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Abstract

Competition between frustration and spin dimensionality in the
classical antiferromagnetic n-vector model with arbitrary n

A new method to characterize the strength of magnetic frustration is proposed by calcu-
lating the dimensionality of the absolute ground state of the classical nearest-neighbor
antiferromagnetic n-vector model with arbitrary n. Platonic solids in three and four di-
mensions and Archimedean solids have lowest-energy configurations in a number of spin
dimensions equal to their real-space dimensionality. Fullerene molecules and geodesic
icosahedra can produce ground states in as many as five spin dimensions. Frustration is
also characterized by the maximum value of the ground-state energy when the exchange
interactions are allowed to vary.
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1 Introduction

Strongly-correlated electron interactions can very often be described by effective Hamilto-
nians involving only spin degrees of freedom [1,2]. A Hamiltonian describing interactions
between localized spins is the nearest-neighbor antiferromagnetic Heisenberg model, which
has been considered on various lattices and clusters. A single spin is located at each vertex of
the underlying structure and only nearest-neighbors interact. It is of special interest when the
underlying structure’s topology is frustrated, meaning that due to competing interactions not
all nearest-neighbor spin pairs are simultaneously antiparallel in the ground state when the
spins are classical [3-7].

In the nearest-neighbor antiferromagnetic Ising model the spins interact only along a single
direction in spin space, making it maximally anisotropic [8]. The dimensionality of the inter-
actions can be increased to two and three in a controlled way, by allowing the spins to interact
in the added spin dimensions with increasing strength. The corresponding models are the
XY in two dimensions and the anisotropic Heisenberg, or XXZ, in three. When the interaction
components become equal in all two or three three spin directions one gets respectively the XX
model and the isotropic XXX Heisenberg model. Frustration manifests itself in all these cases
but is more pronounced in the XXX limit, where magnetic anisotropy plays no role. Then any
deviation from antiparallel nearest-neighbor classical spins in the zero-magnetic-field ground
state and any magnetization or susceptibility discontinuities in an external field are solely due
to the frustrated connectivity of the structure that hosts the spins.

In the case of bipartite structures, which lack frustration, nearest-neighbors point at an-
tiparallel directions in spin space in the ground state. The ground-state energy is minimal and
the spin configuration is colinear already at the Ising limit. Perhaps the simplest structures
associated with frustration are polygons with an odd number of vertices with edges that corre-
spond to exchange interactions of the same strength. The smallest member of this family is the
triangle, for which in the classical Ising ground state not all three spin pairs can be simultane-
ously antiparallel, demonstrating the effect of frustration. Going to the XY model frustration
is relaxed by allowing the spins to interact in a plane, and the lowest-energy configuration
becomes coplanar and its energy is continuously lowered with increasing coupling in the sec-
ond spin direction. This holds up to the XX limit, where the ground-state energy assumes its
minimum value and does not decrease any further if interaction in the third spin direction is
introduced. The energy per bond is then equal for any of the three bonds. Analogous results
hold for any member of the family of the polygons with an odd number of vertices, even though
frustration gets weaker with size [9]. The dimensionality of the lowest-energy configuration
in spin space is equal to the real-space dimensionality of the polygon.

A basic question for molecules including at least one type of odd-membered polygon is if
the assembly of more than one frustrated unit further strengthens frustration, by increasing the
ground-state energy per bond and making the lowest-energy spin configuration noncoplanar.
For the icosidodecahedron, an Archimedean solid with vertex-sharing triangles, this is not true,
as the ground-state energy is simply the sum of the energies of the individual triangles and the
corresponding configuration is coplanar [10]. The same is true for the ground-state energies
of two other Archimedean solids, the truncated tetrahedron and the truncated icosahedron,
however the corresponding spin configurations are noncoplanar [11, 12]. Their frustrated
units are triangles and pentagons respectively, which are isolated from one another. On the
other hand for the icosahedron, a Platonic solid with edge-sharing triangles [13], not only
is the lowest-energy configuration three-dimensional, but also the corresponding energy per
bond is higher than the one of an isolated triangle [9,14,15]. A similar result holds for another
Platonic solid, the dodecahedron, which is formed from edge-sharing pentagons [16].

In this paper magnetic frustration is characterized by calculating the spin-space dimen-
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sionality of the absolute ground state of the nearest-neighbor classical n-vector model, when
it describes interactions between spins with n components residing on vertices of frustrated
molecules. For n = 1 one gets the Ising model, for n = 2 the XY model, and for n = 3 the
Heisenberg model, but n is allowed to be greater than three until the ground-state energy does
not decrease any more. In this way the spins are given more space for nearest neighbors to
attempt to direct themselves in an antiparallel fashion, not being restricted by the three dimen-
sions of the Heisenberg model but only by the frustrated topology of the underlying structure.
The ground-state energy is monitored from the Ising limit up to the dimension where it as-
sumes its absolute minimum. This is done in a continuous way, allowing the detection of
dimensionality windows where the lowest energy remains constant before it starts to decrease
again. The point-group symmetry of the molecule determines the number of independent ex-
change interactions, with edges connected by symmetry operations taken to correspond to the
same interaction strength. A second way with which the strength of magnetic frustration is
characterized is by calculating the maximum possible ground-state energy, when there is more
than one independent exchange interaction and these are allowed to vary in the number of
spin dimensions of the absolute ground state. In this paper molecules having up to four unique
exchange interactions are considered.

The task to investigate the properties of the n-vector model when n > 3 has been mostly un-
dertaken in the continuum case [17-27]. Here Platonic solids in three and four spatial dimen-
sions are considered, as well as Archimedean solids, fullerene molecules [28], and geodesic
icosahedra [29,30]. These molecules include at least one type of odd-membered polygon.

It is found that for the icosahedral Platonic solids and their fourth-dimensional real space
analogues (Table 1) the spin-space dimensionality of the lowest-energy configuration is equal
to the real-space dimensionality of the molecule, showing a direct correlation between spin
space and real space. Frustration is stronger than the one of the isolated polygon these
molecules are made from, since the ground-state energy per bond for them is higher. On
the other hand the truncated dodecahedron and the rhombicosidodecahedron, which are
Archimedean solids (Table 2), have three-dimensional ground states and frustration is not
stronger than the one at the level of the isolated polygons they are made of. However in
the case of the snub dodecahedron the assemblage of the individual polygons increases the
maximum possible frustration.

For the fullerene molecules (Table 2) the lowest-energy configuration spin-space dimen-
sionality is typically 3 or 4, with the ones with icosahedral symmetry belonging to the former
case. Frustration is minimal for them, as the maximum ground-state energy does not ex-
ceed the ground-state energy of an isolated pentagon. This demonstrates a direct correlation
between magnetic behavior and symmetry and shows that frustration does not necessarily de-
crease with the size of the fullerenes, but rather there is a specific symmetry that minimizes
it. Molecules with nonisolated pentagons and T,; symmetry have ground states in n = 5. Ty
fullerenes share patterns of common magnetic behavior not only in the dimensionality of the
absolute ground state, but also in the correlations of the maximally frustrated ground state.
Fullerenes more generally show that the maximum ground-state energy per bond does not
necessarily decrease with the number of vertices, showing that symmetry is also important
in determining the strength of frustration, as was also pointed out earlier for the icosahedral
members of the family.

The smallest geodesic icosahedron, the pentakis dodecahedron, develops its absolute ground
state in n = 4 (Table 2). Its maximum ground-state energy per bond equals the ground-state
energy per bond of the icosahedron, even though it develops in four dimensions. The ground
state of the next bigger member of the family, the pentakis icosidodecahedron, develops in
n =5, and its maximum possible energy per bond value is higher than the one of the icosa-
hedron. A bigger member of the family, the hexapentakis truncated icosahedron, has also a
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five-dimensional ground state. Its maximum energy value is achieved when two of the ex-
change interactions are zero and is also equal to the ground-state energy per bond of the
icosahedron, also existing in three dimensions. The maximum ground-state per bond of the
geodesic icosahedra also shows that frustration does not necessarily decrease with the number
of vertices, with the pentakis icosidodecahedron having the highest one. Since these molecules
have the same spatial symmetry, what makes the difference is their connectivity.

A common characteristic of the lowest-energy configuration in a spin-space dimension n
less than the one of the absolute ground state, is that it typically does not change before the in-
teractions that start to develop in the next higher dimension assume a minimum strength. Un-
like odd-membered polygons which are simple frustrated structures, the ground-state energy
does not continuously decrease as the interaction in the new dimension is getting stronger. The
minimum interaction strength required to lower the ground-state energy typically increases
with dimensionality, showing that the lowest-energy configuration is becoming more stable
with n. Similarly, less strongly frustrated ground states for a specific n require a stronger
minimum interaction strength in the new dimension in order to lower their energy.

The plan of this paper is as follows: in Sec. 2 the n-vector model is introduced, and in Secs
3 to 8 its ground state for different families of molecules is calculated. Finally Sec. 9 presents
the conclusions.

2 Model

N classical spins §;,i = 1,..., N of unit magnitude are considered, defined in an n-dimensional
spin space. A spin is mounted on each of the N vertices of the different molecules under consid-
eration. The spins interact according to the Hamiltonian H,, of the nearest-neighbor n-vector
model, with two interacting spins connected by an edge of the molecule. The exchange inter-
actions are taken to obey the molecular symmetry, with two edges connected by a symmetry
operation of the molecular point group corresponding to the same interaction strength. An in-
teraction between nearest neighbors i and j is taken equal to J;; in n—1 of the spin directions,
and is scaled with a,, in the remaining one:

n—1
—_ o .0 n.n
H,= Z Jij Zsi 55 + aps; 53 (D
<ij> o=1

The brackets indicate that interactions are limited to nearest neighbors. J;; is nonnegative
and 0 < a, < 1, as the dimensionality of spin interactions d = n— 1+ a, goes from n—1
to n in spin space. For bipartite structures nearest neighbors point in antiparallel directions
in the ground state, while for frustrated ones the topology of the molecule determines their
relative orientation. Here the lowest-energy configuration of Hamiltonian (1) as n is varied
is of interest. The lowest possible dimensionality is the Ising limit n = 1, and n is allowed to
increase until the ground state does not change any further. When n =2 and 0 < a, < 1 the
Hamiltonian is the one of the XY model, and at n = 2 and a, = 1 of the XX model. For n =3
and 0 < a3 < 1 one gets the XXZ model, and for n = 3 and a; = 1 the XXX model.

The number of independent exchange interactions grows with molecular size and decreas-
ing symmetry. A thorough investigation of interaction space has been made for molecules with
up to four unique interactions. These are parametrized so that the sum of the squares of their
magnitudes equals one. If their number is two they are parametrized by a polar angle w, and
their values are equal to the corresponding x and y components. If it is three a polar 6 and an
azimuthal angle ¢ do the parametrization, with the three different interactions equal to the
corresponding x, ¥, and z components.
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The calculations were done numerically [15,31-40]. Each spin §; being a classical unit
vector in n dimensions is defined by n — 2 polar angles varying from O to 7 and an azimuthal
angle varying from O to 27. A random initial configuration of the spins is selected and each
angle is moved opposite its gradient direction, until the lowest energy configuration is reached.
Repetition of this procedure for different initial configurations ensures that the global energy
minimum is found.

3 Polygons with an Odd Number of Vertices

The lowest-energy configuration of model (1) on bipartite structures, which lack any frustra-
tion, is of the Néel type, with nearest-neighbor spins pointing in antiparallel directions. It is
already the ground state at the Ising limit of Hamiltonian (1).

A simple family of frustrated structures are polygons with an odd number of vertices. In
the simplest case all polygon edges are equivalent and J;; = J in Hamiltonian (1), with each
spin having two nearest neighbors. In the Ising-limit ground state neighboring spins are an-
tiparallel, except from a single parallel pair due to the odd total number of spins. Frustration
is getting weaker with N as the number of antiparallel nearest-neighbor pairs increases. As
interaction in the second direction is introduced by allowing a, to be nonzero, spin-space
anisotropy and consequently frustration are getting weaker. This results in a two-dimensional
lowest-energy configuration in contrast to the unfrustrated case, and a continuously decreas-
ing energy per bond and net magnetization with increasing d (Fig. 1). At the XX limit the angle
between nearest-neighbors equals %n [9], while the net magnetization becomes zero. Fur-
ther increasing d in the Hamiltonian does not alter the ground state, and the dimensionality

of the ground state in spin space equals the real-space dimensionality of the polygons.

4 Platonic Solids

4.1 Icosahedron

The icosahedron belongs to the class of Platonic solids [13], which are convex regular poly-
hedra with equivalent vertices that consist of only one type of polygon. Their edges are also
equivalent and each J; j=Jin Hamiltonian (1). The icosahedron consists of 20 triangles, has
12 vertices, and belongs to the I;, symmetry group, the point group with the largest number of
symmetry operations [41]. At the XXX limit the ground state has been found to be noncopla-
nar [9,14,15]. The triangles share edges resulting in stronger frustration in comparison with

an isolated triangle, as the ground-state nearest-neighbor correlation increases from —% in the

latter case to _,/Tg = —0.44721. Fig. 2(a) shows the evolution of the ground-state energy

per bond as d varies from 1 to 3. At the Ising limit it equals —3, as in the case of an isolated
triangle. Unlike the triangle and the other odd-membered polygons though (Fig. 1(a)), the
lowest-energy Ising configuration does not immediately change when a, becomes nonzero,
remaining the same up to a, = 1/?3 This can also be seen in the plot of the nearest-neighbor
correlations as a function of d (Fig. 3(a)). The lowest-energy configuration becomes then
noncolinear with several unique nearest-neighbor correlation values, until the XX limit where
nearest-neighbors are antiparallel or at angles 3 and %“ with each other, and the ground-
state energy per bond equals —%. The XX limit ground state is also protected against a5 as
it does not change up to ag = 0.47178, where it becomes noncoplanar. Finally at the XXX
limit the nearest-neighbor correlations become the same for every pair. The ground state does
not change as d is further increased, and d = 3 is the spin-space dimensionality for which all
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Figure 1: (a) Ground-state energy per bond % for Hamiltonian (1) for a triangle
((black) solid line), a pentagon ((red) dashed line), a heptagon ((green) long-dashed
line), and a nonagon ((blue) dot-dashed line) as a function of the dimensionality d

M
of the interactions in spin space. (b) Corresponding magnetization per spin .

nearest-neighbor correlations become equal and obey the symmetry of the icosahedron. The
total spin equals zero for any value of d.

4.2 Dodecahedron

The dodecahedron, also a Platonic solid with I;, symmetry, consists of 20 edge-sharing pen-
tagons and has 20 vertices. Like the icosahedron, the ground state of model (1) at the XXX

limit is three-dimensional, with each bond having an energy equal to —é =—0.74536 [16].
This is higher than the energy per bond in the coplanar ground state of the isolated pentagon
—@ = —0.80902 (Fig. 1(a)) [9]. Fig. 2(b) shows how the ground-state energy per bond
changes as d goes from from 1 to 3. The Ising energy per bond is —%, equal to the one of an
isolated pentagon, but unlike the latter (Fig. 1(a)) and similarly to the icosahedron, it takes
a finite a, = 0.48733 for the Ising ground state to give way to a lower-energy configuration
which is noncolinear and has several unique nearest-neighbor correlations values (Fig. 3(b)).
A value of a3 = 0.86857 is required for the ground state to change to a noncoplanar con-
figuration with a discontinuous derivative of the ground-state energy with respect to d. This
eventually becomes the configuration with all nearest-neighbor correlations equal at the XXX
limit which does not change if d is further increased. Similarly to the icosahedron, the equality
of all the lowest-energy configuration’s nearest-neighbor correlations agrees with the geomet-
rical equivalence of all of the dodecahedron’s edges. Other similarities are that the minimum
ag value required to lower the ground-state energy is bigger than the corresponding a,, and
that the total spin is zero for any d. The icosahedron and dodecahedron’s absolute ground
state of Hamiltonian (1) is found in a number of spin dimensions equal to their real-space
dimensionality (Table 1).
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Figure 2: Ground-state energy E, per bond for Hamiltonian (1) as a function of the
dimensionality d of the interactions in spin space for (a) the icosahedron, and (b)
the dodecahedron.
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Table 1: Different families of molecules with one symmetrically independent ex-
change interaction for which the ground state of Hamiltonian (1) was calculated.
The real-space dimensionality of the molecules is listed, along with the number of
vertices N, the point-group symmetry, the ground-state dimensionality in spin space

E
n, and the ground-state energy per bond 5.

molecule real-space | N | point-group | n %
dimensions symmetry
Polygons with an Odd Number of Vertices
triangle 2 3 Dy 2 —%
pentagon 2 5 Dsg 2 —@
Platonic Solids
icosahedron 3 12 Iy 3 _1/?3
dodecahedron 3 20 I, 3 —é
Four-Dimensional Platonic Solids
600-cell 4 120 | H,, [3,3,5] | 4 | -4
120-cell 4 600 | Hy,[3,3,5] | 4 | -2

5 Platonic Solids in Four Spatial Dimensions

The icosahedron and the dodecahedron analogues in four spatial dimensions are the 600-cell
and the 120-cell respectively [42]. The 600-cell has 120 vertices, 720 edges, and 1200 tri-
angular faces. Fig. 4 shows the evolution of the ground-state energy of Hamiltonian (1) as
a function of d, as well as the value of the ground-state magnetization per spin when it is
nonzero. Introducing the interaction in the second spin direction away from the Ising limit
results in an immediate lowering of the energy unlike the three-dimensional Platonic solids,
and a, = 0,. The d = 2 and 3 ground states again do not change with the introduction of
interactions in the third and fourth dimension respectively before a,, gets sufficiently strong,
and a; = 0.68505. When d = 3 the average energy per bond equals —0.29098, and at d = 4
it is equal to —@ = —0.30902 for every bond, significantly higher than the value of the
icosahedron. This shows that frustration is getting quite stronger when going from three to
four-dimensional spatial dimensions, and that the dimensionality of the ground-state spin con-
figuration follows the spatial dimensionality of the molecule (Table 1), with nearest-neighbor
correlations becoming equal exactly at d = 4. The value of a, is 0.62348, less than a5, again
unlike the three-dimensional Platonic solids. The ground-state magnetization per spin has
discontinuities in its value and also in its derivative as a function of d.

The four-dimensional analogue of the dodecahedron, the 120-cell, has 600 vertices, 1200
edges, and 720 pentagonal faces. Its ground-state energy per bond evolution from d = 3 to 4
is shown in Fig. 5. The average ground-state nearest-neighbor correlation when d = 3 equals
—0.69752. The absolute minimum of the ground-state is again achieved when d = 4, equal
to —@ = —0.71353 for every bond (Table 1), higher than the corresponding value for the
dodecahedron. Again only at the absolute minimum of the ground-state energy do all nearest-
neighbor correlations become equal. The value of a; is 0.88920. At this value the reduced
magnetization drops from 3.2314 x 10~ to zero.
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6 Archimedean Solids

The Archimedean solids are convex uniform polyhedra that have identical vertices like the
Platonic solids, but are formed by more than one polygon. The icosidodecahedron is made
of triangles and pentagons, with like polygons sharing vertices and unlike polygons sharing
edges, and has I;, symmetry and identical edges. The ground-state energy per bond of Hamil-
tonian (1) equals the one of an isolated triangle, with the lowest-energy configuration similarly
being coplanar, showing that it is determined by the more strongly frustrated triangles [10].

The truncated tetrahedron and the truncated icosahedron, which have T; and I;, symmetry
respectively, have been shown to have ground states three-dimensional in spin space for any
ratio of their two symmetrically independent exchange constants [11,12]. They achieve the
lowest-possible energy allowed by the connectivity of the frustrated polygon they include, the
triangle and the pentagon respectively, which is the sum of energies of isolated frustrated
polygons and antiparallel interpolygon bonds.

The ground states of the truncated dodecahedron and the rhombicosidodecahedron, which
also have I;, symmetry and two symmetrically independent exchange constants, are also three-
dimensional and achieve the lowest-possible ground-state energy allowed by their odd-membered
polygons for any relative value of the exchange constants. In the former case the energy is
the sum of energies of isolated triangles and antiparallel intertriangle bonds, while in the
latter of isolated triangles and pentagons. Consequently they achieve the maximum possi-
ble energy when only the triangle bonds are nonzero, with the corresponding configuration
two-dimensional in spin space (Table 2).

The snub dodecahedron has chiral icosahedral symmetry I, lacking a center of inversion.
Unlike the aforementioned Archimedean solids it has edge-sharing frustrated units of the same
type, which are triangles. It has three symmetrically independent edges, which divide it into
pentagons, triangles, and dimers, since not all triangle bonds are symmetrically equivalent.

Figure 6 shows the reduced ground-state energy per bond ng) 7 when the relative strengths
of the corresponding three unique exchange interactions are f)arametrized by a polar angle 6
and an azimuthal angle ¢. The z-component corresponds to the exchange interaction of the
pentagon edges, the x to one of the triangles, and the y to the one of the dimers. The lowest-
energy configuration is again three-dimensional in spin space, with the nearest-neighbor cor-
relations assuming three independent values, corresponding to the unique exchange interac-
tions. The total spin of the ground state is zero. For 8 = 0 only the pentagon bonds are
nonzero and the ground-state energy is the sum of energies of isolated pentagons. For 6 = %
only the triangle and dimer bonds are nonzero. As ¢ increases from O to 3 the energy goes
from the sum of energies of isolated triangles to the sum of energies of isolated dimers. For
0 < 6 < 7 the ground-state energy is determined by the competition of the three different
exchange constants. The competition between the triangular and pentagonal bonds increases
the energy for smaller ¢ when 6 # 7, while for higher ¢ the dimer bonds, which link different
pentagons, are getting stronger and lower the ground-state energy.

Frustration has a peak when the lowest energy becomes maximum. This occurs when
6 = 0.3792807 and ¢ = 7, where the triangle and dimer interactions are both equal to
0.65686 while the pentagonal is equal to 0.37023. The nearest-neighbor correlations are
equal to -0.4863181 for every bond (Table 2), higher than the corresponding value for an
isolated triangle but lower than the value for the icosahedron. For 6 not very close to 5 and
¢ ~ 0.481m, where the dimer bonds are strong and the triangle bonds weak, minimization of
the pentagonal energy is favored and the reduced energy per bond is equal to the one of an
isolated pentagon. The equality occurs for slightly different values of ¢ as 6 is varied.

Archimedean solids have lowest-energy configurations which are at most three-dimensional
(Table 2), and frustration is not stronger than the one at the level of an isolated odd-membered

10



SciPost Physics

Submission

Table 2: Different families of three-dimensional molecules with more than one sym-
metrically independent exchange interaction for which the ground state of Hamilto-
nian (1) was calculated for the whole range of their exchange interactions parameter
space. The number of vertices of the molecules N is listed, along with the point-
group symmetry, the number of symmetrically independent exchange interactions,
the ground-state dimensionality in spin space n, and the maximum possible reduced

&

E . . . .
ground-state energy per bond (Z—J)max along with the corresponding dimension-
<ij>v1ij

ality in spin space n,qy-

E

molecule N | point | unique | n ﬁ)m“ Mmax
group | inter.
Archimedean Solids
truncated 60 I 2 3 —% 2
dodecahedron
rhombicosidodecahedron | 60 I 2 3 —% 2
snub dodecahedron 60 I 3 3| -0.4863181 3
Fullerenes
chamfered 80 | I 2 |3| —£H 2
dodecahedron
hexpropello 140 I 4 3 —@ 2
dodecahedron
truncated pentakis 180 I 4 3 —@ 2
dodecahedron
- 24 Degg 3 3| -0.7606899 2
- 28 Ty 3 4 | -0.7843647 4
- 30 Dy, 4 3| -0.7707600 3
- 36 | Dg, 4 |2 B 2
- 40 Ty 4 5] -0.7843647 3
Geodesic Icosahedra
pentakis dodecahedron | 32 Iy 2 4 _1/?3 4
pentakis 42 Iy 2 5| -0.4403875 5
icosidodecahedron
hexapentakis 92 Iy 4 5 —‘/Tg 3
truncated icosahedron

11
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of the triangles, and the y the one of the dimers.

Figure 6: Reduced ground-state energy per bond

polygon. The exception is the snub dodecahedron, which achieves a maximally frustrated
ground state with an energy per bond higher than the one of an isolated triangle. Simulta-
neously, and even though there are three geometrically distinct edges in the molecule, the
maximally frustrated ground state achieves the same energy for any bond in the molecule.

7 Fullerene Molecules

Fullerene molecules are allotropes of carbon that consist of 12 pentagons and %—10 hexagons
[28]. The polygons share edges and their vertices are three-fold coordinated. Members of the
family are the dodecahedron (Sec. 4.2) and the truncated icosahedron (Sec. 6). The pen-
tagons are the source of frustration, and the molecules are further characterized by having
neighboring (nonisolated) pentagons or not. A three-dimensional ground state has been found
to be a typical feature of fullerene molecules when spins mounted on their vertices interact
according to the XXX model and all exchange interactions are equal [12,31,35,37,39]. Frustra-
tion even results in a finite ground-state magnetization for many of the molecules. On average
frustration decreases with the number of vertices as the number of hexagons increases, but a
more precise characterization of frustration, especially for molecules with the same number of
vertices, can be done if n in Hamiltonian (1) is allowed to be greater than 3 and the exchange
interactions can take arbitrary values. The interaction parameter space has been investigated
for fullerene molecules that have up to four symmetrically independent exchange interactions.

I-symmetry molecules bigger than the dodecahedron have pentagons not neighboring one
another. For the molecules with 80 (chamfered dodecahedron) and 180 (truncated pentakis
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dodecahedron) vertices and the I-symmetry molecule with 140 (hexpropello dodecahedron)
the lowest-energy configuration is three-dimensional. The corresponding average energy per
bond varies between the one of an isolated pentagon and that of antiparallel spins, mean-
ing that the maximum possible energy occurs when only the pentagons bonds are nonzero
and it is two-dimensional in spin space (Table 2). This shows that for icosahedral symmetry
frustration is never stronger than the one of an isolated pentagon, as has already been found
for the truncated icosahedron [12], and demonstrates a strong correlation between symmetry
and magnetic behavior. It has also been found that the icosahedral fullerene molecules have
the same classical magnetization response and are also the ones that support magnetization
discontinuities for quantum spins [31,35,43].

More specifically, for N = 80 there are two symmetrically unique types of edges, the first
between same-pentagon spins and the second between a pentagon and a nonpentagon spin.
The reduced ground-state energy per bond is shown in Fig. 7 as a function of w, with tan w
the relative strength of the two exchange interactions and for d ranging from 1 to 3. Also
shown is the lower bound for the energy, which is the sum of the ground-state energies of the
corresponding number of isolated pentagons and hexagons. Unlike the truncated icosahedron
[12], the chamfered dodecahedron does not attain this lower bound, which explains why the

intrapentagon and pentagon-nonpentagon nearest-neighbor correlations vary with w and are
«/_ 5+1

not constant and equal to — and -1 respectively. However the maximum frustration does
not exceed the one of an 1solated pentagon, with the reduced ground-state energy per bond

never higher than — ‘/—H . This is also true for the icosahedral molecules with N = 140 and 180,

which have four symmetncally unique types of edges, showing that the icosahedral clusters
achieve minimal frustration. Frustration does not have to do with the size of the molecule and
the fact that the number of unfrustrated hexagons increases with N, but rather with molecular
symmetry.

For 24 vertices and Dgy; symmetry [28, 44] the ground state of Hamiltonian (1) is in
general three-dimensional (Fig. 8) and has zero magnetization. The maximum energy per
bond equals -0.7606899 when the exchange interactions in the top and bottom hexagon equal
J1 =0.369747, the ones between spins in the top or bottom hexagon and spins in the middle
ring equal J, = 2J;, and the ones between spins in the middle ring equal J; = 0.562526, with
the ground state developing then in two spin dimensions. The J; and J, bonds have an energy
equal to — 2J j , which equals the ground-state energy per bond, while in the middle ring the

energy alternates in value between -1 and 1 — 3, so that the average also equals —ZJT

For 28 vertices and T; symmetry [28,44] the ground state is four-dimensional (F1g 9.
Maximum frustration occurs when same-hexagon exchange interactions are equal to J = 0.362873,
interhexagon interactions to 2J, and the rest of the pentagon-only interactions to 1.61070J.
All nearest-neighbor correlations are equal to -0.7843647, and the magnetization per spin
equals 0.0599442. The exchange interaction values for the maximum energy per bond are not
very different from the ones of the 24-vertices cluster, and similarities can also be detected
between the 8 and ¢ dependence in Figs 8 and 9, with the number of hexagons much less
than the one of pentagons for the two clusters.

For 30 vertices and Ds;, symmetry [ 28,44 ] the lowest-energy configuration is three-dimensional.
Its energy is maximized when the exchange interactions that connect the lower with the up-
per part of the molecule are zero, dividing it in two parts with respect to its mirror plane.
The interaction within the top and bottom pentagons equals 0.73198, between these pen-
tagons and the hexagons 0.59805, and hexagon spins within the upper or the lower side of
the molecule interact with bond strengths equal to 0.32641. Again these values are simi-
lar to the two fullerene molecules examined before. All nearest-neighbor correlations equal
-0.7707600, a value higher that the one of the T; molecule with the lower number of 28 ver-
tices. This demonstrates that even though the number of vertices increases frustration does
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Figure 7: Reduced ground-state energy per bond 5 = 5~ for Hamiltonian (1) as a
<ij>"v1ij

function of w for the chamfered dodecahedron (N = 80), with cosw the intrapen-
tagon and sinw the pentagon-nonpentagon interaction. The dimensionality of spin
space d ranges from 1 to 3. ”No frustration” shows the sum of reduced ground-
state energies of isolated pentagons and hexagons. The intrapentagon and pentagon-
nonpentagon nearest-neighbor correlation functions are also plotted.

not get weaker, according to the maximum possible ground-state energy criterion. The corre-
sponding magnetization per spin for each half of the molecule equals 0.122080.

For 36 vertices and Dg;, symmetry [ 28,39] the lowest-energy configuration is two-dimensional.
The maximally frustrated ground state occurs again when the exchange interactions that con-
nect the lower with the upper part of the molecule are zero, resulting in two independent parts
with respect to the molecule’s mirror plane. The exchange interactions in the top and bottom
hexagon have half the strength of the ones that connect them to the inner hexagons, and they
have equal strength with the inner-hexagon interactions. Each bond has an energy equal to
the energy per bond of an isolated pentagon, demonstrating that this molecule is minimally
frustrated. The magnetization per spin for each half of the molecule equals %.

For 40 vertices and T; symmetry [28] the lowest-energy configuration is five-dimensional.
The maximally frustrated ground state is three-dimensional, and occurs when interactions
that only belong to hexagons are zero, splitting the molecule in four parts with ten spins
each. Interactions that belong to both a pentagon and a hexagon are equal to J = 0.52746,
and pentagon-only interactions have a strength equal to 1.61070J, similarly to the N = 28
molecule with the same symmetry. Furthermore, all nearest-neighbor correlations are equal to
the value of the ones in the maximally frustrated configuration of that molecule, demonstrating
the link between symmetry and magnetic properties. The magnetization per spin for each
of the four separate parts of the molecule equals 0.0479013. Again and according to the
maximum possible ground-state energy criterion, this molecule is more strongly frustrated
than the Dy, fullerene with the smaller number of 36 vertices, showing the importance of
symmetry for frustration.

When the number of symmetrically independent exchange interactions is greater than
four, the lowest-energy configuration of Hamiltonian (1) has been calculated for all N < 36
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Figure 8: Reduced ground-state energy per bond ZE—gJ for Hamiltonian (1) ind = 3
<ij>v1J]

for different values of 6 as a function of ¢ for the 24-site fullerene molecule. 6
and ¢ control the relative strength of the three symmetrically independent exchange
constants, with the z-component the interactions in the top and bottom hexagon, the
x the interaction between spins in the middle ring, and the y the interaction between
spins in the top or bottom hexagon and spins in the middle ring.

-0.78 [ ///,,;;;,{:.\ T 1— 6=0
B T e _| - 6=0.05n
-0.8 I | 6=0.11
R |- 8=0.15x
_0.82 j , Z /// S :Ji: - < - ‘,\\ | e:O 275
2 T Tl == 9=0.25n
_ -0.84 - AT N B 6=0.3n
= i R 1-— =035z
= -0.86- T 0=0.38179597n
O R e Ny ] e0an
7 -0.88 e N T - 8=045T
- A LT T SO T 6=0.5n
_0.9 | i /// // »/,/ ~ N . \;\\, —
- | il /,/ /‘/./ S R \\\ [
mbb 092+ ,»/ ////', / /./ S \\‘%V
Lol s S !
S ’ i . R
0941 i) o
ro)) / /./' e -
- _‘,;,’ 4 /_/' ’//,/” ;“~~;\\\\\ 7
-0.98 1 =
1t 1
1 e e e s T B s B
0 005 01 015 02 025 03 035 04 045 05
¢ (m)
. E S .
Figure 9: Reduced ground-state energy per bond Z—gJ for Hamiltonian (1) ind = 4
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for different values of 6 as a function of ¢ for the 28-site T; fullerene molecule
isomer. 6 and ¢ control the relative strength of the three symmetrically indepen-
dent exchange constants, with the z-component the same-hexagon interactions, the
x pentagon-only interactions, and the y interhexagon interactions.
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Table 3: Ground-state energy of Hamiltonian (1) for different n at the isotropic limit
a, = 1 and minimum @, ;,;, required to lower the ground-state energy in n dimen-
sions for the T;-symmetry nonisolated-pentagon fullerenes with N = 40 and 100. All
the exchange interactions are equal. The corresponding magnetizations are zero.

N=40 N=100
E E
bofld (an = 1) C‘n,min boid (an = 1) an,min
_IT 0 —2 0
15 + 25 +

-0.8265611766 | 0.48794 | -0.9163284896 | 0.47175
-0.8297045764 | 0.98118 | -0.9205908313 | 0.95423
-0.8298861510 | 0.99880 | -0.9206099986 | 0.99971
-0.8298861626 | 0.9999998 | -0.9206100870 | 0.999995

Nl WIN—=|S

molecules and for higher symmetry molecules with N < 100 when all exchange interactions
are equal, and it is typically three or four-dimensional in spin space. Along with the N = 40
molecule with T; symmetry, the other exception is the N = 100 molecule with the same sym-
metry and also nonisolated pentagons, which has a five-dimensional ground state. Table 3
lists the ground-state energy of Hamiltonian (1) for both molecules with increasing n. The
absolute minimum is achieved for n = 5, while the minimum a,, required to lower the ground-
state energy when adding a new dimension increases with n, as was mostly the case for the
Platonic solids.

Fullerene molecules demonstrate that even though pentagons are less frustrated than tri-
angles, their assemblage with hexagons leads to the formation of ground states up to five spin
dimensions (Table 2), higher even than the four of the four real-space dimensional Platonic
solids. What distinguishes fullerenes from Platonic and Archimedean solids is that their sites
are not equivalent, and as N increases so does the number of symmetrically unique vertices.
On the other hand the icosahedral fullerenes are minimally frustrated, pointing to the impor-
tance of high symmetry for the magnetic properties, especially since they have also been found
to behave nontrivially in a magnetic field both for classical and quantum spins [31,35,43,45].
This is also in agreement with the icosahedral and the four-dimensional Platonic solids form-
ing ground states in a number of spin dimensions equal to their dimensionality in real space,
which is also true for the icosahedral Archimedean solids. These results show that frustra-
tion in fullerene molecules does not necessarily decrease with N and the number of hexagons,
but symmetry plays an important role as well, as is the case with the minimally frustrated
Dy, fullerene with N = 36. It was also found that in order to achieve maximum energy the
exchange interaction values of different molecules are similar in value.

8 Geodesic Icosahedra

The geodesic icosahedra are polyhedra derived from the icosahedron [29, 30]. They have
icosahedral symmetry and are duals of fullerene molecules. Twelve of their vertices have five
and the rest six nearest-neighbors and they only include triangles. The pentakis dodecahedron
is the dual of the truncated icosahedron. It is derived from the dodecahedron by adding a
vertex at the center of each one of its 12 pentagons, and has N = 32. There are two unique
types of edges, one corresponding to the dodecahedron edges and the other to the edges
linking a pentagon vertex with the vertex at the pentagon’s center. The two corresponding
exchange constants are parametrized as cosw and sinw. The zero-field ground state has been
calculated for d = 3, along with the magnetization response both at the classical and quantum
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function of w for the pentakis dodecahedron. The dodecahedron-edge interaction
equals cosw and the pentagon vertex with the pentagon’s center interaction equals
sinw. The dimensionality of spin space d ranges from 1 to 4. The vertical lines show
the w values where the dimensionality of the ground state changes from 3 to 4 and
then to 1.

Figure 10: Reduced ground-state energy per bond for Hamiltonian (1) as a

level [40]. Figure 10 shows the reduced ground-state energy per bond of Hamiltonian (1) as
a function of w for d = 1 to 4. For & = 0 the ground state of the dodecahedron is three-
dimensional [16]. Introducing the second exchange interaction further enhances frustration
and the reduced energy per bond increases, and eventually the ground state develops a four-
dimensional structure in spin space at w = 0.104147. The maximum ground-state energy is
achieved for w=tan™! @ and equals —‘/Tg for any bond (Table 2), as in the ground state of the
icosahedron, with the corresponding magnetization per spin equal to 0.088251. This is also the
maximum possible ground-state energy for spins located at the vertices of an isolated pentagon

with an extra spin located at its center, which is three-dimensional, when the exchange strength

with the spin at the center equals ¢§2+1 times the intrapentagon interaction. At w = 0.339267

the lowest-energy configuration becomes colinear.

Figure 11 shows the ground-state energy of Hamiltonian (1) as a function of «w away from
the colinear regime for values of d which are in general noninteger. Focusing between d =1
and 2, for the ranges of w where the ground-state energy and consequently frustration are
maximum, a weak a,, is sufficient to further lower the energy from its d = 1 value, while
for w-ranges of weaker frustration the d = 1 lowest-energy configuration is more robust and
the corresponding a, value bigger. Going from d = 2 to 3 the corresponding a,, values are
much stronger, and they get even stronger when going from d = 3 to 4. This shows that the
lowest-energy configurations are becoming more robust with increasing d, a conclusion that
has been typically drawn for the Platonic solids.

The ground-state nearest-neighbor correlations are shown in Fig. 12. They obey the
symmetry of the molecule, with edges connected by symmetry operations corresponding to
the same correlation value. They are constant for lower «w where the ground-state is three-
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Figure 11: Reduced ground-state energy per bond ZE—gJ for Hamiltonian (1) as a
<ij>"1ij

function of w for the pentakis dodecahedron. The dodecahedron-edge interaction
equals cosw and the pentagon vertex with the pentagon’s center interaction equals
sinw. The dimensionality of spin space d ranges from 1 to 4 in steps of 11—0, increas-
ing from top to bottom, with integer-d values corresponding to straight lines, and
noninteger to dashed lines. Noninteger values of d may coincide with integer val-
ues, especially with increasing d. The vertical lines show the w values where the
dimensionality of the ground state changes from 3 to 4 and then to 1.

dimensional, and for higher « where it is colinear. In between they vary with «w and become
equal at the point of maximum frustration.

The next-bigger geodesic icosahedron is the pentakis icosidodecahedron. It is derived from
the icosidodecahedron by introducing a vertex at the center of each one of its 12 pentagons,
and has N = 42. The number of geometrically distinct edges is again two, one corresponding
to the edges of the icosidodecahedron and the other to the edges linking a pentagon vertex
with the vertex at the pentagon’s center. The exchange constants are again parametrized as
cosw and sinw respectively. Figure 13 shows the reduced ground-state energy per bond of
Hamiltonian (1) plotted as a function of w for d = 1 to 5. At w = 0 the lowest-energy con-
figuration of the icosidodecahedron is two-dimensional. Then for finite w the lowest-energy
configuration develops in d = 5 dimensions, with the maximum energy per bond occurring
at w = 0.2567257, being equal to -0.4403875 for both unique bonds (Table 2). This value
is higher than the corresponding one for the pentakis dodecahedron. At w = 0.345937 the
ground-state becomes four-dimensional, and at w = 0.414167 the spins become colinear.

Figure 14 shows the ground-state nearest-neighbor correlations as a function of w. Again
there is a unique correlation for each unique exchange interaction in Hamiltonian (1), and the
two correlations become equal at the point of maximum frustration. At the discontinuity the
total spin jumps from zero to a finite value. The stronger frustration of the pentakis icosido-
decahedron than the pentakis dodecahedron is also visible at the «w = 0 limit, since it reduces
to the icosidodecahedron and not to the dodecahedron, with the latter less strongly frustrated.

The hexapentakis truncated icosahedron has 92 vertices and four symmetrically indepen-

dent edges. The maximum ground-state energy equals —? (Table 2) and occurs when the
only nonzero exchange interactions are between the 5-fold coordinated spins and their nearest
neighbors, and among these nearest neighbors themselves, with the ratio of the two equal to
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Figure 12: Ground-state nearest-neighbor correlations (5;-5;), for Hamiltonian (1) as
a function of w for the pentakis dodecahedron. The dodecahedron-edge interaction
equals cosw and the pentagon vertex with the pentagon’s center interaction equals
sinw. The vertical lines show the w values where the dimensionality of the ground
state changes from 3 to 4 and then to 1.
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Figure 13: Reduced ground-state energy per bond for Hamiltonian (1) as a

Z<' j> Ji'
function of w for the pentakis icosidodecahedron. ThUe icjosidodecahedron-edge in-
teraction equals cosw and the pentagon vertex with the pentagon’s center interaction
equals sinw. The dimensionality of spin space d ranges from 1 to 5. The vertical lines
show the w values where the dimensionality of the ground state changes from 5 to

4 and then to 1.
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Figure 14: Ground-state nearest-neighbor correlations (S; - 5;), for Hamiltonian (1)
as a function of w for the pentakis icosidodecahedron. The icosidodecahedron-edge
interaction equals cosw and the pentagon vertex with the pentagon’s center interac-
tion equals sinw. The vertical lines show the w values where the dimensionality of
the ground state changes from 5 to 4 and then to 1.

@. This is the three-dimensional state that has the maximum ground-state energy for an

isolated pentagon with a spin at its center.

The geodesic icosahedra have five and six-fold coordinated vertices. Each one of the for-
mer resides at the center of a pentagon, and forms with it a structure that achieves a maximum
ground-state energy per bond of —é, which equals the ground-state energy of the icosahe-
dron [9,14,15]. The pentakis dodecahedron achieves this maximum in four spin dimensions,
while the pentakis icosidodecahedron has a higher maximum possible energy than _\/?g in
five spin dimensions. On the other hand, the hexapentakis truncated icosahedron achieves
the maximum when the pentagons with a spin at their center are isolated from the rest of the
cluster, which only requires three dimensions in spin space. What distinguishes this molecule
from the two smaller ones is that the pentagons with a spin at their center are isolated from
one another. These results show that frustration as determined from the maximum ground-
state energy criterion does not necessarily weaken with the increase in the number of vertices,
which makes the twelve five-fold coordinated vertices much less in number than the six-fold
ones. The specific connectivity of each cluster is important, with the pentakis icosidodecahe-

dron having the maximum possible ground-state energy per bond.

9 Conclusions

Magnetic frustration has been characterized by the dimensionality of the absolute ground state
of the n-vector model, by allowing n to take arbitrary values with the spins mounted on the
vertices of different molecules being more than three-dimensional. Molecules of high sym-
metry such as Platonic solids in three and four dimensions (Table 1) and Archimedean solids
(Table 2) have been found to form ground states in a number of spin-space dimensions equal
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to their real-space dimension. When there is more than one unique type of vertex, as in the
case of fullerene molecules and geodesic icosahedra, the ground state can develop in as many
as five spin-space dimensions, in order to optimize nearest-neighbor interactions. Frustration
is also characterized by the maximum ground-state energy per bond when there are more than
one symmetrically independent exchange interactions and they are allowed to vary. Typically
the nearest-neighbor correlations are then equal, unless frustration does not exceed the one at
the level of the maximally frustrated polygon of the molecule, as in the case of the I;-symmetry
fullerenes. This second way of characterizing frustration also demonstrates the existence of
symmetry patterns within the same family of molecules. Furthermore, increasing the number
of sites does not necessarily weaken frustration as is expected, but the molecular point-group
symmetry also plays an important role, as well as the specific connectivity of each molecule
if they are of the same symmetry. It is also found that going from a dimension n to the next
higher one by switching on the interactions in the new dimension, it typically takes a finite
strength of the latter to lower the ground-state energy.

The study of the n-vector model with arbitrary n allows a more precise characterization of
the frustration introduced by the molecular connectivity. This is because the energy minimiza-
tion is not constrained by the requirement that the spins can only be up to three-dimensional,
allowing them to minimize the nearest-neighbor interactions more efficiently. The method in-
troduced here can reveal more symmetry patterns if the computational resources are available
to study molecules with more than four symmetrically independent exchange interactions.
Furthermore, the n-vector model can be taken as an effective model, for example in the case
of spin-orbit interactions.
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