the M -clustering property,
with M a positive integer, in the pair (i, j) if

P (Z, Z̄) =

M∑

q=0

zqij z̄
M−q
ij Pq(Z, Z̄) = P (M)(Z, Z̄), (131)

where zij = zi − zj, z̄ij = z̄i − z̄j, and Pq(Z, Z̄) ∈
HN,J+M−2q,n. If furthermore P (Z, Z̄) ∈ (Â)ŜHN,J,n,
then P (Z, Z̄) is a polynomial (anti-)symmetric with re-
spect to variables exchanges (zi, z̄i) ↔ (zj, z̄j). Clearly,
polynomials with theM -clustering property can only ex-
ist if smax ≥ M or n ≥ M . Those polynomials with the
M -clustering property in all pairs (i, j) form a subspace
HN,J,n,M ⊂ HN,J,n. Moreover, P (Z, Z̄) ∈ HN,J,n has the
M -clustering property in the pair (i, j), iff ∀ s+ t < M ,

Qst
ij P (Z, Z̄) ≡ ∂szij ∂

t
z̄ijP (Z, Z̄)

∣∣∣
zi=zj,z̄i=z̄j

= 0. (132)

A little reflection shows that for N even and P (Z, Z̄) ∈
(Â)SHN,J,n,M , Eq. (131) can be written as

P (M)(Z, Z̄) =

M∑

q=0

zq112z̄
M−q1
12 . . . z

qN/2

N−1N z̄
M−qN/2

N−1N Pq(Z, Z̄),

(133)

where q ≡ (q1, q2, . . . , qN/2), and Pq(Z, Z̄) is a polyno-
mial symmetric under the exchange of all pair of coordi-
nates (z2i−1, z̄2i−1) ↔ (z2i, z̄2i), i = 1, · · · , N/2.
We will mostly be interested in the antisymmetric sub-

space ÂHN,J,n,M of polynomials with the M -clustering
property. Slater determinants

χp(Z, Z̄) =

∣∣∣∣∣∣∣∣∣

ϕα1(1) ϕα1(2) · · · ϕα1(N)
ϕα2

(1) ϕα2
(2) · · · ϕα2

(N)
...

... · · ·
...

ϕαN
(1) ϕαN

(2) · · · ϕαN
(N)

∣∣∣∣∣∣∣∣∣
, (134)

represent the simplest examples of those polynomials
with an M = 1 clustering property, since they do have
a linear behavior as two-particles approach each other76.
Specifically, any Slater determinant satisfies the following
identity

χp(Z, Z̄) = Sp(Z, Z̄) zij + S̃p(Z, Z̄) z̄ij, (135)

where Sp and S̃p are symmetric polynomials with respect
to the coordinate exchange (zi, z̄i) ↔ (zj, z̄j). Another
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example of polynomials with the M -clustering property
are parton-like states Ψp(Z, Z̄), defined as a product of
M Slater determinants

Ψp(Z, Z̄) =

M∏

µ=1

χpµ
(Z, Z̄), (136)

where M ∈ odd for fermions and M ∈ even for
bosons. Using Eq. (135) for each Slater determinant in
Ψp(Z, Z̄), it is straightforward to show that Ψp(Z, Z̄)
is an element of HN,J,n,M and can be written as the
P (Z, Z̄) of Eq. (131). Although, Ψp(Z, Z̄) is an ele-

ment of (Â)ŜHN,J,n,M , the (anti-)symmetric subspace of
HN,J,n,M , it is not clear whether parton-like states lin-
early generate this subspace. While in the following, we
will be mostly concerned with the antisymmetric case,
our reasoning and results carry, without difficulty, to the
symmetric case.

B. Schmidt decomposition of M-clustering
polynomials

The Schmidt decomposition of a many-body state can
be utilized to study the non-trivial properties of the
system such as entanglement entropy. Entanglement
properties are often utilized to determine the topologi-
cal phase of matter a particular many-body state may
belong77. Here, we will not address the entanglement
properties of polynomials P (Z, Z̄), rather we show the
equivalent of a Schmidt decomposition of polynomials for
M -clustering polynomials.

Lemma 1: Let P ∈ ÂHN,J,n,M and 1 ≤ n < N . Then

P = Â
∑

λ

cλP
λ
n (1, 2, . . . ,n)P̃

λ
N−n(n + 1, . . . , N), (137)

where λ runs over finite index set, and Pλ
n ∈ ÂHn,J,n,M ,

P̃λ
N−n ∈ ÂHN−n,J,n,M .
Proof: Note that so far we have been consider-

ing abstract polynomials. Two such abstract polyno-
mials are identical if and only if they are identical as
maps from CN to C, since all the coefficients are en-
coded in the associated maps via differential opera-
tions. We will now identify polynomials with their as-
sociated evaluation maps. For Pλ

n we now choose an

orthonormal basis {Pλ
n } of ÂHn,J,n,M . If we now fix

zi, z̄i to arbitrary complex numbers ai, āi for i > n, then
P (z1, z̄1, . . . , zn, z̄n, an+1, ān+1, . . . , aN , āN ) is an element

of ÂHn,J,n,M . As a result

P (z1, z̄1, . . . , zn, z̄n, an+1, ān+1, . . . , aN , āN ) =∑

λ

cλP
λ
n (z1, z̄1, . . . , zn, z̄n)P̃

λ
N−n(an+1, ān+1, . . . , aN , āN ),

(138)

where

cλP̃
λ
N−n =

∫
dz1dz̄1 · · · dzndz̄n P̄λ

n P e−
1
2

∑n
i=1 ziz̄i . (139)

It is clear that as a function of ai, āi, the righthand
side defines a polynomial in the variables an+1, . . . , āN ,

which we will argue to be an element of ÂHN−n,J,n,M .
Since Eq. (138) holds as an identity for fixed but ar-
bitrary z1, z̄1, . . . , zn, z̄n and an+1, . . . , āN , the two sides
are identical as polynomial maps and therefore as ele-
ments of ÂHN,J,n. Furthermore, since the lefthand side

is in ÂHN,J,n,M so is the righthand side (though indi-
vidual terms are not). We can thus introduce the (anti-

)symmetrizer Â on the righthand side as it is in Eq. (137)
without changing the polynomial.
We finally show that the polynomials P̃λ

N−n also enjoy
the M -clustering property. This is easy: In Eq. (139)
change (ai, āi) → (zi, z̄i), then apply Qst

ij for i, j > n on
both sides. On the righthand side, this results in 0 for
s+ t < M . Thus, P̃λ

N−n ∈ ÂHN−n,J,n,M . This completes
the proof of the Lemma.
Indeed, a Slater determinant is the simplest example

illustrating the Lemma forM = 1. The following identity

P (Z, Z̄) = n!(N − n)!

∣∣∣∣∣∣∣∣∣

ϕα1
(1) ϕα1

(2) · · · ϕα1
(N)

ϕα2
(1) ϕα2

(2) · · · ϕα2
(N)

...
... · · ·

...
ϕαN

(1) ϕαN
(2) · · · ϕαN

(N)

∣∣∣∣∣∣∣∣∣
=

= Â [Dn(1, · · · ,n)DN−n(n + 1, · · · , N)] (140)

explicitly realizes a Schmidt decomposition. Here, the
determinants in the argument of the antisymmetrizer are

Dn(1, · · · ,n) =

∣∣∣∣∣∣∣

ϕα1
(1) · · · ϕα1

(n)
... · · ·

...
ϕαn

(1) · · · ϕαn
(n)

∣∣∣∣∣∣∣
, (141)

DN−n(n + 1, · · · , N) =

∣∣∣∣∣∣∣

ϕαn+1(n + 1) · · · ϕαN
(N)

... · · ·
...

ϕαn+1
(n + 1) · · · ϕαN

(N)

∣∣∣∣∣∣∣
.

More sophisticated relations appear for M ≥ 3. The
first non-trivial example is a product of an odd number
of Slater determinants, i.e., the parton-like state,

Ψp(Z, Z̄) =

M∏

µ=1

χpµ
(Z, Z̄) =

=

M∏

µ=1

Â
[
D(pµ)

n (1, · · · ,n)D(pµ)
N−n(n + 1, · · · , N)

]
.(142)

If M ∈ odd

S(Z, Z̄) =

M∏

µ=2

χpµ
(Z, Z̄) (143)

is a totally symmetric function of all particle coordinates

Ψp(Z, Z̄) = Â
[
D(p1)

n D
(p1)
N−nS(Z, Z̄)

]
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= Â
∑

λ

cλS
λ
nD

(p1)
n S̃λ

N−nD
(p1)
N−n

= Â
∑

λ

cλP
λ
n P̃

λ
N−n. (144)

Here, we employed the property that a totally symmetric
polynomial can be written as

S(Z, Z̄) =
∑

λ

cλS
λ
n (1, · · · ,n)S̃λ

N−n(n + 1, · · · , N),(145)

with Sλ
n and S̃λ

N−n being symmetric in all of their ar-
guments. This statement follows from the proof of the
symmetric case of the Lemma.

C. Closed-shell parton states

Consider a parton-like state Ψp(Z, Z̄). When its Slater
determinant components are constructed out of single
particle orbitals ϕαi(i) of νµ LLs (maximum degree of z̄i is
νµ−1), it is easy to verify that the number of single par-
ticle orbitals for νµ LLs, with distinct Lµ = L(NL = νµ)
defining the highest available angular momenta for each
Slater determinant, is given by

Nshell = νµLµ − νµ(νµ − 1)

2
. (146)

We define a Slater determinant to be closed-shell when-
ever N = Nshell. Equivalently, a closed-shell Slater de-
terminant is obtained when all the orbitals with certain
angular momentum and less are filled, which results in a
unique and densest possible configuration (Fig. 14).

We will define a parton state to be given by

Φν(Z, Z̄) =

M∏

µ=1

χνµ
(Z, Z̄), (147)

when all Slater determinants χνµ are closed-shell. That
is, the parton states are a special subset of all possible
parton-like states (Eq. (136)).

One can associate with any such parton state, a string
[ν1, ν2, · · · , νM ] of positive integers νµ, µ = 1, 2, · · · ,M ,
such that ν1 ≤ ν2 ≤ · · · ≤ νM , and show that8 Φν(Z, Z̄)

represents a state of filling fraction ν = (
∑M

µ=1 ν
−1
µ )−1.

Restricting the single-particle orbitals to be confined to
the subspace generated by the NL LLs imposes the con-
straint

M∑

µ=1

νµ = NL +M − 1. (148)

A natural question concerns the possible filling fractions
ν compatible with this constraint. To answer this ques-
tion, we write down the generating function of partitions
of the integer NL +M − 1 into M elements

∞∏

t=1

1

1− ut v wt−1 =
∑

t1,t2

ut1vt2
∑

ν

wν−1

, (149)

FIG. 14. The state χ4(Z, Z̄), with L = 6, NL = 4, and Norb =
18, filled with N = 17 and 18 particles. For the state with
17 particles, the largest angular momentum orbitals are not
completely filled, i.e., the “shell” is not closed. For N = 18
particles, χ4 is a closed-shell Slater determinant.

from which one can extract all possible ν’s by inspection
of the coefficient of the term with t1 = NL +M − 1, and
t2 =M . For M = 3, up to NL = 6, we obtain

u3v3 (w3),

u4v3 (w5/2),

u5v3 (w2 + w7/3),

u6v3 (w3/2 + w11/6 + w9/4),

u7v3 (w4/3 + w5/3 + w7/4 + w11/5),

u8v3 (w7/6 + w5/4 + w19/12 + w17/10 + w13/6).(150)

For instance, scanning the third line in Eq. (150), we see
that when NL = 3, one could get parton states of filling
fractions ν = 1/2 and ν = 3/7.
Both the smallest and the largest possible values of ν

carry a special physical meaning. The minimum corre-
sponds to the Jain sequence νmin = NL

2NL+1 . The max-
imum, on the other hand, plays a role in the determi-
nation of incompressible (highest density) zero modes of
TK type frustration-free QH Hamiltonians, Eq. (24). For
fixed NL and M , we will next obtain the largest possible
filling fraction νmax in a systematic manner.
The filling fraction νmax can be computed by max-

imizing ν (over integers) subject to the constraint of
Eq. (148). This integer optimization procedure leads to
the following condition

{
νµ(νµ + 1) = νµ′(νµ′ + 1), or

νµ(νµ + 1) = νµ′(νµ′ − 1),
(151)

for all pairs µ, µ′ = 1, 2, . . . ,M . This associates the
unique ordered string

[ν1, . . . , ν1︸ ︷︷ ︸
M−nν

, ν1 + 1, · · · , ν1 + 1︸ ︷︷ ︸
nν

] (152)

to νmax, with Mν1 =M +NL − 1− nν . This results in

νmax =
ν1(ν1 + 1)

2Mν1 −NL + 1
. (153)
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Table V displays various examples of parton states
[ν1, ν2, · · · , νM ] corresponding to maximun filling frac-
tion. It is clear, from Eq. (152), that a unique string

M NL [ν1, ν2, . . . , νM ] νmax

3 1 [1, 1, 1] 1/3
3 2 [1, 1, 2] 2/5
3 3 [1, 2, 2] 1/2
3 4 [2, 2, 2] 2/3
3 5 [2, 2, 3] 3/4
3 6 [2, 3, 3] 6/7
3 7 [3, 3, 3] 1
3 8 [3, 3, 4] 12/11
3 9 [3, 4, 4] 6/5
5 1 [1, 1, 1, 1, 1] 1/5
5 2 [1, 1, 1, 1, 2] 2/9
5 3 [1, 1, 1, 2, 2] 1/4
5 4 [1, 1, 2, 2, 2] 2/7
5 5 [1, 2, 2, 2, 2] 1/3
5 6 [2, 2, 2, 2, 2] 2/5
5 7 [2, 2, 2, 2, 3] 3/7
5 8 [2, 2, 2, 3, 3] 6/13
5 9 [2, 2, 3, 3, 3] 1/2
7 1 [1, 1, 1, 1, 1, 1, 1] 1/7
7 2 [1, 1, 1, 1, 1, 1, 2] 2/13
7 3 [1, 1, 1, 1, 1, 2, 2] 1/6
7 4 [1, 1, 1, 1, 2, 2, 2] 2/11
7 5 [1, 1, 1, 2, 2, 2, 2] 1/5
7 6 [1, 1, 2, 2, 2, 2, 2] 2/9
7 7 [1, 2, 2, 2, 2, 2, 2] 1/4
7 8 [2, 2, 2, 2, 2, 2, 2] 2/7
7 9 [2, 2, 2, 2, 2, 2, 3] 3/10

TABLE V. Parton states Φν(Z, Z̄) = [ν1, ν2, . . . , νM ] =∏M
µ=1 χνµ(Z, Z̄) corresponding to maximum filling fraction

νmax, given M and NL.

of numbers [ν1, ν2, · · · , νM ] is associated to a maximum
filling-fraction parton state. However, this does not im-
ply that there is a unique parton state associated with
this unique string. Indeed, there are, in general, several
parton-like states (with different total angular momen-
tum) that are associated with a given ordered string. We
next study the conditions for the existence of a unique
parton-like state.

Since each closed-shell Slater determinant χνµ(Z, Z̄) is
an eigenstate of total angular momentum

Ĵχνµ
(Z, Z̄) = Jµχνµ

(Z, Z̄), (154)

with

Jµ =
ℏ
6
(νµ + 3Lµνµ + 3L2

µνµ − 3ν2µ − 6Lµν
2
µ + 2ν3µ)

=
ℏ
24

(
12N2

νµ
− (12N − 1)νµ − ν3µ), (155)

this implies that parton states are also eigenstates of total
angular momentum

ĴΦν(Z, Z̄) = Jmin Φν(Z, Z̄), (156)

with eigenvalue Jmin

Jmin

ℏ
=
N2

2ν
−
∑M

µ=1 ν
3
µ + (12N − 1)(NL +M − 1)

24
. (157)

For a fixed filling fraction ν, it is possible to have sev-
eral parton states with different values of J . This is also
true for the minimum total angular momentum J = Jmin.
As we showed previously, the constraint that makes the
parton-like state with ν = νmax and Jmin to be unique,
is the closed-shell condition. In conclusion, a closed-
shell parton state projected onto NL LLs is the unique
and densest (in the sense of angular momentum) pos-
sible parton-like state. As will be demonstrated in the
next section, the unique closed-shell parton state with
ν = νmax and Jmin will be related to our densest zero
mode of the previous sections.

D. Parton-like states as a basis

The set of Slater determinants forms a basis for the en-
tire antisymmetric Hilbert subspace ÂHN,J,n. In other

words, any polynomial in ÂHN,J,n can be written as
a linear superposition of Slater determinants. Given a
single-particle orbital basis B = {ϕαi(z, z̄)} with 0 ≤ ni ≤
NL − 1 and 0 ≤ si ≤ smax, the total number of orbitals
is Norb = NL(smax + 1) ≥ N . Then, the dimension of the

Hilbert subspace ÂHN,J,n is given by dH =
(
Norb

N

)
. Any

polynomial P (Z, Z̄) ∈ ÂHN,J,n can be written as

P (Z, Z̄) =

dH∑

µ=1

cµχpµ(Z, Z̄). (158)

Obviously, this expansion also applies for the subspaces
ÂHN,J,n,M , whose dimension dHM

< dH, but it does not

apply for the symmetric subspaces ŜHN,J,n,M . Then,
given a polynomial with the M -clustering property, it
seems reasonable (and resource efficient) to look for an
expansion in terms of elements of HN,J,n,M .
Do parton-like states form a basis for the symmetric

and antisymmetric polynomials with the M -clustering
property? Consider the simple case of N = 2 particles,

P (M)(Z, Z̄) =

M∑

q=0

zq12z̄
M−q
12 Pq(Z, Z̄). (159)

Since the Slater determinants χpµ
(Z, Z̄) form a complete

basis of ÂH2,J,n

z12Pq(Z, Z̄) =
∑

µ

cµ χpµ
(Z, Z̄), (160)

z̄12Pq(Z, Z̄) =
∑

µ

c̃µ χpµ(Z, Z̄). (161)

It thus follows that

P (M)(Z, Z̄) =
∑

µ

( M∑

q=1

cµ χpµ
zq−1
12 z̄M−q

12 + c̃µ χpµ
z̄M−1
12

)
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=
∑

µ

dµΨpµ(Z, Z̄), (162)

can be expanded in terms of parton-like states Ψpµ(Z, Z̄).
This simple line of reasoning cannot be straightfor-

wardly generalized to N > 2. For polynomials depending
only on variables (holomorphic coordinates) Z (NL = 1),
one can use an alternative proof: consider the simple case
of polynomials with the M -clustering property depend-
ing only on variables Z. It is a well-known result from
commutative algebra, that the ring of multivariate poly-
nomials over the complex field is a unique factorization
domain (UFD), or factorial78. In our case, this implies
the factorization

P (M)(Z) = S(Z) χ1(Z)
M , (163)

with S(Z) a totally symmetric polynomial under the ex-
change of arbitrary indices i and j, and

χ1(Z) =
∏

i<j

(zi − zj) (164)

a Vandermonde determinant, i.e., a totally antisymmet-
ric polynomial under the exchange of arbitrary indices i
and j. This factorization is valid for M even or odd (i.e.,
bosons or fermions, respectively). Expanding the totally
antisymmetric polynomial

S(Z) χ1(Z) =
∑

µ

cµ χpµ
(Z), (165)

in terms of Slater determinants χpµ
(Z), one obtains

P (M)(Z) =
∑

µ

cµΨpµ
(Z), (166)

with parton-like states

Ψpµ(Z) = χpµ(Z)χ1(Z)
M−1. (167)

The proof of the expansion in Eq. (162) for any N > 2
and arbitraryNL is beyond the scope of this paper. If one
conjectured that all elements of the space of polynomi-
als withM -clustering exponent, P (M)(Z, Z̄) ∈ HN,J,n,M ,
can always be written as

P (M)(Z, Z̄) =
∑

µ

cµP
(M−1)
µ (Z, Z̄) P̃ (1)

µ (Z, Z̄) , (168)

then, it is straightforward to show by induction that
those same elements can always be written as linear su-
perpositions of parton-like states, i.e., Eq. (162). We
will further elaborate on the completeness of parton-like
states in the M -clustering subspace in the following sec-
tion(s).

E. Generating algebras of polynomials P (Z, Z̄)

We are interested in determining a generating algebra
of the elements of

⊕
J ÂHN,J,n,M . Concretely, we mean

by that the idea of understanding
⊕

J ÂHN,J,n,M as a
cyclic module of some symmetry algebra. Here, a cyclic
module is a representation that is generated by one par-
ticular element (a “vacuum”) via the action of the algebra

in question. Since, for given N , n, M ,
⊕

J ÂHN,J,n,M is
the zero-mode space of an associated frustration-free TK
Hamiltonian (24), we can think of the algebras in ques-
tion as symmetry algebras preserving the ground state
subspace of this Hamiltonian. The goal of this section
is thus to define algebras of operators acting on poly-
nomials that are as rich as possible while preserving the
number of LLs n+1 = NL as well as the (anti-)symmetry
and the M -clustering property of these polynomials. At
first, we will let n → ∞, so as to remove the restriction
on the number of LLs. We will subsequently identify
sub-algebras that preserve a given maximum n.
Define the following symmetric linear operators,

A1
α = Ŝ

[
φα(Z, Z̄)∂z̄N

]
, A−1

α = Ŝ
[
φα(Z, Z̄)∂zN ] ,

A0
α = Ŝ

[
φα(Z, Z̄)] , (169)

where Ŝ is the symmetrizer with respect to variable in-
dices i = 1, · · · , N , and

φα(Z, Z̄) ≡
N∏

i=1

ϕαi(i). (170)

These operators form a Lie algebra,

[Aε
α, A

ε′
α′ ] =

∑

β

Cβ
αα′ A

ε
β +

∑

β′

Cβ′

αα′ A
ε′
β′ , (171)

where Cβ
αα′ are integers, and ε, ε′ = 0,±1. They satisfy

[
Ĵ , Aε

α

]
= (Jα + ℏε)Aε

α. (172)

The action of these symmetric operators on elements
of ÂHN,J,n,M , preserves their (anti-)symmetry. As for
the invariance of the M -clustering property, it is evident
that the action of the symmetric operator A0

α on any
polynomial does not change that property since its action
is multiplicative. It remains to analyze the action of A±1

α .
Without loss of generality, we single out a pair (i, j) of
indices and write the action of A−1

α on P (Z, Z̄) as

A−1
α P (Z, Z̄) =

∑

q

(A−1
α zqijz̄

M−q
ij )Pq(Z, Z̄)

+ zqijz̄
M−q
ij A−1

α Pq(Z, Z̄). (173)

The last term in (173) preserves the M -clustering prop-
erty in the pair (i, j). Our last task is thus to show

that A−1
α zqijz̄

M−q
ij also preserves the M -clustering prop-

erty in (i, j), since we know the expression (173) to
be totally (anti-)symmetric, so the pair (i, j) is arbi-

trary. We may rewrite A−1
α = Ŝ

[
Si(Z, Z̄)ϕαN

(i) ∂zi
]
=

Ŝ
[
Sj(Z, Z̄)ϕαN

(j) ∂zj
]
, where Si(j)(Z, Z̄) is a symmetric
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polynomial of N − 1 variables that does not contain par-
ticle index i(j) and orbital αN . As a result,

A−1
α zqijz̄

M−q
ij =

[
Si(Z, Z̄)ϕαN

(i)− Sj(Z, Z̄)ϕαN
(j)
]

× qzq−1
ij z̄M−q

ij . (174)

It is clear that in this expression, the bracketed term is
antisymmetric with respect to exchanging i and j. The
latter antisymmetry restores the overall clustering ex-
ponent M in the expression. This concludes the proof

that A−1
α zqijz̄

M−q
ij preserves the M -clustering property.

Finally, since the steps above generalize to ε = ±1, if
P (Z, Z̄) ∈ ÂHN,J,n,M one gets

Aε
α P (Z, Z̄) = P̃ (Z, Z̄) ∈ ÂHN,J+Jα+ℏε,ñ,M , (175)

where ñ = n− ε(ε+1)/2+max (ni). Moreover, it is easy
to see that the action of Aε

α on any parton-like state
results in a linear superposition of parton-like states,

Aε
α Ψp(Z, Z̄) =

∑

µ

dµΨpµ(Z, Z̄) . (176)

Finally, all of the above clearly carries over in straight-
forward ways to any element of the algebra generated by
the Aε

α.
The Lie algebra (171) has several interesting sub-

algebras that are noteworthy for their preservation of a
maximum number of LLs n + 1. Their action is graphi-
cally depicted in Table VI, with definitions given as fol-
lows:

• Affine Kac-Moody algebra. For m > 0, and
n = NL − 1 non-negative integers, the generators

S+
m =

∑

i

zm+1
i (nz̄i − z̄2i ∂z̄i) ,

S−
m =

∑

i

zm−1
i ∂z̄i ,

Sz
m =

∑

i

zmi (z̄i∂z̄i − n/2) , (177)

define an untwisted affine Kac-Moody79 algebra

[S+
m, S

−
m′ ] = 2Sz

m+m′ , [Sz
m, S

±
m′ ] = ±S±

m+m′ . (178)

The action of these operators on P (Z, Z̄) changes
its total angular momentum via

[Ĵ , S±,z
m ] = mℏS±,z

m . (179)

• su(2) algebras. For given smax and n = NL −
1, we define generators of three independent su(2)
algebras:

S+ =
∑

i

ziz̄i(n− z̄i∂z̄i) , S− =
∑

i

z−1
i ∂z̄i ,

Sz =
∑

i

(z̄i∂z̄i − n/2) , (180)

where [S+, S−] = 2Sz, [Sz, S±] = ±S±,

L+ =
∑

i

(smaxzi − z2i ∂zi), L− =
∑

i

∂zi ,

Lz =
∑

i

(zi∂zi − smax/2), (181)

such that [L+, L−] = 2Lz, [Lz, L±] = ±L±, and

L̄+ =
∑

i

(nz̄i − z̄2i ∂z̄i), L̄− =
∑

i

∂z̄i ,

L̄z =
∑

i

(z̄i∂z̄i − n/2), (182)

satisfying [L̄+, L̄−] = 2L̄z, [L̄z, L̄±] = ±L̄±. One
may verify that

[Ĵ , S±] = 0, [Ĵ , L±] = ±ℏL±, [Ĵ , L̄±] = ∓ℏL̄±.

(183)

We point out that the algebra defined in Eq. (180)
is the first quantization representation of the pseudospin
algebra in Eq. (53), which is well-defined only when ji ≥ 0
(away from the boundary).

S+
m S−

m S+ S− L− L+ L̄− L̄+

↱

↰ ↑ ↓ ← → ↘ ↖

TABLE VI. Action of sub-algebra generators. Arrows repre-
sent direction of change in a (J, L̄z) plane, where right direc-
tion corresponds to increasing angular momentum while up
refers to increasing LL index.

Consider now polynomials P (Z, Z̄) ∈ ⊕J ÂHN,J,n,M

with well-defined angular momentum J (parton-like
states are examples of such polynomials). What is(are)
the Pmin(Z, Z̄) with lowest total angular momentum, i.e.,

ĴPmin(Z, Z̄) = JminPmin(Z, Z̄)? We will approach this
question first by defining a highest weight state(s) of
the algebra generated by the Aε

α to be a polynomial
Phw(Z, Z̄) satisfying

Aε
αPhw(Z, Z̄) = 0, (184)

whenever Jα+ℏε < 0 and ñ ≤ n. For instance, for n = 0,
the polynomial χ1(Z)

M (Laughlin states) is a highest
weight state of the algebra. Clearly, any Pmin(Z, Z̄) must
also be a heighest weight state, otherwise the condition of
minimal angular momentum would be violated. By the
same token, any minimum angular momentum parton-
like state is a heighest weight state, as the action of the
algebra preserves the parton-like character. We claim
that for arbitrary n the highest weight states of the al-
gebra are parton-like states. If such a parton-like state
satisfies the condition of being closed-shell, then, accord-
ing to the claim, it must be the unique minimum angular
momentum highest weight state. This is so since by Sec-
tion VC, such a closed-shell parton state is the unique
parton-like state with lowest total angular momentum.
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Here we give a heuristic justification for the above
claim. We wish to argue that the general symmetric op-
erators given in Eq. (169) are the “generators of all poly-
nomials with M -clustering exponent” in the following
sense. Consider the sub-algebra that preserves n+1 LLs.
The claim follows if it can be argued that this algebra is
rich enough such that

⊕
J ÂHN,J,n,M is irreducible as a

representation of this algebra. As is well known in the
representation theory of algebras, every irreducible rep-
resentation is cyclic, where every single state can serve to
generate the whole representation: Otherwise, the cyclic
module generated by such a state would be a proper in-
variant sub-module, contradicting irreducibility. Thus,
then, every state in

⊕
J ÂHN,J,n,M can be reached from

any other via actions of the algebra. Moreover, since⊕
J ÂHN,J,n,M contains parton-like states, and the ac-

tion of the algebra preserves the property of being a
parton-like superposition, any element of

⊕
J ÂHN,J,n,M

must be a parton-like superposition. All the above con-
jectures then follow from properties of parton-like states,
in particular the uniqueness of partons as minimum an-
gular momentum parton-like states. While we find it
plausible that the algebra defined here is rich enough in
the precise sense defined above, we leave the proof of this
as an interesting mathematical problem.

As a useful application, we note the following corol-
lary: The MR Pfaffian and RR states cannot be
densest–incompressible–ground states of the two-body
frustration-free parent Hamiltonians of this work. The
reason is that these states are not closed-shell parton
states but are expanded in terms of parton-like states.
For instance, consider the MR Pfaffian state

ΨMR(Z) = Pf

(
1

zi − zj

)
χ1(Z)

M+1. (185)

One can check that for N = 4 it can be expanded as

ΨMR(Z) = Ψ1(Z)− 2Ψ2(Z) + 10Ψ3(Z), (186)

where the parton-like states are

Ψ1(Z) =

∣∣∣∣∣∣∣

1 1 1 1
z1 z2 z3 z4
z41 z42 z43 z44
z51 z52 z53 z54

∣∣∣∣∣∣∣
χ1(Z)

M−1,

Ψ2(Z) =

∣∣∣∣∣∣∣

1 1 1 1
z21 z22 z23 z24
z31 z32 z33 z34
z51 z52 z53 z54

∣∣∣∣∣∣∣
χ1(Z)

M−1,

Ψ3(Z) =

∣∣∣∣∣∣∣

z1 z2 z3 z4
z21 z22 z23 z24
z31 z32 z33 z34
z41 z42 z43 z44

∣∣∣∣∣∣∣
χ1(Z)

M−1. (187)

Similarly, for the (N = 4) Read-Rezayi state one obtains
ΨRR(Z) = 2ΨMR(Z).

VI. PARTONS, DNA, AND MPS STATES

When we determined, in the preceding sections, the
ground subspace of the general two-body frustration-free
Hamiltonians of the type of Eq. (24), we discussed two
seemingly distinct threads. These centered on the EPP
on the one hand and the parton construction on the
other. The emergent EPP establishes constraints on any
pair of particles in the DNA or root pattern of the ground
state. Thus far, we have, however, refrained from demon-
strating that any ground states satisfying the EPP indeed
qualify as ground states of our frustration-free Hamilto-
nian. The closed-shell parton states Φν(Z, Z̄) represent
the densest ground states. Nevertheless, on its own, this
property does not yield the complete set of ground states
of Hamiltonians given by Eq. (24). By combining the
rules set by the EPP and parton constructs, one can
provide a rigorous method to establish completeness of
parton-like states to span

⊕
J ÂHN,J,n,M . In this Sec-

tion, we will establish completeness for the special case
of M = 3, n = NL − 1 = 3. Prior to doing so, we will
start our discussion by constructing root patterns and
root states (DNA) from a given parton-like state. We will
firmly connect these to the EPPs. We will next show the
MPS structure of the DNA illustrating the complex and
interesting pattern of entanglement that encodes those
non-Abelian fluids. We will then derive a scheme that
will enable us to extract possible parton-like states given
a root pattern.

A. Root pattern and DNA of parton-like states

Consider a single Slater determinant χp(Z, Z̄) with a
root pattern {j}root = {j1, j2, . . . , jN}root that is arranged
in an ascending order of angular momenta j1 ≤ j2 ≤
· · · ≤ jN , where ji is the angular momentum of particle
i. It is clear that this root pattern is extracted from the
monomial φα(Z, Z̄), where χp(Z, Z̄) = Â

[
φα(Z, Z̄)

]
. In

the LLL, due to the Pauli exclusion principle, the mono-
mial φα(Z, Z̄) is unique. When multiple LLs are present,
several orbitals may share the same angular momenta.
This allows for many monomials φα(Z, Z̄) satisfying the
rule of ascending ji. Among all N ! monomials comprising
a Slater determinant, the number of distinct monomials

φα(Z, Z̄) satisfying this rule is Mp =
∏L

j=1 λj !, where λj
is the multiplicity of angular momentum j. For example,
consider N = 3 with j1 = j2 < j3. The corresponding
distinct monomials (Mp = 2) would be

φα(Z, Z̄) = ϕα1(1)ϕα2(2)ϕα3(3),

φσα(Z, Z̄) = ϕα2
(1)ϕα1

(2)ϕα3
(3), (188)

where σ ∈ SN is a permutation of the αi indices. The
root pattern of the product χp(Z, Z̄)χp′(Z, Z̄) is50,80

{j1 + j′1, · · · , jN + j′N}root ≡ {j}root + {j′}root (189)
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which is associated with the MpMp′ monomials

φα(Z, Z̄)φα′(Z, Z̄) = φα+α′(Z, Z̄). (190)

We stress that, although Mpµ
is the number of distinct

monomials in each individual Slater χpµ
, not all of the

monomials MpMp′ may be distinct. This implies that
MpMp′ constitutes an upper bound on the number of
distinct monomials in the root state of χp(Z, Z̄)χp′(Z, Z̄).
Now, in an arbitrary parton-like state with M Slater de-
terminants, the number of distinct monomials

φα⃗(Z, Z̄) ≡
M∏

µ=1

φαpµ
(Z, Z̄) = φ∑M

µ=1 αpµ
(Z, Z̄) (191)

is upper bounded by
∏M

µ=1 Mpµ . With M ∈ (odd)even,

the (anti)symmetrization of each monomial provides a
non-expandable (Slater determinant)permanent. The
corresponding root state is a linear superposition of all
such non-expandable (Slater determinants)permanents.
Such a superposition encodes a specific pattern of entan-
glement. In what follows, we focus on the root pattern of
parton-like states. We will then study the corresponding
root states in the next subsection.

To illustrate our basic premise for the root patterns,
we examine a specific example. We will then discuss
the generalization to other states. Towards this end, we
first consider the particular closed-shell parton state of
N = 7 particles and NL = 3 (see Fig. 15), Φ1/2(Z, Z̄) =

χ1(Z, Z̄)χ2(Z, Z̄)χ2(Z, Z̄). The root occupation config-
uration for the two Slater determinants, χ2(Z, Z̄) and
χ1(Z, Z̄) are, respectively,

{j′}root = {−1, 0, 0, 1, 1, 2, 2}root,
{j′′}root = {0, 1, 2, 3, 4, 5, 6}root, (192)

so that the final root occupation configuration of the par-
ton is {j}root = {j′}root + {j′}root + {j′′}root, with

j1 = −1− 1 + 0 = −2,

j2 = 0 + 0 + 1 = 1,

FIG. 15. Angular momentum (in units of ℏ) occupation con-
figuration of Slater determinants components of the seven par-
ticles parton state Φ1/2(Z, Z̄) = χ1(Z, Z̄)χ2(Z, Z̄)χ2(Z, Z̄).

NL Bulk root pattern ν
1 {100} 1/3
2 {10100} 2/5
3 {1100} 1/2
4 {200} 2/3
5 {20020110} 3/4
6 {2002101} 6/7
7 {300} 1
8 {30030120210} 12/11

TABLE VII. Bulk root patterns, {λ}broot, for densest closed-
shell parton states Φν with third order zeroes, M = 3, and
filling fractions ν.

j3 = 0 + 0 + 2 = 2,

j4 = 1 + 1 + 3 = 5,

j5 = 1 + 1 + 4 = 6,

j6 = 2 + 2 + 5 = 9,

j7 = 2 + 2 + 6 = 10. (193)

This leads to the following map

j −2 −1 0 1 2 3 4 5 6 7 8 9 10
λj 1 0 0 1 1 0 0 1 1 0 0 1 1

with root pattern {λ}root = 1001100110011. Neglecting
boundaries (j < 0), in the bulk each four consecutive
states are filled by two electrons. This defines the “bulk
root pattern” {λ}broot = {1100}. The above analysis may
be repeated for other states. In Table VII, we show exam-
ples of bulk root patterns and their corresponding filling
fractions for other closed-shell parton states.

1. Root states or DNAs from a given parton-like state

When confined to the LLL, the root patterns encode
all of the important information regarding the parton-
like states. However, in the presence of higher LL mix-
ing, there is an entanglement between the patterns in the
root states. This entanglement contains important infor-
mation, such as zero-mode counting, on the parton-like
states. In order to extract this information, we need to
determine the root states, or DNAs, for the root patterns
obtained from the given parton-like states.
As described above, given an N particle parton-like

state Ψp(Z, Z̄) in the subspace of NL LLs, one can deter-
mine its root pattern {λ}root. Since we are interested in
the bulk part of the root pattern, {λ}broot, consider the
Ψp(Z, Z̄) which consists of single-particle orbitals of non-
negative angular momenta, ji ≥ 0. Our aim is to keep all
of the non-expandable Slater determinants in the expan-
sion of Ψp(Z, Z̄) with pattern {λ}root. Thus, we exclude
inward-squeezed states.
To that end, consider a simple rescaling of the coor-

dinates zi → ζizi and z̄i → ζ−1
i z̄i, where i = 1, . . . , N .

Let us denote the rescaled coordinates by (Z ′, Z̄ ′). An
algebraic algorithmic way of extracting the root state is
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the following: In the expansion of Ψp(Z
′, Z̄ ′), the mono-

mials with a common factor ΠN
i=1ζ

ji
i relate to the non-

expandable determinants and are determined by

N∏

i=1

1

ji!
(∂ζi)

ji Ψp(Z
′, Z̄ ′) =

( N∏

i=1

zjii

)
f
{λ}broot

NL,ν

=
∑

α⃗

Cα⃗ φα⃗(Z, Z̄). (194)

Here, f
{λ}broot

NL,ν (Z, Z̄) has zero total angular momentum

Ĵf
{λ}broot

NL,ν = 0, Cα⃗ = ±1. The sum contains
∏M

µ=1 Mpµ

terms. As a result, the root state (DNA) can be obtained
by performing a simple antisymmetrization,

Ψroot(Z, Z̄) = Â
[( N∏

i=1

zjii

)
f
{λ}broot

NL,ν

]
. (195)

Let us provide a few examples (with N even). The
root state for the ν = 1/M Laughlin state is ob-

tained by f
{10M−1}
1, 1

M

(Z, Z̄) = 1 (representing a single

Slater determinant). Next, consider the parton state
with {10100} (ν = 2/5), NL = 2 and root pattern
{j}root = {0, 2, 5, 7, · · · }root. For this state, we obtain

f
{10100}
2, 25

=

N−2
2∏

r=0

Dα1α2
(2r + 1, 2r + 2). (196)

In this example and throughout this section, α1 = (1, 1)
and α2 = (0, 0), i.e.,

Dα1α2(2r + 1, 2r + 2) ≡
∣∣∣∣
z2r+1z̄2r+1 z2r+2z̄2r+2

1 1

∣∣∣∣ . (197)

For the parton state with {200} (ν = 2/3), NL = 4, and
{j}root = {0, 0, 3, 3, · · · }root, it can be checked that

f
{200}
4, 23

=

N−2
2∏

r=0

D3
α1α2

(2r + 1, 2r + 2). (198)

From the above structure, it is evident that the {200}
pattern is a simple product state of entangled pairs in
the root pattern. Applying the pseudospin algebra of
Eq. (180),

Szf
{200}
4, 23

= S±f{200}
4, 23

= 0. (199)

This suggests that the 2 in the root pattern indeed rep-
resents a singlet state.

We have, so far, discussed bulk root patterns for
(closed-shell) parton states. For these, there is a one-to-
one correspondence between the parton state and its root
pattern. However, in general, several parton-like states
may share the same root pattern. For instance, for the
{110} pattern, NL = 4, we have four different root states
corresponding to the four different parton-like states

given by {110}n1
nN

=1n1
10110...11011nN

0. Here, n1, nN
identify the pseudospin degrees of freedom. The cor-
responding parton-like states are χn1nN

(Z, Z̄)χ2(Z, Z̄)
2,

n1, nN = 0, 1, with χn1nN
(Z, Z̄) constructed such that

the lowest and highest angular momentum orbitals are,
respectively, occupied by electrons with LL indices given
by n1 and nN . Consequently,

f
{110}n1

nN

4, 23
= (z1z̄1)

n1(zN z̄N )nN

N−2
2∏

r=0

D2
α1α2

(2r + 1, 2r + 2)

×
[N−3

2 ]∏

r=0

Dα1α2
(2r + 2, 2r + 3), (200)

where [x] represents the integer part of x. As another
example, consider the root pattern 20011011 with N = 6
particles, which includes a domain wall. We obtain

f
{200}{110}n3

n6

4, 57
= (z3z̄3)

n3(z6z̄6)
n6 (201)

×D3
α1α2

(1, 2)D2
α1α2

(3, 4)Dα1α2
(4, 5)D2

α1α2
(5, 6),

where n3, n6 = 0, 1. The choice of even N allowed us to

obtain compact expressions for f
{λ}broot

NL,ν . We could have
similarly considered states with odd N , starting from

Eq. (195), by appropriate modifications of f
{λ}broot

NL,ν . For
instance, consider an N = 5 particle state with root pat-
tern 1101011. We obtain the following eight states

f
{110}n11n3

{011}n5

4, 34
= (z1z̄1)

n1(z3z̄3)
n3(z5z̄5)

n5 (202)

×D2
α1α2

(1, 2)Dα1α2
(2, 3)Dα1α2

(3, 4)D2
α1α2

(4, 5),

where n1, n3, n5 = 0, 1. It turns out that f
{λ}broot

NL,ν carries
the pseudospin structure of the root state since

SzΨroot(Z, Z̄) = Â
[( N∏

i=1

zjii

)
Szf

{λ}broot

NL,ν

]
. (203)

Furthermore, as we will show in the following, it contains
the pattern of entanglement dictating the EPP rules for
the complete zero-mode subspace.

2. MPS representation of DNA from polynomials

The EPP does not rule out entangled root states
formed by combining the 11 and 101 patterns. Such root
states do not only give rise to a ground state root pat-
tern ...110110... with filling fraction 2/3 but also play
an important role in determining the domain wall struc-
tures and braiding statistics as discussed before. These
states cannot be formed by simple products of 11 and
101 patterns. If all such simple products were feasible
then the ground state degeneracy would scale exponen-
tially in the particle number. However, Eq. (200), un-
like Eq. (198), indeed does not suggest the appearance
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FIG. 15. (Top) Diagrammatic representation of the poly-
nomial (ziz̄i)

ni(zjz̄j)
njDb

↵1↵2
(i, j) for all possible values of

(ni, nj, b) where ni, nj  NL � b � 1, with NL = 4. Each
disk represents a particle with LLs index 1, 2, or 3. Each
bond connecting two disks is equivalent to an index contrac-
tion. Generically, the number of bonds is given by b, and
each dangling bond corresponds to a factor of zz̄. (Bot-
tom) left and right diagrams are for Eq. (199) and (200),
respectively.(ni, nj, b) = (1, 1, 2) = (2, 2, 1) = (3, 3, 0) (0, 0, 3)

states do not only give rise to a ground state root pat-
tern ...110110... with filling fraction 2/3 but also play
an important role in determining the domain wall struc-
tures and braiding statistics as discussed before. These
states cannot be formed by simple products of 11 and
101 patterns. If all such simple products were feasible
then the ground state degeneracy would scale exponen-
tially in the particle number. However, Eq. (198), un-
like Eq. (196), indeed does not suggest the appearance
of such simple products of entangled motifs in the root
states. In Eq. (198), the 2r + 2 particle is connected
with particles 2r + 1 and 2r + 3. This construct hints at
an underlying MPS structure. This representation may
capture the root state entanglement while satisfying the
EPP for the 11 and 101 patterns. Towards this end, we
consider the following identity

Db
↵1↵2

(2r + 1, 2r + 2) =
X

{⌃r}
(�1)⌃r (z2r+1z̄2r+1)

⌃r (z2r+2z̄2r+2)
⌃̄r , (202)

where b  NL � 1, ⌃r =
Pb

i=1 �
(i)
r , with �

(i)
r = 0, 1, and

⌃̄r =
Pb

i=1 �̄
(i)
r , with �̄

(i)
r = 1 � �

(i)
r . It is clear that b

is the number of indices that are summed over. In the
subspace of NL = 4 LLs, the polynomial in Eq. (202)
can be generalized to (ziz̄i)

ni(zjz̄j)
njDb

↵1↵2
(i, j), where

ni, nj  NL �b�1. This suggests a diagrammatic repre-
sentation as follows: Assign a disk to each particle. Con-
nect the adjacent disks by b bonds, where b is the number
of contracted indices (see Fig. 15). For a given disk i, the
contraction of b indices leaves ni free indices, which are
shown as dangling bonds in Fig. 15. In this manner,

we may represent, diagrammatically, any f
{�}broot

NL,⌫ with a
simple diagram. In Fig. 15, we show the corresponding
diagrams for Eq. (199) and (200).

Now, we express the full root state in an MPS type
representation. In the following, for the simplicity of no-

tation, we will (i) set �
(1)
r = µr for b = 1 , and (ii) when

b = 2 we put �
(1)
r = �r, and �

(2)
r = �r. Invoking the

above identity, we expand Eq. (198) to obtain

f
{110}n1

nN

4, 2
3

= (�1)nN

X

{�r,�r,µr}

(z1z̄1)
�0+�0+n1 (�1)�0+�0+µ0 (z2z̄2)

�̄0+�̄0+µ0

(z3z̄3)
�1+�1+µ̄0 (�1)�1+�1+µ1 (z4z̄4)

�̄1+�̄1+µ1

(z5z̄5)
�2+�2+µ̄1 (�1)�2+�2+µ2 (z6z̄6)

�̄2+�̄2+µ2

...
...

...

· · · (�1)�N/2�1+�N/2�1+nN (zN z̄N )�̄N/2�1+�̄N/2�1+nN .
(203)

To explicitly visualize this identity in a simple example,
consider N = 4

f
{110}n1

n4

4, 2
3

= (z1z̄1)
n1(z4z̄4)

n4

D2
↵1↵2

(1, 2)D↵1↵2
(2, 3)D2

↵1↵2
(3, 4). (204)

Employing

D2
↵1↵2

(1, 2) =
X

�0,�0

(�1)�0+�0(z1z̄1)
�0+�0(z2z̄2)

�̄0+�̄0 ,

D↵1↵2
(2, 3) =

X

µ0

(�1)µ0(z2z̄2)
µ0(z3z̄3)

µ̄0 ,

D2
↵1↵2

(3, 4) =
X

�1,�1

(�1)�1+�1(z3z̄3)
�1+�1(z4z̄4)

�̄1+�̄1 ,

(205)

we obtain a special case of the expression in Eq. (203),

f
{110}n1

n4

4, 2
3

= (�1)n4

X

{�0,1,�0,1,µ0}

(z1z̄1)
�0+�0+n1 (�1)�0+�0+µ0 (z2z̄2)

�̄0+�̄0+µ0

(z3z̄3)
�1+�1+µ̄0 (�1)�1+�1+n4 (z4z̄4)

�̄1+�̄1+n4 (206)

Now, using Eq. (203), we can rewrite the {110} root
state as an MPS

 root(Z, Z̄) = Â
⇥⇣ NY

i=1

zji
i

⌘
f

{110}n1
nN

4, 2
3

⇤

= (�1)nN

X

{I}
M̄ I1M I2 · · · M̄ IN |Ii, (207)

where

|Ii ⌘ Â
⇥⇣ NY

i=1

zji
i

⌘
(z1z̄1)

I1(z2z̄2)
I2 · · · (zN z̄N )IN

⇤
,

M I2r+1 ⌘ �I2r+1,�r+�r+µ̄r�1
,

21 1 1 1 1 1 1 10 00 010 0 0
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FIG. 15. (Top) Diagrammatic representation of the poly-
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ni(zjz̄j)
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(i, j) for all possible values of

(ni, nj, b) where ni, nj  NL � b � 1, with NL = 4. Each
disk represents a particle with LLs index 1, 2, or 3. Each
bond connecting two disks is equivalent to an index contrac-
tion. Generically, the number of bonds is given by b, and
each dangling bond corresponds to a factor of zz̄. (Bot-
tom) left and right diagrams are for Eq. (199) and (200),
respectively.(ni, nj, b) = (1, 1, 2) = (2, 2, 1) = (3, 3, 0) (0, 0, 3)

states do not only give rise to a ground state root pat-
tern ...110110... with filling fraction 2/3 but also play
an important role in determining the domain wall struc-
tures and braiding statistics as discussed before. These
states cannot be formed by simple products of 11 and
101 patterns. If all such simple products were feasible
then the ground state degeneracy would scale exponen-
tially in the particle number. However, Eq. (198), un-
like Eq. (196), indeed does not suggest the appearance
of such simple products of entangled motifs in the root
states. In Eq. (198), the 2r + 2 particle is connected
with particles 2r + 1 and 2r + 3. This construct hints at
an underlying MPS structure. This representation may
capture the root state entanglement while satisfying the
EPP for the 11 and 101 patterns. Towards this end, we
consider the following identity
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r , with �
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r = 0, 1, and

⌃̄r =
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(i)
r , with �̄

(i)
r = 1 � �

(i)
r . It is clear that b

is the number of indices that are summed over. In the
subspace of NL = 4 LLs, the polynomial in Eq. (202)
can be generalized to (ziz̄i)

ni(zjz̄j)
njDb

↵1↵2
(i, j), where

ni, nj  NL �b�1. This suggests a diagrammatic repre-
sentation as follows: Assign a disk to each particle. Con-
nect the adjacent disks by b bonds, where b is the number
of contracted indices (see Fig. 15). For a given disk i, the
contraction of b indices leaves ni free indices, which are
shown as dangling bonds in Fig. 15. In this manner,

we may represent, diagrammatically, any f
{�}broot

NL,⌫ with a
simple diagram. In Fig. 15, we show the corresponding
diagrams for Eq. (199) and (200).

Now, we express the full root state in an MPS type
representation. In the following, for the simplicity of no-

tation, we will (i) set �
(1)
r = µr for b = 1 , and (ii) when

b = 2 we put �
(1)
r = �r, and �

(2)
r = �r. Invoking the

above identity, we expand Eq. (198) to obtain

f
{110}n1

nN

4, 2
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= (�1)nN

X
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(z1z̄1)
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· · · (�1)�N/2�1+�N/2�1+nN (zN z̄N )�̄N/2�1+�̄N/2�1+nN .
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To explicitly visualize this identity in a simple example,
consider N = 4
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= (z1z̄1)
n1(z4z̄4)
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D2
↵1↵2
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D2
↵1↵2

(3, 4) =
X

�1,�1

(�1)�1+�1(z3z̄3)
�1+�1(z4z̄4)

�̄1+�̄1 ,

(205)

we obtain a special case of the expression in Eq. (203),
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Now, using Eq. (203), we can rewrite the {110} root
state as an MPS
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(ni, nj, b) where ni, nj  NL � b � 1, with NL = 4. Each
disk represents a particle with LLs index 1, 2, or 3. Each
bond connecting two disks is equivalent to an index contrac-
tion. Generically, the number of bonds is given by b, and
each dangling bond corresponds to a factor of zz̄. (Bot-
tom) left and right diagrams are for Eq. (199) and (200),
respectively.(ni, nj, b) = (1, 1, 2) = (2, 2, 1) = (3, 3, 0) (0, 0, 3)

states do not only give rise to a ground state root pat-
tern ...110110... with filling fraction 2/3 but also play
an important role in determining the domain wall struc-
tures and braiding statistics as discussed before. These
states cannot be formed by simple products of 11 and
101 patterns. If all such simple products were feasible
then the ground state degeneracy would scale exponen-
tially in the particle number. However, Eq. (198), un-
like Eq. (196), indeed does not suggest the appearance
of such simple products of entangled motifs in the root
states. In Eq. (198), the 2r + 2 particle is connected
with particles 2r + 1 and 2r + 3. This construct hints at
an underlying MPS structure. This representation may
capture the root state entanglement while satisfying the
EPP for the 11 and 101 patterns. Towards this end, we
consider the following identity

Db
↵1↵2

(2r + 1, 2r + 2) =
X

{⌃r}
(�1)⌃r (z2r+1z̄2r+1)

⌃r (z2r+2z̄2r+2)
⌃̄r , (202)

where b  NL � 1, ⌃r =
Pb

i=1 �
(i)
r , with �

(i)
r = 0, 1, and

⌃̄r =
Pb

i=1 �̄
(i)
r , with �̄

(i)
r = 1 � �

(i)
r . It is clear that b

is the number of indices that are summed over. In the
subspace of NL = 4 LLs, the polynomial in Eq. (202)
can be generalized to (ziz̄i)

ni(zjz̄j)
njDb

↵1↵2
(i, j), where

ni, nj  NL �b�1. This suggests a diagrammatic repre-
sentation as follows: Assign a disk to each particle. Con-
nect the adjacent disks by b bonds, where b is the number
of contracted indices (see Fig. 15). For a given disk i, the
contraction of b indices leaves ni free indices, which are
shown as dangling bonds in Fig. 15. In this manner,

we may represent, diagrammatically, any f
{�}broot

NL,⌫ with a
simple diagram. In Fig. 15, we show the corresponding
diagrams for Eq. (199) and (200).

Now, we express the full root state in an MPS type
representation. In the following, for the simplicity of no-

tation, we will (i) set �
(1)
r = µr for b = 1 , and (ii) when

b = 2 we put �
(1)
r = �r, and �

(2)
r = �r. Invoking the

above identity, we expand Eq. (198) to obtain

f
{110}n1

nN

4, 2
3

= (�1)nN

X

{�r,�r,µr}

(z1z̄1)
�0+�0+n1 (�1)�0+�0+µ0 (z2z̄2)

�̄0+�̄0+µ0

(z3z̄3)
�1+�1+µ̄0 (�1)�1+�1+µ1 (z4z̄4)

�̄1+�̄1+µ1

(z5z̄5)
�2+�2+µ̄1 (�1)�2+�2+µ2 (z6z̄6)

�̄2+�̄2+µ2

...
...

...

· · · (�1)�N/2�1+�N/2�1+nN (zN z̄N )�̄N/2�1+�̄N/2�1+nN .
(203)

To explicitly visualize this identity in a simple example,
consider N = 4

f
{110}n1

n4

4, 2
3

= (z1z̄1)
n1(z4z̄4)

n4

D2
↵1↵2

(1, 2)D↵1↵2
(2, 3)D2

↵1↵2
(3, 4). (204)

Employing

D2
↵1↵2

(1, 2) =
X

�0,�0

(�1)�0+�0(z1z̄1)
�0+�0(z2z̄2)

�̄0+�̄0 ,

D↵1↵2
(2, 3) =

X

µ0

(�1)µ0(z2z̄2)
µ0(z3z̄3)

µ̄0 ,

D2
↵1↵2

(3, 4) =
X

�1,�1

(�1)�1+�1(z3z̄3)
�1+�1(z4z̄4)

�̄1+�̄1 ,

(205)

we obtain a special case of the expression in Eq. (203),

f
{110}n1

n4

4, 2
3

= (�1)n4

X

{�0,1,�0,1,µ0}

(z1z̄1)
�0+�0+n1 (�1)�0+�0+µ0 (z2z̄2)

�̄0+�̄0+µ0

(z3z̄3)
�1+�1+µ̄0 (�1)�1+�1+n4 (z4z̄4)

�̄1+�̄1+n4 (206)

Now, using Eq. (203), we can rewrite the {110} root
state as an MPS

 root(Z, Z̄) = Â
⇥⇣ NY

i=1

zji
i

⌘
f

{110}n1
nN

4, 2
3

⇤

= (�1)nN

X

{I}
M̄ I1M I2 · · · M̄ IN |Ii, (207)

where

|Ii ⌘ Â
⇥⇣ NY

i=1

zji
i

⌘
(z1z̄1)

I1(z2z̄2)
I2 · · · (zN z̄N )IN

⇤
,

M I2r+1 ⌘ �I2r+1,�r+�r+µ̄r�1
,
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(3, 3, 0)

FIG. 16. (Top) Diagrammatic representation of the poly-
nomial (ziz̄i)

ni(zjz̄j)
njDb

α1α2
(i, j) for all possible values of

(ni, nj, b) where ni = nj ≤ NL − b − 1, with NL = 4. Each
disk represents a particle associated with NL−1 bonds. Each
bond connecting two disks is equivalent to an index contrac-
tion and decreases the relative angular momentum between
ith and jth particle by 1. The number of bonds in between
ith and jth particle is given by b and relative angular momen-
tum is given by, M − b, where M is the order of two particle
zeros in the ground state wave function. Thus for M = 3,
b = 0, 1, 2, 3 represent the 1001, 101, 11 and 2 patterns
in the root states, respectively. The m non-contracted (dan-
gling) bonds associated with each disk gives rise to a m + 1
degeneracy and can be represented by a m/2 pseudospin al-
gebra. (Bottom) Above patterns glued together to construct
an N = 11-particle MPS state. Same MPS structure can be
obtained from the viewpoint of EPPs as shown in Fig. 4.

of such simple products of entangled motifs in the root
states. In Eq. (200), the 2r + 2 particle is connected
with particles 2r+ 1 and 2r+ 3. This construct hints at
an underlying MPS structure. This representation may
capture the root state entanglement while satisfying the
EPP for the 11 and 101 patterns. Towards this end, we
consider the following identity

(z1z̄1)
n1(z2z̄2)

n2Db
α1α2

(1, 2)

=
∑̂

(z1z̄1)
I1 ϵI2I1 (z2z̄2)

I2 , (204)

where Ii = I
(1)
i +· · ·+I(NL−1)

i , I
(i)
i = 0, 1, ni = NL−b−1,

i = 1, 2, and ϵI2I1 ≡ ∏b
i=1 ϵI(i)

2 I
(i)
1
, with ϵ

I
(i)
2 I

(i)
1

the Levi-

Civita tensor. The symbol
∑̂

(N = 2 in Eq. (204))

∑̂
≡

∑

{I(i)
1 ,I

(i)
2 ,···I(i)

N }i=1,b

, (205)

represents sums only over b indices that appear in the

Levi-Civita tensor. The free I
(i)
i indices are identified

with ni. Figure 16 (top) shows a diagrammatic represen-
tation of Eq. (204). The contraction of indices can be
shown as horizontal connections between adjacent disks
where each box contains a Levi-Civita symbol. On the
other hand, contraction of b leaves ni free indices. These
are shown as dangling bonds in Fig. 16. Accordingly, the
number of bonds and dangling bonds can be read directly

from a generic f
{λ}broot

NL,ν polynomial that renders the cor-
responding diagram for such polynomial, e.g., see Fig. 16
(bottom).

The polynomial (z1z̄1)
n1(z2z̄2)

n2Db
α1α2

(1, 2) can be
written as an MPS by defining rank-3 tensors

M Ii

I
(1)
i I

(2)
i I

(3)
i

≡ δ
Ii,I

(1)
i +I

(2)
i +I

(3)
i

, (206)

so that,

(z1z̄1)
n1(z2z̄2)

n2Db
α1α2

(1, 2)

=
∑̂

M I1 ∗b M I2 (z1z̄1)
I1(z2z̄2)

I2 ,(207)

where the ∗b symbol indicates the number of inserted
Levi-Civita symbols, ∗b ≡ ϵI2I1 .

The expression above facilitates a simple generalization

of the MPS representation for a generic f
{λ}broot

NL,ν polyno-
mial. Consider

f
{110}n1

n4

4, 23
= (z1z̄1)

n1(z4z̄4)
n4

D2
α1α2

(1, 2)Dα1α2(2, 3)D
2
α1α2

(3, 4), (208)

for N = 4, where

D2
α1α2

(1, 2) =
∑̂

M I1 ∗2 M I2 (z1z̄1)
I1(z2z̄2)

I2 , (209)

Dα1α2
(2, 3) =

∑̂
M I2 ∗1 M I3 (z2z̄2)

I2(z3z̄3)
I3 , (210)

D2
α1α2

(3, 4) =
∑̂

M I3 ∗2 M I4 (z3z̄3)
I3(z4z̄4)

I4 . (211)

Combining the above representations one obtains

f
{110}n1

n4

4, 23
=
∑̂

M I1 ∗2 M I2 ∗1 M I3 ∗2 M I4

× (z1z̄1)
I1(z2z̄2)

I2(z3z̄3)
I3(z4z̄4)

I4 , (212)

where n1 = I
(3)
1 and n4 = I

(3)
4 . Similarly, a generic

polynomial f
{λ}broot

NL,ν can be represented by the MPS

f
{λ}broot

NL,ν =
∑̂

MI ×
N∏

i=1

(ziz̄i)
Ii , (213)

where we have used the abbreviation for the tensor net-
work

M I1 ∗b1 M I2 · · ·M IN−1 ∗bN−1 M IN ≡MI . (214)

Figure 17, shows and example of a tensor network for
N = 8. Now, using Eq. (195), we can rewrite the root
state as an MPS

Ψroot(Z, Z̄) = Â
[( N∏

i=1

zjii

)
f
{λ}broot

NL,ν

]
=
∑̂

MI |I⟩, (215)

where

|I⟩ ≡ Â
[( N∏

i=1

zjii

)
(z1z̄1)

I1(z2z̄2)
I2 · · · (zN z̄N )IN

]
, (216)

are the non-expandable Slater determinants in the root
state.
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FIG. 17. MPS diagrammatic representation of DNA for N = 8. We have identified MIi

I
(1)
i I

(2)
i I

(3)
i

=Mµiσiλi . Here, the diagram

is for f
{λ}broot
NL,ν = (z1z̄1)

µ1+σ1+λ1(z4z̄4)
λ4(z6z̄6)

µ6(z8z̄8)
σ8 × D3

α1α2
(2, 3)D2

α1α2
(4, 5)Dα1α2(5, 6)Dα1α2(6, 7)D

2
α1α2

(7, 8) where

µ1 = σ1 = λ1 = λ4 = µ6 = σ8 = 1. The number of bonds can easily be read from the graph: bi = (0, 3, 0, 2, 1, 1, 2).

B. Parton construction and the Entangled Pauli
Principle for the 2/3 state

We now return to the Hamiltonian construct for the
assembled EPPs and the two particle selection rules
for the root patterns of the ground state for the 4-
LLs projected Hamiltonian. We have so far postponed
the task of showing that there are indeed two particle
solutions satisfying EPPs constraints. To establish a
ground state obeying the EPPs, we start with parton
state χ2(Z, Z̄)

3. The DNA corresponding to this state is
given by 100200200200... . This parton state has a {200}
pattern in the bulk having two particles in three consec-
utive “sites”. The filling fraction for this state is 2/3 and
our EPP construction already excludes any other parton-
like state as being a zero-energy state of higher density.
Each “2” in the 100200200.. pattern is entangled as pre-
dicted by Eq. (55).
Before examining other admissible patterns in the

ground state root, we introduce the two Slater deter-
minants χ′

nn′(Z, Z̄) and χ′′
nn′(Z, Z̄) appearing in Fig.

18. The EPP predicted four possible 11 patterns
which can be derived from the four parton states,
χ′
nn′(Z, Z̄)χ2(Z, Z̄)

2 with n, n′ = 0, 1. The root patterns
of these four 2-particle parton states can be mapped to
Eq. (57) in the following way,

Ψ̃
(1)
0 (Z, Z̄) = χ′

00(Z, Z̄)χ2(Z, Z̄)
2,

Ψ̃
(2)
0 (Z, Z̄) = χ′

01(Z, Z̄)χ2(Z, Z̄)
2,

Ψ̃
(3)
0 (Z, Z̄) = χ′

10(Z, Z̄)χ2(Z, Z̄)
2,

Ψ̃
(4)
0 (Z, Z̄) = χ′

11(Z, Z̄)χ2(Z, Z̄)
2. (217)

While parton states naturally realize the zero-energy
modes, we must keep in mind that parton states consti-
tute an overcomplete basis. Thus, caution must be exer-
cised. It is possible to double count topologically identi-
cal zero modes (i.e., zero modes with same root patterns)
in the parton construction. To convey this message more
concretely, we will now consider the 101 pattern and their
root states. While the EPP suggests that there are only
9 such states, from the parton construction we get 10

states of the form, χ′
n1n2

(Z, Z̄)χ′
n′
1n

′
2
(Z, Z̄)χ2(Z, Z̄) and

4 states of the form χ′′
nn′(Z, Z̄)χ2(Z, Z̄)

2. All of these 14
states can be constructed from the 9 root patterns of Eq.
(59). The zero modes corresponding to the root states of
Eq. (59) are

Ψ
(1)
0 (Z, Z̄) = χ′

00(Z, Z̄)χ
′
00(Z, Z̄)χ2(Z, Z̄),

Ψ
(2)
0 (Z, Z̄) = χ′

00(Z, Z̄)χ
′
01(Z, Z̄)χ2(Z, Z̄),

Ψ
(3)
0 (Z, Z̄) = χ′

00(Z, Z̄)χ
′
10(Z, Z̄)χ2(Z, Z̄),

Ψ
(4)
0 (Z, Z̄) = χ′

11(Z, Z̄)χ
′
00(Z, Z̄)χ2(Z, Z̄),

Ψ
(5)
0 (Z, Z̄) = χ′

10(Z, Z̄)χ
′
10(Z, Z̄)χ2(Z, Z̄),

Ψ
(6)
0 (Z, Z̄) = χ′

11(Z, Z̄)χ
′
10(Z, Z̄)χ2(Z, Z̄),

Ψ
(7)
0 (Z, Z̄) = χ′

01(Z, Z̄)χ
′
01(Z, Z̄)χ2(Z, Z̄),

Ψ
(8)
0 (Z, Z̄) = χ′

11(Z, Z̄)χ
′
01(Z, Z̄)χ2(Z, Z̄),

Ψ
(9)
0 (Z, Z̄) = χ′

11(Z, Z̄)χ
′
11(Z, Z̄)χ2(Z, Z̄). (218)

Here, the root state corresponding to Ψ
(i)
0 (Z, Z̄) is given

by ⟨Z, Z̄|Ψ(i)
root⟩ as in Eq. (59) for N = 2. Using the

parton construction, we have successfully determined all
possible two particle ground states for the EPPs we have
derived for NL = 4 projected Hamiltonian. We will use
these constraints for many particle systems to construct
many particle root patterns of the zero-energy modes of
our Hamiltonian.

C. Parton-like states from a given root pattern

We have, so far, discussed how to extract root pat-
terns from parton-like states. One may be interested in
determining whether a given root pattern is compatible
with a valid ground state, that is, one that respects the
EPP. We will now start with a given root pattern and
construct possible parton-like states. It is useful to re-
mind the reader of the concise definition of parton-like
states. A parton-like state is a product of M building
blocks. Each building block is a Slater determinant of
particle coordinates zi, z̄i, i = 1, · · · , N . These Slater de-
terminants can be further translated into an increasing
set of angular momenta in second quantized language.
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FIG. 18. Slater determinants χ′
nn′(Z, Z̄) and χ′′

nn′(Z, Z̄) for
2r − 1 particles in two LLs. In χ′

nn′(Z, Z̄) there is single
occupancy in ji = 0 and r − 1. For ji = 0 (ji = r − 1) the
nth (n′th) orbital is occupied. In χ′′

nn′(Z, Z̄), the ji = r− 1 is
unoccupied and ji = 0 and r are singly occupied. For ji = 0
(ji = r) the nth (n′th) orbital is occupied. For the states
above, one can use the pseudospin algebra of Eq. (180). For
χ′
nn′ and χ′′

nn′ the pseudospin is given by n+ n′ − 1.

For a given root pattern {λ}root, in the angular mo-
mentum basis {j}root = {j1, j2, j3, ..., jN}root, an allowed
parton-like state should enable an integerM -partition for
each ji

ji = j
(1)
i + j

(2)
i + ...+ j

(M)
i , i = 1, ..., N, (219)

such that j
(µ)
i ≤ j

(µ)
j , ∀ µ ∈ {1, ...,M}, i < j, with the

constraint that for fixed µ the number of identical j
(µ)
i ’s

must be ≤ N
(µ)
m where N

(µ)
m = min (N

(µ)
L + j

(µ)
i , N

(µ)
L ).

Here, the maximal multiplicity is N
(µ)
m and N

(µ)
L , 1 ≤

N
(µ)
L ≤ NL, represents the number of LLs making up the

µ Slater determinant satisfying
∑

µN
(µ)
L = NL +M − 1

(see Eq. (148)). Under these constraints we can organize
the data in the following table

j1 j2 j3 · · · jN


j
(1)
1 j

(1)
2 j

(1)
3 · · · j

(1)
N

j
(2)
1 j

(2)
2 j

(2)
3 · · · j

(2)
N

...
...

...
. . .

...

j
(M)
1 j

(M)
2 j

(M)
3 · · · j(M)

N




N
(1)
m

N
(2)
m

...

N
(M)
m

, (220)

and, if the constraints are satisfied, it leads to the parton-
like state

Ψp(Z, Z̄) =

M∏

µ=1

χ
N

(µ)
L

(Z, Z̄), (221)

where the N -particles Slater determinants χ
N

(µ)
L

(Z, Z̄)

are made out of orbitals spanning N
(µ)
L LLs with angular

momenta {j(µ)1 , j
(µ)
2 , j

(µ)
3 , · · · , j(µ)N }root.

Let us illustrate the algorithm by applying it to a sim-
ple example. Consider the case of N = 5, M = 3,
NL = 4 with root pattern 1002002 ({−3, 0, 0, 3, 3}root
in angular momentum representation). Our first step
amounts to finding the possible integer partitions of six
(since NL + M − 1 = 4 + 3 − 1 = 6), subject to the

above noted constraints, leading to [N
(1)
L , N

(2)
L , N

(3)
L ]. In

this example, these integer partitions are [2, 2, 2], [1, 2, 3],
and [1, 1, 4]. Next, following Eq. (219), we find all possi-
ble partitions of {−3, 0, 0, 3, 3}root in each decomposition.
For [2, 2, 2] the solution can be written as

−3 0 0 3 3


−1 0 0 1 1
−1 0 0 1 1
−1 0 0 1 1




2
2
2

. (222)

Notice that the boundary state with angular momentum
−1 can only appear once as per our algorithm. For the
other two decompositions, i.e., [1, 2, 3], [1, 1, 4], we do not
have any solution which satisfies Eq. (219) and the con-
straints. In each decomposition, one Slater determinant

has N
(3)
L = 1. Hence, j

(1)
1 < j

(1)
2 < j

(1)
3 < j

(1)
4 < j

(1)
5 .

But, j2 = j3 = 0, implying j2 − j
(1)
2 > j3 − j

(1)
3 . Using

ji = j
(1)
i + j

(2)
i + j

(3)
i together with the above observation

we get, j
(2)
2 + j

(3)
2 > j

(2)
3 + j

(3)
3 . This clearly contra-

dicts our assumption that, j
(µ)
i ≤ j

(µ)
j ,∀i < j. Hence, we

conclude that the root pattern 1002002 has associated
only the parton state [2, 2, 2] with identical Slater deter-
minants of angular momentum {−1, 0, 0, 1, 1}root. This
state corresponds to the closed-shell parton structure
χ2(Z, Z̄)

3, the unique parton solution allowed for the
1002002 root pattern.

For a (non closed-shell) less dense root pattern in the
ground state, one usually has multiple parton-like solu-
tions. Consider the root pattern 1101010101 (N = 6,
M = 3, NL = 4) having the angular momentum repre-
sentation {0, 1, 3, 5, 7, 9}root. This pattern admits more
than one solution,

0 1 3 5 7 9


0 0 1 1 2 2
0 0 1 2 2 3
0 1 1 2 3 4




2
2
2

→ [2, 2, 2] , (223)

0 1 3 5 7 9
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

0 0 1 1 2 2
0 0 1 1 2 2
0 1 1 3 3 5




2
2
2

→ [2, 2, 2] . (224)

Both of these parton-like states share the same,
1101010101, root pattern.

Clearly, given a root pattern it is possible not to have
any single parton-like state associated to it. To illustrate,
we discuss N = 7, M = 3 and NL = 4, which has root
pattern 100111000111 with angular momentum represen-
tation {−3, 0, 1, 2, 6, 7, 8}root. To derive this root pattern,
we need to satisfy following constraints

j2 = j
(1)
2 + j

(2)
2 + j

(3)
2 = 0,

j3 = j
(1)
3 + j

(2)
3 + j

(3)
3 = 1, (225)

j4 = j
(1)
4 + j

(2)
4 + j

(3)
4 = 2.

To satisfy these constraints along with, j
(µ)
i ≤ j

(µ)
j ,∀i <

j, {j(1)3 , j
(2)
3 , j

(3)
3 } must have at least two common el-

ements with both {j(1)2 , j
(2)
2 , j

(3)
2 } and {j(1)4 , j

(2)
4 , j

(3)
4 }.

In other words, at least one j
(µ)
i must appear in all

three cases. Without loss of generality, we assume all

j
(1)
i ’s for i = 2, 3, 4 are identical. Thus, one Slater

determinant must have, at least N
(1)
L = 3. More-

over, {j(1)2 , j
(2)
2 , j

(3)
2 } and {j(1)3 , j

(2)
3 , j

(3)
3 } have one more

common element. Again, we assume without any loss

of generality, identical j
(2)
i ’s for i = 2, 3. Finally,

{j(1)3 , j
(2)
3 , j

(3)
3 } and {j(1)4 , j

(2)
4 , j

(3)
4 } should have two com-

mon elements. Given identical j
(1)
i ’s for i = 2, 3, 4 and

identical j
(2)
i ’s for i = 2, 3, we have two scenarios,

1. j
(2)
3 = j

(2)
4 . In this scenario, j

(2)
i s for i = 2, 3, 4 are

the same and N
(2)
L ≥ 3. In this case, N

(1)
L +N

(2)
L +

N
(3)
L ≥ 3 + 3 + 1 > 6.

2. j
(3)
3 = j

(3)
4 =⇒ N

(2)
L ≥ 2 and N

(3)
L ≥ 2. Thus,

N
(1)
L +N

(2)
L +N

(3)
L ≥ 3 + 2 + 2 > 6.

In both scenarios, in order to have a parton-like solution,
we need NL+M −1 > 6. However, this inequality is not
satisfied given that NL = 4 and M = 3.
As an illuminating application of our algorithm, we

next show that the bulk root pattern {11000} (equal to
{0, 1, 5, 6, 10, 11, . . .}root in angular momentum represen-
tation) for arbitrary n (the Gaffnian 2/5 state81 corre-
sponds to n = 0) cannot have a closed-shell parton struc-
ture associated to it, although it can have a parton-like
structure. For a closed-shell parton, we have one addi-

tional constraint, j
(µ)
i+1 ≤ j

(µ)
i + 1 for all µ, i.e., all shells

must be filled. Assume that there exists a closed-shell
parton state with a zero of order M ∈ odd. Then, start-
ing at j1 = 0

j1 = j
(1)
1 + j

(2)
1 + j

(3)
1 + . . .+ j

(M)
1 = 0,

j2 = j
(1)
2 + j

(2)
2 + j

(3)
2 + . . .+ j

(M)
2 = 1. (226)

Thus, j
(µ)
1 = j

(µ)
2 for any set of M − 1 µ values. With-

out any loss of generality, we assume j
(1)
2 = j

(1)
1 + 1.

Being a closed-shell parton, this is possible only if the
first Slater determinant has a single LL (no degeneracy)
with angular momentum {0, 1, 2, 3, 4, 5, ...}root. Subtruct-
ing {0, 1, 2, 3, 4, 5, ...}root from the original root pattern
{0, 1, 5, 6, 10, 11, . . .}root leads to {0, 0, 3, 3, 6, 6, . . .}root,
which is the same as {λ}broot={200}. Then, the rest of
the Slater determinants in the parton must form a root
pattern of the form {200}. But we have already shown
that the only closed-shell parton associated with such
root pattern is [2, 2, 2]. Thus, for {11000} the only possi-
ble closed-shell parton is [1, 2, 2, 2] with a 4th order zero,
i.e., M = 4. However, a fermionic state should haveM ∈
odd. Thus, we proved that the fermionic {11000} root
pattern cannot have a closed-shell parton structure.

D. Completeness of parton-like states for M = 3 in
4 LLs

We begin by showing that there exist parton-like states
giving every possible root pattern consistent with the

EPP. We do so by solving explicitly Eq. (219) for N
(µ)
L =

2, µ = 1, 2, 3. This can be done in the following way:

j
(1)
i = ⌊ji/3⌋
j
(2)
i = ⌈ji/3⌉
j
(3)
i = ji − j

(1)
i − j

(2)
i ,

(227)

where, ⌊ ⌋ and ⌈ ⌉ are the floor and ceiling func-
tions, respectively. This obviously satisfies Eq. (219), is
monotonically increasing in i, and it is consistent with

N
(µ)
L = 2 for the following reason: For any pattern con-

sistent with the EPP, increasing the particle index i by
2 increases ji by at least 3, thus, every row in Eq. (227)

by at least 1. Thus, for every fixed µ = 1, 2, 3, j
(µ)
i can

assume every value at most twice as a function of i. It
remains to be shown that the value of −1 can occur at
most once. The EPP must be supplemented by boundary
conditions “on the left”, associated to negative angular
momenta, as shown in Appendix D. For root patterns,
these boundary conditions can be simply summarized as
enforcing

j2 ≥ 0 (228)

in addition to the already established rules. In Eq. (227),

this then trivially also implies j
(µ)
i ≥ 0.

Next, we argue that, moreover, for every root state
that is the product of MPS as constructed in Sec. VIA 2
and general factors 00200 and 001sz00, there is a corre-
sponding parton-like state. Given now a root state |Φ⟩
with the MPS/product structure defined above, we con-
struct a parton-like |ψ⟩ state having a root state corre-
sponding to the root pattern of |Φ⟩. Now we compare
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|Φ⟩ to the root state |ψ⟩root of |ψ⟩, each in general a ten-
sor product of mutually un-entangled units. Every fac-
tor ‘2’ in this product must be the same in |Φ⟩ and |ψ⟩,
as |ψ⟩ is a zero mode, and this determines the state of
any ‘2’ in its root state uniquely, as we have seen. Like-
wise, any 1100-string in |ψ⟩root automatically follows the
MPS construction principle of Sec. VIA 2. However, an
string involving 1’s has certain degeneracies associated
to it, as explained there, which we must recover in gen-
eral root states obtained from parton-like states using the
rule (227). Indeed, one verifies from this rule that every
leading 1 in a . . . 00101 unit will be mapped to a singly
occupied j-orbital in exactly two of the three Slaters,
with the analogous statement true for the left-right re-
versed situation. Every central 1 in a 10101-pattern will
be mapped to a singly occupied j-orbital in exactly one
of the three Slaters. And every . . . 001sz00 unit will be
mapped to singly occupied j-orbitals in all three Slaters.
Every singly occupied j-orbital in a Slater determinant
leads to a free spin-1/2 degree of freedom in the MPS at
root level. Indeed, all the expected spin-1/2 degrees of
freedom of the MPS associated to the 1-carrying patterns
are generated this way, and lead to all the possible MPS
described in Sec. VIA 2. This shows that for every possi-
ble MPS-solution for the EPP, we find a parton-like state
whose root state or DNA is precisely this MPS-solution.

The completeness of the parton-like states as zero
modes is now obtained as follows. We may assume
that the MPS states described in Sec. VIA 2 represent
a complete set of solutions for the EEP governing the
. . . 110110 . . . pattern, based on general arguments for
AKLT-type constructions65. Then, the MPS/product
states discussed here represent a complete set of possi-
ble root states {|Φd⟩}, where d is some label referencing
all such states. (Here and in the following, we may re-
strict to fixed total angular momentum J to keep the set-
ting finite dimensional). By the above, we always have a
parton-like state |ψd⟩ whose root state is |Φd⟩. We may
now reproduce the proof given in Ref. [14] for the com-
pleteness of the states |ψd⟩ as zero modes. By construc-
tion, ⟨Φd|ψd⟩ ≠ 0, however, the matrix ⟨Φd′ |ψd⟩ need not
be diagonal. Nonetheless, for given |ψd⟩, every |Φd′⟩ with
d′ ̸= d is not the root state of |ψd⟩, and if ⟨Φd′ |ψd⟩ ≠ 0,
then |Φd′⟩ consists of Slater determinants that can be ob-
tained from those of |Φd⟩ via inward-squeezing processes.
This is enough to show that an ordering of the labels {d}
exists such that the matrix ⟨Φd′ |ψd⟩ is triangular. There-
fore this matrix is invertible. Given now any zero-mode
|ψ⟩, this fact allows the construction of a superposition
|ψ′⟩ of parton-like states |ψd⟩ such that ⟨Φd|ψ⟩ = ⟨Φd|ψ′⟩.
The difference |ψ⟩ − |ψ′⟩ is then a zero mode that is or-
thogonal to all possible root states, a contradiction unless
|ψ⟩ = |ψ′⟩. Therefore, |ψ⟩ is a superposition of |ψd⟩’s.

VII. CONCLUSIONS AND OUTLOOK

Traditionally, FQH systems have been largely exam-
ined either via wave function Ansätze or effective field
theories. The links between these two approaches run
deep with illuminating insights between edge conformal
field theories (CFTs) and bulk polynomial wave func-
tions, and relations to edge CFTs and topological quan-
tum field theories (TQFTs) on the other. In this pa-
per, we proceeded along an inter-related third approach
rooted in the study of microscopic many-body Hamiltoni-
ans. We studied the structure of entangled multiple Lan-
dau level (LL) states and their local (in real space) many-
body parent Hamiltonians. Our results may potentially
further help bridge the divide between the above noted
microscopic wave functions and long distance continuum
field theories. A focus of our work was the study of uni-
versal structures present in multiple, NL, LL FQH sys-
tems. We have studied the general zero-mode structure of
rather general positive semi-definite local Hamiltonians.
In our analysis of their zero modes, a key role was played
by the “M -clustering property” of QH wave functions-
the existence of M -th order zeroes near a two-particle
coincidence hyperplane. Since Laughlin’s celebrated con-
struction of his variational wave function for the 1/3 FQH
state, numerous wave functions with M -clustering prop-
erties have seen proposed. Laughlin’s wave function can
be expressed as the product of the lowest LL (LLL) wave
function with M Slater determinants of holomorphic (or
anti-holomorphic) wave functions several filling fractions
of the form 1/M (odd M), which are experimentally ob-
served. Jain has further extended this construct by intro-
ducing his composite fermion picture, wherein a single LL
is replaced by multiple Λ-levels. In spite of their immense
success in explaining a plethora of FQH plateaus, all of
these states are qualitatively similar to integer QH states.
Filling fractions observed at higher LLs, such as82, 5/2,
12/5, 7/3, and 8/3 are, however, suspected to exhibit
more intricate physics demanding far more complicated
wave functions. A unified systematic understanding of
these systems invites the search of general principles and
tools of analysis.

Inspired by these all too well-known challenges, we ex-
tended the Hamiltonian approach to more general FQH
states. In the current work, we examined, in great de-
tail, the zero-mode subspace of the aforementioned local,
multiple LL, two-body Hamiltonians. Consequently, we
determined a basis for the Hilbert space formed by poly-
nomials associated with general states that entangle the
different LLs and obey the M -clustering property. We
conjectured that these basis elements are parton-like, i.e.,
are products of M Slater determinants, and rigorously
demonstrated it for M = 3, NL ≤ 4. These parton-like
structures capture a very rich class of states. Our par-
ent Hamiltonians are frustration-free QH Hamiltonians.
The construction of the Laughlin wave function as the
above noted product of Slater determinants- a parton
state built from LLL wave functions satisfying the two-
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bodyM -clustering properties- can be extended in several
ways. These principally include the construction of (a)
LLL (holomorphic) wave function with k-body (k > 2)
M -clustering properties or, as we pursue in the this pa-
per, of (b) parton states (two-body M -clustering) from
multiple LLs. The more traditional approach (a) gives
rise to the Moore-Read (MR) 1/2 state (candidate for
5/2 filling fraction3), the Read-Rezayi (RR) 2/3 state
(candidate for 12/5 filling fraction83), and many other
CFT inspired states. The MR and RR states are mem-
bers of a polynomial space satisfying the M -clustering
property. We have, instead, followed the aforementioned
approach (b). As emphasized above, we extended par-
ton states to higher LLs. In particular, we constructed
candidate FQH states that are topologically similar to
the MR and RR states. These states not only provide
candidate wave functions for several FQH plateaus but
can also be further associated with frustration-free pos-
itive semi-definite two-body parent Hamiltonians in flat
bands with higher Chern numbers84. Our specific anal-
ysis focused on degenerate LLs arising when the kinetic
energy is quenched. As such, our results may capture
the detailed physics of systems that allow for mixing be-
tween multiple nearly flat bands such as those realized in
layered graphene10,85. In multi-layer graphene, multiple
degenerate LLs can appear with quenched kinetic energy.

Within our parton construction, we are not limited to
states with conformal block structures. Constructing a
multiple LL parton state is far more challenging than
that of its single LL counterpart. There exist no effec-
tive flux attachment analogies in the former case and the
resulting wave function can have very different edge ex-
citation than the constituting Slater determinant states.
In order to establish these states as the unique densest
ground state of some two-body parent Hamiltonian, we
have used fundamental organizing principles, known as
the Entangled Pauli Principles (EPPs). The EPP pro-
vides a rigorous zero-mode counting method for zero-
energy excitations and determines, in a way that we make
precise, the quintessential DNA of the densest ground
state. The zero-mode counting enabled by the EPP
for the non-holomorphic multiple LL states prompted
queries that go beyond known mathematical results. In
particular, our results and resulting conjectures can be
interpreted as new conjecture in commutative algebra,
of which we prove special instances. Specifically, we
posit that all polynomials P (z1, z2, . . . , zN , z̄1, z̄2, . . . z̄N )
of complex variables {zi} and their complex conjugates
{z̄i} that (a) adhere to (anti-)symmetry under the in-
terchange of any pair of complex coordinates, (b) satisfy
theM -clustering property, and (c) are not of order higher
than n = NL−1 in any z̄i, are linearly spanned by parton-
like states. Our study of the EPP and FQH DNAs can
further be used in torus geometry to construct a coher-
ent state description of the ground state encoding useful
information such as exchange statistics and topological
classification for the corresponding parton states.

We have shown that in the toroidal geometry, our par-

ent Hamiltonians satisfy an S-duality. That is, there
exists a duality that links Hamiltonians associated with
two different aspect ratios of the torus (i.e., those with
Lx/Ly < 1 to those with Lx/Ly > 1). The S-duality
enabled us to extract characteristic properties of the QH
fluid, being a key ingredient in our approach to the quasi-
particle statistics. For instance, for a QH system in the
subspace of 4 LLs we have obtained the DNA of the
fluid and topological classifications. We have furthermore
demonstrated that the excitations are none other than
Fibonacci anyons. As is well known, Fibonacci anyons
may provide a simple platform for achieving universal
topological quantum computation. In an earlier work, we
found that the corresponding excitations for the Jain-221
state15 are Majorana fermions. Majorana and Fibonacci
statistics are naturally associated with groups suggested
by underlying TQFTs (related to SU(2)2 and SU(2)3 re-
spectively). Thus, the results of our braiding analysis
exhibit natural connections between the DNA and asso-
ciated EPPs, which emerge microscopically in our mod-
els, and TQFTs. It is noteworthy that the domain walls
generally arising in our multiple LL setting are not sim-
ple domain walls such as those in classical spin chains
nor a tensor product of such defects. Rather, these are
bona fide quantum topological defects that may feature
entanglement.

In the context of strongly correlated physics, one of-
ten uses the Hilbert space of Slater determinants as a
basis for numerical calculations. However, the dimension
of the Hilbert space of parton-like states with an M -
clustering property is drastically smaller than the Hilbert
space of Slater determinants. For this reason, we believe
that using the Hilbert space of parton-like states reduces
complexity of numerical calculations for strongly corre-
lated many-body systems such as QH systems. In the
particular context of Quantum Monte Carlo simulations,
updating Slater determinants becomes polynomially effi-
cient because of the Sherman-Morrison formula86. This
procedure can also be extended to the case of parton-like
states. We postpone the elaboration of these ideas for a
later publication.

Beyond our specific results, our work provides a gen-
eral framework that naturally highlights several broad
concepts and further underscores several open questions.
We elaborate on one of these below.

The relation between generic parton states and bound-
ary Conformal Field Theories. In the current work, we
derived numerous results for the system bulk. However,
apart from insightful Chern-Simons theory type conjec-
tures,87 a systematic understanding of the edge theory
of general parton states is non-existent. Our general ap-
proach to QH states lies outside the purview of stan-
dard CFT framework in which the boundary behaviors
are transparent. Indeed, nowhere in our analysis have
we relied on CFT notions. This is partially so since stan-
dard CFT recipes cannot be straightforwardly applied to
general non-holomorphic states such as the one that we
investigate here. Obtaining the associated boundary the-
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ories for generic parton states is a non-trivial challenge.

We next briefly speculate on how our exact many-
body Hamiltonian and zero-mode counting based scheme
may be effective in establishing the link between non-
holomorphic QH states and their effective boundary the-
ories. The results of our approach must be in a one-to-one
correspondence with the zero-mode counting of the con-
formal edge theory. In the conventional CFT type modus
operandi, plausible CFTs are guessed and, subsequently,
a check is performed to see whether the conformal blocks
in these proposed CFTs match with those of the wave
function. Given a candidate CFT, the number of pos-
sible edge modes of a given angular momentum may be
computed. Our method should enable the unambiguous
identification of the boundary theory by employing zero-
mode counting that can be rigorously established via the
use of the EPPs. This may afford as strong a connection
between mixed-LL parton QH states and their effective
edge CFTs as that which one usually takes for granted in
the lowest LL. For the Jain-221 state15, we have indeed
made such a zero-mode counting based “bulk-boundary
correspondence type” connection rigorous. We anticipate
such a link to be far more general. This may complement,
especially for non-holomorphic states, the insightful con-
formal block trick of Moore and Read. In other words,
we speculate that a zero-mode counting of the bulk states

(using the precise many-body microscopic Hamiltonian
that we employed in the current work) may, generally,
lead to the relevant edge theories. This approach will not
invoke discussions of effective Chern-Simons theories. In
particular, such a many-body based technique may be
applicable for generic parton theories for which there are
currently no known CFTs. As we additionally explained
in the current work, the coherent state method enables a
way to infer the bulk braiding statistics. Taken together,
all of the above ingredients suggest how our many-body
approach may allow unambiguous determination of effec-
tive field theory from microscopic Hamiltonians.
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I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
n1 0 0 1 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 3 3 3 3
n2 0 1 0 1 1 1 0 0 0 0 1 1 1 1 1 2 2 2 3 3 0 0 0 1 1 1 1 1 1 2 2 2 2 3 3 3 3 3 3 3
m 1 0 2 1 1 3 1 3 0 2 1 3 0 2 4 1 3 5 1 3 0 2 4 0 2 4 1 3 5 0 2 4 6 1 3 5 1 3 9 7

TABLE VIII. Quantum numbers labeling the fermionic basis operators Tn1,n2 −
j,m for NL = 4 LLs.
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Appendix A: Two-particle states: From wave
functions to Fock states

Consider the following normalized vacua

|0, 0, 2j −m,m⟩ (A1)

=
1√

(2j −m)!m!
b†2j−m
c b†mr |0⟩

=
1√

(2j −m)!m!

∑

k

Cmjk

2j
b†j−k
1 b†j+k

2 |0⟩,

where

⟨zc, z̄c; zr, z̄r|0⟩ =
1√
2πℓ2c

e
− zcz̄c

4ℓ2c
1√
2πℓ2r

e
− zrz̄r

4ℓ2r , (A2)

and ℓc = ℓ/
√
2, ℓr =

√
2ℓ. In this paper, unless specified

otherwise, we set the magnetic length ℓr to be the unit of
length, i.e., ℓr = 1 or ℓ = 1/

√
2. On the torus geometry,

for convenience, we will work with ℓ = 1.
Each individual vacuum state is of total angular mo-

mentum 2j and lies in the LLL (i.e., is a holomorphic

state in a first quantization description). In a disk ge-
ometry, when using the symmetric gauge A(xi, yi) =
B
2 (yix̂ − xiŷ), the LL and cyclotron-orbit-center ladder
operators become

ai =
1√
2
(
zi
2ℓ

+ 2ℓ∂z̄i) , a†i =
1√
2
(
z̄i
2ℓ

− 2ℓ∂zi),

bi =
1√
2
(
z̄i
2ℓ

+ 2ℓ∂zi) , b†i =
1√
2
(
zi
2ℓ

− 2ℓ∂z̄i). (A3)

As a result, the coefficients in the expansion of Eq. (A1)
are given by24

Cmjk = (−1)m+j−k

×
j−k∑

q=0

(−1)q
(
2j −m

q

)(
m

j − k − q

)
. (A4)

This expression indicates that j−k is an integer. Thus, if
j is an integer (half-odd integer) then k is an integer (half-
odd integer). The normalized vacua in Eq. (A1) may be
either symmetric (m ∈ even) or antisymmetric (m ∈ odd)
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under particle exchange, the fermionic basis states |I⟩F
given in Eq. (11) are, by definition, antisymmetric.

We want now to find the Slater determinant decompo-
sition of the two-particle states |I⟩F . This decomposition
will allow us to find an immediate representation of the
corresponding state in terms of fermionic operators. In
turn, this decomposition will reveal a fundamental two-
particle generator in Fock space. It can be checked that
Eq. (11) can be expressed as

|I⟩F =
1√

n1!n2! 22j+1(1 + δn1,n2
)

(A5)

×
j∑

k=−j

Cmjk√
(2j −m)!m!

Q(k)|0⟩,

where we have used the property that, for m odd (even),
Cmj −k = −(+)Cmjk, and

Q(k) =

∣∣∣∣
a†n1

1 b†j−k
1 a†n1

2 b†j−k
2

a†n2

1 b†j+k
1 a†n2

2 b†j+k
2

∣∣∣∣ . (A6)

In first quantization,

⟨z1, z̄1; z2, z̄2|Q(k)|0⟩ =
√
n1!n2!(j − k)!(j + k)! Dα1α2 ,

showing that the operator Q(k) is a generator of two-
particles Slater determinants. Now defining

ηk(j,m) ≡
√

(j − k)!(j + k)!

22j−1(2j −m)!m!
Cmjk, (A7)

Eq. (12) is obtained.

Appendix B: Interaction potential expansion

In this Appendix, we will obtain the general pseudopo-
tential expansion for any sufficiently short range two-
body (rotationally symmetric) interaction. Consider the
two-body interaction V (ri − rj) = V (rij) with Fourier
transform

V (rij) =

∫
d2k

(2π)2
Ṽ (k) eik·rij

=

∫ ∞

0

dk

2π
kṼ (k) J0(k|rij|), (B1)

where J0(x) is the zeroth spherical Bessel function49.
From the definition of the delta function

Lα(−ℓ2∇2
ij)δ

2(rij) =

∫
d2q

(2π)2
Lα(ℓ

2q2) eiq·rij

=

∫ ∞

0

dq

2π
qLα(ℓ

2q2) J0(q|rij|),

where Lα(x) is the αth Laguerre polynomial49, and ℓ the
magnetic length. We multiply the last expression by

Vα = ℓ2
∫ ∞

0

dk2 Ṽ (k)Lα(ℓ
2k2) e−ℓ2k2

, (B2)

and sum over the whole range of α’s. After using the
identity

ℓ2
∞∑

α=0

Lα(ℓ
2k2)Lα(ℓ

2q2) = δ(q2 − k2) eℓ
2(k2+q2)/2,

we arrive at the pseudopotential expansion48,88

V (ri − rj) =

∞∑

α=0

Vα Lα(−ℓ2∇2
ij)δ

2(ri − rj). (B3)

The expansion to lowest order is

V (ri − rj) = (V0 + V1 + V1ℓ
2 ∇2

ij) δ
2(ri − rj). (B4)

Note that terms proportional to δ2(ri−rj) have vanishing
matrix elements for fermionic wave functions.

When projected onto the LLL, the expansion above
coincides with the Haldane pseudopotential over the rel-
ative angular momentum ℏα = ℏm.
Eigensolutions of Eq. (24) with vanishing eigenvalue

must have (at least) third order zeros when two fermions
coalesce. This defines the clustering properties of the
zero modes.

Given a zero energy state |Ψ0⟩, i.e., ⟨Ψ0|Hint |Ψ0⟩ = 0,
assume it is of the general form

Ψ0(Z, Z̄) =

M∑

q=0

zqij z̄
M−q
ij Pq(Z, Z̄) e

− 1
4ℓ2

∑N
i=1 ziz̄i (B5)

in coordinate representation, with Z = {z1, z2, · · · , zN}
and Z̄ = {z̄1, z̄2, · · · , z̄N}, zij = zi − zj, z̄ij = z̄i −
z̄j, Pq(Z, Z̄) a polynomial symmetric with respect to
(zi, z̄i) ↔ (zj, z̄j), and (anti-)symmetric with respect to
other variables exchanges, and M an (odd)even integer.
Then, from the zero energy condition and integration

by parts

⟨Ψ0|Hint |Ψ0⟩

= V1ℓ
2

∫
dZdZ̄

∑

i<j

δ2(rij)∂zij∂z̄ij |Ψ0(Z, Z̄)|2 = 0,(B6)

given the general form of Eq. (B5), M must satisfy M ≥
2. For fermions, due to antisymmetry,M should be larger
than 3.

Appendix C: Projection onto four LLs

Using the states defined in Eq. (11) in the subspace of
four LLs such that 0 ≤ ni ≤ 3 for i = 1, 2, we find a forty
dimensional basis. In Table VIII, we present the set of
numbers {n1, n2,m} used to construct each basis state
|I⟩F . We express these states (in which subscript F is
dropped for brevity) in terms of |nc, nr, 2j −m,m⟩,

|1⟩ = |0, 0, 2j − 1, 1⟩,
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|2⟩ = |0, 1, 2j, 0⟩,
|3⟩ = |0, 1, 2j − 2, 2⟩,
|4⟩ = |1, 0, 2j − 1, 1⟩,

|5⟩ = 1√
2
(|2, 0, 2j − 1, 1⟩ − |0, 2, 2j − 1, 1⟩),

|6⟩ = 1√
2
(|2, 0, 2j − 3, 3⟩ − |0, 2, 2j − 3, 3⟩),

|7⟩ = 1√
2
(|2, 0, 2j − 1, 1⟩+ |0, 2, 2j − 1, 1⟩),

|8⟩ = 1√
2
(|2, 0, 2j − 3, 3⟩+ |0, 2, 2j − 3, 3⟩),

|9⟩ = |1, 1, 2j, 0⟩,
|10⟩ = |1, 1, 2j − 2, 2⟩,

|11⟩ = 1

2
(
√
3 |3, 0, 2j − 1, 1⟩ − |1, 2, 2j11 − 1, 1⟩),

|12⟩ = 1

2
(
√
3 |3, 0, 2j − 3, 3⟩ − |1, 2, 2j − 3, 3⟩),

|13⟩ = 1

2
(|2, 1, 2j, 0⟩ −

√
3 |0, 3, 2j, 0⟩),

|14⟩ = 1

2
(|2, 1, 2j − 2, 2⟩ −

√
3 |0, 3, 2j − 2, 2⟩),

|15⟩ = 1

2
(|2, 1, 2j − 4, 4⟩ −

√
3 |0, 3, 2j − 4, 4⟩),

|16⟩ = 1√
64

(
√
24|4, 0, 2j − 1, 1⟩+

√
24|0, 4, 2j − 1, 1⟩

− 4|2, 2, 2j − 1, 1⟩),

|17⟩ = 1√
64

(
√
24|4, 0, 2j − 3, 3⟩+

√
24|0, 4, 2j − 3, 3⟩

− 4|2, 2, 2j − 3, 3⟩),

|18⟩ = 1√
64

(
√
24|4, 0, 2j − 5, 5⟩+

√
24|0, 4, 2j − 5, 5⟩

− 4|2, 2, 2j − 5, 5⟩),

|19⟩ = 1√
24

(
√
3!|3, 0, 2j − 1, 1⟩+ 3

√
2|1, 2, 2j − 1, 1⟩),

|20⟩ = 1√
24

(
√
3!|3, 0, 2j − 3, 3⟩+ 3

√
2|1, 2, 2j − 3, 3⟩),

|21⟩ = 1√
24

(
√
3!|0, 3, 2j, 0⟩+ 3

√
2|2, 1, 2j, 0⟩),

|22⟩ = 1√
24

(
√
3!|0, 3, 2j − 2, 2⟩+ 3

√
2|2, 1, 2j − 2, 2⟩),

|23⟩ = 1√
24

(
√
3!|0, 3, 2j − 4, 4⟩+ 3

√
2|2, 1, 2j − 4, 4⟩),

|24⟩ = 1√
12

(
√
3!|0, 3, 2j, 0⟩ −

√
3!|2, 1, 2j, 0⟩),

|25⟩ = 1√
12

(
√
3!|0, 3, 2j − 2, 2⟩ −

√
3!|2, 1, 2j − 2, 2⟩),

|26⟩ = 1√
12

(
√
3!|0, 3, 2j − 4, 4⟩ −

√
3!|2, 1, 2j − 4, 4⟩),

|27⟩ = 1√
48

(
√
4!|4, 0, 2j − 1, 1⟩ −

√
4!|0, 4, 2j − 1, 1⟩),

|28⟩ = 1√
48

(
√
4!|4, 0, 2j − 3, 3⟩ −

√
4!|0, 4, 2j − 3, 3⟩),

|29⟩ = 1√
48

(
√
4!|4, 0, 2j − 5, 5⟩ −

√
4!|0, 4, 2j − 5, 5⟩)

|30⟩ = 1√
192

(
√
4!|4, 1, 2j, 0⟩+

√
5!|0, 5, 2j, 0⟩

− 4
√
3|2, 3, 2j, 0⟩),

|31⟩ = 1√
192

(
√
4!|4, 1, 2j − 2, 2⟩+

√
5!|0, 5, 2j − 2, 2⟩

− 4
√
3|2, 3, 2j − 2, 2⟩),

|32⟩ = 1√
192

(
√
4!|4, 1, 2j − 4, 4⟩+

√
5!|0, 5, 2j − 4, 4⟩

− 4
√
3|2, 3, 2j − 4, 4⟩),

|33⟩ = 1√
192

(
√
4!|4, 1, 2j − 6, 6⟩+

√
5!|0, 5, 2j − 6, 6⟩

− 4
√
3|2, 3, 2j − 6, 6⟩),

|34⟩ = 1√
192

(
√
5!|5, 0, 2j − 1, 1⟩+

√
4!|1, 4, 2j − 1, 1⟩

− 4
√
3|3, 2, 2j34 − 1, 1⟩),

|35⟩ = 1√
192

(
√
5!|5, 0, 2j − 3, 3⟩+

√
4!|1, 4, 2j − 3, 3⟩

− 4
√
3|3, 2, 2j − 3, 3⟩),

|36⟩ = 1√
192

(
√
5!|5, 0, 2j − 5, 5⟩+

√
4!|1, 4, 2j − 5, 5⟩

− 4
√
3|3, 2, 2j − 5, 5⟩),

|37⟩ = 1√
2304

(
√
6!|6, 0, 2j − 1, 1⟩

− 3
√
4!
√
2|4, 2, 2j − 1, 1⟩ −

√
6!|0, 6, 2j − 1, 1⟩

+ 3
√
4!
√
2|2, 4, 2j − 1, 1⟩),

|38⟩ = 1√
2304

(
√
6!|6, 0, 2j − 3, 3⟩

− 3
√
4!
√
2|4, 2, 2j − 3, 3⟩ −

√
6!|0, 6, 2j − 3, 3⟩

+ 3
√
4!
√
2|2, 4, 2j − 3, 3⟩),

|39⟩ = 1√
2304

(
√
6!|6, 0, 2j − 5, 5⟩

− 3
√
4!
√
2|4, 2, 2j − 5, 5⟩ −

√
6!|0, 6, 2j − 5, 5⟩

+ 3
√
4!
√
2|2, 4, 2j − 5, 5⟩),

|40⟩ = 1√
2304

(
√
6!|6, 0, 2j − 7, 7⟩

− 3
√
4!
√
2|4, 2, 2j − 7, 7⟩ −

√
6!|0, 6, 2j − 7, 7⟩

+ 3
√
4!
√
2|2, 4, 2j − 7, 7⟩). (C1)

Appendix D: The boundary root pattern

Here, we follow the method of Section III B 3 to estab-
lish the left boundary conditions for a generic N -particle
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zero-energy ground state |Ψ0⟩ with NL = 4 LLs. By left
boundary conditions, we specifically refer to the allowed
negative angular momentum orbitals of |Ψroot⟩. Near the
boundary, since the two-body basis elements must obey

n1 + n2 −m ≥ −2j, (D1)

not all of the two-fermion operators are well defined. For
example, when j = −3 + 1/2 = −5/2 only the two-
fermion operators with ξ = 9, 12 are well defined. When
j = −2, the well defined two-fermion operators are ξ =
8, 9, 11, 12. For j = −3/2, we get ξ = 6, 8, 9, 10, 11, 12.
And for j = −1, we get ξ = 4, 6, 7, 8, 9, 10, 11, 12.

To study the multiplicity of orbitals with −3 < j < 0,
we can utilize Eq. (65). Note that the smallest angular
momentum orbital j = −3 can only be occupied by a sin-
gle electron. When orbitals with j = −2 are occupied by
two electrons, the resultant root state with a single co-
efficient Cj

n1,n2
= C−2

2,3 has to satisfy 4 constraints from

Eq. (65). As a result, the multiplicity two in j = −2
orbitals is not allowed. Similarly, j = −1 orbitals oc-
cupied by two electrons cannot be allowed since such a
root state has only 3 coefficients C−1

n1,n2
, which cannot

simultaneously satisfy the 8 constraints of Eq. (65). As
a result, in a generic root state, we conclude that mul-
tiplicity of j < 0 orbitals can be at most one. That

is, 111 · · · , 110 · · · , 101 · · · , 011 · · · , 100 · · · , 010 · · · , or
001 · · · , where · · · refers to some bulk root pattern with
orbitals j ≥ 0.
Root pattern 111 · · · can have 6 coefficients. Steps sim-

ilar to those that led to Eq. (64) can be followed to obtain
constraints governing the appearance of Slater determi-

nants of the form |n⟩ = c†n1,j−k′c
†
n2,j+k′ |n2⟩ in the root

state. However, the corresponding root state must si-
multaneously satisfy the j = −5/2, −2, −3/2 constraints
which indicates that such a pattern is not possible. Pat-
terns 110 · · · , 101 · · · , and 011 · · · have an equal number
of coefficients and constraints. That is, 2, 4, and 6 that
correspond to j = −5/2, −2, and −3/2, respectively. In-
voking the linear independence of the equations, in the
homogeneous set of linear equations, leads to only the
trivial solution, where all the coefficients are zero. As a
result, none of the patterns with two particles occupying
the j < 0 orbitals are allowed.
Consequently, in a root state satisfying the EPP con-

ditions in the bulk (j ≥ 0) the boundary orbitals (j < 0)
can only be occupied with a single particle. For example,
pattern 100 · · · is generally allowed (N ≥ 2). Fusing this
admissible left boundary and the densest bulk patterns
and assuming no change in the bulk pattern to ensure
the existence of no excitation, we obtain that the densest
pattern consistent with the EPP is the root pattern

100200200 . . . 2002. (D2)

Appendix E: Braiding Statistics: Proof of Eq. (76)

ψn,j =
1√
L

∑

j′

ωjj′ ψ̄n,j′ =
1√
L

∑

j′,s′

ei
2π
L jj′ ϕ̄n,j′+s′L =

1√
L

∑

j′,s,s′

ei
2π
L (j+sL)(j′+s′L)ϕ̄n,j′+s′L =

1√
L

∑

s,j′

ei
2π
L (j+sL)j′ ϕ̄n,j′

=⇒ ψn,j =
1√
L

∑

s,j′

ei
2π
L (j+sL)j′e−i2πj′x∆Hn

(√
−i2πτL

(
y∆ − j′

L

))
e
iπτL

(
y∆− j′

L

)2

=⇒ ψn,j =
1√
L

∑

s,j′

e
i2πL

(
y∆− j′

L −y∆

)
(x∆− j

L−s)Hn

(√
−i2πτL

(
y∆ − j′

L

))
e
iπτL

(
y∆− j′

L

)2

=⇒ ψn,j = e−i2πLx∆y∆

∑

s

e2π(j+sL)y∆
1√
L

∑

j′

e
i2πL

(
y∆− j′

L

)
(x∆− j

L−s)Hn

(√
−i2πτL

(
y∆ − j′

L

))
e
iπτL

(
y∆− j′

L

)2

=⇒ ψn,j = e−i2πLx∆y∆

∑

s

e2π(j+sL)y∆Hn

(√
i2π

L

τ

(
x− j

L
− s

))
e−iπ L

τ (x−
j
L−s)

2

= e−i2πLx∆y∆

∑

s

ϕn,j+sL


