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Abstract

We analyze a system of fermions in a one dimensional harmonic trap with
attractive delta-interactions between different fermions species, as an approx-
imate description of experiments involving atomic dimers. We solve the prob-
lem of two fermion pairs numerically using the so-called “coboson formalism”
as an alternative to techniques which are based on the single-particle basis.
This allows us to explore the strongly bound regime, approaching the limit of
infinite attraction in which the composite particles behave as hard-core bosons.
Our procedure is computationally inexpensive and illustrates how the coboson
toolbox is useful for ultracold atom systems even in absence of condensation.
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1 Introduction

The possibility to engineer atomic and molecular many-body systems by controlling and
assembling simpler components has made enormous progress thanks to Feshbach reso-
nances. In this way, molecular Bose-Einstein condensates have been formed starting from
ultracold atomic gases [1,2]. Similar setups have been used for the controlled observation
of relevant phenomena in statistical physics such as Wigner crystals [3] and the BEC-BCS
crossover [4, 5]. Within the field of ultracold Fermi gases, one-dimensional systems are
known to exhibit very peculiar properties [6]. In particular, strongly bound fermion pairs
reach a limit in which they behave as hard-core bosons, which in turn are related with
non-interacting fermion models [7].

We consider a one-dimensional scenario, with fermions of two different kinds in a
harmonic trap and an attractive contact interaction leading to fermion pairing. The first
steps towards the exact solution of the one-dimensional Fermi gas with contact interactions
in a ring are due to Gaudin and Yang in 1967 [8, 9]. For the trapped case most of the
analytical work focuses on the strongly repulsive case, see [10] and references therein.
Numerical approaches for this system include multiconfigurational time-dependent Hartree
method [11], quantum diffusion Montecarlo [12], density matrix renormalization group [13]
and a variety of quantum-chemical treatments such as coupled-cluster methods [14], among
others. The vast body of literature in this field has been reviewed for instance in [6, 15].

Even though much effort has been devoted to this system, the usual numerical treat-
ment takes as a basis the harmonic oscillator eigenstates, making computations very costly
for strong attraction [14,16–20]. Alternative procedures which are more efficient for strong
attraction have been proposed in [21,22]. Here, as a different approach, we tackle the prob-
lem of two pairs with two fermions each in the context of coboson theory [23, 24]. This
theoretical framework, originally developed for excitons in semiconductors [23–25], has
by now been applied to a variety of systems, including Bose-Einstein condensates [26],
superconductors [27,28] and Feshbach molecules [29].

A very useful simplification often encountered in this treatment is the so-called cobo-
son ansatz, which is analogous to a condensate formed by composite bosons and is the
canonical-ensemble counterpart of the BCS ansatz [23, 28]. Using tools from the coboson
formalism, we show that the coboson ansatz does not provide a good approximation of
the true ground state for the case of two pairs in the limit of strong interaction. This
is to be expected in the light of previous results [30, 31] and also because the limit of
infinitely bound pairs corresponds to hard-core bosons which are known to form only a
quasi-condensate in 1D traps [32–34]. However, the coboson formalism also provides tools
to describe the state beyond the coboson ansatz [27, 28]. We thus develop a representa-
tion of the problem in the coboson basis, i.e. in terms of the eigenstates of one pair of
interacting fermions in the trap.

This basis is specially convenient and expected to work better for the regime of strong
attraction, which is difficult to address numerically (see for instance Ref. [16]) and has
been not studied exhaustively as the repulsive regime [6, 15]. In this respect, our method
is related with the perturbative approach in [35]. The case of two pairs is of particular
relevance within the coboson formalism, however, the method we propose can be extended
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to larger systems. The motivation of our work can then be stated as i) to show that even if
the coboson ansatz fails the correct ground state for this system can be recovered using the
complete toolbox of the coboson formalism ii) to show that the two-body coboson basis is
useful in the strongly attractive limit where the single-particle basis is not convenient.

Besides the numerical convenience of using the coboson basis, studying this system
within the coboson formalism leads to semi-analytical reliable results that can provide
a safe ground to quantify the fractional statistics [36, 37] of the one-dimensional Fermi
gas [38–40]. This is a good starting point to analyze the relationship between anyonic
statistics and the entanglement of the constituent particles of the composite boson, which
has been pointed out to be the key to understand composite effects and ideal bosonic
behavior [41–43].

The basic steps of our procedure to tackle the problem of two trapped fermion pairs
are the same as in [31] and are as follows:

1. We solve the problem of a pair of interacting fermions in the trap. The operators
B†n that create each single-pair eigenstate, and the corresponding energies En, will
be the starting point of the treatment. We truncate the basis considering the states
with the lowest energies, up to some quantum number nmax.

2. From the single-pair basis operators B†n we form the two-coboson basis generated by
the action on the vacuum of operators of the kind B†nB

†
m.

3. We calculate the form of the Hamiltonian in this truncated coboson basis.

4. Solving the corresponding generalized eigenvalue problem, we estimate the ground
state for two pairs and analyze its properties.

This method allows us to interpolate from the interaction strengths for which the single-
particle basis is suitable [17–20], all the way to very strongly bound pairs approaching the
limit of hard-core bosons. Using coboson-theory tools combined with Taylor expansions,
we calculate several quantities of interest, including the energy and two-particle correlators.

The work is presented as follows: in Sec. 2 we review how to write the problem
in the coboson framework. Section 3 is devoted to analytical considerations for infinite
attraction. In Sec. 4 we discuss our numerical results. A summary and conclusions are
given in Sec. 5. Finally, several appendices with detailed calculations are included.

2 The procedure, step by step

2.1 Single-pair solution

For definiteness we will assume that both fermion kinds, which we call a and b, have the
same mass, and that the creation and annihilation operators corresponding to different
fermion species commute (this last choice does not affect the final results). We also assume
that the trapping potential is the same for both species.

The first step requires the solution of the single-pair problem, with a Hamiltonian
given by:

H1 =
∑
α=a,b

(
p2α
2m

+
mω2x2α

2

)
+ γ δ(xa − xb). (1)

This problem can be solved by separation of the center-of-mass and relative variables. The
center-of-mass solution is given by the harmonic oscillator eigenfunctions corresponding
to mass 2m. The relative motion has been solved in the general case in Refs. [44, 45] but
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for simplicity we focus only on strongly bound pairs, so that the relative motion has a
wavefunction of the form of an exponential,

ψr(xr) '
√
λ e−λ|xr|, (2)

and the energy associated with the relative motion can be approximated by:

Eγ = −~2λ2

m
, λ ' mγ

2~2
. (3)

In this regime, the single-pair eigenfunctions are then approximately of the form:

ψn(xa, xb) ' ϕn
(
xa + xb

2

) √
λ e−λ|xa−xb|, (4)

where ϕn are the harmonic oscillator eigenfunctions for a particle of mass 2m. The corre-
sponding energies are:

En = ~ω
(
n+

1

2

)
+ Eγ . (5)

From these solutions, we define the coboson creation operators B†n such that:

|ñ〉 = B†n|v〉, (6)

where |ñ〉 is the n-th single-pair eigenstate, and |v〉 is the vacuum. In particular, the

coboson operators B†n can be written in terms of field operators as:

B†n '
∫
dxadxb ψn(xa, xb)Ψ

†
a(xa)Ψ

†
b(xb). (7)

For consistency, neglecting states where the internal motion is excited implies also a
truncation in the center-of-mass states, so that the basis includes all single-pair eigen-
states up to a certain energy cutoff. In particular, we keep only states where the index n
associated with the center-of-mass motion is such that the excited internal states are well
above the energy scales considered, i.e.:

n� |Eγ |
~ω

= (λxω)2. (8)

For convenience here we have defined a spatial scale xω associated with the harmonic
oscillator,

xω =

√
~
mω

. (9)

The inequality in Eq. (8) stresses once more the fact that our restricted basis is only
appropriate for strong attraction, when the size of each bound pair is very small compared
with the spatial scale of the trap and thus λxω is large. It is also important to note that
since Eq. (2) and therefore Eq. (4) are valid for λxω ' 5 all of our results rely on this
condition [46].

2.2 Basis for two pairs

From the set of states corresponding to the lowest energies of the single-pair Hamiltonian,
one can form states of the form:

|ñm̃〉 = B†nB
†
m|v〉, (10)

4



SciPost Physics Submission

with n ≤ m (we note that the coboson creation operators commute) and |v〉 the vacuum.
Because of the fermionic character of the constituent particles, states generated in this
form are neither normalized nor orthogonal [23]. We truncate this two-pair basis with the
condition n+m ≤ nmax, and then approximate the ground state in the form:

|GS〉 =
∑
m≤n

cm,n|ñm̃〉 . (11)

An often useful approximation for the ground state of dilute systems of N pairs with
short-range interactions is given by what we call the “coboson ansatz” [23]. This corre-
sponds to the state obtained from the repeated application on the vacuum of the operator
B0 that creates a single pair in its ground state:

|N〉 =
(B†0)N√
N !χN

|v〉, (12)

where χN is a normalization constant. However, this can only provide a good approxi-
mation of the true ground state in systems which are expected to exhibit condensation at
zero temperature. This is not the case in the problem we analyze [30,31,33,34]. In order
to quantify the quality of the approximation, we study the fidelity F between the true
ground state for two pairs, |GS〉, and the coboson ansatz:

F =
|〈GS|(B†0)2|v〉|2

〈v|B2
0(B†0)2|v〉

, (13)

where the true ground state |GS〉 is approximated numerically using the coboson basis
given in Eq. (10) for two-pairs (N = 2).

Even if the coboson ansatz is not a good approximation, one can still compute the
ground state by means of the coboson formalism. In order to do this, we will work with
the space generated by the coboson operators as in Eq. (10). First, we compute all overlaps
between the relevant states from the expression:

Skl,mn = 〈v|BkBlB†mB†n|v〉 = δmlδkn+δnlδkm−
[
〈k̃|⊗〈l̃|Xa|m̃〉⊗|ñ〉+〈k̃|⊗〈l̃|Xb|m̃〉⊗|ñ〉

]
.

(14)
Here Xα with α = a, b is an operator that exchanges the states of the two fermions
of kind α, and it acts on a fictitious space where fermions of equal kind are treated
as distinguishable. Since our goal is to find the ground state, instead of building an
orthonormal basis, we keep the overlap matrix S to solve the corresponding generalized
eigenvalue problem.

The matrix S can be calculated following different strategies. In the coboson literature
[23], the overlaps are evaluated in terms of matrix elements of the change of basis between
single-pair eigenstates and the separable single-fermion basis. However, this procedure can
be numerically costly and lead to large errors when many coefficients are non-negligible
and no analytical expression exists for the sums required. Thus, we resort to a different
form of evaluation. Plugging the explicit form of the operators B†n given by Eq. (7) in all
formulas, and using (anti)commutators, we can obtain an expression for the elements of
the overlap matrix as:

Smn,jk '

[
δmjδnk − λ2

∫
dx dy1 dy2 dy3 dy4 δ(y1 + y2 − y3 − y4)

ϕm(x)ϕn

(
x+ y3 −

y1 + y2
2

)
ϕj

(
x+

y3 − y1
2

)
ϕk

(
x+

y3 − y2
2

)
e
−λ

∑
l
|yl|
]

+ same with j ↔ k. (15)
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Since we are interested in the case of strong attraction, the factors of the form e−λ|yl|

allow us to perform a Taylor expansion in 1/(xωλ) for the harmonic oscillator functions
ϕn. This is possible given the truncation of our basis in Eq. (8), which implies that the
spatial scale associated with the center of mass is much longer than the pair size λ−1. In
this form one can find approximate expressions for S from a lengthy but straightforward
evaluation of spatial integrals. This procedure is explained in detail in Appendix A.

2.3 Construction of the Hamiltonian

We now need to compute the Hamiltonian in the coboson basis. The Hamiltonian can be
split in two parts, corresponding to the non-interacting terms and the interactions. The
interaction part is quartic and can be written in terms of field operators as:

Hint = γ

∫
dxΨ†a(x)Ψ†b(x)Ψa(x)Ψb(x). (16)

The Hamiltonian matrix elements in the coboson basis can be obtained from the ex-
pression:

〈v|BkBlHB†mB†n|v〉 = (En + Em)Skl,mn + 〈v|BkBl
[
[Hint, B

†
m], B†n

]
|v〉, (17)

which is just a rewriting of the formulas in [23]. Notice that when using the coboson
formalism the one-body term which contains the kinetic energy and trap potential is
absorbed by quantities that were calculated when solving the single-pair case (first term
on the right-hand-side in the above equation). In a similar spirit as for the calculation of
the overlap matrix S, instead of following the standard expressions in [23] we estimate the
Hamitonian elements using a Taylor expansion of spatial integrals.

In particular, the last line of Eq. (17) can be written as:

〈v|BmBn
[
[Hint, B

†
j ], B

†
k

]
|v〉 '

γλ2

[∫
dxdydy′e−λ(|y|+|y

′|+|y−y′|)ϕm(x)ϕn

(
x+ y′ − y

2

)
ϕj

(
x+

y′ − y
2

)
ϕk

(
x+

y′

2

)

−
∫
dxdx′dydy′e−2λ(|y|+|y

′|)ϕm(x)ϕn(x′)ϕj(x)ϕk(x
′)δ

(
x− x′ + y + y′

2

)]
+ same with n↔ m+ same with j ↔ k + same with {j, k} ↔ {m,n}. (18)

The details of the procedure involving the Taylor expansion of the Hamiltonian elements
are also provided in Appendix A.

3 Analytical considerations for infinite attraction

Before presenting the results of our numerical approach, we note that the case of infinite
attraction can be solved exactly. In this limit, fermions of different species are so strongly
bound that they behave as point-like hard-core bosons of mass 2m, and the problem can be
solved by means of fermionization [7]. According to this procedure, one must first consider
the ground state of two identical non-interacting fermions of mass 2m in the trap. This
state is given by:

ψ2f(x1, x2) =
2mω

~
√
π
e−mω(x

2
1+x

2
2)/~(x1 − x2) (19)
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and corresponds to the antisymmetric combination of having one fermion in the trap
ground state and another in the first excited state. Then, one obtains the wavefunction
of the hard-core bosons as the symmetrized form of the previous expression, i.e.:

ψhc(x1, x2) =
2mω

~
√
π
e−mω(x

2
1+x

2
2)/~|x1 − x2|, (20)

where the subindex “hc” stands for “hard-core”.
From these expressions we can calculate all properties of the ground state for λ→∞.

For instance, the asymptotic ground-state energy, excluding the binding energy Eγ of each
pair, is found to be given by the sum of the two lowest energies of the harmonic oscillator.
Thus, the total ground-state energy for very large λ is approximately 2Eγ + 2~ω. We can
define an effective interaction energy between pairs as ∆E = E2 − 2E1, where EN is the
ground-state energy of N = 1, 2 pairs. Considering that a single pair has a ground-state
energy of Eγ + ~ω/2, we then obtain an effective interaction energy which for very large
attraction approaches ∆E = ~ω.

Using the ground-state wavefunction as expressed above, one can also analytically
calculate the fidelity between the true ground state and the coboson ansatz for infinite
attraction. We find an asymptotic fidelity of F∞ = 2/π ' 0.64, which is lower than
the one obtained in the same regime for two fermion pairs in translationally invariant
models [30,31].

Following the same lines, one can find the joint density of composite particles at posi-
tions x and x′ for the limit of infinite attraction. This is of the form:

Dhc(x, x
′) =

8

π2

(
x− x′

xω

)2

e−2(x
′2+x2)/x2ω . (21)

One can also write down the conditional probability P(x′|x) of finding a composite point-
like particle at position x′ provided that another one was found at position x:

Phc(x′|x) =
1

xω

√
2

π

(x− x′)2

x2 + x2ω/4
e−2(x

′/xω)2 . (22)

Furthermore, one can calculate the asymptotic values of the coefficients in the ex-
pansion of the ground state in the coboson basis, Eqs. (10-11), obtaining for λ → ∞:

c(∞)
mn = −(2− δmn)

(−1)(m−n)/2√
m!n!

√
1

π

(m+ n)!

(m/2 + n/2)!

1

2m+n

1

m+ n− 1
. (23)

This expression is valid for even and nonzero n+m, and here δmn is the Kronecker delta.
For symmetry reasons the coefficients cmn vanish for odd n + m, and for n = m = 0 we
find:

c
(∞)
00 =

√
1

π
. (24)

Since the coboson ansatz corresponds to the repeated application of the coboson operator
B†0, and for λ→∞ the wavefunctions associated with the different B†m become orthogonal,
the asymptotic value of c00 determines the asymptotic fidelity between the correct ground
state and the coboson ansatz. The additional factor

√
2 in the fidelity comes from the

definition of the coboson basis in Eq. (10), which does not include a prefactor 1/
√

2 for
m = n.

Before tackling the numerical treatment of the problem for strong but finite attraction,
we note that also the limit of infinitesimal attraction can be treated analytically. For g = 0,
the ground state of the system is separable, with the two lowest oscillator levels occupied
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for both kinds of fermions. Then, the energy ∆E approaches 2~ω. It is very important to
notice that in this separable limit, the coboson normalization factor χ2 in Eq.(12) vanishes,
and thus the coboson ansatz is not defined for g = 0. Nevertheless, using perturbation
theory together with analytical results for the Schmidt coefficients [46] one can calculate
the limit value of the fidelity between the true ground state and the coboson ansatz, and
find that as the attractive interaction strength approaches zero, F approaches a value of
approximately 0.37. Indeed, for g ∼ 0 we obtain χ2 ∼ 0.342λ2 and F ∼ λ2/8χ2 with
λ ∼ g/

√
2π~ωxω. We note, however, that the weakly bound case is not within the scope

of our present study, and it has been extensively analyzed before [17–20].

4 Numerical study of the ground state for strong attraction

In the following we perform a numerical study of the ground state according to the proce-
dure outlined in Sec. 2. A delicate point in the calculation is the choice of the number of
basis states. A very small number leads to a poor description of the system, whereas for
a very large number it becomes unjustified to leave out the excited states of the relative
motion, and it can also lead to numerical problems if the overlap matrix becomes worse
conditioned. As a compromise, we choose the maximum center-of-mass energy included
in our description to grow linearly with λ.

In Fig. 1 (a) we show our results for the interaction energy ∆E = E2 − 2E1 using a
Taylor expansion for the calculation of both the overlap and the Hamiltonian matrices.
We also plot in Fig. 1 (b) the fidelity F between the ansatz and the true ground state as a
function of λ when choosing the energy in the truncated basis to be given by nmax = λxω.
We note that our results show reasonable agreement with the known behaviour for infinite
attraction. Notice that the difference between the numerical ∆E obtained for λxω ' 200
and the asymptotic value ~ω presented in Fig. 1 (a) is of about 4%, whereas the binding
energy for this case is so large that ∆E is five orders of magnitude smaller than the total
energy.

(a) (b)

Figure 1: a) Energy for two pairs, excluding the trivial contribution equal to
twice the single-pair energy, as a function of λ. b) Fidelity between the coboson
ansatz and the numerically found ground state as a function of λ. The results
are obtained from the lowest non-trivial order of the Taylor expansion (green
stars) and the next non-zero higher-order corrections (black circles) as reported
in Appendix A. The horizontal dashed red lines indicate the asymptotic values
for λ→∞.
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As can be seen in the comparison provided in Fig. 2, for λxω = 30 the coefficients cm,n
of the ground state in the form of Eq. (11) are already very close to the ones obtained
from the hard-core boson limit given in Eqs. (23-24). This also hints at a procedure to
perform approximate computations more efficiently: instead of taking the full basis as in
Fig. 2, one can use a truncation inspired by the asymptotic values of the coefficients in
Eqs. (23-24). One can also directly approximate the state by taking the coboson basis
in Eq. (10) to be a function of λ but the coefficients in this basis to be given by the
asymptotic values, which gives a fast and compact approximation for the ground state.
Indeed, the ground state found numerically for λxω = 30 has a fidelity of 0.993 with the
state obtained taking the asymptotic values of the coefficients and truncating the basis in
the same form.

Figure 2: Coefficients in the coboson decomposition from the numerical resolution
of the problem based on a Taylor expansion for λxω = 30, in black circles. The
index k here refers to a particular ordering of the m,n coefficients using a single
label. For comparison we show the values according to the asymptotic expression
in Eqs. (23-24) as red four-pointed stars, which overlap with the numerical resuls
within the size of the symbols. The basis was truncated with nmax = λxω. The
coefficients in the plot are normalized taking ctSc = 1. The vertical dashed light-
gray lines delimitate sections of the basis containing states B†mB

†
n|v〉 with a fixed

value of m+ n.

From the numerical solution of the problem one can characterize the ground state
through several key properties. In particular, in Fig. 3 (a) we illustrate the spatial corre-
lations between fermions of equal kind through the joint density distribution

Daa(x, x′) = 〈ψ|Ψ†a(x′)Ψ†a(x)Ψa(x)Ψa(x
′)|ψ〉, (25)

evaluated for the case λxω = 30. The details of the calculation are provided in Appendix
B. This plot displays clear signatures of Pauli exclusion as a sharp diagonal feature. Two
identical fermions are most likely found apart from each other at a distance which is set
by the spatial scale of the harmonic trap.

For comparison, Fig. 3 (b) displays the joint density for fermions of different kinds:

Dab(x, x′) = 〈ψ|Ψ†b(x
′)Ψ†a(x)Ψa(x)Ψb(x

′)|ψ〉. (26)

This plot exhibits a strong diagonal correlation corresponding to particles that form a
bound pair, with additional much broader peaks corresponding to particles belonging to
different pairs. The calculation of Dab is explained in Appendix C.
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(a) (b)

Figure 3: a) Joint density distribution Daa(x, x′) in units of x−2ω , for two fermions
of kind a at positions x and x′ simultaneously. b) Joint density distribution
Dab(x, x′), in units of x−2ω , for finding a fermion of kind a at position x and
one of kind b at position x′ simultaneously. Both densities were obtained from
the numerical solution for λxω = 30. Details of the calculations are given in
Appendices B and C.

Another quantity that reflects the spatial correlations present in the ground state is
the conditional probability Paa(x|0) to find one fermion of kind a at position x given that
another identical fermion was found at the origin. This function is plotted in Fig. 4 (a),
for the numerical solution with λxω = 30. For comparison we also show the conditional
probability Paa(x|0) obtained from the hard-core limit of λ → ∞ and from the coboson
ansatz of Eq. (12) evaluated for λxω = 30. The corresponding formulas are given in
Appendix B. The plots show qualitative agreement between the numerical results and the
point-like hard-core boson limit, in sharp contrast with the coboson ansatz in its standard
form. Indeed, the form of the conditional probability Paa(x|0) is similar to the probability
distribution corresponding to the first excited state of the harmonic oscillator, the maxima
of which are indicated with dotted vertical lines in the Figure.

In a similar manner one can compare the predictions for the spatial correlations of
fermions of different kinds. To this aim, we consider the behaviour of the conditional par-
ticle density Dab(x|x′) indicating the density of fermions of kind a at position x conditioned
on having found a fermion of kind b at position x′. We plot this quantity with x′ = 0 for
the numerical solution corresponding to λxω = 30 in Fig. 4 (b), where we also plot the
predictions of the point-like hard-core boson limit and the coboson ansatz for λxω = 30.
The derivation of the corresponding formulas is shown in Appendix C. All three curves
have a narrow peak around the origin, associated with the probability to find a fermion
paired with the first one detected (in the limit λ→∞ this peak is a delta function). The
curves however differ strongly in the behaviour related with the probability to find the
remaining particle of kind a. This second contribution to the conditional density has the
same shape as Paa(x|0), and closely resembles the probability distribution for the first
excited state of the harmonic oscillator of mass 2m, a behaviour which is not properly
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(a) (b)

Figure 4: a) Conditional probability Paa(x|0) to find a fermion of kind a at po-
sition x when another fermion was already found at the origin. b) Conditional
density Dab(x|0) indicating the density of fermions of kind a at position x condi-
tioned on having found a fermion of kind b at the origin. In both plots the solid
black curve is the numerical result with λxω = 30 and nmax = λxω. The dashed
red curve is the analytical result for the probability obtained for the point-like
hard-core boson limit, and the blue dash-dotted line is the probability predicted
by the coboson ansatz in Eq. (12) for N = 2 and λxω = 30. Details of the cal-
culations are given in Appendices B and C. The vertical light-gray lines indicate
the positions ±xω/

√
2, which are the locations of the maxima of the conditional

probability for λ→∞.

described by the standard coboson ansatz.
Figures 3 and 4 were concerned with density distributions in space, associated with

diagonal terms of the system’s density matrix in space representation. Figure 5 a) shows
in contrast an off-diagonal feature, namely the off-diagonal correlation function [17]:

g2(x) =
ρab(0, 0;x, x)√

ρab(0, 0; 0, 0)ρab(x, x;x, x)
, (27)

where ρab is the reduced density matrix for two fermions of different kind. The quantity g2
is an indicator of spatial two-particle coherence, and the coboson ansatz predicts a constant
value g2(x) = 1 in the limit of infinite attraction. The numerical results (in black) show
that this coherence decays within the typical scale set by the harmonic oscillator, but
it stays high for all values with non-negligible particle densities. Nevertheless, the off-
diagonal correlation we find is always smaller than the one corresponding to the hard-core
limit, depicted in red for comparison. This is not due to a variation in the decay of the
spatial coherence, as can be seen in Fig. 5 b). Rather, the difference between our numerical
results and the limit λ→∞ is given by a different density profile, since the particle density
at the origin is lower for finite λ than in the limit of infinite attraction.

For the same numerically found ground state one can also characterize the properties
in momentum space using similar techniques. In Fig. 6 we show the joint probability
distribution for fermions of different kinds in momentum space. This plot displays a
strong anti-diagonal peak which is the counterpart of the diagonal peak found for the joint
probability distribution in position space, shown in Fig. 3 (b). The remaining features
of the plot do not ressemble the state of two identical trapped fermions of mass 2m;
this difference in the behaviour of position and momentum is typical of hard-core bosons

11
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(a)

(b) (c)

Figure 5: a) Off-diagonal correlation function g2(x), b) off-diagonal matrix ele-
ments and c) diagonal matrix elements of the reduced density matrix ρab. Black
solid lines correspond to numerical results for λxω = 30, red dashed ones to point-
like hard-core bosons and blue dash-dotted lines correspond to the prediction of
the coboson ansatz for N = 2 and λxω = 30. Details are provided in the main
text and in Appendix D. Notice that the vertical axis of subplot (a) does not
begin at zero.

[7,32,47]. The calculation of the joint density in momentum space is similar to the one of
Dab(x, x′), but involves a Fourier transform of the coboson basis. The details are explained
in Appendix E.

5 Summary and conclusions

We have tackled the problem of two identical composite particles, each made of two dis-
tinguishable fermions, inside a harmonic trap and with contact attractive interactions
between fermions of different species. We explored the strongly bound regime using the
coboson formalism to build a compact basis of states, greatly reducing the computational
requirements associated with the usual description in terms of single-particle eigenstates.

We have studied the approach of the interaction energy to the limit of infinite at-
traction, corresponding to point-like hard-core bosons, and we have confirmed that the
coboson ansatz in its standard form does not provide an accurate description of the ground

12
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Figure 6: Joint density distribution D̃ab(k, k′), in units of x2ω, for finding a fermion
of kind a with momentum k and one of kind b with momentum k′ simultaneously,
obtained from the numerical solution for λxω = 30. Details are provided in the
main text and in Appendix E.

state for any of the interaction strengths within our analysis. Since the energy of the co-
boson ansatz for N pairs can be approximated from the energy for one and two pairs [23]
the coboson ansatz cannot provide a good estimation for the energy of a system made of
N pairs. We have also shown that the point-like hard-core boson limit provides a good
approximation of the coefficients when writing the ground state in the coboson basis. Fur-
thermore, we have used the numerical results to characterize spatial correlations present
in the ground state, both between fermions of different and equal kinds, complementing
previous work [17].

The composite-boson procedure presented can be generalized to higher numbers of
particles and different forms of the trapping potential. Most importantly, we expect this
approach to provide an additional tool to the ones usually applied for the description of
experiments involving bosonic Feshbach molecules made of fermionic constituents in quasi
one-dimensional settings.
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A Calculation of Hamiltonian and overlap matrix in posi-
tion basis

In the limit of very strong interaction, it makes sense to use that the wavefunctions for
the center of mass vary over a scale which is much larger than the one for the relative
motion. Thus, we start from Eq. (15) for the elements of the overlap matrix, use that all
yj are of the order of λ−1, and perform a Taylor expansion in these small displacements.
The lowest orders give:

Smn,jk ' δmjδnk + δnjδmk−
5

λ
Imn,jk +

7

8λ3

∫
dx(2ϕmϕnϕ

′
jϕ
′
k +ϕmϕ

′
nϕjϕ

′
k +ϕ′mϕnϕjϕ

′
k

+ ϕmϕ
′
nϕ
′
jϕk + ϕ′mϕnϕ

′
jϕk + 2ϕ′mϕ

′
nϕjϕk) . (28)

Here, all functions are evaluated at position x, the primes mean that a first derivative must
be taken, and Imn,jk is an integral of a product of four single-particle harmonic-oscillator
eigenstates:

Ijklm =

∫
dxϕj(x)ϕk(x)ϕl(x)ϕm(x) . (29)

These integrals are evaluated using known properties of the Hermite polynomials. In turn,
the integrals with derivatives of the eigenfunctions can be written in terms of the elements
Imn,jk using the relation:

ϕ′n =

√
mω

~
(
√
nϕn−1 −

√
n+ 1ϕn+1), (30)

keeping in mind that the ϕ are defined as the eigenfunctions of the harmonic oscillator
with mass 2m.

In the same way one can write an expression for the part of the Hamiltonian involving
the commutator, Eq. (18). The dominant contributions give, after some manipulations:

〈v|BmBn[V †j , B
†
k]|v〉 ' 2γImn,jk

− γ

8λ2

∫
dx [ϕmϕnϕ

′
jϕ
′
k+3(ϕmϕ

′
nϕjϕ

′
k+ϕmϕ

′
nϕ
′
jϕk+ϕ

′
mϕnϕjϕ

′
k+ϕ

′
mϕnϕ

′
jϕk)+11ϕ′mϕ

′
nϕjϕk]

+
γ

128λ4

∫
dx{21(ϕmϕ

′
nϕ
′
jϕ
′′
k + ϕmϕ

′
nϕ
′′
jϕ
′
k + ϕ′mϕnϕ

′
jϕ
′′
k + ϕ′mϕnϕ

′′
jϕ
′
k)

+ 4(ϕmϕ
′′
nϕjϕ

′′
k + ϕmϕ

′′
nϕ
′′
jϕk + ϕ′′mϕnϕjϕ

′′
k + ϕ′′mϕnϕ

′′
jϕk) + 27(ϕmϕ

′′
nϕ
′
jϕ
′
k + ϕ′′mϕnϕ

′
jϕ
′
k)

− 22(ϕ′mϕ
′
nϕjϕ

′′
k + ϕ′mϕ

′
nϕ
′′
jϕk) + 57ϕ′′mϕ

′′
nϕjϕk + ϕmϕnϕ

′′
jϕ
′′
k},

where again all functions are evaluated at position x and the double primes mean that a
second derivative must be taken. This formula can be calculated using similar steps as
before. Putting this together with the part from (Ej +Ek)Smn,jk we can find a consistent
expansion for the Hamiltonian up to this order.

For our numerical calculations, we include the orders reported for S and H. One could
improve this evaluation by considering higher orders of the Taylor expansion. However, we
checked that for the parameter regimes studied the results obtained with these formulas
are not significantly altered by excluding the higher order, as can be seen in Fig. 1.

B Spatial correlations for two fermions of equal kind

We first consider the joint density distribution for fermions of equal kind:

Daa(x, x′) = 〈ψ|Ψ†a(x′)Ψ†a(x)Ψa(x)Ψa(x
′)|ψ〉, (31)
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of course, taking two fermions of kind b leads in our model to the same result. We note
that this definition means that: ∫∫

dx dx′Daa(x, x′) = 2 . (32)

We now show how we calculate this joint density for the numerically found ground
state. Starting from the expansion of the state in the coboson basis, Eq. (11), we find:

Daa(x, x′) =
∑
m≤n

∑
j≤l

cmn cjl [J
(jm)
1 (x)J

(ln)
1 (x′)− J (jn)

2 (x, x′)J
(ml)
2 (x, x′)]

+ same with n↔ m, j ↔ l, and {n, l} ↔ {m, j}. (33)

The result for the standard coboson ansatz corresponds to setting all cjl to zero except
for c00. In the formula above we have introduced auxiliary integrals given by:

J
(jm)
1 (x) =

∫
dx′ψj(x, x

′)ψm(x, x′), (34)

and

J
(jm)
2 (x, x′) =

∫
dx′′ψj(x, x

′′)ψm(x′, x′′) . (35)

The integrals J2 account for fermion-exchange terms and are negligible unless x and x′

are close together within a distance of order 1/λ.
From these formulas one can recover the vanishing of the conditional probability for

x = x′ for arbitrary states. For the limit λ → ∞, the joint density Daa tends to the
expression given in Eq. (21) which was calculated from the ground state of two point-like
hard-core bosons. In the limit of very large but finite attraction, one can resort to a
Taylor expansion for the calculation of the integrals, in the same spirit as the calculations
in Appendix A. For J1 we obtain:

J
(jm)
1 (x) ' ϕjϕm +

1

16λ2
[2ϕ′jϕ

′
m + ϕ′′jϕm + ϕjϕ

′′
m]

+
1

256λ4
[6ϕ′′jϕ

′′
m + 4ϕ

(3)
j ϕ′m + 4ϕ′jϕ

(3)
m + ϕ

(4)
j ϕn + ϕjϕ

(4)
m ] . (36)

Here, all functions are evaluated at position x and we are using primes (double primes)
over the functions to denote derivatives (second derivatives), whereas derivatives of higher
order are indicated with superindices between parenthesis. We remind the reader that the
ϕn indicate the oscillator eigenfunctions for mass 2m.

The integral for J2 can be expanded as:

J
(jm)
2 (x, x′) ' e−λ|x−x′|

{
ϕj(x)ϕm(x′)(1 + λ|x− x′|)

− 1

4λ

[
ϕ′j(x)ϕm(x′)− ϕj(x)ϕ′m(x′)]λ(x− x′)(1 + λ|x− x′|)

]
+

1

6λ2

[1

4
ϕ′j(x)ϕ′m(x′)

(
3 + 3λ|x− x′| − λ3|x− x′|3

)
+

1

8

(
ϕ′′j (x)ϕm(x′) + ϕj(x)ϕ′′m(x′)

)(
3 + 3λ|x− x′|+ 3λ2(x− x′)2 + 2λ3|x− x′|3

)]}
.

(37)
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From the joint density Daa(x, x′) one can also calculate the conditional probability
Paa(x|x′) of finding a particle of kind a at position x when another of the same kind was
found at position x′. This can be computed from:

Paa(x|x′) =
Daa(x, x′)

〈ψ|Ψ†a(x′)Ψa(x′)|ψ〉
, (38)

so that: ∫
dxPaa(x|x′) = 1 ∀ x′. (39)

For the limit λ → ∞, the conditional probability Paa tends to the expression given in
Eq. (22) calculated from the ground state of two point-like hard-core bosons.

On the other hand, the standard coboson ansatz predicts for λ → ∞ a behaviour of
the form:

Daa(x, x′) =

{
2ϕ0(x)2ϕ0(x

′)2 if x 6= x′

0 if x = x′,
(40)

so that

Paa(x|x′) =

{
ϕ0(x)2 if x 6= x′

0 if x = x′.
(41)

C Spatial correlations for fermions of different kinds

We now calculate spatial correlations between fermions of different kinds. In particular,
we are interested in the joint particle density

Dab(x, x′) = 4ρab(xa, xb;xa, xb) . (42)

Here, ρab is the reduced density matrix of two different fermions in position basis and is
given by [17]:

ρab(xa, xb;x
′
a, x
′
b) =

1

4
〈ψ|Ψ†a(xa)Ψ

†
b(xb)Ψb(x

′
b)Ψa(x

′
a)|ψ〉 . (43)

In the following we proceed to the calculation of the joint density for the general
numerical solution. Replacing the expansion of the state in the coboson basis leads to:

Dab(x, x′) =
∑
m≤n

∑
j≤l

cmn cjl

{[
δnlψm(x, x′)ψj(x, x

′) + J
(ln)
1 (x) J

(jm)
1 (x′)

− ψm(x, x′)J
(jl|n)
3 (x, x′)− ψj(x, x′)J (mn|l)

3 (x, x′)
]

+ same with n↔ m, j ↔ l, and {n, l} ↔ {m, j}
}
. (44)

Here, the J1 are given in Eq. (34), and the J3 contain interference terms given by:

J
(jl|n)
3 (x, x′) =

∫
dydy′ψj(x, x− y)ψl(x

′ + y′, x′)ψn(x− y, x′ + y′) . (45)

Again, the result for the coboson ansatz is found setting all coefficients cjl to zero except
for c00.
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Resorting to the Taylor expansion J
(jl|n)
3 (x, x′) can be approximated by

J
(jl|n)
3 (x, x′) ' e−λ|x−x′|

{
1

2
√
λ
ϕj(x)ϕl(x

′)ϕn(x)
(
λ2(x− x′)2 + 3λ|x− x′|+ 3

)
+

1

12
√
λ

[
−ϕ′j(x)ϕl(x

′)ϕn(x) + ϕj(x)ϕ′l(x
′)ϕn(x)− 3ϕj(x)ϕl(x

′)ϕ′n(x)
]

× (x− x′)
(
λ2(x− x′)2 + 3λ|x− x′|+ 3

)
+

1

24λ5/2

[
− 1

4
ϕ′j(x)ϕ′l(x

′)ϕn(x)− 3

4
ϕj(x)ϕ′l(x

′)ϕ′n(x) +
1

4
ϕ′j(x)ϕl(x

′)ϕ′n(x)

+
1

2
ϕj(x)ϕl(x

′)ϕ′′n(x)
]
×
(
λ4(x− x′)4 + 2λ3|x− x′|3 − 3λ2(x− x′)2 − 15λ|x− x′| − 15

)
+

1

12λ5/2

[1

2
ϕ′j(x)ϕl(x

′)ϕ′n(x) +
1

8
ϕ′′j (x)ϕl(x

′)ϕn(x) +
1

8
ϕj(x)ϕ′′l (x

′)ϕn(x)

+
5

8
ϕj(x)ϕl(x

′)ϕ′′n(x)
]
×
(
λ4(x− x′)4 + 4λ3|x− x′|3 + 9λ2(x− x′)2 + 15λ|x− x′|+ 15

)}
.

(46)

We note that just as in Paa, the terms with J1 are the only ones that are non-negligible
when x and x′ are at a distance much larger than 1/λ. Thus, Paa and Dab behave in
the same way for e−λ|x−x

′| � 1, corresponding to detection of particles in different bound
pairs. In the opposite limit of x close to x′, Dab has a peak of width 1/λ corresponding to
detection of the particle forming a pair with the fermion detected at x′.

We now calculate a quantity analogue to Paa(x|x′) but applying to fermions of different
kinds. In particular, we wish to calculate the conditional probability Pab(x|x′) of finding a
fermion of kind a at position x conditioned on having found a fermion of kind b at position
x′. This, however, is trickier because after the detection of one fermion of kind b there are
two remaining identical fermions of kind a.

Thus, we choose to work with a conditional particle density Dab(x|x′) indicating the
density of fermions of kind a at position x conditioned on having found a fermion of kind
b at position x′. Since two identical fermions can never be found at the same place, this
quantity is related with the conditional probability Pab, but its interpretation is more
straightforward and, in contrast with a probability, Dab must be normalized to 2. More
precisely, the conditional particle density is given by:

Dab(x|x′) =
Dab(x, x′)

〈ψ|Ψ†b(x′)Ψb(x′)|ψ〉
. (47)

such that ∫
dxDab(x|x′) = 2 ∀ x′. (48)

For infinite attraction, it holds that Dab(x|x′) = Paa(x|x′) + δ(x − x′). For the coboson
ansatz, in the limit λ→∞ one has Dab(x, x′) = 2ϕ0(x)2[ϕ0(x

′)2+δ(x−x′)] and accordingly
Dab(x|x′) = ϕ0(x

′)2 + δ(x− x′).

D Off-diagonal correlation parameter

Here we provide the expression for the off-diagonal correlation parameter g2(x) defined
in Eq. (27). The diagonal matrix elements appearing in the denominator are particular
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instances of the calculation in the previous section, so that one can use Eq. (44) evaluated
for x′ = x. For the off-diagonal part, we plug the decomposition of the state in the coboson
basis and apply (anti)commutators as in the previous sections.

ρab(0, 0;x, x) ' 1

4

∑
m≤n

∑
j≤l

cmn cjl

{[
ψj(x, x)ψm(0, 0)δnl + J

(ln)
2 (x, 0)J

(jm)
2 (x, 0)

− ψj(x, x)J
(mn|l)
4 (0)− ψm(0, 0)J

(jl|n)
4 (x)

]
+ same with n↔ m, j ↔ l, and {n, l} ↔ {m, j}

}
, (49)

where we have introduced a new integral expression:

J
(mn|l)
4 (x) =

∫
dydy′ ψm(y, x)ψn(x, y′)ψl(y, y

′), (50)

that can be Taylor-expanded as follows:

J
(mn|l)
4 ' 3

2
√
λ
ϕmϕnϕl

+
5

4λ5/2
[ϕ′mϕ

′
nϕl + 3ϕ′mϕnϕ

′
l + 3ϕmϕ

′
nϕ
′
l + ϕ′′mϕnϕl + ϕmϕ

′′
nϕl + 3ϕmϕnϕ

′′
l ], (51)

with all functions evaluated at the same position.
In the limit of infinite attraction the form of g2 can be calculated using the point-like

hard-core boson solution. This gives:

g2−hc(x) =

4x√
2π

+ xωerfc(
√

2x/xω)√
4x2 + x2ω

, (52)

where “erfc” is the complementary error function. This is a quite flat behaviour for g2,
but still clearly different from the totally flat profile, g2(x) = 1 ∀ x, that is obtained from
the standard coboson ansatz for λ→∞.

E Correlations in momentum space

One can easily extend the results from the previous appendices to momentum space. In
order to do this, we resort to the expresion of the coboson wavefunctions in momentum
space:

ψ̃n(k1, k2) =

√
2

πλ

xωe
−iπn/2

1 +
(
k1−k2
2λ

)2 ϕn[x2ω(k1 + k2)], (53)

which is just the Fourier transform of Eq. (4). These functions are of order
√
xω/λ and

decay in a scale of order λ for the relative momentum (k1− k2)/2 and of order
√
n/xω for

the center-of-mass momentum k1 + k2.
From this expression one can derive formulas for the correlations in momentum space

following similar steps as before. One should only keep in mind that, in contrast to position
space, the wavefunctions in momentum space are complex. In particular, we find for the
momentum correlations between fermions of different kinds an equation which is analogous
to Eq. (44):

D̃ab(k, k′) =
∑
m≤n

∑
j≤l

cmn cjl

{[
δnlψ̃

∗
m(k, k′)ψ̃j(k, k

′)+J̃
(nl)
1 (k) J̃

(mj)
1 (k′)−ψ̃∗m(k, k′)J̃

(jl|n)
3 (k, k′)

− ψ̃j(k, k′)[J̃ (mn|l)
3 (k, k′)]∗

]
+ same with n↔ m, j ↔ l, and {n, l} ↔ {m, j}

}
. (54)
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Here, the asterisk denotes a complex conjugation and we have defined:

J̃
(nl)
1 (k) =

∫
dk′ψ̃∗n(k, k′)ψ̃l(k, k

′), (55)

and

J̃
(jl|n)
3 (k, k′) =

∫
dqdq′ψ̃j(k, q

′)ψ̃l(q, k
′)ψ̃∗n(q, q′) . (56)

Replacing the form of the wavefunctions in momentum space one finds the integral
expression:

J̃
(nl)
1 (k) =

2x2ω
πλ

eiπ(n−l)/2
∫
dk′

ϕn(x2ωk
′)ϕl(x

2
ωk
′)[

1 + (k
′−2k
2λ )2

]2 . (57)

Taking into account the restriction on the values of n, l within our basis, one can perform
a Taylor expansion in k′/λ in the expression above. We stress that the values of k cannot
be assumed to be much smaller than λ, since λ is indeed the typical scale for the relative
momentum. In this way we obtain:

J̃
(nl)
1 (k) ' 2x2ω

πλ
eiπ(n−l)/2

∫
dk′ϕn(x2ωk

′)ϕl(x
2
ωk
′)

 1(
k2

λ2
+ 1
)2 +

2kk′

λ2
(
k2

λ2
+ 1
)3 − (1− 5k2

λ2
)k′2

2λ2
(
k2

λ2
+ 1
)4
 ,

(58)
which can be evaluated using properties of the Hermite polynomials.

The integrals for J̃3 can be cast in the form:

J̃
(jl|n)
3 (k, k′) =

(
2x2ω
πλ

)3/2

e−iπ(j+l−n)/2
∫
dqdq′

ϕj(x
2
ωq
′)ϕl(x

2
ωq)ϕn[x2ω(q + q′ − k − k′)][

1 + ( q
′−2k
2λ )2

] [
1 + ( q−2k

′

2λ )2
] [

1 + (k−k
′+q−q′
2λ )2

] .
(59)

Performing a Taylor expansion here is justified for the q, q′ divided by λ in the denomina-
tor, but not for the same variables inside the wavefunction ϕ. This makes this calculation
much more involved. The Taylor expansion of the denominator gives:

J̃
(jl|n)
3 (k, k′) '

(
2x2ω
πλ

)3/2

e−iπ(j+l−n)/2
∫
dqdq′ϕj(x

2
ωq
′)ϕl(x

2
ωq)ϕn[x2ω(q + q′ − k − k′)] 1(

k2

λ2
+ 1
)2 (

k′2

λ2
+ 1
)2 (

(k−k′)2
4λ2

+ 1
)2

+
(k − 3k′)

(
k′(k−k′)

2λ2
− 1
)

λ2
(
k2

λ2
+ 1
)2 (

k′2

λ2
+ 1
)3 (

(k−k′)2
4λ2

+ 1
)3 q +

(3k − k′)
(
k(k−k′)

2λ2
+ 1
)

λ2
(
k2

λ2
+ 1
)3 (

k′2

λ2
+ 1
)2 (

(k−k′)2
4λ2

+ 1
)3 q′

 ,
(60)

Here one is still left with a non-trivial integral in q, q′. This can be solved using the
decomposition formula

ϕn (x+ y) =
∞∑

i,j=0

Aij|nϕi (x)ϕj (y) , (61)

where the coefficients

Aij|n =

∫ ∫
ϕn (x+ y)ϕi (x)ϕj (y) dxdy
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can be evaluated using properties of the Hermite polynomials. For numerical evaluation
this summation must be truncated. Performing this one up to i, j = 100 good approxima-
tions are obtained. Then we are left with terms similar to those found in the calculation
for J̃1.

The first term in Eq. (54) contains contributions of order xω/λ which decay in a scale
of order λ for the relative momentum (k − k′)/2 and of order 1/xω for the center-of-mass
momentum k + k′. The second term, involving J̃1, contains contributions of order 1/λ2

which decay on a scale of order λ for k and k′ separately. We note that this contribution is
broad and has a Lorentzian decay, whereas the decay of the contributions in the first term
is Gaussian for the center of mass. Thus, they may be of the same order depending on
the point where they are evaluated. In any case, the dominant feature is the anti-diagonal
resulting from the first term. The remaining terms, containing J̃3, have a similar behaviour
as the first (i.e. with a strong anti-diagonal) but are one order smaller in 1/(λxω), which
justifies using an expansion for J̃3 to a lower order than for J̃1.
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