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Abstract

We study the many-body physics in twisted bilayer graphene coupled to periodic driving
of a circularly polarized light when electron-electron interactions are taken into account.
In the limit of high driving frequencyΩ, we use Floquet theory to formulate the system by
an effective static Hamiltonian truncated to the order of Ω−2, which consists of a single-
electron part and the screened Coulomb interaction. We numerically simulate this ef-
fective Hamiltonian by extensive exact diagonalization in the parameter space spanned
by the twist angle and driving strength. Remarkably, in a wide region of the parameter
space, we identify Floquet fractional Chern insulator states in the partially filled Floquet
valence band. We characterize these topologically ordered states by ground-state de-
generacy, spectral flow, and entanglement spectrum. In regions of the parameter space
where fractional Chern insulator states are absent, we find topologically trivial charge
density waves and interaction-induced Fermi liquid which strongly compete with frac-
tional Chern insulator states.

Contents

1 Introduction 2

2 Model 3
2.1 Static system 3
2.2 Floquet system 4

3 Floquet band structure 6

4 Many-body physics 7
4.1 w1 = 90 meV 8
4.2 w1 = 110 meV 11

5 Discussion 12

A Effective Floquet Hamiltonian 13

References 15

1



SciPost Physics Submission

1 Introduction

Van-der-Waals heterostructures with moiré patterns [1, 2] have attracted tremendous atten-
tion over the last few years. When two atomic layers are stacked with each other, the mis-
match between two crystals due to different lattice constants and/or a twist angle generates a
large-scale superlattice and affects the interlayer coupling. Such moiré systems, whose band
structures are highly controllable, are promising to host numerous exotic phenomena. A rep-
resentative example is the twisted bilayer graphene (TBG), consisting of two sheets of mono-
layer graphene with a twist angle in between [3]. One of the most striking features of TBG is
that, at certain special twist angles (called magic angles), the low-energy bands near charge
neutrally point (CNP) can be tuned to be flat, thus providing an ideal platform to investigate
correlated physics. Indeed, unconventional superconductivity and ferromagnetism have been
discovered in TBG [4–9]. Another salient progress in this direction is the observation of the
quantum anomalous Hall effect at zero magnetic field (also called Chern insulators) in TBG
aligned with a hexagonal boron nitride (hBN) [10]. In this case, hBN gaps out the protected
Dirac points of TBG, such that the flat bands around CNP is isolated and acquire nonzero
Chern numbers [6, 10–14]. Motivated by this topological band structure, a lot theoretical ef-
forts have been made to demonstrate the possibility of realizing the zero-field fractional Chern
insulators (FCIs) [15–17] in TBG-hBN when the flat bands near CNP are partially filled by
interacting electrons [18–21]. Excitingly, evidence of FCIs in TBG-hBN has been reported in a
recent experiment at weak magnetic fields [22].

External driving fields of light provide an alternative avenue to obtain topological band
structures even if the original bands in the absence of driving is topologically trivial [23–30].
Unlike nondriven systems, systems periodically driven by light do not have well-defined static
band structures. However, the effect of light enters an effective static Hamiltonian that cap-
tures the dynamics of the system on time scales much longer than the driving period [24,31–
33]. This effective static Hamiltonian, which describes photo-dressed band structures, has
been extensively used to predict the out-of-equilibrium topological properties of various peri-
odically driven systems [23,24,27,28,34]. In particular, accompanying the rapid development
of moiré materials, exploring the effects of light on moiré band structures has become an in-
triguing direction recently [35–44]. Just like in monolayer graphene [23,24,45], a circularly
polarized light can open a band gap at the Dirac points of TBG and give rise to Floquet topo-
logical flat bands [36,37,39]. In this sense, for TBG the light driving plays the role of hBN in
the static case.

While exciting progress has been made on Floquet moiré materials, the interactions be-
tween electrons are not yet taken into account in previous works [36, 37, 39–44]. Hence
whether correlated topological phases can be induced by light driving in these systems re-
mains a crucial open question. In the context of photon-dressed topological band structure, a
natural candidate of correlated topological states is the Floquet FCI which was first proposed
in monolayer graphene [46,47]. The Floquet FCI is formed when interacting particles partially
fill in a topological flat band of the effective static Hamiltonian of the driven system.

In this work, to investigate the possibility of stabilizing Floquet FCIs in moiré materials,
we consider TBG driven by a circularly polarized laser light. We focus on the limit of high
driving frequency Ω, in which case we truncate the effective static Hamiltonian to the order
of Ω−2. Unlike Ref. [47], we find this effective static Hamiltonian does not contain new ef-
fective interactions that could diminish FCIs. This feature is due to the special form of the
TBG Hamiltonian. Then we use exact diagonalization to search for the evidence of Floquet
FCIs in the parameter space spanned by the twist angle and the driving strength. Strikingly,
for electrons interacting via the screened Coulomb potential, we find a wide region in which
FCIs are promising to exist when the Floquet valence band is occupied at filling ν = 1/3. We
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Figure 1: Moiré Brillouin zone of TBG. Two large hexagons are original first Bril-
louin zones of top and bottom graphene layers. The small hexagon represents the
MBZ resulting from twist. The Kt,b

+ points, the vectors q0,1,2 in Eq. (1) and the MBZ
reciprocal lattice vectors G1 and G2 are given.

also observe charge density waves (CDWs) and Fermi liquid (FL)-like states in the neighboring
regions of FCIs. The overall phase diagram is similar for different interlayer coupling strength
of TBG. Because the effective Hamiltonian of Floquet TBG in the high-frequency limit is anal-
ogous to that of static TBG-hBN, our results could also apply to the many-body physics in the
later system.

2 Model

We consider the low-energy dynamics of TBG at small twist angles (θ ∼ 1◦) by following
Bistritzer and MacDonald’s continuum model [48]. After twisting, the original first Brillouin
zone of single-layer graphene is folded into moiré Brillouin zones (MBZ). We assume valley
and spin polarization and focus on the MBZ near the valley K+ of the single-layer graphene
(Fig. 1). In this MBZ, the K+ points of the top and bottom graphene layers are located at
Kt
+ = Rθ/2K+ and Kb

+ = R−θ/2K+, respectively, with Rθ a counter-clockwise rotation around
the z-axis in the momentum space. G1 and G2 are the primitive reciprocal lattice vectors of
the MBZ, with a1 and a2 the corresponding real-space primitive lattice vectors.

2.1 Static system

In the absence of driving, the single-electron Hamiltonian of TBG in the momentum space [18,
49] takes the form of

Hkin =
∑

k

�

ψ†
t (k)h−θ/2

�

k−Kt
+

�

ψt(k) +ψ
†
b(k)hθ/2

�

k−Kb
+

�

ψb(k)
�

+
∑

k

2
∑

j=0

�

ψ†
t

�

k− q0 + q j

�

T jψb(k) +H.c.
�

, (1)

where ψt(k) =

�

ψtA(k)
ψtB(k)

�

and ψb(k) =

�

ψbA(k)
ψbB(k)

�

are spinors of annihilation operators for

electrons in top (t) and bottom (b) graphene layers, respectively, and A and B correspond to the
two sublattices in single-layer graphene. The first two terms in Hkin are the Dirac Hamiltonians
of top and bottom graphene layers, for which hθ (k) = h(Rθk)with h(k) = −ħhvF (kxσx+kyσy).
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Here ħhvF =
p

3at0/2, with t0 = 2.62 eV and a = 0.246 nm the nearest-neighbor hopping
amplitude and lattice constant of single-layer graphene, respectively. The third term describes
the moiré tunneling between the two graphene layers. Such tunneling is encoded in the matrix

T j = w0 −w1ei(2π/3) jσzσx e−i(2π/3) jσz (2)

with the momenta q0 = R−θ/2K+ − Rθ/2K+, q1 = R2π/3q0 and q2 = R−2π/3q0 (Fig. 1). w0
and w1 in T j are the tunneling strengths between AA and AB sites, respectively. Ab initio
numerics gives w1 ≈ 110 meV [50], however, some works suggested smaller values [18, 21,
51, 52]. In this paper, we consider two situations with w1 = 90 meV and w1 = 110 meV
to account for variations of different theoretical models and realistic samples. Furthermore,
we fix w0 = 0.7w1 to include the effects of lattice relaxation [53, 54] and corrugation [52,
55, 56]. To calculate the band structure at momentum k0 in the MBZ, we write k in Hkin as
k0 + mG1 + nG2 with integers m, n = −d, ..., d then diagonalize Hkin, where d is a suitably
chosen cutoff. As there is no alignment with the hexagonal boron nitride (hBN) substrate, the
Dirac band touching exists at the corners of the MBZ.

We simulate the interaction between electrons via the screened Coulomb potential

Hint =
1
2

∑

q

V (q) : ρ(q)ρ(−q) :, (3)

whereρ(q) is the valley and spin projected density operator and : : means the normal order. We
choose the Yukawa potential V (q) = e2

4πεrε0S
2πp
|q|2+κ2

to describe the screening, where e is the

electron charge, εr is the relative dielectric constant of the material, ε0 is the dielectric constant
of vacuum, S is the area of the moiré superlattice, and κ measures the screening strength.
Throughout this work, we fix εr = 4 [57, 58] and κ = 1/aM , with aM = a/(2 sin(θ/2)) the
lattice constant of TBG.

2.2 Floquet system

Now we consider the coupling of TBG with light in the scenario of periodic driving. We sup-
pose the system is driven by a circularly polarized light which shines vertically and uniformly
across the surface of TBG. The light field is represented by an electric field rotating in-plane as
E = E0 (sinΩt, cosΩt), where Ω is the driving frequency. The corresponding vector potential
A = A0 (cosΩt,− sinΩt), satisfying E = − ∂ A

∂ t . For the single-electron Hamiltonian, the light
field only affects the intralayer hopping. This is because the interlayer tunneling is dominated
by hopping between atoms that are exactly on top of each other, thus mostly contributed by z-
component of the vector potential which is absent in our setup [36–38]. We include the effect
of light using a Peierls substitution k→ k+eA(t)/ħh in the intralayer terms of Eq. (1), resulting
in a time-dependent single-particle Hamiltonian Hkin(t). The interaction Hamiltonian Eq. (3)
remains as in the static case since it is expressed in terms of the density operator [46, 59].
Combining both terms, we get a new time-periodic Hamiltonian

H(t) = Hkin(t) +Hint. (4)

to describe our system irradiated by the circularly polarized light, where H(t) = H(t+2π/Ω).
According to Floquet theory, the stroboscopic evolution of the system, upon a unitary trans-

formation, can be captured by an effective static Hamiltonian Heff that does not depend on
initial conditions [31–33]. While in general it is complicated to evaluate Heff, we consider the
limit where the driving frequency Ω is large compared to other characteristic energy scales in
the system. In this case, Heff can be represented by a series expansion of 1/Ω [31–33,47,59]:

Heff = H(0)eff +H(1)eff +H(2)eff + . . . , (5)
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with

H(0)eff = H0, (6a)

H(1)eff =
1
ħhΩ

∞
∑

m=1

[Hm, H−m]
m

, (6b)

H(2)eff =
1

(ħhΩ)2

� ∞
∑

m=1

[Hm, [H0, H−m]]
2m2

+
∞
∑

m,m′=1
m 6=m′

[H−m′ , [Hm′−m, Hm]]− [Hm′ , [H−m′−m, Hm]]
3mm′

+H.c.

�

. (6c)

Here Hm is the Fourier transform of H(t), i.e., H(t) =
∑

m HmeimΩt . For our model, Hm is
nonzero only when m= 0,±1.

The zeroth order term H(0)eff = H0 is just the static Hamiltonian Hkin + Hint. The first order
term is

H(1)eff =
(eA0vF )2

ħhΩ

∑

k

�

ψ†
t (k)σzψt(k) +ψ

†
b(k)σzψb(k)

�

, (7)

which is the same as that derived for non-interacting TBG [36, 37, 39, 60] because the inter-
action is time-independent in our model. H(1)eff is a single-particle term which introduces a
staggered potential of strength P = (eA0vF )2/(ħhΩ) = (3a2 t2

0e2E2
0 )/(4ħh

3Ω3) in both graphene
layers. As this stagger potential breaks the C2 sublattice symmetry, it gaps the Dirac cones
of the static TBG. Then the two flat bands near the CNP may be isolated and carry non-zero
Chern number in specific range of P and twist angle θ [36,39]. Note that H(1)eff plays a similar
role to the alignment with an hBN substrate, which, to the lowest order, also introduces a
staggered potential of about 15 meV [14]. The advantage of light driving compared to hBN is
that we can easily control the strength of this staggered potential by tuning the electric field
E0 or frequency Ω.

Previous works studying high-frequency driving in non-interacting lattice models often ne-
glect H(2)eff and other higher-order terms in Heff, because their corrections to the single-particle
Hamiltonian is quite small. However, once interactions are considered, one should be very
careful when dealing with these high-order terms, because they can include effective interac-
tions even though the original interaction Hint is time-independent. To the leading order, these
effective interactions are present in H(2)eff if [Hm, [Hint, H−m]] 6= 0. While being much weaker

than H(0)eff and H(1)eff , these effective interactions may still be comparable to the many-body gap
protecting the ground state of Heff, thus having essential influences on the low-energy stro-
boscopic physics. Indeed, it was found in some Floquet topological lattice models that the
effective interactions in H(2)eff led by original density-density repulsions destabilize topologi-
cally ordered FCIs [47]. In our model, we carefully evaluate [H1, [Hint, H−1]]. Remarkably,
we find it is zero due to the special forms of our H±1 and Hint (see Appendix). Therefore, by
contrast to Ref. [47], H(2)eff in our model is still a single-particle correction without effective
interactions:

H(2)eff =
(eA0vF )2

(ħhΩ)2

�

−Hkin +
∑

k

∑

j

�

ψ†
t

�

k− q0 + q j

�

Wθψb(k) +H.c.
�

�

, (8)
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Figure 2: The indirect band gap ∆SP and the bandwidth WSP of the Floquet valence
band for w1 = 90 meV [(a),(c)] and w1 = 110 meV [(b),(d)].

where

Wθ = w0

�

eiθ 0
0 e−iθ

�

. (9)

In the following, we choose a high frequency ħhΩ = 1.5 eV, which significantly exceeds
the energy scale of low-energy bands in static TBG. When Ω is fixed, P quantifies the driving
strength. We consider P up to 60 meV, corresponding to a strong electric field E0 ≈ 8 MV/cm.

Then the prefactor (eA0vF )2

(ħhΩ)2 of H(2)eff is only∼ 4% at most. In this sense, our Floquet model could
also simulate the static TBG aligned with hBN both on the top and at the bottom.

3 Floquet band structure

Now we have obtained the effective static Hamiltonian

Heff = Hkin +Hint +H(1)eff +H(2)eff (10)

describing the stroboscopic nature of our Floquet system, which includes the original interac-
tion and a single-particle part corrected by driving. Before we dive into the interaction induced
many-body physics, let us first analyze the properties of the Floquet bands. In the following,
we focus on the valence band below the CNP.

In Fig. 2, we present the indirect band gap ∆SP and bandwidth WSP of the valence band
as functions of θ and P. For most parameters that we consider, we find positive ∆SP, meaning
that the Floquet valence band is isolated from other bands at these parameters. However, there
are some lines in the (θ , P) space along which the band gap vanishes. After calculating the
Chern number C of the Floquet valance band, we find these gap-vanishing lines correspond to
the transition between C = −1 and C = 0 (Fig. 3). In the parameter range that we consider,
the largest band gaps appear in the topological C = −1 case.
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Figure 3: Chern number of the Floquet valence band for (a) w1 = 90 meV and (b)
w1 = 110 meV. Solid dots represent C = −1, and circles represent C = 0.

4 Many-body physics

Because the Floquet valence band is well isolated and carries Chern number C = −1 in a
wide range of parameters θ and P (Figs. 2 and 3), it is promising to host Floquet FCIs. Now
we consider the situation in which this band is partially filled by N interacting electrons to
confirm this possibility. We choose a finite periodic system with N1 and N2 moiré unit cells in
the directions of the two primitive moiré lattice vectors, such that the band filling factor ν is
defined as N/(N1N2). Due to the periodic boundary condition, each energy level of this finite
system can be labeled by the total two-dimensional (2D) momentum (K1, K2), with integers
K1 = 0, · · · , N1 − 1 and K2 = 0, · · · , N2 − 1. Motivated by the observations of robust FCIs
at ν = 1/3 (lattice analogs of the celebrated Laughlin state [61]) in various static |C | = 1
topological flat bands [62,63], we also fix ν= 1/3 in our Floquet system.

We then focus on the C = −1 region in the (θ , P) space to numerically study the effective
static Hamiltonian Eq. (10) to search for the evidence of FCIs. Since the Floquet valence band
is well isolated in the C = −1 region, it is fair to project Eq. (10) to this active band, leading
to

Hproj
eff =

∑

k

E(k)c†
kck +

∑

{ki}

Vk1k2k3k4
c†
k1

c†
k2

ck3
ck4

, (11)

where c†
k (ck) is the operator creating (annihilating) an electron with momentum k in the

Floquet valence band, E(k) is the corresponding band dispersion, and the matrix element
Vk1k2k3k4

is given by [18]

Vk1k2k3k4
=

1
2
δ′k1+k2,k3+k4

∑

G

V (k1 − k4 +G)× 〈u(k1)|u(k4 −G)〉〈u(k2)|u(k3 +G+δG)〉. (12)

Here δ′k,k′ is the 2D periodic Kronecker delta function with period of MBZ reciprocal lattice
vectors, |u(k)〉 is the Floquet valence band eigenvector, δG= k1+k2−k3−k4, and the sum of
G is over the entire reciprocal space rather than only in a single MBZ. E(k) and |u(k)〉 can be
obtained by diagonalizing the single-particle part of Heff. We then use exact diagonalization to
extract the low-energy physics of this projected effective Hamiltonian Eq. (11) for w1 = 90 meV
and w1 = 110 meV, respectively. We have examined that the ground-state energy gap obtained
from diagonalizing Eq. (11) is always smaller than the single-electron band gap of the Floquet
valence band, thus justifying the validity of band projection.
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Figure 4: The FCI gap∆FCI, FCI splitting WFCI, and their ratio∆FCI/WFCI for N = 10
and N1 × N2 = 5 × 6 with w1 = 90 meV [(a)-(c)] and w1 = 110 meV [(d)-(f)].
The three-fold FCI degeneracy is absent in white regions. In (a) and (d), we give the
tentative phase diagram. As shown later, the CDW phase is identified by the structure
factor, and the Fermi liquid (FL)-like phase is characterized by the step structure in
the n(k) − Eh(k) curve. The markers indicate the representative parameter points
that we choose in Figs. 5, 6, 7, 8 and 9.

4.1 w1 = 90 meV

Let us first choose w1 = 90 meV. On the torus geometry, an essential feature of the ν = 1/3
FCIs is the robust three-fold ground-state degeneracy in momentum sectors determined by
the Haldane statistics of the ν = 1/3 Laughlin state [62, 64, 65]. Therefore, we compute the
FCI gap ∆FCI in the C = −1 region as the energy difference between the fourth and the first
eigenvalues of the projected effective Hamiltonian Eq. (11), where all eigenvalues are sorted in
ascending order. If the lowest three eigenstates are not in momentum sectors predicted by the
Haldane statistics, we simply set the FCI gap to be zero. Meanwhile, we also measure the FCI
splitting WFCI, quantified by the energy difference between the third and the first eigenvalues
when they are in the FCI momentum sectors. The result for N = 10 electrons is demonstrated
in Figs. 4(a) and 4(b). Strikingly, we can identify a wide range of parameters for which the
lowest three eigenstates are located in FCI momentum sectors, protected by a significant gap,
and approximately degenerate [i.e., very large ∆FCI/WFCI, as shown in Fig. 4(c)].

To examine the robustness of such ground-state degeneracies, we examine their depen-
dence on the system size and the boundary condition. In Fig. 5(a), we demonstrate the low-
energy spectra of the projected effective Hamiltonian for N = 8, 10, and 12 electrons at a
representative parameter point (θ , P) = (1.05◦, 10 meV) [labelled by the star in Figs. 4(a)-
4(c)]. For each system size, we observe excellent three-fold ground-state degeneracy, i.e., the
splitting of the three ground states are much smaller than their separation from higher-energy
levels. A finite-size scaling of the ground-state splitting and the energy gap suggests that both
the three-fold degeneracy and the ground-state gap are very likely to survive in the thermody-
namic limit [Fig. 5(b)]. By inserting magnetic flux through the handles of the toroidal system,
we find the three-fold ground-state degeneracy persists [Fig. 5(c)]. All these data further con-
firm the robustness of the three-fold topological degeneracy. Remarkably, the observed gap
corresponds to a temperature of about 20 Kelvin, which is an order of magnitude higher than
required by the conventional fractional quantum Hall states in two-dimensional electron gases.
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Figure 5: The ν = 1/3 Laughlin FCIs in the Floquet valence band at θ = 1.05◦,
P = 10 meV when w1 = 90meV. (a) The low-lying energy spectra for N = 8, 10,12
electrons on the N/2×6 lattice. (b) The finite-size scaling of the energy gap E4− E1
and the ground-state splitting E3 − E1 for N = 4,5, 6,8, 10,12 electrons. (c) The
spectral flow for N = 10, N1×N2 = 5×6, where Φy is the magnetic flux insertion in
the a2 direction. (d) The particle entanglement spectrum for N = 10, N1×N2 = 5×6
and NA = 5, with 23256 levels below the entanglement gap (the dashed line).

To further corroborate the nontrivial topological properties of the ground state, we also in-
vestigate the particle entanglement spectrum (PES), which encodes the information of quasi-
hole excitations of the system and distinguishes FCIs from other competing phases [62, 66].
In Fig. 5(d), we divide the whole system into NA and N − NA electrons and label each PES
level by the total momentum (KA

1 , KA
2 ) of those NA electrons. A clear entanglement gap ap-

pears separating the low-lying PES levels from higher ones, and the number of levels below
the gap exactly matches the pertinent counting of quasihole excitations in the ν= 1/3 Laugh-
lin state [62, 64, 65]. This entanglement spectroscopy, together with the low-energy spec-
trum, strongly suggests that the most robust ν = 1/3 Floquet FCIs exist in the region with
θ ≈ 1.0◦ − 1.1◦ and P ≈ 5 meV− 30 meV when w1 = 90 meV.

There are also regions in Fig. 4(a) in which the three-fold topological degeneracy of the
ground states becomes poor and eventually collapses. On the left side of the FCI phase (with
smaller θ), we find a pronounced sensitivity of the energy spectrum to the lattice size. For
N = 6, N1 × N2 = 3 × 6 and N = 12, N1 × N2 = 6 × 6, we observe a new kind of three-fold
ground-state degeneracy in different momentum sectors from the ν = 1/3 Laughlin FCIs.
These momentum sectors are separated exactly by the moiré Dirac point momenta Kb

+ and Kt
+.

For example, while the three Laughlin FCIs of N = 12, N1×N2 = 6×6 all carry (K1, K2) = (0, 0)
[Fig. 5(a)], the three ground states at the parameter point (θ , P) = (0.95◦, 20 meV) [labelled
by the dot in Figs. 4(a)-4(c)] of the same system size are located in the (K1, K2) = (0, 0), (2, 2)
and (4,4) sectors [Fig. 6(c)], which are separated by momentum∆K= (2,2) = (G1+G2)/3∼ Kb

+
and ∆K= (4,4) = 2(G1+G2)/3∼ Kt

+ (Fig. 1). Here ∼ means “equal to” up to a MBZ recipro-
cal lattice vector. The distribution of degenerate ground states over equally spaced momenta
is a signal of charge density waves. To further confirm this, we compute the structure factor
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Figure 6: (a) The structure factor at θ = 0.95◦ as a function of P for N = 6,
N1 × N2 = 3× 6. The values of S(q) at q = Kt,b

+ are significantly larger than those at
q 6= Kt,b

+ . (b) Distribution of S(q) in the MBZ at (θ , P) = (0.95◦, 20 meV) for N = 12,
N1 × N2 = 6× 6. (c) The many-body energy spectrum at the same parameters with
(b). The lowest three states are located at (K1, K2) = (0, 0), (2, 2), (4, 4), separated
by ∆K= (2,2) and ∆K= (4, 4).

S(q) which can reveal the CDW order. We define S(q) as

S(q) =
1

N1N2

�

〈ρ̄(q)ρ̄(−q)〉 − N2δq,0

�

, (13)

where

ρ̄(q) =
∑

k∈MBZ

〈u(k)|u(k− q)〉c†
kck−q. (14)

Remarkably, we find pronounced peaks at the corners of the MBZ [Figs. 6(a) and 6(b)], reveal-
ing the underlying phase is the CDW with the order momentum Kt,b

+ . Various types of CDW
phases have been identified in static TBG-hBN as competing phases against FCIs [21,67–69].
The K-CDW states corresponds to a Wigner crystal, whose unit cell is tripled compared to the
original moiré lattice [21]. On the other hand, we do not see the CDW degeneracy among the
lowest states for N = 8, N1 × N2 = 4 × 6 and N = 10, N1 × N2 = 5 × 6. This is because the
Kt,b
+ points are absent in the MBZ of these finite lattices. Remember that the single-electron

momentum k can only take k= m1
N1

G1 +
m2
N2

G2 for a finite periodic system. Therefore, both N1

and N2 must be divisible by three if Kt,b
+ belong to this set of allowed k. Otherwise, the K-CDW

cannot develop in the finite system.
Finally, we go to the region on the right side of the FCI phase (larger θ), where we see

neither the FCI topological degeneracy nor the CDW degeneracy in the low-energy spectra. To
explore the nature of the ground states in this region, we switch from the picture of electrons
to that of holes, i.e., changing c(k) to d†(k) in the Hamiltonian Eq. (11). Here d†(k) creates a

10
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Figure 7: The ground-state occupation 〈n(k)〉 at momentum k as a function of−Eh(k)
for three representative parameter points. (a) and (b) correspond to the already
identified CDW and FCI phase, respectively.

hole with momentum k in the Floquet valence band. As shown in Refs. [18,70], this particle-
hole transformation induces an effective hole dispersion

Eh(k) =
∑

k′
(Vk′kk′k + Vkk′kk′ − Vkk′k′k − Vk′kkk′)− E(k) (15)

in the dual Hamiltonian of holes. As Eh(k) in general is non-constant, it breaks the particle-
hole symmetry of Eq. (11). If such a dispersion dominates over the hole-hole interaction, the
system can form a Fermi liquid-like state, that is, electrons (holes) tend to occupy k points
with large (small) Eh(k). This can be manifest by a sharp step in the electronic occupation
number 〈n(k)〉 at some electron’s “Fermi energy” −Eh(k). In Fig. 7, we display the ground-
state occupation 〈n(k)〉 at momentum k as a function of −Eh(k) for the three representative
parameter points [indicated by the dot, star, and triangle in Figs. 4(a)-4(c), respectively]. The
〈n(k)〉 curves show obviously distinct features in these three cases. In the FCI phase, the
correlation between 〈n(k)〉 and −Eh(k) is quite weak, being consistent with the expectation
of 〈n(k)〉 ≈ ν for the FCIs [Fig. 7(b)]. The dependence of 〈n(k)〉 on −Eh(k) becomes stronger
in the CDW phase [Fig. 7(a)], as electrons tend to occupy Kt,b

+ points. Eventually, for ground
states at parameter points on the right side of the FCI phase, we find striking Fermi surface-
like structures, that is, 〈n(k)〉 ≈ 1 for small −Eh(k) and suddenly drops for larger −Eh(k)
[Fig. 7(c)]. This feature strongly suggests that the region on the right side of the FCI phase is
a Fermi-liquid like phase.

Based on numerical results above, we present a tentative phase diagram for w1 = 90 meV
in Fig. 4(a). Because of the limited system sizes which we can reach by exact diagonalization,
the phase boundaries are only roughly determined by the topological degeneracy of FCIs for
10 electrons, so they should not be thought as being precise.

4.2 w1 = 110 meV

We have repeated the investigations in Sec. 4.1 for a stronger interlayer tunneling w1 = 110 meV.
We find the overall phase diagram [Figs. 4(d)-4(f)] is very similar to that for w1 = 90 meV.
However, the FCI phase exists at larger twist angles, which are still small but obviously deviate
from the magic angle ∼ 1.05◦. This can be explained by the distribution of Berry curvature in
the MBZ – we find that the twist angle has to be increased to achieve flatter Berry curvature
when w1 is strengthened from 90 meV to 110 meV. The best three-fold degeneracies of ten
electrons appear at θ ≈ 1.20◦ − 1.35◦ and P ≈ 5 meV − 35 meV [Fig. 4(f)]. We demonstrate
the energy spectrum and the PES at a representative parameter point [labelled by the star in
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Figure 8: The ν = 1/3 Laughlin FCIs in the Floquet valence band at θ = 1.27◦,
P = 10 meV when w1 = 110 meV. (a) The low-lying energy spectra for N = 8, 10,12
electrons on the N/2×6 lattice. (b) The finite-size scaling of the energy gap E4− E1
and the ground-state splitting E3 − E1 for N = 4,5, 6,8, 10,12 electrons. (c) The
spectral flow for N = 10, N1×N2 = 5×6, where Φy is the magnetic flux insertion in
the a2 direction. (d) The particle entanglement spectrum for N = 10, N1×N2 = 5×6
and NA = 5, with 23256 levels below the entanglement gap (the dashed line).

Figs. 4(d)-4(f)] in this region (Fig. 8), where the energy gap protecting FCI ground states is
even larger than that at w1 = 90 meV. Meanwhile, the competition between FCI and CDW
remains for w1 = 110 meV. The signals of the CDW phase and the Fermi liquid-like phase,
namely, the structure factor and the 〈n(k)〉 − Eh(k) curve, are shown in Fig. 9 for two repre-
sentative parameter points [labelled by the dot and triangle in Figs. 4(d)-4(f), respectively].

5 Discussion

In this work, we investigate the interaction effect in twisted bilayer graphene irradiated with
monochromatic circularly polarized light. We work in the regime of high driving frequency.
When the Floquet valence band obtained from the effective static Hamiltonian is partially oc-
cupied by electrons at ν = 1/3 filling, we find compelling numerical evidence that Floquet
fractional Chern insulators exist for a wide range of twist angle and driving strength, as char-
acterized by the robust ground-state topological degeneracy and the counting of quasihole
excitations. By calculating the structure factor and the electron occupation numbers, the in-
triguing interplay of Floquet FCIs with charge density waves and Fermi liquid-like states are
also identified in a single phase diagram. Our results demonstrate the rich many-body physics
in Floquet TBG. As the effective Hamiltonian in our setup is analogous to the static TBG-hBN
system with hBN alignment on both top and bottom sides of TBG, the phase diagram obtained
by us may also be helpful to the experimental realization of zero-field FCI in the static TBG-
hBN system. Our results imply that the zero-field FCI could be stabilized in static TBG-hBN at
twist angles larger than the magic value.

There are several interesting theoretical future directions following our present work. First,
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Figure 9: (a) Distribution of S(q) in the MBZ for N = 12, N1 × N2 = 6 × 6 at
(θ , P) = (1.20◦, 55 meV). (b) The ground-state occupation 〈n(k)〉 at momentum k
as a function of −Eh(k) for N = 12, N1 × N2 = 6× 6 at (θ , P) = (1.50◦, 10 meV).

it would be interesting to take into account more model parameters, such as the ratio w0/w1
and the dielectric constant, to explore the many-body phase diagram in a larger parameter
space. Second, while we only consider ν= 1/3 filling in this work, it remains unclear whether
FCIs at other fillings, especially non-Abelian ones, can be stabilized in this Floquet system.
Finally, inspired by the recent development in Floquet band structures of other moiré materials
beyond TBG [40–43], it is natural to study the Floquet many-body physics thereof.

Considering that the Floquet Chern insulator has been realized in experiments of mono-
layer graphene [45], it is possible to observe it also in TBG driven by the light field, which is
the first step towards realizing the Floquet FCIs predicted in our work. In fact, the parameters
we choose here should be within experimentally realizable parameters. For example, both
the driving frequency ħhΩ = 1.5 eV and the driving strength E0 = 8 MV/cm (corresponding
to P ≈ 60 meV) are accessible by current laser technology. However, obvious challenges still
exist. For instance, the Floquet heating out of the long-lived prethermal regime will result a
featureless infinite-temperature system. Moreover, one should keep the driving off-resonant,
otherwise the direct absorption of photons by electrons makes the effective static Hamilto-
nian insufficient to capture the out-of-equilibrium properties (such as the transport) of the
system [24].
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A Effective Floquet Hamiltonian

In this Appendix, we give a detailed derivation of the static effective Hamiltonian Heff. Note
that we do this derivation before the band projection. Within each layer of TBG, the Dirac
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Hamiltonian of monolayer graphene under driving becomes

h(k)→ h
�

k+
e
ħh

A(t)
�

= −ħhvF

�

0 k− +
eA0
ħh eiΩt

k+ +
eA0
ħh e−iΩt 0

�

, (16)

where k± = kx ± iky . The interlayer tunneling remains unchanged since we have neglected its

transverse components. Then the only non-zero Fourier components Hm =
1
T

∫ T
0 H(t)e−imΩt d t

are

H0 = Hkin +Hint,

H1 = (−eA0vF )
∑

k

�

eiθ/2ψ†
tA(k)ψtB(k) + e−iθ/2ψ†

bA(k)ψbB(k)
�

,

H−1 = H†
1, (17)

where Hkin is static TBG single-particle Hamiltonian defined in main text. Using the relation
�

c†
mcn, c†

kcl

�

= δn,kc†
mcl −δm,l c

†
kcn, we have the first-order term of Heff as

H(1)eff =
[H1, H−1]
ħhΩ

= P
∑

k

�

ψ†
t (k)σzψt(k) +ψ

†
b(k)σzψb(k)

�

, (18)

with P = (eA0vF )2

ħhΩ . The second-order term of Heff is

H(2)eff =
1

2(ħhΩ)2
[H1, [H0, H−1]] +H.c.

=
1

2(ħhΩ)2
([H1, [Hkin, H−1]] + [H1, [Hint, H−1]]) +H.c. (19)

A straightforward calculation gives

[H1, [Hkin, H−1]] +H.c.= 2(eA0vF )
2

�

−Hkin +
∑

k

2
∑

j=1

�

ψ†
t (k− q0 + q j)Wθψb(k) +H.c.

�

�

(20)

with

Wθ = w0

�

eiθ 0
0 e−iθ

�

. (21)

The calculation of [H1, [Hint, H−1]] is more tedious. We write the interaction Eq. (3) in the
second-quantized form

Hint =
1
2

∑

{ki},q

∑

α,β

δ′k1−k4,qδ
′
k1+k2,k3+k4

V (q)ψ†
α(k1)ψ

†
β
(k2)ψβ(k3)ψα(k4), (22)

where α,β ∈ (tA, tB, bA, bB) are layer and sublattice indices. For fermionic creation and
annihilation operators, we have

�

c†
α(k1)c

†
β
(k2)cγ(k3)cδ(k4),

∑

k

f (k)c†
µ(k)cν(k)

�

= δµ,δ f (k3)c
†
α(k1)c

†
β
(k2)cγ(k3)cν(k4) +δµ,γ f (k4)c

†
α(k1)c

†
β
(k2)cν(k3)cδ(k4)

− δν,α f (k1)c
†
µ(k1)c

†
β
(k2)cγ(k3)cδ(k4)−δν,β f (k2)c

†
α(k1)c

†
µ(k2)cγ(k3)cδ(k4) (23)
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for an arbitrary function f (k). We then apply Eq. (23) to [Hint, H−1], and get

[Hint, H−1] = (−eA0vF )
∑

{ki},q

∑

α,β

δ′k1−k4,qδ
′
k1+k2,k3+k4

V (q)

×
�

e−iθ/2ψ†
tB(k1)ψ

†
α(k2)ψα(k3)ψtA(k4) + e−iθ/2ψ†

α(k1)ψ
†
tB(k2)ψtA(k3)ψα(k4)

−e−iθ/2ψ†
tB(k1)ψ

†
α(k2)ψα(k3)ψtA(k4)− e−iθ/2ψ†

α(k1)ψ
†
tB(k2)ψtA(k3)ψα(k4)

+eiθ/2ψ†
bB(k1)ψ

†
α(k2)ψα(k3)ψbA(k4) + eiθ/2ψ†

α(k1)ψ
†
bB(k2)ψbA(k3)ψα(k4)

−eiθ/2ψ†
bB(k1)ψ

†
α(k2)ψα(k3)ψbA(k4)− eiθ/2ψ†

α(k1)ψ
†
bB(k2)ψbA(k3)ψα(k4)

	

= 0. (24)

Therefore, only Hkin contributes to H(2)eff in our model, making H(2)eff a non-interacting part in
Heff. This is different from the result in Ref. [47], whose authors obtained effective interactions
in H(2)eff for another Floquet lattice model. The reason for this difference is that, in our model the

factor in front of ψ†(k)ψ(k) in H(1)eff does not depend on k, and α and β in the interaction can
take the same value in Eq. (22). On the contrary, in the model of Ref. [47] the corresponding
prefactor in H(1)eff does depend on k and α and β in the interaction cannot take the same value.
Hence, [Hint, H−1] is different between our model and the model in Ref. [47].
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