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Abstract

We show that a significant quantum gain corresponding to squeezed or over-squeezed
spin states can be obtained in multiparameter estimation by measuring the Hadamard
coefficients of a 1D or 2D signal. The physical platform we consider consists of two-
level atoms in an optical lattice in a squeezed-Mott configuration, or more generally by
correlated spins distributed in spatially separated modes. Our protocol requires the pos-
sibility to locally flip the spins, but relies on collective measurements. We give examples
of applications to scalar or vector field mapping and compressed sensing.
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1 Introduction

Precessing spins, or equivalently quantum systems in a superposition of two energy levels, are
precise atomic sensors, and a regular spatial distribution of two-level atoms in a 2D or 3D
optical lattice can be used to measure the local values of an extended field. A fundamental
source of noise in such a detector is the quantum projection noise which originates from the
non-commutativity of the three components of the spin 1/2 and which gives an uncertainty
on the direction of the spin whose precession angle one wants to measure.

The idea of this paper is to take advantage of quantum correlations between two-level
atoms in an optical lattice for multiparameter estimation, in particular for extended field mea-
surements. To this end, besides the regular arrangement of the atoms, which offers advantages
for atomic clocks [1, 2] and can be realized by means of optical tweezers or as a result of a
Mott transition in a Bose-Einstein condensate [3], one should create spin correlations among
the atoms. Two possible schemes, that directly yeald the spin-squeezed state with one atom
per site, consist in (i) adiabatically raising a lattice in a two-component Bose-Enstein conden-
sate [4, 5] or (ii) entangling fermionic atoms located at the lattice sites via virtual tunneling
processes plus an external laser which imprints a site-dependent phase [6–8]. Similar config-
urations but with more than one spin on each site can be obtained by splitting a spin-squeezed
Bose-Einstein condensate into addressable modes [9], or with atoms in a cavity where cavity-
mediated interactions [10] or non-local quantum non demolition measurements [11] are used
to entangle the modes. Using this last method, squeezing-enhanced distributed quantum sens-
ing with a few modes has been recently experimentally demonstrated [11].

To take advantage of the correlations, instead of measuring the local field with one spin in
each lattice sites, we measure, by collective measurements involving all atoms, independent
linear combinations of the local fields corresponding to the Hadamard coefficients of the spa-
tial signal discretized on the lattice. The local fields are then deduced by the inverse Hadamard
transformation. For a given number of atoms and number of measurements, we then achieve
a quantum gain, i.e., a reduction of the statistical uncertainty on the measured field distribu-
tion below the standard quantum limit, tracing back to the quantum correlations between the
atoms.

Spatially distributed sensors have been theoretically studied in the context of quantum
multiparameter estimation, see for example [12–16] and references therein. Compared to
other multiparameter quantum metrology schemes that have been proposed [14, 16], ours
has the advantage that a single collective measurement, instead of N local measurements in
each site, has to be performed in order to obtain a given linear combination of the unknown
parameters with quantum gain. Indeed, we assume that spin flips can be performed locally
[17] but all measurements in our protocol are collective. Compared to a “scanning microscope"
approach where one moves a sensor formed by an ensamble of entangled atoms, for example
a Bose-Einstein condensate, to locally probe the field at each site [18], our scheme offers
the advantage of using entangled but spatially separated atoms, thus without interaction. By
leaving the atoms in a fixed position rather than physically scanning the trapping potential,
we obtain a spatial resolution given by the wavelength of the optical lattice used to trap the
atoms.

In the following, we develop our multiparameter estimation protocol and derive its quan-
tum gain (Sec. 2), we study the reconstruction of a scalar or a vector field in 1D (Sec. 3),
and finally, we combine our method with compressed sensing to reconstruct the field with a
reduced number of measurements (Sec. 4).
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2 Quantum enhancement in distributed sensing with collective
measurements and local spin flips

We consider N spins 1/2 distributed in N spatially separated modes for the estimation of N
parameters ~θ = (θ1, ...,θN )T each affecting a given mode. We assume that we can manipulate
the spins locally, as we could do for atoms in an optical lattice using a microscope [17], and
perform collective measurements on the set of atoms. The quantum correlations between
the atoms that we aim to exploit are obtained through the collective one-axis-twisting (OAT)
Hamiltonian [19],

ĤOAT = ħhχ

�

∑

k

ŝk,z

�2

, (1)

where ~̂sk = ~̂σk/2, ~̂σk is the vector of the Pauli matrices for the atom in the site k, by evolving for
a time t an initial coherent spin state (CSS) with all the spins polarized along the x direction

|ψ0〉= |x〉⊗N . (2)

The parameters are then encoded on the state |ψt〉 = e−iĤOAT t/ħh|ψ0〉 through the unitary evo-
lution

Û( ~θ ) = e−i ~̂H~n· ~θ , (3)

generated by the observables ~̂H~n = (ŝ1,~n, ..., ŝN ,~n)T with ŝk,~n ≡ ~n · ~̂sk, where ~n = (0, ny , nz)T

is a unit vector that we consider, without loss of generality, in the plane perpendicular to the
initial spin direction x . We consider an observable Ŝ ~m that is linear in the components of the
collective spin Ŝ ~m =

∑N
j=1 ŝ j, ~m such that { ~m, ~n,~ex} form an orthonormal basis. To first order in

all the θk near θk = 0, its average in the state Û( ~θ )|ψt〉 reads

〈Û†( ~θ )Ŝ ~mÛ( ~θ )〉 ≈ −i〈[Ŝ ~m, ~̂H~n · ~θ]〉= −i
∑

l,k

θk〈[ŝl, ~m, ŝk,~n]〉δlk = 〈ŝ1,x〉
∑

k

θk, (4)

where 〈...〉 denotes the average on the state |ψt〉 and we used the symmetry of the state.
By introducing the linear combination of the parameters Θ ≡

∑

k θk/N , equation (4) can be
written as

〈Û†( ~θ )Ŝ ~mÛ( ~θ )〉 ≈ 〈Ŝx〉Θ. (5)

This shows that a linear observable in the collective spin components is only sensitive, to first
order, to the arithmetic mean Θ of the parameters θk. Using the one-parameter method of
moments, Θ can thus be estimated by comparing the average of µ independent measurements
of a linear collective spin observable S̄µ

~m with its average value 〈Ŝ ~m〉 obtained theoretically or
from an experimental calibration as a function ofΘ. In the limitµ� 1, the method of moments
allows to estimate Θ with an uncertainty (∆Θ)2 = (∆Ŝ ~m)2/(µ|∂Θ〈Ŝ ~m〉|2) where ∂Θ ≡ d/dΘ.
Using the result (5), we obtain [20]

(∆Θ)2 =
1
µ

(∆Ŝ ~m)2

|〈Ŝx〉|2
. (6)

Since the goal is to estimate all the parameters θk (with k = 1, ..., N), N linearly independent
combinations of the θk must be measured. Let us now see how, in addition to the measurement
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of the parameter’s average
∑

k θk/N explained above, we can measure other linear combina-
tions of the parameters. As we show in Appendix A, a rotation of the spin k of angle π around
x-axis before encoding the parameter θk followed by a second rotation of angle −π around
the same axis after encoding the parameter, is equivalent to reversing the sign of θk

eiπŝx e−iθ ŝ~n e−iπŝx = eiθ ŝ~n . (7)

Let us then consider the problem of estimating N parameters ~θ = (θ1, ...,θN ) encoded through
the unitary evolution (3), this time applying V̂ = e−i

∑

k αk ŝk,x and V̂ † before and after the
encoding of the parameters, where αk = (1 − εk)π/2 and εk = ±1. Using (7), this can be
represented by the unitary evolution

Û ′ = V̂ †e−i
∑

k θk ŝk,~n V̂ =
∏

k

ei π2 (1−εk)ŝk,x e−iθk ŝk,~n e−i π2 (1−εk)ŝk,x =
∏

k

e−iεkθk ŝk,~n = e−i
∑

k θ
′
k ŝk,~n (8)

with θ ′k = εkθk, so that (8) describes the encoding of the N parameters ~θ ′ = (ε1θ1, ...,εNθN ),

Û ′ = V̂ †Û( ~θ )V̂ = Û( ~θ ′) = e−i ~̂H~n· ~θ ′ . (9)

Using (9) and reasoning in the same way as to obtain (5), it can be shown that to first order
in the θ ′k in the vicinity of θ ′k = 0, the average of Ŝ ~m in the state Û ′|ψt〉 varies as

〈Û ′†Ŝ ~mÛ ′〉= 〈Ŝx〉
∑

k

εkθk

N
. (10)

This last equation generalizes the result (5) and shows that, using local spin flips and the
single-parameter estimation by the method of moments, the measurement of a collective spin
linear observable allows to estimate the linear combination of the parameters

Θ =
∑

k

εkθk/N , (11)

where εk = ±1 with the same uncertainty (6). Note that the same calibration curve can be
used for the estimation of all combinations of the parameters.

For a system in the initial CSS state, the uncertainty on the estimated combination Θ is lim-
ited by the projection noise given by (∆Θ)2SQL = 1/(µN) (standard quantum limit). In the state
|ψt〉, generated by the OAT dynamics at time t, it can reach a lower value (∆Θ)2 = ξ2/(µN)
where ξ−2 quantifies the quantum gain on the statistical error of the measurement. For a linear
(L) measurement in one component Ŝ ~m of the collective spin, the quantum gain is limited by
ξ−2

L ≤ ξ
−2
L,best where equality is achieved for an optimal measurement direction ~m= ~mL,opt and

a spin squeezed state (SSS) prepared at the optimal time t = tL,best [19,21]. One possibility to
overcome the limit due to the measurement of an observable that is linear in the collective spin
components, is the measurement after interaction (MAI) technique which consists in adding a
second OAT evolution Ûτ = e−iĤOATτ/ħh, with τ = −t, after the encoding of the parameters (9)
and before the measurement of the linear observable Ŝ ~m where ~m is in the yz-plane. This tech-
nique is equivalent to measuring a non-linear observable of the form X̂MAI = e−iχ tŜ2

z Ŝ ~meiχ tŜ2
z .

It turns out that this measurement is optimal in the whole time range 1/N < χ t < 1/
p

N in
the large N limit [22,23]. Also in this case, to first order in the θ ′k in the vicinity of θ ′k = 0, the
average of the observable X̂MAI in the state Û ′|ψt〉 is

〈Û ′†X̂MAIÛ
′〉 ≈ 〈

�

1+ i ~̂H~n · ~θ ′
�

e−iχ tŜ2
z Ŝ ~meiχ tŜ2

z

�

1− i ~̂H~n · ~θ ′
�

〉

= −i〈[e−iχ tŜ2
z Ŝ ~meiχ tŜ2

z , Ŝ~n]〉
∑

k

εkθk

N
(12)
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where we used the symmetry of the state |ψt〉. Equation (12) shows that the MAI technique
allows the estimation of the linear combination Θ =

∑

k εkθk/N . In an estimation protocol
based on the method of moments, the uncertainty on this combination is given by [23]

(∆Θ)2 =
1
µ

N/4

|〈[eiχ tŜ2
z Ŝ ~me−iχ tŜ2

z , Ŝ~n]〉|2
. (13)

For a time χ tL,best < χ t ≤ 1/
p

N , the quantum gain associated with (13), with an optimal
choice of ~n and ~m, is larger than the gain associated with a linear measurement ξ−2

MAI > ξ
−2
L,best

[23]. It reaches its maximum value ξ−2
MAI,best at an optimal time χ tMAI,best = 1/

p
N in the large

N limit [24].
Above, we have presented the strategy that measures linear combinations of the form

∑

k εkθk/N , with εk = ±1, of a set of parameters θk with significant quantum gain. We will
now show which combinations should be measured, or which choices for εk, in order to re-
construct the signal ~θ . A signal ~θ = (θ1, ...,θN )T with N = 2m, where m is an integer, can be
decomposed in the basis of Walsh orthogonal functions: functions that take only the values
±1 represented in terms of a square matrix of order N called the Hadamard matrix Hm:

θk =
∑

j

[Hm]k jθ̃ j . (14)

The θ̃ j (for j = 1, ..., N) are the Hadamard coefficients associated with the signal ~θ , and the ma-
trix Hm, which satisfies the property |[Hm]k j| = 1/

p
N , is defined by recurrence with H0 = 1

and, for m> 0

Hm =
1
p

2

�

Hm−1 Hm−1
Hm−1 −Hm−1

�

. (15)

The jth Hadamard coefficient θ̃ j is written, as a function of θk, as

θ̃ j =
∑

k

[H−1
m ] jkθk, (16)

Comparing this last equation with (11) we see that for a suitable choice of εk = ±1 one obtains
p

NΘ = θ̃ , (17)

such that the combinations measured by our strategy are, up to a factor
p

N , the Hadamard
coefficients of the signal ~θ . Once these coefficients are measured independently and with the
same uncertainty, we can deduce the original signal using (14). All the measured parameters
θk thus have the same uncertainty

(∆θk)
2 = (∆θ̃k)

2 = N(∆Θ)2 =
ξ2

µ
∀k. (18)

Unlike the estimation of a single parameter with the N -atom coherent spin state, the uncer-
tainty (18) on the parameters estimated by our strategy with the CSS state is independent of
the size N of the system. This can be explained by the fact that each parameter θk is locally
encoded on an individual atom. The quantum correlations between atoms generated by the
OAT dynamics allow us to introduce a dependence in the system size N of the uncertainties
(∆θk)2 through the parameter ξ. As we will show in Appendix B, this strategy can also be un-
derstood in the framework of multiparameter estimation theory. In the following sections, we
give two examples of the application of the method, to the mapping of a scalar and vectorial
one-dimensional field, and to compressed sensing.
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3 Mapping of a one-dimensional field: simulation with N = 8

3.1 Scalar field

We give here an illustration of the application of our strategy to the measurement of a scalar
field θ (x) that varies along one direction of space. In our numerical simulation below, we
consider a field of the forme

θ (x) = θ0 sin(x) (19)

that we discretize on N = 8 sites ~θ = (θ1, ...,θN ) with θi ≡ θ (x i), each site having as sen-
sor a two-level atom. We assume that the encoding of the ~θ parameters is done with the
~̂H~n = (ŝ1,~n, ..., ŝN ,~n)T generators, ~n being the optimal direction in the yz-plane, through the
unitary evolution (3). According to our protocol, to estimate the Hadamard coefficient θ̃ j af-
ter an evolution for a time t with the OAT Hamiltonian (1) of the initial CSS state (2), we
apply the unitary evolution

Û ′ = ei
∑

k αk ŝk,x e−i
∑

k θk ŝk,~n e−i
∑

k αk ŝk,x with αk = (1− εk)
π

2
and εk =

p
N[H−1

3 ] jk (20)

and we measure, in the obtained state Û ′|ψt〉, the optimal observable X̂ , which could be Ŝ ~m or
X̂MAI according to the used measurement protocol. For each θ̃ j with j = 1, ..., N , this procedure
is repeated µ times. In the numerical simulation, the measurement results λ1, ...,λµ, where λi
is one of the eigenvalues of the measured observable, are obtained by sampling the probability
distribution

Pi = |〈λi|Û ′|ψt〉|2, (21)

where |λi〉 is the eigenstate of X̂ associated with the eigenvalue λi . From these measurement
results, the statistical mean X̄µ =

∑

i λi/µ is calculated. Using the calibration curve Fig. 1(b)
which gives the theoretical mean of 〈X̂ 〉 as a function of Θ (10) or (12), the Hadamard co-
efficient θ̃ j =

p
NΘ is estimated using the value of Θ as the value for which 〈X̂ 〉 = X̄µ. The

statistical variance (∆θ̃ j)2µ
1 is calculated numerically by repeating the procedure for estimat-

ing θ̃ j several times. Thus, all Hadamard coefficients are measured and the parameters θk are
then deduced using (14). The scalar field (19) and its estimation with the initial state CSS,
the squeezed state SSS and the state generated at t = tMAI,best, where the measurement is
performed with the MAI technique, are shown in Fig. 1(a).

3.2 Vector field

Let us now consider the case of a vector field discretized at N = 8 sites as shown in Fig. 1(c),
whose unknown components ~θx , ~θy , ~θz , with ~θα = (θα,1, ...,θα,N )T for α= x , y, z, are encoded
on the atoms through the unitary evolution

Û = e−i( ~̂Hx · ~θx+ ~̂H y · ~θy+ ~̂Hz · ~θz) (22)

which represents a generalization of (3) to encoding three parameters per mode. In multipa-
rameter estimation, the measurement of parameters generated by non-commuting Hamilto-
nians is known to be hard because of the incompatibility of the respective optimal measure-
ments [13, 15, 25]. Here, we avoid these complications by estimating the three field compo-
nents separately one after the other: first the spins are prepared in a polarized state along

1The index µ is made explicit here to remind that (∆θ̃ j)2µ is the variance of the parameter θ̃ j deduced from µ

measurements.
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Figure 1: Numerical simulation of the estimation of a 1-dimensional field with N = 8
atoms: (a) scalar field. The field (19) with θ0 = 0.02 is represented by the solid line,
and its reconstruction with µ = 103 measurements, for each of the eight Hadamard
coefficients, are represented by the symbols. The estimation is done with the spin
coherent state CSS (green), the spin squeezed state SSS (orange) and the state gen-
erated at the time tMAI,best of the OAT dynamics where the measurement is performed
with the MAI technique (red). The corresponding standard deviations (vertical lines)
are obtained here by repeating 500 times the estimation procedure for each θ̃ j and
they are in good agreement with the theoretical value (18). (b) calibration curves
used with the state CSS (left), the state SSS (middle), and the state generated at
tMAI,best (right). (c) and (d) vector field. The components (23) with θ0 = 0.02 are
represented by the solid lines, and their reconstruction with the state CSS (green)
and the state SSS (orange) for µ = 103 are represented by the symbols. The verti-
cal lines represent the corresponding standard deviations thus obtained by repeating
500 times the procedure of the estimation of each θ̃ j .

the x direction and the measurement of the two components of the field in the yz-plane is
performed after the OAT evolution and the application of a state rotation so as to align the
optimal direction ~n with the z or y direction to measure ~θz or ~θy , and then the spins are po-
larized along the y direction to measure ~θx . The key point is that for the measurement of a
collective linear spin observable (which excludes the estimation based on the measurement
of the observable X̂MAI), the estimation of one of the field components is not affected by the
presence of the other two orthogonal components, as shown in Appendice C. In Fig. 1(d), we
show the results of the estimation of the vectorial field with components

θα(x) = θ0 sin(x +ϕα) for α= x , y, z and ϕx = 0, ϕy = π/2, ϕz = π. (23)

4 Quantum gain for compressed sensing of a two-dimensional field
(image)

In Sec. 2, we presented a strategy that allows us to measure a scalar signal ~θ = (θ1, ...,θN )T

through the direct estimation of the corresponding N Hadamard coefficients. The estimation
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Figure 2: Example of image compression with quantum gain: A signal 2D
(the Barbara image) of size N = 512 × 512 (left) is reconstructed (right) with
µ = 10 independent measurements for each of the first LH ≤ N Hadamard co-
efficients, the last N − LH coefficients being taken zero. The non-zero coeffi-
ceints are estimated with the coherent spin state CSS (top), the squeezed spin
state SSS obtained by OAT dynamics (1) in the absence of decoherence (middle)
and in the presence of dephasing decoherence (25) with γ = 5χ (bottom), for
LH = N = 512× 512, LH = 128× 128,64× 64,32× 32, 16× 16 from left to right
respectively.

of each coefficient requires µ independent measurements. In this section, we will show, on
a concrete example, the effect of signal compression, i.e. the effect of measuring only the
first LH < N Hadamard coefficients of a signal of size N , the last N − LH Hadamard coeffi-
cients being taken as zero. This reduces the total number of independent measurements to
be performed from µN to µLH. Let us consider the signal 2D (the Barbara image) of size
N = 512 × 512 shown in Fig. 2 on the left. In the right part of the figure, the signal is re-
constructed with different states of the system of N atoms and for different values of LH. To
mimic the experimental results, we generate each of the non-zero coefficients for j = 1, ..., LH
by sampling the probability distribution

P(x) =N e
−
(x−θ̃ j )

2

2(∆θ̃ j )2 , (24)

where N is a normalization constant, θ̃ j is the jth Hadamard coefficient of the original image
and ∆θ̃ j is the corresponding uncertainty (18) for its estimation with a given quantum state
of the N spins. The first row corresponds to the CSS state (2) for which ξ = 1. In the second
row, the state SSS is used where we have calculated the exact value of ξ, for the considered
atom number, optimized in time. For the last row we have calculated the quantum gain in
(18) corresponding to the (SSS)deph state generated by the OAT evolution (1) in the presence
of dephasing processes [23]

∂ ρ̂

∂ t
=

1
iħh
[ĤOAT, ρ̂] + γ

�

Ŝzρ̂Ŝz −
1
2
{Ŝ2

z , ρ̂}
�

, (25)

for γ/χ = 5. Comparing the images obtained by the SSS state with those obtained with the
uncorrelated CSS state, we notice that the gain due to quantum correlations is significant even
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Figure 3: Example of image compression (small image) with quantum gain: A signal
2D (part of the Barbara image) of size N = 32 × 32 (left) is reconstructed (right)
with µ = 10 independent measurements for each of the first LH ≤ N Hadamard
coefficients, the last N − LH coefficients being taken zero. The non-zero coefficeints
are estimated with the state CSS (top), the state SSS in the absence of decoher-
ence (middle) and in the presence of decoherence (25) with γ = χ (bottom), for
LH = N = 32× 32, LH = 16× 16, 8× 8 from left to right respectively.

with LH = 32×32 (i.e. LH ≈ 3.9×10−3N), and in the presence of decoherence. In Fig. 3, we
show the results of the estimation and compression of a small signal, image of size 32× 32.
Also in this case, the results show a significant gain due to quantum correlations.

5 Conclusions

We have proposed a multiparameter estimation method that uses two-level atoms trapped
in an optical lattice, which share internal state quantum correlations generated by a one-
axis twisting collective interaction Hamiltonian. Such a system can be obtained, for example,
by adiabatically raising an optical lattice in an interacting two-component condensate (spin-
squeezed Mott state) [4,5] or with fermionic atoms in a Mott-configuration in a lattice in the
presence of an external laser which imprints a position-dependent phase to the atoms [6–8].
The atoms are used to measure the set of values that takes a field at the location of the different
sites. The central idea of our method is that, in order to take advantage of the correlations
between atoms, we measure collective quantities, the Hadamard coefficients of the signal,
from which we deduce the local parameters by inverse Hadamard transformation. Although
we considered the case of one atom per site, our results can be easily generalized to the case
of N non-interacting atoms distributed on M sites with N/M atoms per site. Configurations of
this type can be realized by splitting a previously spin-squeezed Bose-Einstein condensate [9]
or with cold atoms in a cavity, where cavity-mediated interactions [10] or non-local quantum
non demolition measurements [11] are used to entangle the atoms in the different modes.
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A Change of sign of a local parameter by spin flip

In this appendix, we show that a local rotation of angle π around the axis x of a spin followed
by the encoding of a parameter θ by the generator ŝ~n where ~n is in the yz-plane and another
rotation of angle −π around x , is equivalent to reverse the sign of the encoded parameter θ .
We have

eiπŝx e−iθ ŝ~n e−iπŝx =

 

∑

j

(iπ) j

j!
ŝ j

x

!

�

∑

k

(−iθ )k

k!
ŝk
~n

��

∑

l

(−iπ)l

l!
ŝl

x

�

(26)

and
∑

k

(−iθ )k

k!
ŝk
~n =

∑

p

(−iθ )2p

(2p)!
ŝ2p
~n +

∑

p

(−iθ )2p+1

(2p+ 1)!
ŝ2p+1
~n

=
∑

p

(−1)p
(θ/2)2p

(2p)!
(2ŝ~n)

2p

− 2iŝ~n
∑

p

(−1)p
(θ/2)2p+1

(2p+ 1)!
(2ŝ~n)

2p

= cos(
θ

2
)1− 2i sin(

θ

2
)ŝ~n, (27)

where we used (2ŝ~n)2 = σ̂2
~n = 1. Replacing (27) in (26) and simplifying we find

eiπŝx e−iθ ŝ~n e−iπŝx =
�

cos(
θ

2
)1− 8i sin(

θ

2
)ŝx ŝ~nŝx

�

=
�

cos(
θ

2
)1+ 2i sin(

θ

2
)ŝ~n

�

= eiθ ŝ~n , (28)

where we used 8ŝx ŝ~nŝx = σ̂x σ̂~nσ̂x = −σ̂~n = −2ŝ~n, which can be demonstrated as follows:

σ̂x σ̂~nσ̂x = σ̂~n + σ̂x[σ̂~n, σ̂x] = σ̂~n + [σ̂x , σ̂~n]σ̂x , (29)

so we deduce

σ̂x σ̂~nσ̂x = σ̂~n +
1
2
[σ̂x , [σ̂~n, σ̂x]]

= σ̂~n +
1
2
[σ̂x , [(nyσ̂y + nzσ̂z), σ̂x]]

= σ̂~n +
1
2
[σ̂x , ny[σ̂y , σ̂x] + nz[σ̂z , σ̂x]]

= σ̂~n − i
�

ny[σ̂x , σ̂z]− nz[σ̂x , σ̂y]
�

= σ̂~n − 2
�

nyσ̂y + nzσ̂z

�

= −σ̂~n. (30)

10
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Equation (28) shows that we can change the sign of a encoded parameter θ by a rotation of
angle π around the x axis before encoding θ and another rotation of angle −π around the
same x axis after encoding the parameter.

B Reformulation of our protocol within the method of moments
for multiparameter estimation

The problem studied in our work can also be formulated within the framework of multiparam-
eter estimation theory. Here N parameters ~θ ′ = (ε1θ1, ...,εNθN )T , with ε j = ±1, are encoded

by the generators ~̂H~n = (ŝ1,~n, ..., ŝN ,~n)T on the state |ψt〉 prepared by OAT dynamics for a time
t from CSS state (2) through the unitary evolution (3)

Û( ~θ ) = e−i ~̂H~n· ~θ ′ . (31)

A change of basis of parameters ~ϑ = P ~θ ′, with PPT = PT P = 1, allows to rewrite this last
equation as

Û(~ϑ) = e−i ~̂G~n·~ϑ with ~̂G~n = P ~̂H~n , (32)

that represents the encoding of N parameters ~ϑ generated by observables ~̂G~n. For estimating
~ϑ, one can use multiparameter method of moments [14]where ~ϑ are estimated from the statis-
tical means ~̄X (µ) = (X̄ (µ)1 , ..., X̄ (µ)N )

T , results of µ independent measurements of N observables
~̂X = (X̂1, ..., X̂N )T as the values for which

〈Û†(~ϑ)X̂kÛ(~ϑ)〉= X̄ (µ)k , k = 1, ..., N . (33)

For µ� 1, this method allows us to estimate the ~ϑ with an estimator covariance matrix

Σ= (µM[|ψt〉, ~̂G~n, ~̂X ])−1

= (µC[|ψt〉, ~̂G~n, ~̂X ]T Γ [|ψt〉, ~̂X ]−1C[|ψt〉, ~̂G~n, ~̂X ])−1, (34)

where we have introduced the commutator matrix C[|ψt〉, ~̂G~n, ~̂X ]kl = −i〈[X̂k, Ĝl,~n]〉 and the

covariance matrix Γ [|ψt〉, ~̂X ] = Cov(X̂k, X̂ l). By choosing the observables ~̂X = ~̂X ~m =
p

N P ~̂H ~m,
with ~m such that { ~m, ~n,~ex} form an orthonormal basis, the commutator matrix is given by

C[|ψt〉, ~̂G~n, ~̂X ~m] =
p

N PC[|ψt〉, ~̂H~n, ~̂H ~m]P
T =
p

N〈ŝ1,x〉1 , (35)

where we used

C[|ψt〉, ~̂H~n, ~̂H ~m]kl = −i〈[ŝk, ~m, ŝl,~n]〉= 〈ŝ1,x〉δkl (36)

and the orthogonality of P. Since the commutator matrix is diagonal, the system of equations
(33) is decoupled, and the parameter ϑk can be estimated from the results of µ independent
measurements of the observable X̂k with, for µ� 1, the uncertainty

(∆ϑk)
2 = Σkk =

1
µ

(∆X̂k)2

N |〈ŝ1,x〉|2
. (37)

11
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For a given k (e.g. k = 1), we choose P so that X̂k =
p

N
∑

l Pkl ŝl, ~m =
∑

l ŝl, ~m = Ŝ ~m, that
is to say Pkl = 1/

p
N for all l. With this choice of P and according to equation (37), the

combination of parameters ϑk =
∑

l εlθl/
p

N is estimated with the uncertainty

(∆ϑk)
2 =

1
µ

(∆Ŝ ~m)2

N |〈ŝ1,x〉|2
=
ξ2

L

µ
. (38)

This last equation is equivalent to equation (18) in the case of the measurement of a linear
collective spin observable and ϑk is a Hadamard coefficient. Let us now consider the case of a
measurement with the MAI technique, where the OAT evolution Ûτ = e−iχτŜ2

z with τ = −t is

applied to the system before the measurement of the N observables ~̂X ~m, which is equivalent
to measuring the observables

~̂XMAI = e−iχ tŜ2
z ~̂X ~meiχ tŜ2

z =
p

N P(e−iχ tŜ2
z ŝ1, ~meiχ tŜ2

z , ..., e−iχ tŜ2
z ŝN , ~meiχ tŜ2

z )T . (39)

The commutator matrix in this case is written as

C[|ψt〉, ~̂G~n, ~̂XMAI] =
p

N PC[|ψt〉, ~̂H~n, e−iχ tŜ2
z ~̂H ~meiχ tŜ2

z ]PT (40)

with

C[|ψt〉, ~̂H~n, e−iχ tŜ2
z ~̂H ~meiχ tŜ2

z ]kl = −i〈[e−iχ tŜ2
z ŝk, ~meiχ tŜ2

z , ŝl,~n]〉

= −i〈[e−iχ tŜ2
z ŝ1, ~meiχ tŜ2

z , ŝ1,~n]〉δkl

− i〈[e−iχ tŜ2
z ŝ1, ~meiχ tŜ2

z , ŝ2,~n]〉(1−δkl). (41)

By looking for the matrix P that diagonalizes C[|ψt〉, ~̂G~n, ~̂XMAI], we realize that for the k cor-
responding to the maximum eigenvalue

C[|ψt〉, ~̂G~n, ~̂XMAI]
max
kk = −i

〈[e−iχ tŜ2
z Ŝ ~meiχ tŜ2

z , Ŝ~n]〉p
N

(42)

one has Pkl = 1/
p

N for all l. The measurement of (X̂MAI)k =
p

N
∑

l Pkl e
−iχ tŜ2

z ŝl, ~meiχ tŜ2
z

= e−iχ tŜ2
z Ŝ ~meiχ tŜ2

z thus allows to estimate the combination of the parameters ϑk =
∑

l Pklεlθl =
∑

l εlθl/
p

N with the uncertainty

(∆ϑk)
2 =

1
µ

(∆X̂MAI)2

|〈[e−iχ tŜ2
z Ŝ ~meiχ tŜ2

z , Ŝ~n]〉|2
=

1
µ

N/4

|〈[e−iχ tŜ2
z Ŝ ~meiχ tŜ2

z , Ŝ~n]〉|2
=
ξ2

MAI

µ
, (43)

which is exactly the uncertainty (18) in the case of a MAI measurement.

C Sequential measurement of the three components of a vector
field

Here, we show how to estimate the three components ~θx , ~θy and ~θz of a vector field. The
encoding of these components, on the state |ψt〉 after evolution with OAT, is done through the
unitary evolution

Û = e−i
�

~θx · ~̂Hx+ ~θy · ~̂H y+ ~θz · ~̂Hz

�

. (44)
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In the vicinity of ~θx = ~0, ~θy = ~0 and ~θz = ~0, the average of a linear collective spin observable
Ŝ~r , with ~r = ~ey or ~r = ~ez , in the state Û |ψt〉 is written as

〈Û†Ŝ~r Û〉 ≈ −i〈[Ŝ~r , ~θx · ~̂Hx + ~θy · ~̂H y + ~θz · ~̂Hz]〉

= −i

 

∑

k, j

θx ,k〈[ŝ~r, j , ŝx ,k]〉+
∑

k, j

θy,k〈[ŝ~r, j , ŝy,k]〉+
∑

k, j

θz,k〈[ŝ~r, j , ŝz,k]〉

!

= −i

 

∑

k, j

θy,k〈[ŝ~r, j , ŝy,k]〉+
∑

k, j

θz,k〈[ŝ~r, j , ŝz,k]〉

!

=

¨

〈Ŝx〉
�∑

k θy,k/N
�

if ~r = ~ez

〈Ŝx〉
�∑

k θz,k/N
�

if ~r = ~ey
. (45)

As the average of the collective spin observable Ŝ~r depends only on one component of the
vector field, ~θy or ~θz according to the choice of ~r, both compnents can be estimated separetly.
By rotating the state |ψt〉 in order to polarize all spins along the y direction using the rotation
|ψ′t〉 = e−i(π/2)Ŝz |ψt〉, the average of Ŝz under the evolution (44), in the vicinity of ~θx = ~0,
~θy = ~0 and ~θz = ~0, is given by

〈ψ′t |Û
†Ŝz Û |ψ′t〉 ≈ −i

∑

k, j

θx ,k〈ψ′t |[ŝz, j , ŝx ,k]|ψ′t〉

= 〈ψ′t |Ŝy |ψ′t〉

�

∑

k

θx ,k/N

�

= 〈Ŝx〉

�

∑

k

θx ,k/N

�

. (46)

The measurement of Ŝz in this case allows us to estimate the ~θx component of the field. Thus,
we measure a vector field.
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