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Abstract

We show that, in addition to the counting of canonical dimensions, a counting of
loop orders is necessary to fully specify the power counting of Standard Model
Effective Field Theory (SMEFT). Using concrete examples, we demonstrate that
considering the canonical dimensions of operators alone may lead to inconsistent
results. The counting of both, canonical dimensions and loop orders, establishes
a clear hierarchy of the terms in SMEFT. In practice, this serves to identify, and
focus on, the potentially dominating effects in any given high-energy process in
a meaningful way. Additionally, this will lead to a consistent limitation of free
parameters in SMEFT applications.



1 Introduction

The Standard Model (SM) of particle physics can be viewed as the low-energy approxi-
mation of a more fundamental theory at higher energies that is yet to be discovered. The
success of the SM and the absence of new resonances in the experiments at the Large
Hadron Collider (LHC) indicate a mass gap separating the new physics from the elec-
troweak scale. The bottom-up construction of an effective field theory (EFT) based on
the SM particle content and symmetries (SMEFT) is, therefore, a well-motivated and
widely adopted framework for a model-independent description of new-physics effects
[1–6]. Generally speaking, such effects are encoded in operators of canonical dimension
higher than four in the EFT Lagrangian.

Including or omitting any specific operator in a bottom-up EFT calculation has to rely
on a clear power-counting prescription. The power counting rests on (generic) assumptions
about the underlying physics at shorter distances. The assumptions, and the resulting
power counting, are not unique, but this is unavoidable. Necessarily, a choice has to be
made to fix this power counting in a consistent way. This holds in particular for SMEFT.

Commonly SMEFT is organized in terms of the canonical dimension of operators. The
coefficient of an operator of canonical dimension d scales as Λ4−d with a new-physics scale
Λ, leading to increasing suppression with increasing operator dimension.

We will argue that a power counting for SMEFT based on canonical dimensions alone
is incomplete. It needs to be supplemented by specifying whether SM fields are weakly
or strongly coupled to the new-physics sector. This assumption is effectively described by
a counting of loop orders. Keeping track of loop counting not only provides a consistent
treatment of higher-dimensional operators in a given process; it also leads to a systematic
combination of SMEFT corrections with calculations in perturbation theory.

The basic rules of power counting on which we rely are by no means new. However,
their implications are not always consistently applied, and they are often not spelled out
explicitly. We will review the organizing principle of SMEFT, emphasizing in particular
the role of loop counting. The relevance and use of the latter will be demonstrated with
concrete examples and calculations.

The fact that canonical dimensions alone do not provide the full information needed
for the power counting of SMEFT is already illustrated by the Higgs-mass operator φ†φ
in the SM Lagrangian. Carrying a canonical dimension of two, it would appear, at face
value, to be dominant over the remaining SM terms of dimension four, which is certainly
not the case. We will see how the missing information can be provided by loop counting.

This paper is organized as follows. In Sec. 2 we introduce the toy scenario of a heavy
scalar coupled to top quarks t and discuss the process e+e− → tt̄ within an EFT where
the heavy scalar is integrated out. Using this top-down example, we demonstrate how a
magnetic-moment type operator mt t̄σµνt F

µν and a four-fermion operator t̄t t̄t contribute
at the same order in the EFT, even though the former enters the scattering amplitude
at tree level, but the latter only at one loop. We show that loop counting explains and
clarifies this observation, and generalize the discussion to a bottom-up EFT treatment. In
Sec. 3 we address the issues highlighted in Sec. 2 within the general context of SMEFT.
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We review the SMEFT power counting, emphasizing the need to include the counting of
loop orders, conveniently expressed using the notion of chiral dimensions dχ, in addition
to canonical dimensions dc. The general counting scheme is illustrated with the example
of Higgs production in gluon fusion gg → h, which nicely displays the combined role of
canonical dimensions and loop orders in the SMEFT expansion. In Sec. 4 we return to
the topic treated with a toy model in Sec. 2, generalizing it to the more realistic case of
SMEFT, analyzing uū → tt̄ via gluon exchange within a decoupling Two-Higgs Doublet
Model (2HDM) as the UV completion. We finally conclude in Sec. 5.

2 Toy model analysis of e+e− → tt̄

We consider a toy model with an electron ψ of mass me ≈ 0 and a heavy fermion t of
mass m, both coupled to electromagnetism. In addition to this “standard” physics, we
introduce a real scalar field S with mass M , which has renormalizable self-interactions
and a Yukawa coupling to the “top-quark” t.1 The Lagrangian reads

L = ψ̄(i 6D −me)ψ + t̄(i 6D −m)t− 1

4
FµνF

µν

+
1

2
(∂S)2 − 1

2
M2S2 − b

3!
S3 − λ

4!
S4 − gt̄tS (1)

where

Dµ = ∂µ + ieqfAµ , qe = −1 , qt =
2

3
, Fµν = ∂µAν − ∂νAµ (2)

The first line of (1) is quantum electrodynamics with two different fermions. The “non-
standard” physics of the scalar in the second line is assumed to be governed by a scale
M , which is taken to be much larger than m and the typical energies (

√
s ∼ few times

m) accessible in experiment. We allow b ∼ M and take the dimensionless couplings in
(1) of order unity, unless specified otherwise. The heavy scalar S modifies the dynamics
of the top quark and leads at energies of order

√
s to “new-physics” effects, suppressed

by powers of s/M2.
As an example, we take the process e−(k1)e

+(k2)→ t(p1)t̄(p2). To lowest order, within
the model of eq. (1), the amplitude for this process arises from s-channel photon exchange,
shown in Fig. 1 (a). It is given by

ALO = −ie
2qt
q2

v̄(k2)γµu(k1) ū(p1)γ
µv(p2) (3)

where q = p1 + p2 = k1 + k2, s ≡ q2. We are interested in the leading corrections to this
amplitude from the heavy sector in the second line of (1). In terms of the t-quark vertex
function

Γµ ≡ γµ + δΓµ (4)

1A similar model has also been considered e.g. in [7].
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Figure 1: e+e− → tt̄ in a toy model. (a): Lowest-order amplitude. (b), (c): Leading
corrections from S-scalar exchange (mass M) in the full theory. (d), (e): Contributions
needed to reproduce the 1/M2 corrections of the full theory within the EFT. The black
dots represent local operators of dimension 6. They contribute at tree level (Q2, Q3 in
(d)) and at one loop (Q1 in (e)). See text for further explanation.

the amplitude can be written as

A ≡ ALO + δA = −ie
2qt
q2

v̄(k2)γµu(k1) ū(p1)Γ
µv(p2) (5)

where δΓµ contains the effect of S-boson exchange on the tt̄-photon vertex.

2.1 Full theory

We first determine δΓµ in the full theory (1) up to order g2. The relevant diagram is
displayed in Fig. 1 (b). Fig. 1 (c) is used to fix the necessary counterterm. With on-shell
renormalization of the t-quark and expanding to first order in 1/M2, we obtain

δΓµ = − g2

16π2

1

M2

[(
ln r

3
+

4

9
+ h1(z)

)
q2γµ +

(
ln r +

7

6
+ h2(z)

)
iσµνqνm

]
(6)

Here we have defined

r =
m2

M2
, z =

q2

4m2
(7)
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and (x̄ ≡ 1− x)

h1(z) =

∫ 1

0

dx 2xx̄ ln(1− 4xx̄z − iη) =

(
1

3
+

1

6z

)
h2(z) +

1

9
(8)

h2(z) =

∫ 1

0

dx ln(1− 4xx̄z − iη) = −2 +

√
1− 1

z
ln

√
1− 1

z
+ 1√

1− 1
z
− 1

(9)

The second expression for h2(z) is immediately applicable in the Euclidean region z < 0.
For z > 0 it holds with the prescription z → z + iη.

2.2 Top-down EFT

The result for δΓµ in (6) can be reproduced within a low-energy effective field theory of
the heavy sector. The EFT takes the form of the first line in (1), supplemented by local
operators of dimension 6,

∆L6 =
1

M2

∑
i

CiQi (10)

when we neglect higher orders in 1/M2. Here we assume that the heavy sector is known.
The EFT can then be constructed by explicitly integrating out the scalar S. This scenario
is commonly refered to as a top-down EFT. The relevant operators are given by

Q1 = t̄t t̄t , Q2 = ∂µF
µν t̄γνt , Q3 = mt̄σµνt F

µν (11)

Q1 arises when the scalar S is integrated out (removed as a propagating degree of freedom
from the theory) at tree level with C1 = g2/2. Q2 and Q3 are generated at one loop and
correspond to local terms in (6). The coefficients Ci are found by matching the full-theory
result for δΓµ to its EFT counterpart. The matching condition reads

−ieqtδΓµ = −ieqtδΓµQ1
+
C2

M2
(−i)q2γµ +

C3

M2
(−2)σµνqνm (12)

equating the full-theory vertex function on the left with its EFT representation on the
right. The latter consists of the one-loop contribution from Q1 in Fig. 1 (e)

δΓµQ1
= − 1

16π2

2C1

M2

[(
1

3
ln
m2

µ2
+ h1(z)

)
q2γµ +

(
ln
m2

µ2
+ h2(z)

)
iσµνqνm

]
(13)

and the tree-level contributions from Q2 and Q3 in Fig. 1 (d). We have renormalized the
vertex function in (13) using MS subtraction. Condition (12) then implies

C1 =
g2

2
, C2 = −eqt

g2

16π2

(
1

3
ln

µ2

M2
+

4

9

)
, C3 = eqt

g2

16π2

(
1

2
ln

µ2

M2
+

7

12

)
(14)
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Together with (4) and (5), eqs. (12) – (14) reproduce the leading 1/M2 corrections to the
e+e− → tt̄ amplitude within the EFT.

Let us summarize a few relevant aspects of this result.

i) As is well known, the EFT formulation achieves a factorization of large (∼ M)
and small (∼ m) scales. Contributions from large scales are encoded in the Wilson
coefficients (14), from small scales in the matrix elements of local operators, as seen
in (13). The two regions are separated by a renormalization scale µ, which cancels
in the full amplitude.

ii) Within our approximation, operator Q1 mixes into Q2 and Q3 under renormaliza-
tion. The corresponding renormalization-group functions can be read off from (14):

βi ≡ 16π2 dCi
d lnµ

⇒ β2 = −4

3
eqtC1 , β3 = 2eqtC1 (15)

The coefficients of the local operators Q2, Q3 also provide the one-loop counterterms
necessary to renormalize the UV divergences originally contained in (13).

iii) Using the equations of motion, operator Q2 may be eliminated in favour of the
4-fermion operator

Q′2 = −eψ̄γνψ t̄γνt+ eqtt̄γ
νt t̄γνt (16)

which gives an equivalent contribution to the e+e− → tt̄ amplitude.

iv) The one-loop contributions from Q1 in (13) are essential to reconstruct the com-
plete 1/M2 corrections within the EFT, including the non-local terms expressed by
the (complex) functions h1(z) and h2(z). Such terms cannot arise from the local
operators Q2 and Q3.

v) We note that all three operators yield corrections of the same order to the amplitude,
∼ g2/16π2M2. This is the case even thoughQ1 contributes only at one-loop, whereas
Q2 andQ3 contribute at tree level, as illustrated in Fig. 1 (d) and (e). The distinction
is clearly not captured by the canonical dimension of these operators, which is six in
each case. To make the difference explicit, it is instead necessary to employ chiral
dimensions dχ, which count loop orders.2 We have

dχ[C1Q1] = 4 , dχ[C2Q2] = dχ[C3Q3] = 6 (17)

Q2 and Q3 enter (10) with two units of dχ, or one loop order, higher than Q1. A
one-loop insertion of Q1 thus contributes at the same loop order as Q2 and Q3 at
tree level.

2Loop orders can be conveniently counted by assigning chiral dimensions dχ to fields and weak cou-
plings: dχ = 0 for bosons, and dχ = 1 for each derivative, fermion bilinear and weak coupling. The total
chiral dimension of a term is then related to its loop order L through dχ ≡ 2L + 2, see [8] and Sec. 3.2 .
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2.3 Bottom-up EFT

We next imagine a scenario in which the standard physics at energy scales ∼ m is still
described by the first line in (1), but we do not know the physics of the heavy sector,
assumed to reside at M � m. To order 1/M2 this physics is given by an effective
Lagrangian of the form (10), where the Qi represent a basis of dimension-6 operators,
with coefficients Ci treated as unknown parameters. This scenario is the analogue of
SMEFT, applied to our toy model. In the present case, using the field content ψ, t and
Aµ and the U(1) gauge symmetry, the operators Qi may be chosen as follows.

First, there are several (hermitian) 4-fermion operators, which can be written as

QS1 = t̄t ψ̄ψ , QS2 = it̄t ψ̄γ5ψ , QS3 = it̄γ5t ψ̄ψ , QS4 = t̄γ5t ψ̄γ5ψ (18)

QV 1 = t̄γµt ψ̄γµψ , QV 2 = t̄γµt ψ̄γµγ5ψ

QV 3 = t̄γµγ5t ψ̄γµψ , QV 4 = t̄γµγ5t ψ̄γµγ5ψ (19)

QT1 = t̄σµνt ψ̄σµνψ , QT2 = it̄σµνt ψ̄σµνγ5ψ (20)

and, with η = t, ψ,

QηS1 = η̄η η̄η , QηS2 = iη̄η η̄γ5η , QηS4 = η̄γ5η η̄γ5η (21)

QηV 1 = η̄γµη η̄γµη , QηV 2 = η̄γµη η̄γµγ5η (22)

Fierz identities have been used to remove redundant structures.
There are no independent operators of dimension 6 built only from Fµν and derivatives.

Finally, operators with a fermion bilinear and Fµν are (assuming CP conservation)

QtF = mt̄σµνt F
µν , QψF = meψ̄σµνψ F

µν (23)

In the model of Sec. 2.2, only three operators from this basis were generated: Q1 =
QtS1, Q3 = QtF and Q′2 = −eQV 1 + 2/3eQtV 1.

In the bottom-up version of the EFT we are interested in parametrizing the leading
corrections (in 1/M2) to the e+e− → tt̄ amplitude (3). Let us use (10) and assume a
power counting based just on canonical dimensions. This amounts to taking all coefficients
Ci = O(1).3 The dominant corrections to ALO would then become (v̄ = v̄(k2), etc.)

δA =
i

M2

∑
i

Ci〈Qi〉 =
i

M2
v̄γµu ūσ

µνv 2ie
mqν
q2

CtF +
i

M2
v̄γµu ūγ

µv CV 1 + . . . (24)

3They may be smaller, or even zero, in reality, but they are not arbitrary. In particular, they must
be small compared to M2/m2, otherwise the term CiQi/M

2 ∼ Qi/m
2 would be of the same order as the

leading, dimension-4 Lagrangian, spoiling the EFT expansion.
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where 〈Qi〉 denotes the matrix element of Qi. Here we show CV 1 as representative for
the terms from all the 4-fermion operators of the type (ψ̄ . . . ψ)(t̄ . . . t) that contribute at
tree level. On the other hand, 4-top-quark operators such as QtS1 = t̄t t̄t will contribute
to δA at one-loop order. Assuming CtS1 = O(1), this implies δAtS1 ∼ 1/16π2M2, which
appears to be subleading with respect to the terms ∼ 1/M2 in (24). This would leave the
latter terms as the dominant corrections in the bottom-up EFT.

However, the example in Sec. 2.2 shows that such an approximation would be inconsis-
tent. In fact, the tree-level terms in (24) are unable to reproduce the leading corrections
(6) of the model with the heavy scalar in (1), because the nonlocal terms encoded in
h1,2(z) from the one-loop matrix element of t̄t t̄t are absent.

Clearly, information on the loop counting is missing in the consideration above. This
information is necessary to tell us that e.g. QtF and QtS1 do in general contribute to δA at
the same order, in both 1/16π2 and 1/M2, even though QtF enters at tree level and QtS1

at one loop. Canonical dimensions alone cannot provide this information, as discussed at
the end of Sec. 2.2.

We emphasize the following points:

i) Although the model in (1) is only a specific realization of the heavy-sector physics,
it serves as a strict counterexample to the validity of only counting canonical di-
mensions: Since the bottom-up EFT is constructed in the most general, model-
independent way, it must be able to reproduce any concrete model of the physics at
scale M , to a given order in the EFT approximation.

ii) While the scalar-exchange model in (1) is only a specific scenario, its implications
are generic: Any heavy boson coupled to the top quark will, in general, have the
effect of inducing 4-top interactions at tree level and QtF at one loop.

iii) The systematic connection between 4-top operators and QtF is independent of the
coupling strength: In the example of (14), with t̄t t̄t ≡ Q1 and QtF ≡ Q3 the ratio of
coefficients is C3/C1 = O(1/16π2), independent of g. For weak coupling, g ∼ 1, the
coefficient of the magnetic-moment operator is loop suppressed, C3 = O(1/16π2).
C3 = O(1) is possible, but only at the price of strong coupling g ∼ 4π. In this case
the 4-fermion coefficient would also become strong C1 = O(16π2).

We can be more specific about the strong-coupling case. Here we assume that the top-
quark is strongly coupled to the new physics at scale M . In full generality, the top-quark
vertex function t̄Γµt from (4) can be expressed in the standard way as

Γµ = γµG1(q
2) +

iσµνqν
2m

G2(q
2) (25)

with form factors G1,2. To lowest order, G1 = 1, G2 = 0. The leading new-physics
effects are described by expanding the form factors to first order in 1/M2. This can be
accomplished within a bottom-up EFT, which we may write as

∆L6 =
1

M2
[C1 t̄t t̄t + C2 ∂µF

µν t̄γνt + C3mt̄σµνt F
µν + . . .] (26)
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Here the ellipsis denotes the remaining contributions from the 4-fermion operators in the
full basis. One then finds

G1(q
2) = 1 +

q2

M2

[
C2

eqt
− C1

8π2

(
1

3
ln
m2

µ2
+ h1(z)

)
+ . . .

]
(27)

G2(q
2) = −m

2

M2

[
4C3

eqt
+

C1

4π2

(
ln
m2

µ2
+ h2(z)

)
+ . . .

]
(28)

We note that C2,3 have to come with at least a factor of e that is necessarily associated
with F µν in Q2,3. In contrast to (14), no weak couplings are associated with C1 if the
top quark is strongly coupled. Hence, the chiral dimension is 2 for the first term in (26),
and 4 for the second and third. C2,3 then have a loop suppression relative to C1 and all
coefficients contribute at the same order in (27) and (28). A similar consideration applies
to the remaining terms in (26). Four-top operators (t̄ . . . t)(t̄ . . . t) contribute in analogy
to Q1. Finally, the physical amplitude for e+e− → tt̄ also receives contributions from
operators of the type (ψ̄ . . . ψ)(t̄ . . . t), in addition to the photon-exchange amplitude with
the form-factor term t̄Γµt from (25), (27) and (28).

3 SMEFT

Any bottom-up EFT of unknown physics at short distances has to be defined by specifying

a) its low-energy degrees of freedom (particle content),

b) the relevant local and global symmetries,

c) its power counting.

The power counting rests on general assumptions about the underlying dynamics, whose
details are necessarily left undetermined. The assumptions concern, in particular, the
existence of a mass gap between the known particles and the scale of the new dynamics,
and whether these particles are weakly or strongly coupled to the new sector. The power
counting is needed to define a hierarchy among the new-physics corrections. It then allows
for a systematic approximation scheme based on a consistent expansion and truncation.

Quite generally, any relativistic quantum EFT is governed by expansions in both,
inverse powers of a large mass scale Λ, and the number of loops. In the case of SMEFT,
the corresponding expansion parameters can be taken as

E2

Λ2
and

1

16π2
(29)

with E the energy scale of a given process and 1/16π2 the loop factor in four dimensions.
Typically, E will be a few times the electroweak scale v = 246 GeV.
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Usually in writing the SMEFT Lagrangian, only the expansion in 1/Λ is made explicit.
Including terms up to order 1/Λ2, and assuming baryon- and lepton-number conservation,
the Lagrangian can be written as

LSMEFT = LSM +
∑
i

Ci
Λ2
Qi (30)

where LSM is the SM Lagrangian (terms of dimension 4), Qi are operators of dimension 6
[1, 2] and Ci are dimensionless coefficients. This EFT is defined with the particle content
and the gauge symmetry of the SM, the baryon- and lepton-number conservation assumed
here, and possibly further simplifying (symmetry) assumptions about the flavour structure
in the dimension-6 terms with fermions.

We will now consider the power counting of SMEFT in more detail.

3.1 Example: Higgs production in gluon fusion

We start by considering the case of Higgs-boson production through gluon fusion, one of
the most important processes in Higgs physics at the LHC. The lowest-order amplitude
in SM perturbation theory is shown in Fig. 2 (a). We are interested in the corrections
to this process of order 1/Λ2 in SMEFT. As illustrated in Fig. 2 (b) – (g), dimension-6
operators of almost all the classes defined in the Warsaw basis [2] do contribute to the
process gg → h. In particular (in the notation of [2])

(b) : QϕG = φ†φGA
µνG

Aµν

(c) : Quϕ = φ†φ q̄uφ̃

(d) : QuG = q̄σµνTAu φ̃GA
µν

(e) : Quu = ūγµu ūγ
µu , . . . (4 - fermion operators with top)

(f) : Qϕ = (φ†φ)3 , Qϕ� = φ†φ�φ†φ

(g) : QG = fABCGAν
µ GBρ

ν GCµ
ρ (31)

A central question is: Which of these effects need to be included in a systematic treat-
ment of the 1/Λ2 corrections? We see that the contributions in Fig. 2 (b) – (g) arise
from diagrams with zero, one and two loops. This already suggests that loop counting
should play a role in organizing the corrections in SMEFT. The counting of loops becomes
unavoidable when we consider that, in practice, any amplitude, whether in the pure SM
or in SMEFT, is computed in perturbation theory, which is an expansion in loop orders
(equivalent to an expansion in powers of weak couplings). In fact, as illustrated in Fig. 2
(1) – (3), the perturbative expansion and the EFT expansion have to be combined in a
certain way, consistent with the adopted power-counting rules.

The key to answering the above question therefore has to be based on a consideration
of loop counting in SMEFT. Before we enter a discussion of this topic, we add a few
remarks on trying to apply SMEFT without a systematic counting of loops.
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(a)
(c)(b)

(d) (e) (f) (g)

Figure 2: Higgs production through gluon fusion. (a): SM amplitude to lowest order
(two diagrams with opposite fermion flow in the loop are understood). (b) – (g): Sample
diagrams with insertions of dimension-6 operators (black dots) in SMEFT. (1) – (3):
Examples of radiative corrections to the diagrams shown before.

• Suppose that, in order to be completely general, we want to take into account all
possible effects from dimension-6 operators, as shown in Fig. 2 (b) – (g). To justify
this despite the different loop orders, we think of the coefficients Ci as arbitrary
(dimensionless) numbers. However, such an approach would not be consistent: If
arbitrary coefficients are allowed, there is no reason why e.g. some dimension-8
operator with a very large coefficient could not yield equally important effects as
the dimension-6 corrections in Fig. 2. In this case the EFT treatment would break
down. Specific power-counting assumptions about the Ci are thus unavoidable.

• The most obvious choice of power counting would seem to be the one solely based
on the canonical dimensions of the operators Qi in (30). The terms of dimension 6
are suppressed by two powers of the new-physics scale Λ, with coefficients taken to
be Ci = O(1). Based on the explicit loop factors, diagram 2 (e) could therefore be
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neglected as subleading with respect to 2 (d). However, as we have demonstrated
in Sec. 2, such a truncation would fail to correctly account for generic new-physics
effects in the top sector. Specifically, the impact of any heavy resonance (weakly
or strongly) coupled to top quarks would not be properly described by an EFT
treatment that is supposed to be model-independent. Similarly, a strict application
of Ci = O(1) would tell us that Fig. 2 (b) alone gives the leading correction for
gg → h in the SMEFT because it is the only tree-level contribution at dimension 6.
This is again in contradiction with typical scenarios of new physics [9, 10]. We
conclude that the simple assignment Ci = O(1) for all coefficients in (30) is likewise
not adequate as a consistent scheme to organize SMEFT. The missing ingredient is
loop counting. The latter is part of a general power-counting prescription, to which
we turn next.

3.2 Power counting

In this section we review the general power-counting rules for a relativistic EFT, which
we can use for a systematic formulation of SMEFT. As stated at the beginning of Sec. 3
and illustrated with the example in 3.1, we need to count both powers of E2/Λ2 and loop
factors 1/16π2 in general.

A convenient way to do this is to employ the canonical dimensions as well as the
chiral dimensions of the terms in the EFT Lagrangian. This has been discussed in [11]
and shown to be equivalent to well-known results on power counting in the literature
[8, 12–14].

We consider a general relativistic EFT of scalars ϕ, gauge fields A and fermions ψ and
assume that the theory has a cut-off scale Λ (the scale of new physics). The EFT is valid
at energies sufficiently below Λ. Let us define an energy scale f ,

f ≡ Λ

4π
(32)

We can view this as a reference scale, at which the EFT is a valid description of the
relevant physics (f � Λ). For energies E = f the parameter of the energy expansion,
E2/Λ2, becomes f 2/Λ2 = 1/16π2, identical to a loop factor. We emphasize that the low-
energy expansion is governed by E2/Λ2, with E the actual energy of the process. This
parameter is of course independent of the loop factor and E may be several times larger
or smaller than f . Introducing a reference energy f simply amounts to a bookkeeping
device, which treats the expansions in E2/Λ2 and 1/16π2 nominally on the same footing.
The convenience of this will become apparent below.

Consider a general term in the EFT Lagrangian, schematically

∂NpϕNϕANAψNψ κNκ (33)

It is composed of a number of fields ϕ, A and ψ, derivatives ∂, and some factors of weak
couplings, generically denoted by κ.
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The task of power counting is to estimate the size of the coefficient in front of (33).
For this purpose both the canonical and the chiral dimension of (33), dc and dχ, are
needed: The Lagrangian has canonical dimension 4, so the coefficient contains a factor
f 4−dc . Factors of 1/16π2 are counted by the loop order L = (dχ−2)/2 (from the definition
of dχ). The coefficient is therefore given by

C(dc, dχ) =
f 4−dc

(4π)dχ−2
(34)

By inspection of (33), the values of dc and dχ are (see footnote 2)

dc = Np +Nϕ +NA +
3

2
Nψ (35)

dχ = Np +
1

2
Nψ +Nκ (36)

We remark that the result (34) for the coefficient holds in general and independently
of whether the EFT has a weakly or strongly coupled UV completion. However, the
interpretation of f is different in the two cases. For a weakly coupled UV completion
f is just the reference scale f ≡ Λ/4π, derived from Λ. In the case of strongly coupled
UV physics, on the other hand, f corresponds to a dynamical scale with its own physical
meaning. For example, in chiral perturbation theory for pions in QCD, f = fπ is the
pion decay constant. Here f is related to the QCD resonance scale Λ through the NDA
relation Λ = 4πf [13], in correspondence with (32).

In the following, we will mostly focus on the application of (34) to SMEFT. It is then
convenient to rewrite the coefficient (34) as

C(dc, dχ) =
1

Λdc−4

(
1

16π2

)(dχ−dc)/2+1

(37)

Obviously, both dc and dχ are required to obtain the power-counting estimate of a general
operator coefficient. Powers of 1/Λ are simply dictated by the canonical dimension of the
operator. Additionally, explicit loop factors are instead counted by

2 + dχ − dc
2

=
2 +Nκ −NF

2
(38)

where we used (35) and (36), and introduced NF ≡ Nϕ + NA + Nψ, the total number of
field factors in the operator. Thus, the loop factors are given by the difference of chiral
and canonical dimension or, equivalently, the difference between the numbers of weak
couplings and fields.

Some examples may serve to illustrate how (37) works. For instance, all terms in the
SM Lagrangian (including µ2φ†φ) have dc = 4 and dχ = 2. Their coefficients are C(4, 2) =
1 by power counting, as has to be the case. We note that this assigns, in particular, a
consistent power-counting size for the Higgs-mass operator in the SM Lagrangian. As
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mentioned in the Introduction, considering that φ†φ has dc = 2 is insufficient in this
regard. We have to associate φ†φ with a weak coupling carrying dχ = 2 to specify it as
a leading-order term. Then its coefficient becomes C(2, 2) = Λ2/16π2 = f 2 � Λ2, rather
than the cutoff Λ2, which would be inconsistent. As another example, a term like g2ψ̄ 6Dψ
has a coefficient C(4, 4) = 1/16π2, in agreement with its appearance as a self-energy
counterterm for fermion ψ at one loop. Further examples can easily be constructed.

When we deal with SMEFT corrections of dimension 6, (37) specializes to

C(6, dχ) =
1

Λ2

(
1

16π2

)(dχ−4)/2

(39)

In order to determine the coefficient in (34), we need information about the number
of weak couplings Nκ associated with the operator in (33). Otherwise the power counting
is incomplete. This is also evident from the fact that a SMEFT-like expansion and chiral
perturbation theory have a different power counting, although formula (34) is valid for
both.

To find Nκ in (33), and therefore dχ in (34), the power-counting prescription has to
include a generic statement as to whether a field is weakly or strongly coupled to the
heavy sector.4 Different scenarios may be considered, but the corresponding assumptions
should be formulated explicitly. In the following section, we will address this point and
outline several possibilities.

3.3 Loop counting in SMEFT

We consider a generic extension of the SM by new physics at a scale Λ � v, which is
weakly coupled to the SM fields and approximated by a Lagrangian that is renormalizable
(in the traditional sense) at scale Λ. Weak coupling implies that the typical mass scale
of heavy particles coincides with Λ. We take this as the standard scenario for SMEFT,
which emerges at electroweak scales upon integrating out the large scale Λ.

It is conceivable that the assumption of weak coupling to the new physics is not
fulfilled. However, this will have to be reflected in a modified power counting. For
instance, if the Higgs sector is strongly coupled to the new physics, such as in composite-
Higgs scenarios with a characteristic scale f , the electroweak-scale EFT will, in general,
take the form of an electroweak chiral Lagrangian [8, 16–28]. When this EFT is explicitly
expanded in v/f , a SILH-type [29] version of SMEFT is obtained [30]. In any case, the
power counting of the EFT will be affected.

We now focus on the case of SMEFT under the assumption of weak coupling to the
new-physics sector. This will, in part, amount to a review of results already obtained
in [31] from an analysis of the weak-coupling case in SMEFT. We present it here using
the convenient notion of chiral dimensions. A general discussion including operators of
dimension 8 has been given in [32].

4The exactly solvable model discussed in [15] gives an example of a heavy sector that may be either
weakly or strongly coupled. Both cases are governed by the power-counting rules described here and
illustrate their application.

13



We assume that the UV completion of the SM at a scale Λ is given by a renormalizable
theory of bosons (scalars or gauge-fields) and fermions. The fields include the fermions
f and the bosons b of the SM, as well as new, heavy fermions F and bosons B, with
mass of order Λ. The key assumption now is that f and b are weakly coupled to F
and B, that is with coupling strength of order unity. It is immaterial whether there exist
nonrenormalizable interactions of F and B suppressed by scales parametrically still larger
than Λ.

Denoting a generic fermion (boson) by Ψ = f , F (β = b, B), only a limited number
of renormalizable interactions exist at scale Λ, schematically Ψ̄Ψβ, β3, β4, and β2∂β.
Listing the terms that couple light fields f , b to heavy fields F , B we have

Ψ̄Ψβ: f̄fB f̄Fb F̄ fb f̄FB F̄fB F̄Fb [κ]

β3: b2B bB2 [κµ]

β4: b3B b2B2 bB3 [κ2]

β2∂β: b∂bB B∂Bb [κ]

(40)

In square brackets, we show for the terms in each line the factor of generic weak couplings
κ. For the triple-boson terms µ indicates the mass scale required by dimensional analysis.
This parameter may be a heavy or a light scale. From (40) we read off the number of weak
couplings associated to fields and currents as building blocks of composite operators. We
use the notation A ∼ κn if a building block A comes with (at least) n powers of weak
couplings. We see that

b ∼ κ, b2 ∼ κ, b∂b ∼ κ, b3 ∼ κ2 (41)

For fermion bilinears, only scalar or vector currents can appear in the renormalizable
vertices in (40) and hence may come with a single weak coupling. Therefore

f̄Γf ∼ κ for Γ = 1, γµ, f̄σµνf ∼ κ2 (42)

We next write down the different classes of dimension-6 operators in SMEFT, following
the notation of [2]. Supplementing the operators with the minimum number of weak
coupling factors, according to the considerations above, we find

κ4(φ†φ)3, κ2(φ†Dφ)2, κ3φ†φ ψ̄φψ, κ2φ†Dφ ψ̄ψ, κ2(ψ̄ψ)2 (43)

For the first term, a minimum of four weak couplings is required, e.g. two factors of κ2,
one for each b3 part, or else three κs from three b2 terms coupled to heavy scalars, times
another κ from the coupling of those three heavy fields. The assignment of weak couplings
to the remaining four operators is obvious. Finally, the operator classes with SM field
strength factors read

κ3X ν
µ X

λ
ν X

µ
λ , κ4φ†φXµνX

µν , κ4ψ̄σµνX
µνφψ (44)

Here the first operator comes with three gauge couplings, connecting the gauge fields
to the heavy sector that has been integrated out. Similarly, the second operator has two
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gauge couplings associated to the two field strengths, two more weak couplings are needed
to connect the φ†φ part. In the third operator, κ2 comes with the fermionic tensor current,
and one κ each from Xµν and φ.

The chiral dimension of the SMEFT operators can now be read off immediately: dχ =
4 for all terms in (43) and dχ = 6 for the terms in (44). Using the power-counting
formula (39), this implies coefficients of order 1/Λ2 for the operators in (43) and of order
1/16π2Λ2 for those in (44). In short, assuming weak coupling to the heavy sector, the
SMEFT operators of the Warsaw basis with gauge field strength factors carry an extra
loop suppression [2, 31].

This loop-counting hierarchy among the operator coefficients fits naturally with the
organization of SMEFT corrections in terms of both canonical and chiral dimensions. As
an example, let us again consider Higgs production in gluon fusion discussed in Sec. 3.1.
Combining the power-counting size of the operator coefficients, 1/Λ2 for the coefficients
of (43) and 1/16π2Λ2 for the coefficients of (44), with the explicit loop factor from the
diagram topology, we find a clear ordering of the contributions to gg → h shown in
Fig. 2 (a) – (g):

1

16π2
: (a)

1

16π2Λ2
: (b), (c)

1

(16π2)2Λ2
: (d), (e), (f)

1

(16π2)3Λ2
: (g) (45)

The dominant contribution is the SM amplitude, Fig. 2 (a). It comes with a loop factor
but is unsuppressed in 1/Λ. The remaining terms in (45) are SMEFT corrections from the
dimension-6 Lagrangian. They all carry a factor of 1/Λ2 but enter, effectively, at different
loop orders. Note that (b) and (c) enter at the same order, even though the former is a
tree and the latter a loop diagram. Similarly, (d) – (f) have the same power-counting size,
despite their different topology. On the other hand, (e) and (g) have the same (two-loop)
topology, but count at different orders. We also remark that the magnetic-moment type
vertex correction in Fig. 2 (d) and the 4-fermion contribution in (e) entering at the same
order is in accordance with the detailed discussion in Sec. 2 and Sec. 4 below.

The systematic power counting by canonical and chiral dimensions, illustrated in (45),
provides us with a consistent truncation scheme of the SMEFT expansion. For instance,
if we aim for the leading new-physics effects, only the corrections of the same order as (b)
and (c) need to be retained. Those are of order 1/Λ2 relative to the SM term in (a). All
others, (d) – (g), are higher order in the loop counting and can be dropped. We emphasize
that all issues concerning the treatment of the various SMEFT contributions to gg → h
mentioned in Sec. 3.1 are resolved in the present scheme. A more detailed description of
the leading effects will be given in Sec. 3.4 below.

Finally, radiative corrections, e.g. those shown in Fig. 2 (1) – (3), may be incorporated
to any desired accuracy if needed, consistently with the counting scheme discussed above.

There are many more processes and observables in high-energy collider physics to
which the above power counting can be applied. It will be of use, in particular, to put the
focus on the potentially leading SMEFT effects. In practice, the consistent truncation of
corrections will also help to reduce the number of free parameters in a SMEFT analysis
in a meaningful way. Examples for possible applications can be found in the literature.
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Recent studies of single-Higgs production in SMEFT include [33–37]. Higgs-boson pair
production at NLO and beyond has been investigated in [38–46]. In [43] the systematic
loop counting for SMEFT has already been discussed for this particular application. A
study of top-quark pair production via gluon fusion in SMEFT, following the power
counting discussed here, can be found in [47]. The pattern of SMEFT effects in gg → h
or h → gg is similar in h → γγ decay. The latter process has been treated for instance
in [48–50]. Detailed calculations of Zh production in pp collisions including SMEFT
corrections have recently appeared in [51, 52].

3.4 Amplitude for gg → h with leading dim-6 corrections in
SMEFT

In the previous section, we have identified the dimension-6 contributions in Fig. 2 (b) and
(c) as the leading SMEFT corrections to Higgs-boson production in gluon fusion. To be
more specific, we spell out in the following the gg → h amplitude with these corrections
included. In the Warsaw basis [2], the terms relevant to the process gg → h read

∆LWarsaw =
CH�

Λ2
(φ† φ)�(φ†φ) +

CHD
Λ2

(φ†Dµφ)∗(φ†Dµφ)

+

(
CuH
Λ2

φ†φ q̄Lφ̃tR + h.c.

)
+
CHG
Λ2

φ†φGA
µνG

A,µν

(46)

Expanding the Higgs doublet in eq. (46) around its vacuum expectation value and
applying a field redefinition for the physical Higgs boson

h→ h+
v2

Λ2
CH,kin

(
h+

h2

v
+

h3

3v2

)
, where CH,kin ≡ CH� −

1

4
CHD (47)

the Higgs kinetic term acquires its canonical form (up to O (Λ−4) terms).
The Lagrangian for anomalous Higgs couplings relevant to Higgs boson production in

gluon fusion can in general be parametrised by [43]

∆Lh = −mt ct
h

v
t̄ t+

αs
8π
cggh

h

v
GA
µνG

A,µν (48)

Comparing the coefficients of the corresponding terms in the Lagrangians (46) and
(48) leads to the following relations between the Higgs couplings ct and cggh and the
SMEFT coefficients in the Warsaw basis:

ct = 1 +
v2

Λ2
CH,kin −

v2

Λ2

v√
2mt

CuH ≡ 1 + δct , cggh =
v2

Λ2

8π

αs
CHG (49)

In the Warsaw basis, three dimension-6 operators contribute to the coefficient δct .
Note that both ct and cggh are invariant under QCD renormalization. This is not the
case for the SMEFT coefficients CuH and CHG [53–55]. We also remark that CH,kin, CuH
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and CHG have chiral dimension dχ = 2, 3 and 4, respectively (Sec 3.3). In their usual
definition, they are thus not homogeneous in dχ. On the other hand, dχ = 2 for both δct
and cggh, assuming weakly-coupled SMEFT power counting.

For the consistency of the present treatment, amplitudes should be expanded through
order v2/Λ2 and higher orders omitted. Indeed, for a typical value of Λ = 3 TeV, v2/Λ2 ≈
7 · 10−3. This is a small parameter, even neglecting possible further suppression from
coupling factors. Fit results for δct and cggh that are compatible with zero, but still allow
for deviations at the 10 – 20% level, likely suggest that data are not yet sensitive to
new-physics effects, rather than requiring the inclusion of dimension-8 operators.

The amplitude for the process g(p1, µ) + g(p2, ν)→ h(p3) can be decomposed as

MAB = δAB εµ(p1)εν(p2)Mµν

Mµν =
αs

8πv
F1 T

µν (50)

Here A, B are colour indices, εµ, εν are the gluon polarization vectors, and

T µν = gµν − pν1 p
µ
2

p1 · p2
(51)

The form factor F1 is given by the expression [56–59]

F1 = 2s12

{
(1 + δct)τt [1 + (1− τt)f(τt)] + cggh

}
(52)

where τt = 4m2
t/s12, s12 = 2p1 · p2 = m2

h for on-shell Higgs boson production and

f(τt) = −1

2
s12C12 =


arcsin2 1√

τt
for τt ≥ 1

−1
4

[
log 1+

√
1−τt

1−
√
1−τt
− iπ

]2
for τt < 1

C12 =

∫
d4k

iπ2

1

(k2 −m2
t ) [(k + p1)2 −m2

t ] [(k + p1 + p2)2 −m2
t ]

(53)

At relative order v2/Λ2, in addition to the effects considered so far, the amplitude for

gg → h also receives corrections from the operators Q
(3)
ϕl and Q1221

ll [2]. These operators
modify the muon decay rate, from which the Fermi constant GF is extracted in order to
determine v in (50). Defining GF0 = 1/(

√
2v2) and denoting by GF the Fermi constant

measured from muon decay, we may write [50, 60]

GF0 = GF (1− 2δG) (54)

with

2δG =
v2

Λ2

(
C

(3)
ϕl,1 + C

(3)
ϕl,2 − C ll

1221

)
(55)

in the notation of [2]. Here the numerical subscripts are generation indices. This cor-
rection to (50) from new physics in the first two lepton generations is numerically small.
Electroweak fits constrain 2δG to be safely below the percent level [61]. Neglecting it
leaves δct and cggh as the relevant corrections to gg → h at leading order in SMEFT.
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4 Example for SMEFT in a UV model:

uū→ tt̄ via gluon exchange in the 2HDM

In the following section we generalize the EFT features illustrated with the toy model of
Sec. 2 to a more complete scenario in the context of the full SM. For this purpose, we
employ a Two-Higgs-Doublet model (2HDM) [62–64] as the UV completion of SMEFT.
In contrast to the SM, this model features not one, but two independent scalar SU(2)
doublets Φ1 and Φ2. Interpreting the 2HDM as an adequate UV extension of the SM, it
should be possible to match the former to the latter at the electroweak scale in terms of
higher dimensional SMEFT operators.
The potential of the 2HDM is given by the most general expression allowed by symmetries

V (Φ1,Φ2) = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 −

[
m2

12Φ
†
1Φ2 + h.c.

]
+

1

2
λ1

(
Φ†1Φ1

)2
+

1

2
λ2

(
Φ†2Φ2

)2
+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

{
1

2
λ5

(
Φ†1Φ2

)2
+
[
λ6

(
Φ†1Φ1

)
+ λ7

(
Φ†2Φ2

)](
Φ†1Φ2

)
+ h.c.

}
(56)

Imposing CP-invariance, we take the coefficients m2
12, λ5, λ6 and λ7 to be real. Without

loss of generality, we allow both doublets to pick up a vacuum expectation value vi > 0
(i = 1, 2) in the lower component

Φi =

(
φ+
i

1√
2

[vi + ρi + iηi]

)
(57)

where φ+
i is a complex scalar (φ−i being its hermitian conjugate) and ρi and ηi are real

scalars. We identify the physical states by diagonalizing the mass matrices and find that
out of in total eight scalar degrees of freedom, three are Goldstone modes (G± and G)
which subsequently become the longitudinal degrees of freedom of the W± and Z bosons.
In addition, there are two massive neutral scalars h and H, a massive pseudoscalar A and
a massive charged scalar H± with masses mh, mH , mA and mH± , respectively. In terms
of these states, the doublets are given by

Φ1 =

(
cβG

+ − sβH+

1√
2

[v1 + cαH − sαh+ icβG− isβA]

)
(58)

Φ2 =

(
sβG

+ + cβH
+

1√
2

[v2 + sαH + cαh+ isβG+ icβA]

)
(59)

where the shorthand notations cϕ ≡ cosϕ and sϕ ≡ sinϕ have been introduced. The
mixing angle β is defined via tan β = v2/v1. Explicit expressions for the non-vanishing
masses as well as for v1, v2 and the mixing angle α in terms of the parameters in (56) can
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be found in [63].
For the sake of our following arguments, we choose a general type-II Yukawa sector given
by the Lagrangian [62]

LY = −q̄LΦ1YddR − q̄LΦ̃2YuuR + h.c. (60)

where Φ̃i ≡ iσ2Φ
∗
i . The Yukawa-coupling matrices Yd and Yu act in flavour space and q̄L,

dR and uR are the usual left- and right-handed quark fields with flavour indices suppressed.
Throughout the discussion, we neglect effects of the CKM-matrix. Choosing the couplings
between the scalar sector and the fermions in this manner has the advantage of being
particularly transparent in the so-called decoupling limit (see (63) below).
Rotating the scalar doublets by the angle β, we can shift the vacuum expectation value
to only one doublet. This rotated basis is known as the Higgs basis in the literature [65].
The rotated doublets H1 and H2 have the explicit form

H1 =

(
G+

1√
2

[v + cβ−αH + sβ−αh+ iG]

)
(61)

H2 =

(
H+

1√
2

[−sβ−αH + cβ−αh+ iA]

)
(62)

where v =
√
v21 + v22 = 246 GeV can be identified as the electroweak scale.

It is possible to choose the parameters in such a way that the physical masses follow the
hierarchy pattern [63]

m2
h � m2

H ,m
2
A,m

2
H± ' m2

S (63)

where mS � v. An explicit expression for mS in terms of β and the parameters in the
potential is given in [63]. The decoupling limit mentioned above implies taking sβ−α → 1
and cβ−α → 0. In this limit, the couplings of h become identical to those of the SM Higgs,
which suggests interpreting H1 as the SM Higgs doublet. The remaining doublet H2 then
only contains heavy fields and can be integrated out to obtain a low-energy theory at
the electroweak scale v. Its effects are then entirely encoded in the Wilson coefficients of
higher dimensional local operators (SMEFT).

4.1 Top-down EFT for uū→ tt̄

Similar to the toy model of Sec. 2, we analyze the process u(k1)ū(k2)→ t(p1)t̄(p2) via s-
channel gluon exchange. The relevant diagrams are the same as in the toy model in Fig. 1
with the internal photon replaced by a gluon. We take only the top quark as massive,
which implies that Yt =

√
2mt csc β/v is the only non-vanishing Yukawa coupling matrix

element and that the heavy states couple exclusively to third-generation quarks. Defining
g = mt cot β/v, the relevant interaction Lagrangian is given by

Lint = gt̄tH + gt̄iγ5t A+
√

2gt̄RbLH
+ + h.c. (64)
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where t and b are the Dirac fields of the top- and bottom quarks with tR/L = PR/Lt, etc.
and PR/L the right- or left-handed projector, respectively. With the notation of Sec. 2,
the correction to the amplitude can be written as

δA = i
g2s
q2
v̄(k2)γµT

Au(k1)ū(p1)δΓ
µTAv(p2) (65)

where TA = λA/2 are the generators of SU(3) with λA the Gell-Mann matrices and gs is
the QCD coupling constant. Here and in the following, we strictly work at order g2s and
subsequently drop terms of higher order without further comments.
In the full theory, the relevant diagrams are displayed in Fig. 1 (b) and (c), where the
dashed line corresponds to either H, A or H±. Summing up all three contributions, we
end up with

δΓµ =
g2

16π2

1

m2
S

[
mtiσ

µνqν +

(
2

9
− 2

3
ln

q2

m2
S

+ i
2π

3

)
q2γµPR

−
(

2

3
ln
m2
t

m2
S

+
8

9
+ 2h1(z)

)
q2γµ

]
(66)

where on-shell renormalization of the top quark has been employed as in [66] and we
expanded to first order in 1/m2

S. Pure gauge terms proportional to qµ have been dropped
since they do not contribute to physical processes.
Expression (66) can be reproduced by an effective field theory specified by the Lagrangian

Leff = Ltreeeff + Lloopeff =
4∑
i=1

Ci
m2
S

Qi (67)

where

Ltreeeff =
C1

m2
S

t̄RqLq̄LtR (68)

arises, with C1 = 2g2, when the heavy fields are integrated out at tree level and

Lloopeff =
C2

m2
S

DµGA
µν t̄RT

AγνtR +
C3

m2
S

DµGA
µν t̄T

Aγνt+
C4

m2
S

mtG
A
µν t̄T

Aσµνt (69)

is generated at one loop, where GA
µν is the gluonic field strength tensor and qL the left-

handed third-generation quark doublet. The loop diagram associated with Ltreeeff is dis-
played in Fig. 1 (e) and gives

δΓµQ1
=

C1

16π2m2
S

[(
5

9
− 1

3
ln
q2

µ2
+ i

π

3

)
q2γµPR −

(
1

3
ln
m2
t

µ2
+ h1(z)

)
q2γµ

]
(70)

and the tree-contributions from Lloopeff in Fig. 1 (d) read

δΓµQ2−4
=

1

gs

[
C2

m2
S

q2γµPR +
C3

m2
S

q2γµ − 2C4

m2
S

mtiσ
µνqν

]
(71)
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Performing the matching procedure reveals that the coefficients are given by

C1 = 2g2 , C2 = C3 = − gsg
2

16π2

(
2

3
ln

µ2

m2
S

+
8

9

)
, C4 = − gsg

2

16π2

1

2
(72)

As in Sec. 2.2, the dependence on µ cancels when both contributions are added and the
full result is restored.
Note that the four local operators in (67) – (69) can be matched to the Warsaw basis [2]
by virtue of Fierz identities and the equations of motion for the gluons. Dropping terms
that do not contribute to the process at hand, the relevant expressions are given by (here
the upper indices display generation labels)

Q1 −→ −
(
Q(8)3333
qu +

1

6
Q(1)3333
qu

)
(73)

Q2 −→ gs

(
Q(8)1133
qu +

1

4
Q1331
uu +

1

4
Q3113
uu −

1

12
Q1133
uu −

1

12
Q3311
uu

)
(74)

Q3 −→ gs

(
Q(8)3311
qu +Q(8)1133

qu +
1

4
Q1331
uu −

1

12
Q1133
uu +

1

8
Q(3)1331
qq +

1

8
Q(1)1331
qq

− 1

12
Q(1)1133
qq +

1

4
Q3113
uu −

1

12
Q3311
uu +

1

8
Q(3)3113
qq +

1

8
Q(1)3113
qq − 1

12
Q(1)3311
qq

)
(75)

Q4 −→
√

2mt

v

(
Q33
uG +Q∗33uG

)
(76)

Note that in the Warsaw basis, the operators Q2 and Q3 introduce an extra factor of gs.
This has to be so, as treating the four-fermion operators introduced in this manner on
the same footing as Q1 would spoil the underlying systematic expansion in gs. This is
analoguous to (16) in the toy model. It is now straightforward to identify the relevant
Wilson coefficients of the Warsaw basis operators to order g2s for the process at hand. The
explicit expressions are given below.

4.2 Bottom-up SMEFT calculation

Without referring to the UV model, we would have started with a new-physics scale Λ
and the complete set of Warsaw basis operators that are relevant for the process under
consideration. We have to distinguish between four-fermion contributions entering at tree
or one-loop level, respectively. The tree contribution is given by the plain four-fermion
vertex (here v̄ = v̄(k2), u = u(k1), ū = ū(p1) and v = v(p2))

δAtree =
i

Λ2

(
2
(
C(1)1133
qq + C(3)1133

qq

)
v̄γµPLuūγ

µPLv

− 2
(
C(1)1331
qq + C(3)1331

qq

)
v̄γµPLvūγ

µPLu

21



+ 2C(1)1133
uu v̄γµPRuūγ

µPRv − 2C(1)1331
uu v̄γµPRvūγ

µPRu

+ C(1)1133
qu v̄γµPLuūγ

µPRv + C(1)3311
qu v̄γµPRuūγ

µPLv

− C(1)1331
qu v̄γµPLvūγ

µPRu− C(1)3113
qu v̄γµPRvūγ

µPLu

+ C(8)1133
qu v̄TAγµPLuūT

AγµPRv + C(8)3311
qu v̄TAγµPRuūT

AγµPLv

− C(8)1331
qu v̄TAγµPLvūT

AγµPRu− C(8)3113
qu v̄TAγµPRvūT

AγµPLu

)
(77)

whereas the one-loop contribution yields (Fig. 1 (e))

δΓµloop = − 1

16π2Λ2
(q2γµF1(q

2) +mtiσ
µνqνF2(q

2)) (78)

with

F1 =

(
5

9
− 1

3
ln
q2

µ2
+ i

π

3

)((
C

(8)3333
ud + C(8)3333

qu

)
PR +

(
C

(8)3333
qd + 8C(3)3333

qq

)
PL

)
−
(

1

3
ln
m2
t

µ2
+ h1(z)

)(
C(8)3333
qu + 4

(
C(1)3333
qq + C(3)3333

qq

)
PL + 4C3333

uu PR
)

− 4

3

((
C(1)3333
qq + 3C(3)3333

qq

)
PL + C3333

uu PR
)

F2 = 2

(
C(1)3333
qu − 1

6
C(8)3333
qu

)
(79)

In addition, the chromomagnetic operator enters at tree-level as before (Fig. 1 (d)).
Its contribution is given by

δΓµuG = −
√

2v

gsΛ2
iσµνqν

(
C∗33uG PL + C33

uGPR
)

(80)

Note that we have implicitly assumed the new-physics sector to couple to the third
particle generation only as we neglected generation mixing four-fermion operators in
the one-loop contribution. For a comparison to the previous section, it is advanta-
geous to rewrite the four-fermion tree contribution by virtue of Fierz identities like
v̄(k2)γµPLv(p2)ū(p1)γ

µPLu(k1) = −v̄(k2)γµPLu(k1)ū(p1)γ
µPLv(p2) and 2TAabT

A
cd = δadδbc−

δabδcd/3.
Comparing (77) – (80) with the top-down results in Sec. 4.1 reveals that when iden-

tifying Λ with mS, the non-vanishing SMEFT Wilson coefficients are given by

C(8)3333
qu = 6C(1)3333

qu = −2g2 (81)

2C1331
uu = 2C3113

uu = −6C1133
uu = −6C3311

uu = C(8)3311
qu =

1

2
C(8)1133
qu = 8C(3)1331

qq
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= 8C(3)3113
qq = −12C(1)1133

qq = −12C(1)3311
qq = 8C(1)1331

qq = 8C(1)3113
qq

= − g
2
sg

2

16π2

(
2

3
ln

µ2

m2
S

+
8

9

)
(82)

C33
uG = C∗33uG = −gsg

2mt

16π2v

1√
2

(83)

The µ-dependence matches the known results for the renormalization-group equations in
SMEFT [53–55].

5 Conclusions

The effective field-theory approach to physics beyond the Standard Model requires a
minimal set of assumptions about the relation between the low-energy and high-energy
regimes, which is contained in the EFT power counting rules. While the Lagrangian of
non-linear EFTs such as chiral perturbation theory is systematically ordered based on a
loop expansion, the power counting in effective theories such as SMEFT is organized in
terms of canonical dimensions.

We have discussed specific examples to show that a power counting scheme relying
on canonical dimensions alone may lead to inconsistencies within the perturbative expan-
sion. Starting with a toy model involving a heavy scalar singlet, we have illustrated our
arguments by an explicit calculation, comparing both bottom-up and top-down EFT with
the full theory. Furthermore, we deployed the power counting in combination with loop
counting in SMEFT in detail. We applied it to Higgs production in gluon fusion as well as
an example within a two-Higgs-doublet model. Our formal considerations as well as the
examples clearly suggest that a consistent treatment should include the counting of loop
orders, conveniently described by chiral dimensions, along with the counting of canoni-
cal dimensions in SMEFT. Variations of the counting scheme we propose can, of course,
be constructed, but the approximations and counting rules should always be explicitly
specified. For example, the SMEFT may be replaced by HEFT, which follows a different
power counting. In addition, further assumptions, such as minimal flavour violation, can
be used to organize the flavour sector, which however is a separate topic and beyond the
scope of our paper.
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